WO2009154171A1 - 作業工具 - Google Patents

作業工具 Download PDF

Info

Publication number
WO2009154171A1
WO2009154171A1 PCT/JP2009/060879 JP2009060879W WO2009154171A1 WO 2009154171 A1 WO2009154171 A1 WO 2009154171A1 JP 2009060879 W JP2009060879 W JP 2009060879W WO 2009154171 A1 WO2009154171 A1 WO 2009154171A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
tool
vibration absorber
space
axis direction
Prior art date
Application number
PCT/JP2009/060879
Other languages
English (en)
French (fr)
Inventor
陽之介 青木
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Priority to RU2011101689/02A priority Critical patent/RU2505390C2/ru
Priority to EP09766619.2A priority patent/EP2301719B1/en
Priority to US12/999,208 priority patent/US8668026B2/en
Priority to CN200980123024.3A priority patent/CN102066056B/zh
Publication of WO2009154171A1 publication Critical patent/WO2009154171A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force
    • B25D17/245Damping the reaction force using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/003Crossed drill and motor spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0073Arrangements for damping of the reaction force
    • B25D2217/0076Arrangements for damping of the reaction force by use of counterweights
    • B25D2217/0084Arrangements for damping of the reaction force by use of counterweights being fluid-driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0073Arrangements for damping of the reaction force
    • B25D2217/0076Arrangements for damping of the reaction force by use of counterweights
    • B25D2217/0092Arrangements for damping of the reaction force by use of counterweights being spring-mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/245Spatial arrangement of components of the tool relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/275Tools having at least two similar components
    • B25D2250/285Tools having three or more similar components, e.g. three motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/391Use of weights; Weight properties of the tool

Definitions

  • the present invention relates to a construction technique of a work tool for driving a tip tool in a straight line such as a hammer or a hammer drill.
  • Japanese Patent Application Laid-Open No. 2004-154903 discloses the configuration of an electric hammer provided with a vibration damping mechanism.
  • This electric hammer is provided with a dynamic vibration absorber as a means for controlling vibration in the long axis direction of the hammer bit accompanying the hammer work, thereby reducing the vibration of the hammer during the hammer work.
  • the dynamic vibration absorber has a weight capable of linear motion in a state in which an urging force is applied by a coil spring, and the weight moves in the long axis direction of the tip tool so as to control the hammer during hammering. It is said.
  • the structure of the dynamic vibration absorber can be further devised to enable a rational arrangement of the dynamic vibration absorber and a high vibration reduction effect.
  • a technology for realizing a dynamic vibration absorber excellent in vibration is required.
  • the present invention has an object of realizing a rational arrangement of a dynamic vibration absorber and improvement of vibration damping in a work tool equipped with the dynamic vibration absorber.
  • