WO2009157328A1 - 内燃機関用オイルリング及びピストン - Google Patents

内燃機関用オイルリング及びピストン Download PDF

Info

Publication number
WO2009157328A1
WO2009157328A1 PCT/JP2009/060830 JP2009060830W WO2009157328A1 WO 2009157328 A1 WO2009157328 A1 WO 2009157328A1 JP 2009060830 W JP2009060830 W JP 2009060830W WO 2009157328 A1 WO2009157328 A1 WO 2009157328A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
outer peripheral
internal combustion
combustion engine
piston
Prior art date
Application number
PCT/JP2009/060830
Other languages
English (en)
French (fr)
Inventor
樋口 毅
豊 馬淵
吉田 誠
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/000,453 priority Critical patent/US8739753B2/en
Priority to EP09770038.9A priority patent/EP2292952A4/en
Priority to CN2009801238705A priority patent/CN102066817A/zh
Publication of WO2009157328A1 publication Critical patent/WO2009157328A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/20Rings with special cross-section; Oil-scraping rings

Definitions

  • the present invention relates to a piston ring that is attached to a piston of an internal combustion engine such as an automobile engine, and more particularly to an oil ring that is disposed so as to scrape lubricant oil out of a combustion chamber. Furthermore, the present invention relates to a piston on which such an oil ring is mounted together with a compression ring.
  • the friction loss in the normal range between a piston and a cylinder bore in an internal combustion engine is said to reach 20-30% of the mechanical loss of the entire internal combustion engine, especially to reduce the friction between the piston ring and the cylinder bore.
  • a technique for reducing the piston ring tension is widely used.
  • Piston ring tension is closely related to the sealing performance in the combustion chamber and affects engine oil consumption. For this reason, not only dropping the piston ring tension, but also applying a surface treatment to the piston ring with a hard thin film such as CrN with excellent wear resistance with small variations in the piston ring tension, and reducing the surface roughness of the piston ring Etc. are employed (see Patent Document 1).
  • Cr plating is generally used as a surface treatment on the outer periphery of the piston ring.
  • a hard thin film treatment such as CrN having excellent wear resistance has been conventionally used together with a reduction in tension.
  • the contact width is narrow compared to the compression ring (pressure ring) to improve the oil scraping performance.
  • the significance of performing such a hard surface treatment is great.
  • maintaining the convex shape of the oil ring outer periphery suppresses the contact width between the oil ring and the cylinder bore surface. It is considered to be an ideal shape compared to the case where the oil viscosity resistance becomes small and wears and flattens.
  • the present invention has been made paying attention to such problems of the prior art, and its object is to reduce not only the friction of itself but also the friction between the compression ring and the cylinder bore.
  • An object of the present invention is to provide an oil ring for an internal combustion engine.
  • Another object of the present invention is to provide a piston for an internal combustion engine that includes such an oil ring as a piston ring together with a compression ring, and that can reduce the frictional force between the piston ring and the cylinder bore.
  • the present inventors have repeated intensive analyzes and experiments on the material and shape of the oil ring.As a result, the oil is not applied to the compression ring without necessarily making the tip of the oil ring a sharp convex shape. The conclusion was reached that it should be kept at an adequate supply level, that is, the opposite of the conventional theory.
  • the present invention is based on the above knowledge, and the oil ring for an internal combustion engine of the present invention is formed by coating the outer peripheral surface with at least one selected from the group consisting of hard carbon, CrN and TiN, and at the outer peripheral tip.
  • the sliding direction radius of curvature R is 0.3 mm or more.
  • the piston for an internal combustion engine of the present invention is characterized in that at least one of the oil ring and the compression ring is provided.
  • the outer peripheral surface of the oil ring for an internal combustion engine is coated with at least one of hard carbon, CrN, and TiN, and the radius of curvature R in the sliding direction at the outer peripheral tip is set to 0.3 mm or more.
  • FIG. 1A is a cross-sectional view showing an example of the shape of an oil ring for an internal combustion engine according to the present invention.
  • FIG. 1B is an assembled view of an oil ring for an internal combustion engine showing an example of the shape of the oil ring for an internal combustion engine of the present invention.
  • FIG. 2 is a perspective view showing an example of the shape of a compression ring used in the piston for an internal combustion engine of the present invention.
  • FIG. 3 is a side view showing an arrangement example of compression rings and oil rings in the piston for an internal combustion engine of the present invention.
  • FIG. 4 is a graph showing the relationship between the oil ring radius of curvature and the average frictional force based on the results of Examples 1 to 3, 15, 16 and Comparative Examples 1 to 3.
  • the present invention relates to a piston for an internal combustion engine in which at least two piston rings, that is, a compression ring and an oil ring, are arranged.
  • the radius of curvature R is preferably 6 mm or less, and more preferably 3 mm or less.
  • the “curvature radius R” refers to a sliding direction (plate thickness direction) width of 200 ⁇ m centered on the outer peripheral diameter maximum portion T in the longitudinal section of the outer peripheral portion of the oil ring Ro as shown in FIG. 1A. In the range, the radial height difference Z is measured, and the average radius of curvature obtained using the following equation (1) is meant.
  • the frictional force between the oil ring Ro and the cylinder bore is further remarkably reduced by setting the tip curvature radius R of the outer peripheral shape of the oil ring Ro to 6 mm or less, more preferably 3 mm or less. .
  • the hardness of the outer peripheral surface 1 of the oil ring Ro is 2000 Hv or more, the change in the shape of the oil ring Ro due to wear can be remarkably reduced, and the tip shape of the oil ring Ro can be prevented from being flattened.
  • the effect of reducing the frictional force between the cylinder bore surface and the compression ring Rc can be maintained over a long period of time.
  • the hardness of the outer peripheral surface 1 of the oil ring Ro is less than 2000 Hv, even if the initial ring outer peripheral shape is flattened to a curvature radius R of 0.3 mm or more, the oil ring Ro is proportional to the travel distance. There is a risk that the outer peripheral portion will wear, the frictional force will increase due to further flattening, and the oil consumption will also increase.
  • the surface roughness of the outer peripheral surface 1 of the oil ring Ro is preferably 0.1 ⁇ m or less in terms of the center line average roughness Ra from the viewpoint of ensuring the effect of reducing the frictional force.
  • the DLC film of the hard coating is applied to the outer peripheral surface 1 of the oil ring Ro. It is desirable to coat.
  • Such a DLC film can be formed by, for example, a plasma CVD method.
  • the hydrogen content of the DLC film is desirably 10 at% or less.
  • the hydrogen content of the DLC film is 5 at% or less, further 1 at% or less. preferable.
  • a DLC film having a low hydrogen content can be obtained by forming a film by a physical vapor deposition (PVD) method such as a sputtering method or an ion plating method, that is, a method that does not substantially use hydrogen or a hydrogen-containing compound. It is done.
  • PVD physical vapor deposition
  • the film may be formed after the reaction vessel / base material holder is baked and the surface of the base material is sufficiently cleaned. It is desirable to reduce the hydrogen content in it.
  • the surface roughness of the outer peripheral surface 1 generally depends on the roughness of the base film forming surface. Therefore, in order to reduce the surface roughness of the outer peripheral surface 1 of the oil ring Ro to Ra 0.1 ⁇ m or less, it is necessary to finish the base material surface to have a surface roughness of 0.1 ⁇ m or less.
  • the oil ring Ro has been described above.
  • the hardness and roughness of the outer peripheral surface 2 (see FIG. 2) of the compression ring Rc used together with the oil ring Ro are each 2000 Hv or more from the viewpoint of wear resistance and friction characteristics. 0.1 ⁇ m or less is preferable.
  • the outer peripheral surface 2 of the compression ring Rc is also provided with a diamond-like carbon (DLC) coating, and the hydrogen content contained in the DLC is preferably 10 at%.
  • DLC diamond-like carbon
  • a carbon steel material SWRH72 specified in JIS G 3506 (hard steel wire) was drawn in a cold state and then subjected to quenching and tempering treatment.
  • this wire was formed into a ring shape having an outer shape (nominal diameter) of 93 mm, and a portion serving as a joint was cut.
  • the outer peripheral surface is coated with a CrN film or DLC film by ion plating, and each surface roughness is obtained by finish polishing. It was. Note that the hydrogen content of the DLC film was adjusted by changing the hydrogen concentration in the raw material.
  • an oil ring Ro having a tension of 20N was produced by assembling a spacer B made of SUS304 between the two side rails A produced as described above.
  • this wire was formed into a ring shape so as to have a tension of 10 N when incorporated into a cylinder liner having an inner diameter of 93 mm, and the portion to be a joint was cut to produce a compression ring Rc as shown in FIG.
  • the outer peripheral surface 2 of the compression ring Rc was coated with a CrN film or a DLC film by the same method as that used for the oil ring Ro.
  • Gray cast iron was cut into a cross-sectional shape of 1.5 mm ⁇ 2.5 mm. This gray cast iron was formed into a ring shape so as to have a tension of 10 N when incorporated into a cylinder liner having an inner diameter of 93 mm, and a portion to be a joint was cut off.
  • a piston P for Nissan VQ30DE engine was prepared as a piston for an automobile engine. Then, the two compression rings Rc, Rc produced as described above were attached to the ring groove G1 and the ring groove G2 as a top ring and a second ring, respectively. Then, one of the oil rings Ro produced as described above is mounted in the ring groove G3 on the lower side of the ring groove G1 and the ring groove G2, and a sliding test between the piston P and the cylinder bore by a single friction wear tester. Went.
  • the unit frictional wear tester has a mechanism in which the load cell attached to the piston detects the friction force generated between the piston and cylinder bore by vibrating the cylinder bore side by hydraulic drive. Then, commercially available engine oil having a viscosity of 5W30 was used as the lubricating oil, and vibrations were applied 700 times per minute during the above test, and the average frictional force was measured.
  • Comparative Example 2 The same compression ring Rc as the compression ring Rc of the comparative example 1 was combined with an oil ring Ro that was coated as in the comparative example 1 and whose outer peripheral surface tip average curvature radius R was 0.25 mm. In this case, the average frictional force between the piston P and the cylinder bore was 37 N, and the result of Comparative Example 2 was that the frictional force slightly increased from 35 N of Comparative Example 1 above.
  • Comparative Example 3 A compression ring Rc similar to the compression ring Rc of Comparative Example 1 and an oil ring Ro having a surface hardness of 2000 Hv CrN, a roughness of Ra 0.05 ⁇ m, and an outer peripheral surface tip average curvature radius R of 0.25 mm. Combined. Using the same piston P, cylinder bore, and single friction wear tester as those used in Comparative Example 1, 700 cycles / minute vibration was applied to the cylinder bore side, and the average friction force between the piston P and cylinder bore was measured. did.
  • the compression ring Rc which is the same as the compression ring Rc of the comparative example 1, was combined with an oil ring Ro which was coated as in the comparative example 1 and whose outer peripheral surface tip average curvature radius R was 0.3 mm.
  • the average frictional force between the piston P and the cylinder bore was 30 N, and it was found in Example 1 that the average frictional force was reduced as compared with 35N, 37N, and 36N of Comparative Examples 1, 2, and 3, respectively.
  • the outer peripheral surface of the compression ring Rc is the same as the compression ring Rc of Comparative Example 1 except that the surface roughness Ra is 0.1 ⁇ m, and the barrel face shape has an average tip curvature radius R of 0.5 mm in a sliding direction width of 200 ⁇ m. None, and an oil ring Ro on which a CrN film having a Vickers hardness of 2000 Hv and a surface roughness Ra of 0.1 ⁇ m was applied. In this case, the average friction force between the piston P and the cylinder bore was 23 N, and it was confirmed in Example 4 that the average friction force was slightly reduced as compared with 24 N in Example 2.
  • the outer peripheral surface of the compression ring Rc is the same as the compression ring Rc of Comparative Example 1 except that the surface roughness Ra is 0.05 ⁇ m, and the barrel face shape has an average tip curvature radius R of 0.5 mm in a sliding direction width of 200 ⁇ m. None, and an oil ring Ro on which a CrN film having a Vickers hardness of 2000 Hv and a surface roughness Ra of 0.05 ⁇ m was applied. In this case, the average friction force between the piston P and the cylinder bore was 23 N, and it was confirmed in Example 5 that the average friction force was slightly reduced as compared with 24 N in Example 2. Further, the average frictional force is significantly reduced in Example 5 as compared with 36N of Comparative Example 3 in which the surface roughness Ra of the oil ring Ro is the same.
  • the outer peripheral surface of the compression ring Rc is the same as the compression ring Rc of Comparative Example 1 except that the surface roughness Ra is 0.05 ⁇ m, and the barrel face shape has an average tip curvature radius R of 0.5 mm in a sliding direction width of 200 ⁇ m. None, and an oil ring Ro on which a CrN film having a Vickers hardness of 2000 Hv and a surface roughness Ra of 0.05 ⁇ m was applied. In this case, the average frictional force between the piston P and the cylinder bore was 22 N, and it was confirmed in Example 6 that the frictional force was further reduced as compared with 23 N in Example 5.
  • the outer peripheral surface of the compression ring Rc is the same as the compression ring Rc of Comparative Example 1 except that the surface roughness Ra is 0.05 ⁇ m, and the barrel face shape has an average tip curvature radius R of 0.5 mm in a sliding direction width of 200 ⁇ m. None and an oil ring Ro provided with a DLC film (hydrogen content: 15 at%) having a Vickers hardness of 3000 Hv and a surface roughness Ra of 0.05 ⁇ m was combined. In this case, the average frictional force between the piston P and the cylinder bore was 22N, and it was confirmed in Example 7 that the frictional force was further reduced as compared with 23N in Example 5.
  • a barrel face shape having a radius of curvature R of 0.5 mm was combined with an oil ring Ro having a CrN film having an outer peripheral surface, a Vickers hardness of 2000 Hv, and a surface roughness Ra of 0.05 ⁇ m.
  • the average frictional force between the piston P and the cylinder bore was 19 N, and the frictional force was further reduced as compared with 22N in Example 6 and 22N in Example 7, resulting in Example 8.
  • Two compression rings Rc having a Vickers hardness of 7000 Hv DLC film (hydrogen content: 0.5 at%) on the outer peripheral surface and a surface roughness Ra of 0.05 ⁇ m, and an average over a sliding direction width of 200 ⁇ m
  • An oil ring Ro having a DLC film (hydrogen content: 10 at%) having a barrel face shape with a tip radius of curvature R of 0.5 mm, an outer peripheral surface, a Vickers hardness of 4000 Hv, and a surface roughness Ra of 0.05 ⁇ m; Were combined.
  • the average frictional force between the piston P and the cylinder bore was 19 N, and the result of Example 9 was that the frictional force was further reduced as compared with 22N in Example 6 and 22N in Example 7.
  • Two compression rings Rc having a Vickers hardness of 7000 Hv and a DLC film (hydrogen content: 0.5 at%) on the outer peripheral surface and having a surface roughness Ra of 0.05 ⁇ m, and an average over a sliding direction width of 200 ⁇ m
  • An oil ring Ro having a barrel face shape having a tip radius of curvature R of 0.5 mm, a DLC film having a Vickers hardness of 5000 Hv and a surface roughness Ra of 0.05 ⁇ m (hydrogen content: 5 at%); Were combined.
  • the average frictional force between the piston P and the cylinder bore was 18N, and the average frictional force was further reduced as compared with 19N in Example 9, resulting in Example 10.
  • Two compression rings Rc having a Vickers hardness of 7000 Hv DLC film (hydrogen content: 0.5 at%) on the outer peripheral surface and a surface roughness Ra of 0.05 ⁇ m, and an average over a sliding direction width of 200 ⁇ m
  • Oil ring with a DLC film (hydrogen content: 0.5 at%) having a barrel face shape with a radius of curvature R of 0.5 mm, an outer peripheral surface, a Vickers hardness of 7000 Hv, and a surface roughness Ra of 0.05 ⁇ m Combined with Ro.
  • the average friction force between the piston P and the cylinder bore was 17 N, and the average friction force was further reduced as compared with 18 N of Example 10, resulting in Example 11.
  • the face shape was combined with an oil ring Ro having a CrN film having an outer peripheral surface, a Vickers hardness of 2000 Hv, and a surface roughness Ra of 0.1 ⁇ m.
  • the average frictional force between the piston P and the cylinder bore is 24 N, and it has been found that the average frictional force is lower than 30 N in Example 1 above.
  • a compression ring Rc similar to the compression ring Rc of Comparative Example 1 and a barrel face shape having an average tip curvature radius R of 0.5 mm in a sliding direction width of 200 ⁇ m are formed on the outer peripheral surface, with a Vickers hardness of 5000 Hv and a surface roughness Ra.
  • An oil ring Ro provided with a 0.05 ⁇ m DLC film (hydrogen content: 5 at%) was combined.
  • the average friction force between the piston P and the cylinder bore was 21 N, and the result of Example 13 was that the average friction force was further reduced as compared with 24 N of Example 12 above.
  • An oil ring Ro provided with a 0.05 ⁇ m DLC film (hydrogen content: 0.5 at%) was combined.
  • the average frictional force between the piston P and the cylinder bore was 20N, and it was confirmed in Example 14 that the frictional force was further reduced as compared with 24N in Example 12 and 21N in Example 13.
  • a compression ring Rc similar to the compression ring Rc of Comparative Example 1 and a barrel face shape having an average tip radius of curvature R of 1.4 mm in a sliding direction width of 200 ⁇ m are formed on the outer peripheral surface and also have a Vickers hardness of 2000 Hv and a surface roughness.
  • An oil ring Ro provided with a CrN film with a Ra of 0.15 ⁇ m was combined. In this case, the average frictional force between the piston P and the cylinder bore was 26N.
  • FIG. 4 is a graph obtained by a sliding test based on the results of Examples 1 to 3, 15, 16 and Comparative Examples 1 to 3, and the curvature of the oil ring Ro with respect to the average frictional force (N). The influence which the radius R (mm) gives is illustrated.
  • the average frictional force is significantly reduced when the average tip radius of curvature R at the sliding direction width 200 ⁇ m of the outer peripheral surface 1 of the oil ring Ro is 0.3 mm or more (see Example 1). .
  • the entire contents of Japanese Patent Application 2008-163227 (Filing Date: June 23, 2008) and Japanese Patent Application 2009-075849 (Filing Date: March 26, 2009) are hereby incorporated by reference in order to avoid mistranslations and omissions. Protected.
  • the outer peripheral surface of the oil ring for an internal combustion engine is coated with at least one of hard carbon, CrN, and TiN, and the radius of curvature R in the sliding direction at the outer peripheral tip is set to 0.3 mm or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 本発明の内燃機関用オイルリングRoは、硬質炭素、CrN及びTiNから成る群より選ばれた少なくとも1種を外周面1に被覆して成り、外周先端Tにおける摺動方向曲率半径Rが0.3mm以上であることを特徴とする。

Description

内燃機関用オイルリング及びピストン
 本発明は、例えば自動車用エンジンなどの内燃機関のピストンに取付けられるピストンリングに係わり、特に潤滑油が燃焼室に入らないように掻き落とすために配置されるオイルリングに関する。更に本発明は、このようなオイルリングをコンプレッションリングと共に搭載したピストンに関する。
 自動車用エンジン等の内燃機関における機械損失低減は、燃費向上に有効であり、様々な部品に対して摩擦低減の試みがなされている。
 例えば、内燃機関におけるピストンとシリンダーボア間の常用域における摩擦損失は、内燃機関全体の機械損失の実に20~30%にも達するとされており、特にピストンリングとシリンダーボア間の摩擦を減らすために、ピストンリング張力を低減する手法が広く用いられている。
 ピストンリング張力は、燃焼室内のシール性と密接に関係し、エンジンオイル消費量に影響する。このためピストンリング張力を単に落とすだけではなく、ピストンリング張力ばらつきの小さい耐摩耗性に優れたCrNなどの硬質薄膜による表面処理をピストンリングに施す方法や、ピストンリングの面粗度を低減する方法などが採られている(特許文献1参照)。
特開2006-275269号公報
 ピストンリングの外周部への表面処理としてCrめっきが一般的に用いられている。これに対して、上記したように耐摩耗性に優れるCrN等の硬質薄膜処理が、張力低減と共に従来から用いられている。
 しかしながら、従来では、表面処理をCrめっきからCrN等に単に置き換えたに過ぎず、耐摩耗性向上に伴う形状変更等について工夫された例はほとんど見当たらない。従って、これによる初期張力設定が低減された分、ピストンリングとシリンダーボアとの間の摩擦力は低減するもののそれ以上の効果について期待できないことが、発明者らの解析により明らかになった。
 一般的傾向として、ピストンリング外周部とシリンダーボアとの摺動によりピストンリング外周部は摩耗が進み、ピストンリング外周部の先端部が摩耗することによって、ピストンリング断面における凸形状の平坦化が進む。
 一方、高硬度で耐摩耗性に優れたCrN膜などの硬質表面処理を施した場合、摩耗速度が著しく減少し、リング外周部の先端形状は、通常使用範囲で平坦化することはなく、初期のまま維持される。
 特に、オイルリング(オイル掻き落しリング、オイルコントロールリング)の場合、オイル掻き落し性能向上のため、コンプレッションリング(圧力リング)に比べて接触幅を狭くしてあり、摩耗しやすいことから、上記のような硬質表面処理を行う意義は大きい。
 また、オイル掻き落し性能だけでなく、摩擦力低減の観点からも、オイルリング外周部の凸形状を維持することは、オイルリングとシリンダーボア面との接触幅を抑えられるため、摺動時のオイル粘性抵抗が小さくなり、摩耗して平坦化する場合に比べて理想的な形状と考えられている。
 ところが、発明者らは、実際にエンジンを用いて解析を行った結果、従来考えられている説と大きく異なり、オイルリング外周部先端の凸形状が必ずしも鋭利である程、摩擦力が低減するわけではないことを見出すに到った。
 すなわち、オイルリング単独で考えた場合には、上記説が成り立つが、オイルリングのオイル掻き落し性能が高いほど、コンプレッションリングに供給されるオイル量が減少し、コンプレッションリングとシリンダーボア間の油膜形成に悪影響を及ぼす。
 オイルリング外周部の形状の影響を調べた従来の試験は、いずれもモータリング試験やリング・ボア相当の試験片を用いた擬似試験であり、理論上の予測と整合の取れた結果が提示されている。
 一方、エンジンが燃焼状態での、ピストンのコンプレッションリングと、シリンダーボアとの間の油膜は、幾何学的に算出される厚さに比べて実際はかなり薄いことが報告されている。つまり、過去の試験例は実際のエンジンと異なり、オイル供給量が潤沢のため、コンプレッションリングへの影響を正確に反映していない可能性がある。
 すなわち、ピストンとシリンダーボアとの間の摩擦を低減する方策としては、オイルリングのみの摩擦を低減するだけでなく、コンプレッションリングの摩擦も同時に低減する必要があると考えられる。
 本発明は、このような従来技術の問題点に着目してなされたものであって、その目的とするところは、自身の摩擦のみならず、コンプレッションリングとシリンダーボアとの間の摩擦をも低減できる内燃機関用オイルリングを提供することにある。
 また、このようなオイルリングをコンプレッションリングと共にピストンリングとして備え、かかるピストンリングとシリンダーボアとの間の摩擦力を低減できる内燃機関用ピストンを提供することにある。
 本発明者らは、上記課題の解決に向けて、オイルリングの材質・形状について鋭意解析・実験を繰り返した結果、オイルリングの先端を必ずしも鋭利な凸形状とすることなく、コンプレッションリングにオイルを適当に供給するレベルに保つのが良いという結論、即ち、従来の定説とは逆の結論に達した。
 本発明は上記知見に基づくものであって、本発明の内燃機関用オイルリングは、外周面に硬質炭素、CrN及びTiNから成る群より選ばれた少なくとも1種を被覆して成り、外周先端における摺動方向曲率半径Rが0.3mm以上であることを特徴とする。
 また、本発明の内燃機関用ピストンにおいては、上記オイルリングとコンプレッションリングをそれぞれ少なくとも1本備えたことを特徴とする。
 本発明によれば、内燃機関用オイルリングの外周面に硬質炭素、CrN、TiNの少なくとも1種を被覆すると共に、外周先端における摺動方向曲率半径Rを0.3mm以上としたから、コンプレッションリングの摺動面にも潤滑油が適度に供給されるようになり、内燃機関用ピストン-シリンダーボア間の摩擦力が低減される。
図1Aは、本発明の内燃機関用オイルリングの形状例を示す断面図である。 図1Bは、本発明の内燃機関用オイルリングの形状例を示す内燃機関用オイルリングの組図である。 図2は、本発明の内燃機関用ピストンに用いられるコンプレッションリングの形状例を示す斜視図である。 図3は、本発明の内燃機関用ピストンにおけるコンプレッションリング・オイルリングの配置例を示す側面図である。 図4は、実施例1~3、15、16、比較例1~3の結果に基づいてオイルリング曲率半径と平均摩擦力との関係を示すグラフである。
 以下、本発明の内燃機関用オイルリング及びピストンについて、発明特定事項の作用や、各種数値の限定理由などと共に、更に詳細に説明する。
 本発明は、コンプレッションリングとオイルリングの少なくとも2本のピストンリングを配置して成る内燃機関用ピストンにおいて、オイルリング外周形状の先端曲率半径Rを0.3mm以上に大きくすることによって、ピストンリングとシリンダーボアとの間の摩擦力が著しく低減することを見出したことに基づく。
 すなわち、オイルリングの先端外周面の先端曲率半径Rが0.3mm以上であることによって、シリンダーボア面の潤滑油がオイルリングによって完全に掻き落とされることなく適度に残存して、シリンダーボア面とコンプレッションリングとの間の摩擦を減じ、ピストン全体の摩擦力が低減する。
 このとき、上記曲率半径Rが0.3mmに満たない場合には、潤滑油の残存量が少なくなって、ピストンの摩擦力を十分に低減できない。
 一方、曲率半径Rが大きくなっても、ピストン全体の摩擦力が増大することはない。しかしながら、曲率半径Rが過度に大きくなると、オイルリングがボア面に対して持つ接触抵抗が増大してオイルリング本来の機能が損なわれる可能性がある。従って、曲率半径Rは6mm以下が望ましく、3mm以下がより望ましい。
 なお、本発明において「曲率半径R」とは、図1Aに示すようなオイルリングRoの外周部の縦断面において、外周径最大部Tを中心とする摺動方向(板厚方向)幅200μmの範囲で、径方向高低差Zを測定し、次式(1)を用いて求められる平均曲率半径を意味する。
  R=Z/2+(2×10)/8Z (単位:μm) ・・・ (1)
 また、本発明においては、オイルリングRoの外周面1を、硬質炭素、CrN、TiNで被覆することから、摩耗による形状変化を著しく小さくでき、オイルリングRoの先端形状の平坦化を防止する。これによって、シリンダーボア面とコンプレッションリングRc(図2参照)との間の摩擦力低減効果を長期に亘って維持できる。なお、ダイヤモンドライクカーボン(以下、「DLC」と略記する)などの硬質炭素被膜が好適である。
 また、本発明においては、オイルリングRoの外周形状の先端曲率半径Rを6mm以下、更に好適には3mm以下とすることによって、オイルリングRoとシリンダーボアとの間の摩擦力が更に著しく低減する。
 すなわち、オイルリングRoの先端外周面1の曲率半径Rが0.3mm以上6mm以下、更には0.3mm以上3mm以下であることによって、シリンダーボア面の潤滑油がオイルリングRoによって完全に掻き落とされることなく、適度に残存して、ピストンP(図3参照)全体の摩擦力を低減できる。
 また、本発明においては、オイルリングRoの外周面1の硬さが2000Hv以上であることによって、摩耗によるオイルリングRo形状変化を著しく小さくでき、オイルリングRoの先端形状の平坦化を防止して、シリンダーボア面とコンプレッションリングRcとの間の摩擦力低減効果を長期に亘って維持できる。
 逆に、オイルリングRoの外周面1の硬さが2000Hvに満たない場合、初期リング外周形状を0.3mm以上の曲率半径Rに平坦化させても、走行距離に比例してオイルリングRoの外周部の摩耗が進み、更なる平坦化によって摩擦力が増大し、オイル消費量も増大するおそれがある。
 オイルリングRoの外周面1の表面粗さとしては、摩擦力低減効果を確実にする観点から、中心線平均粗さRaで、0.1μm以下が望ましい。
 耐摩耗性を向上させるだけの硬さが得られるばかりでなく、摺動特性に優れ、大幅な摩擦低減が可能になることから、上記硬質被膜のうちDLC膜をオイルリングRoの外周面1に被覆することが望ましい。このようなDLC被膜は、例えばプラズマCVD法により成膜できる。
 このとき、DLC膜中の水素含有量が増加すると、硬さが低下すると共に、摩擦係数が増す傾向があることから、DLC膜の水素含有量を10at%以下が望ましい。そして、硬さを更に向上させ、潤滑油中における摩擦係数を更に減少させてより安定した摺動特性を確保するためには、DLC膜の水素含有量を5at%以下、更には1at%以下が好ましい。
 例えばスパッタリング法やイオンプレーティング法などの物理蒸着(PVD)法、即ち、水素や水素含有化合物を実質的に使用しない方法によって成膜することによって、このような水素含有量の低いDLC膜が得られる。この場合、水素を含まないガスを成膜時に用いるだけでなく、場合によっては反応容器・基材保持具のベーキングや、基材表面のクリーニングを十分に行った上で成膜することが、被膜中の水素含有量を減らすためには望ましい。
 上記のように、オイルリングRoの外周面1に硬質被膜を形成する場合、外周面1の表面粗さは、概ね基材成膜面の粗さに依存する。従って、オイルリングRoの外周面1の表面粗さをRa0.1μm以下とするには、基材面をも0.1μm以下の表面粗さに成るように仕上げることが必要となる。
 以上、オイルリングRoについて説明した。本発明の内燃機関用ピストンPにおいて、上記オイルリングRoと共に用いられるコンプレッションリングRcの外周面2(図2参照)の硬さや粗さについても、耐摩耗性・摩擦特性の観点から、それぞれ2000Hv以上、0.1μm以下が好ましい。更にコンプレッションリングRcの外周面2にもダイヤモンドライクカーボン(DLC)被膜を備え、かかるDLCに含まれる水素含有量は10at%が好ましい。
 以下、本発明を実施例及び比較例に基づいて更に説明するが、本発明はこれら実施例に限定されない。
〔オイルリングRoの作製〕
 JIS G 3506(硬鋼線材)に規定される炭素鋼材料SWRH72を冷間で線引きした後、焼入れ焼戻し処理を施した。0.4mm×2.0mmの矩形断面のうち0.4mm幅の1面を、図1Bの外周面の曲率半径R(0.2~2mm)とする線材を得た。次いで、外形(呼び径)93mmのリング状にこの線材を成形し、合口となる部分を切削した。
 次に、歪取り熱処理を実施し、外周研磨を行った後、イオンプレーティング法によって、それぞれの外周面にCrN膜又はDLC膜による被膜処理を施し、更に仕上げ研磨によってそれぞれの表面粗さを得た。なお、原料中の水素濃度を変更することによってDLC膜の水素含有量を調整した。
 図1Bに示すように、上記要領で作製した2枚のサイドレールAの間にSUS304からなるスペーサBを組合せることで、組み込み時20Nの張力を持つオイルリングRoを作製した。
〔コンプレッションリングRcの作製〕
 JIS G 3561(弁ばね用オイルテンパー線)に規定されるCr-V系耐熱バネ材料SWOSC-Vを冷間で線引きした後、焼入れ焼戻し処理を施し、1.2mm×2.5mmの矩形断面を有する線材を得た。
 次いで、内径93mmのシリンダライナーへの組み込み時に10Nの張力を持つようにこの線材をリング形状に成形し、合口となる部分を切削し、図2に示すようなコンプレッションリングRcを作製した。上記オイルリングRoに用いた方法と同様の方法により、コンプレッションリングRcの外周面2にCrN膜又はDLC膜による被膜処理を行った。
〔セカンドコンプレッションリングRcの作製〕
 ねずみ鋳鉄を切削により、断面形状1.5mm×2.5mmに加工した。内径93mmのシリンダライナーへの組み込み時に10Nの張力を持つようにこのねずみ鋳鉄をリング形状に成形し、合口となる部分を切除した。
〔摺動試験〕
 図3に示すように、自動車用エンジンのピストンとして、日産自動車製VQ30DEエンジン向けピストンPを用意した。そして、上記により作製したうちの2本のコンプレッションリングRc,Rcをトップリング及びセカンドリングとしてリング溝G1及びリング溝G2にそれぞれ装着した。そして、上記により作製したうちの1本のオイルリングRoをリング溝G1及びリング溝G2の下方側のリング溝G3に装着して、単体摩擦摩耗試験機によるピストンP-シリンダーボア間の摺動試験を行った。
 ここで、シリンダーボア側を油圧駆動により振動させることによってピストン-シリンダーボア間に発生する摩擦力を、ピストンに装着のロードセルが検知する仕組みを、単体摩擦摩耗試験機は持つ。そして、潤滑油として市販の5W30粘度のエンジンオイルを用い、上記試験時により毎分700回の振動を加え、その平均摩擦力をそれぞれ測定した。
 その結果を、コンプレッションリングRc及びオイルリングRo仕様の組合せと共に、表1に示す。

Figure JPOXMLDOC01-appb-T000001
[比較例1]
 ビッカース硬さ2000HvのCrN膜が外周面に施されかつその表面粗さRaが0.15μmである2本のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.2mmのバレルフェース形を外周面がなしかつ同じくビッカース硬さ2000Hvでかつ表面粗さRaが0.15μmのCrN膜が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は35Nであった。
[比較例2]
 上記比較例1のコンプレッションリングRcと同じコンプレッションリングRcと、上記比較例1と同様に被膜処理がなされかつ外周面先端平均曲率半径Rが0.25mmのオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は37Nであり、上記比較例1の35Nよりも摩擦力が僅かに増加する結果に比較例2でなった。
[比較例3]
 比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、表面硬さが2000HvのCrNでその粗さがRa0.05μmでかつ外周面先端平均曲率半径Rが0.25mmであるオイルリングRoとを組合わせた。比較例1で用いた物と同様のピストンP、シリンダーボア、単体摩擦摩耗試験機を用いて、700回/分の振動をシリンダーボア側に加え、ピストンP-シリンダーボア間の平均摩擦力を測定した。
 その結果、平均摩擦力は36Nであり、比較例2の37Nよりも平均摩擦力は比較例3で僅かに減少した。
 上記比較例1のコンプレッションリングRcと同じコンプレッションリングRcと、上記比較例1と同様に被膜処理がなされかつ外周面先端平均曲率半径Rが0.3mmのオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は30Nであり、上記比較例1,2,3のそれぞれ35N,37N,36Nよりも平均摩擦力が低減することが実施例1で判明した。
 上記比較例1のコンプレッションリングRcと同じコンプレッションリングRcと、上記比較例1と同様に被膜処理がなされかつ外周面先端曲率半径Rが0.5mmのオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は24Nであり、上記実施例1の30Nよりも平均摩擦力が更に低減することが実施例2で確認された。
 上記比較例1のコンプレッションリングRcと同じコンプレッションリングRcと、上記比較例1と同様に被膜処理がなされかつ外周先端曲率半径Rが2mmのオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は28Nとなり、上記比較例1,2,3のそれぞれ35N,37N,36Nと比較すれば平均摩擦力が低減するものの、実施例2の24Nと比較すると平均摩擦力が増加する結果に実施例3でなった。
 表面粗さRaが0.1μmである以外は比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつ同じくビッカース硬さ2000Hvでかつ表面粗さRaが0.1μmのCrN膜が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は23Nであり、実施例2の24Nと比べて平均摩擦力が僅かに低減することが実施例4で確認された。
 表面粗さRaが0.05μmである以外は比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつ同じくビッカース硬さ2000Hvでかつ表面粗さRaが0.05μmのCrN膜が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は23Nであり、実施例2の24Nと比べて平均摩擦力が僅かに低減することが実施例5で確認された。またオイルリングRoの表面粗さRaが同じである比較例3の36Nと比べて、平均摩擦力が実施例5で大幅に低減している。
 表面粗さRaが0.05μmである以外は比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつ同じくビッカース硬さ2000Hvでかつ表面粗さRaが0.05μmのCrN膜が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は22Nであり、実施例5の23Nと比べて摩擦力が更に低減することが実施例6で確認された。
 表面粗さRaが0.05μmである以外は比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつビッカース硬さ3000Hvで表面粗さRaが0.05μmのDLC膜(水素含有量:15at%)が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は22Nであり、実施例5の23Nと比べて摩擦力が更に低減することが実施例7で確認された。
 ビッカース硬さ7000HvのDLC膜(水素含有量:0.5at%)が外周面に施されその表面粗さRaが0.05μmである2本のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつビッカース硬さ2000Hvでかつ表面粗さRaが0.05μmのCrN膜が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は19Nであり、上記実施例6の22Nや上記実施例7の22Nに比べて、摩擦力が更に低減する結果に実施例8でなった。
 ビッカース硬さ7000HvのDLC膜(水素含有量:0.5at%)が外周面に施されかつその表面粗さRaが0.05μmである2本のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつビッカース硬さ4000Hvで表面粗さRaが0.05μmのDLC膜(水素含有量:10at%)が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は19Nであり、上記実施例6の22Nや上記実施例7の22Nに比べて、摩擦力が更に低減する結果に実施例9でなった。
 ビッカース硬さ7000HvのDLC膜(水素含有量;0.5at%)が外周面に施されかつその表面粗さRaが0.05μmである2本のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつビッカース硬さ5000Hvで表面粗さRaが0.05μmのDLC膜(水素含有量:5at%)が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は18Nであり、実施例9の19Nよりも平均摩擦力が更に低減する結果に実施例10でなった。
 ビッカース硬さ7000HvのDLC膜(水素含有量:0.5at%)が外周面に施されかつその表面粗さRaが0.05μmである2本のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつビッカース硬さ7000Hvで表面粗さRaが0.05μmのDLC膜(水素含有量;0.5at%)が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は17Nであり、実施例10の18Nよりも平均摩擦力が更に低減する結果に実施例11でなった。
 ビッカース硬さ2000HvのCrN膜が外周面に施されかつその表面粗さRaが0.15μmである2本のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつ同じくビッカース硬さ2000Hvでかつ表面粗さRaが0.1μmのCrN膜が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は24Nであり、上記実施例1の30Nよりも平均摩擦力が低減することが判明した。
 比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつビッカース硬さ5000Hvで表面粗さRaが0.05μmのDLC膜(水素含有量:5at%)が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は21Nであり、上記実施例12の24Nよりも平均摩擦力が更に低減する結果に実施例13でなった。
 比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが0.5mmのバレルフェース形を外周面がなしかつビッカース硬さ7000Hvで表面粗さRaが0.05μmのDLC膜(水素含有量:0.5at%)が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は20Nであり、上記実施例12の24Nや上記実施例13の21Nに比べて摩擦力が更に低減することが実施例14で確認された。
 比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが1.4mmのバレルフェース形を外周面がなしかつ同じくビッカース硬さ2000Hvでかつ表面粗さRaが0.15μmのCrN膜が施されたオイルリングRoとを組み合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は26Nであった。
 比較例1のコンプレッションリングRcと同様のコンプレッションリングRcと、摺動方向幅200μmにおける平均先端曲率半径Rが6mmのバレルフェース形を外周面がなしかつ同じくビッカース硬さ2000Hvでかつ表面粗さRaが0.15μmのCrN膜が施されたオイルリングRoとを組合わせた。この場合のピストンP-シリンダーボア間の平均摩擦力は31Nであった。
 図4は、上記実施例1~3、15、16、比較例1~3の結果に基づいて摺動試験で得られたグラフであり、平均摩擦力(N)に対してオイルリングRoの曲率半径R(mm)が与える影響を図示している。
 図4から明らかなように、オイルリングRoの外周面1の摺動方向幅200μmにおける平均先端曲率半径Rが0.3mm以上(実施例1を参照)の場合に平均摩擦力が著しく低減される。 日本国特許出願2008-163227(出願日2008年6月23日)と日本国特許出願2009-075849(出願日2009年3月26日)との全内容がここに援用され、誤訳や記載漏れから保護される。
 以上、実施の形態及び実施例によって本発明の内容を説明したが、本発明はこれら記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者に自明である。
 本発明によれば、内燃機関用オイルリングの外周面に硬質炭素、CrN、TiNの少なくとも1種を被覆すると共に、外周先端における摺動方向曲率半径Rを0.3mm以上としたから、コンプレッションリングの摺動面にも潤滑油が適度に供給されるようになり、内燃機関用ピストン-シリンダーボア間の摩擦力が低減される。

Claims (12)

  1.  硬質炭素、CrN及びTiNから成る群より選ばれた少なくとも1種を外周面に被覆して成り、外周先端における摺動方向曲率半径Rが0.3mm以上であることを特徴とする内燃機関用オイルリング。
  2.  前記曲率半径Rが6mm以下であることを特徴とする請求項1に記載の内燃機関用オイルリング。
  3.  前記曲率半径Rが3mm以下であることを特徴とする請求項1に記載の内燃機関用オイルリング。
  4.  前記外周面の硬さが2000Hv以上であることを特徴とする請求項1に記載の内燃機関用オイルリング。
  5.  前記外周面の粗さがRa0.1μm以下であることを特徴とする請求項1に記載の内燃機関用オイルリング。
  6.  前記外周面に被覆する前記硬質炭素がダイヤモンドライクカーボンであり、前記ダイヤモンドライクカーボン膜に含まれる水素量が10at%以下であることを特徴とする請求項1に記載の内燃機関用オイルリング。
  7.  前記ダイヤモンドライクカーボン膜に含まれる水素量が5at%以下であることを特徴とする請求項6に記載の内燃機関用オイルリング。
  8.  前記ダイヤモンドライクカーボン膜に含まれる水素量が1at%以下であることを特徴とする請求項7に記載の内燃機関用オイルリング。
  9.  前記外周面の前記外周先端である外周径最大部を中心として前記オイルリングの摺動方向幅200μmの範囲で径方向高低差Zを測定した場合に、前記曲率半径Rが次式(1)で求められることを特徴とする請求項1に記載の内燃機関用オイルリング:
      R=Z/2+(2×10)/8Z (単位:μm) ・・・ (1)
  10.  請求項1に記載の前記オイルリングと、コンプレッションリングの少なくとも2本のピストンリングを備えたことを特徴とする内燃機関用ピストン。
  11.  前記コンプレッションリングの外周面にダイヤモンドライクカーボン膜を備えていることを特徴とする請求項10に記載の内燃機関用ピストン。
  12.  前記コンプレッションリングの前記外周面の前記ダイヤモンドライクカーボン膜に含まれる水素量が10at%以下であることを特徴とする請求項11に記載の内燃機関用ピストン。
PCT/JP2009/060830 2008-06-23 2009-06-15 内燃機関用オイルリング及びピストン WO2009157328A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/000,453 US8739753B2 (en) 2008-06-23 2009-06-15 Oil ring and piston for an internal combustion engine
EP09770038.9A EP2292952A4 (en) 2008-06-23 2009-06-15 OIL SCRAPER AND PISTON SEGMENT FOR INTERNAL COMBUSTION ENGINE
CN2009801238705A CN102066817A (zh) 2008-06-23 2009-06-15 内燃机用油环及活塞

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-163227 2008-06-23
JP2008163227 2008-06-23
JP2009075849A JP2010031835A (ja) 2008-06-23 2009-03-26 内燃機関用オイルリング及びピストン
JP2009-075849 2009-03-26

Publications (1)

Publication Number Publication Date
WO2009157328A1 true WO2009157328A1 (ja) 2009-12-30

Family

ID=41444396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060830 WO2009157328A1 (ja) 2008-06-23 2009-06-15 内燃機関用オイルリング及びピストン

Country Status (5)

Country Link
US (1) US8739753B2 (ja)
EP (1) EP2292952A4 (ja)
JP (1) JP2010031835A (ja)
CN (1) CN102066817A (ja)
WO (1) WO2009157328A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052587A1 (de) * 2009-11-10 2011-05-12 Federal-Mogul Burscheid Gmbh Kolbenring
EP2674645A1 (de) * 2012-06-15 2013-12-18 Siemens Aktiengesellschaft Ölstauring
WO2015023002A1 (ja) * 2013-08-12 2015-02-19 株式会社リケン 圧力リング
US10113643B2 (en) * 2014-03-18 2018-10-30 Ford Global Technologies, Llc Compression piston ring for an internal combustion engine
DE102014209391A1 (de) * 2014-05-19 2015-11-19 Federal-Mogul Friedberg Gmbh Kolbenring mit Nut in Umfangsrichtung
EP3163129B1 (en) 2014-06-27 2020-10-14 Kabushiki Kaisha Riken Piston ring
JP5826958B1 (ja) * 2014-07-29 2015-12-02 株式会社リケン 内燃機関用ピストンリング
WO2016038916A1 (ja) * 2014-09-12 2016-03-17 Tpr株式会社 組合せオイルリング
JP5833276B1 (ja) * 2014-09-12 2015-12-16 Tpr株式会社 組合せオイルリング
JP5981013B1 (ja) * 2015-02-24 2016-08-31 株式会社リケン 内燃機関用ピストンリング
JP6496578B2 (ja) * 2015-03-12 2019-04-03 株式会社リケン ピストンリング
JP6695663B2 (ja) * 2015-07-09 2020-05-20 株式会社リケン 内燃機関用のピストンリング
EP3199301A1 (de) * 2016-02-01 2017-08-02 HILTI Aktiengesellschaft Brennkammer und eintreibgerät
DE102016104853B4 (de) * 2016-03-16 2018-05-09 Federal-Mogul Burscheid Gmbh Mehrteiliger Ölabstreif-Kolbenring mit verringerter Reibung
CN109416124B (zh) 2017-07-05 2020-04-14 帝伯爱尔株式会社 组合油环
CN116897254A (zh) * 2021-03-31 2023-10-17 株式会社理研 侧轨及具备该侧轨的控油环

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144170A (ja) * 1989-10-30 1991-06-19 Isuzu Motors Ltd ピストンリング
JP2004137535A (ja) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd 硬質炭素被膜摺動部材
JP2006275269A (ja) 2005-03-30 2006-10-12 Nippon Piston Ring Co Ltd 組合せ摺動部材
JP2007232026A (ja) * 2006-02-28 2007-09-13 Riken Corp 摺動部材
JP2008163227A (ja) 2006-12-28 2008-07-17 Toray Ind Inc ポリアミド組成物、ポリアミド繊維、およびそれらの製造方法
JP2009075849A (ja) 2007-09-20 2009-04-09 Canon Inc 情報処理装置、情報処理方法、そのプログラム及び記憶媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322680Y2 (ja) * 1973-03-13 1978-06-13
JPS5681243A (en) * 1979-12-04 1981-07-03 Hitachi Metals Ltd Pressure ring
US4612260A (en) * 1984-08-09 1986-09-16 Nippon Piston Ring Co., Ltd. Piston ring member
JP3359675B2 (ja) * 1992-12-18 2002-12-24 本田技研工業株式会社 ピストンリング
JP3346068B2 (ja) * 1994-12-27 2002-11-18 トヨタ自動車株式会社 内燃機関のピストン
JP3666052B2 (ja) * 1995-04-26 2005-06-29 石川島播磨重工業株式会社 ピストンリング
JP4382229B2 (ja) * 2000-01-20 2009-12-09 帝国ピストンリング株式会社 組合せオイルリング
JP4165119B2 (ja) * 2002-05-15 2008-10-15 日産自動車株式会社 内燃機関のピストンリング
US20060048865A1 (en) * 2002-07-01 2006-03-09 Etsuo Fujita Material for sliding parts having self lubricity and wire material for piston ring
JP4101105B2 (ja) * 2003-04-24 2008-06-18 株式会社リケン オイルリング及びその製造方法並びにそれを用いたピストン構造
EP1479946B1 (en) 2003-05-23 2012-12-19 Nissan Motor Co., Ltd. Piston for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144170A (ja) * 1989-10-30 1991-06-19 Isuzu Motors Ltd ピストンリング
JP2004137535A (ja) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd 硬質炭素被膜摺動部材
JP2006275269A (ja) 2005-03-30 2006-10-12 Nippon Piston Ring Co Ltd 組合せ摺動部材
JP2007232026A (ja) * 2006-02-28 2007-09-13 Riken Corp 摺動部材
JP2008163227A (ja) 2006-12-28 2008-07-17 Toray Ind Inc ポリアミド組成物、ポリアミド繊維、およびそれらの製造方法
JP2009075849A (ja) 2007-09-20 2009-04-09 Canon Inc 情報処理装置、情報処理方法、そのプログラム及び記憶媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2292952A4

Also Published As

Publication number Publication date
EP2292952A4 (en) 2013-11-13
CN102066817A (zh) 2011-05-18
EP2292952A1 (en) 2011-03-09
US20110100318A1 (en) 2011-05-05
JP2010031835A (ja) 2010-02-12
US8739753B2 (en) 2014-06-03

Similar Documents

Publication Publication Date Title
WO2009157328A1 (ja) 内燃機関用オイルリング及びピストン
US8123227B2 (en) Sliding member
JP5452734B2 (ja) コーティングを有するスライド要素、特に、ピストンリング、およびスライド要素を製造するプロセス
JP5640088B2 (ja) コーティングを有する摺動要素、とりわけピストンリング
KR101201653B1 (ko) 내마모성 코팅과 이 내마모성 코팅의 제조 방법
JP5013445B2 (ja) ピストンリング、それを備えたピストンおよびそれらの使用方法
WO2016038916A1 (ja) 組合せオイルリング
RU2649490C2 (ru) Скользящий элемент, в частности поршневое кольцо, с покрытием
WO2012067084A1 (ja) ピストンリング
JP2000120870A (ja) ピストンリング
KR20110073557A (ko) 내연 기관의 활주 요소, 특히 피스톤 링
WO2011093464A1 (ja) ピストンリング
CN107013360A (zh) 滑动元件
TWI461605B (zh) 替代型壓縮機之活塞總成
JP5833276B1 (ja) 組合せオイルリング
CN107035564B (zh) 滑动元件
JP7219776B2 (ja) ピストンリング
JP5376668B2 (ja) ピストンリング
EP3491162B1 (en) Sliding element for internal combustion engines
RU2727466C2 (ru) Имеющее покрытие поршневое кольцо с защитным слоем
JP6889692B2 (ja) アルコール燃料用ピストン
JP2000320673A (ja) 低フリクション炭素薄膜
JP7291300B1 (ja) コンプレッションリング
KR20130097063A (ko) 슬라이딩 요소
JP2010196872A (ja) 組合せピストンリング

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123870.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009770038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000453

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE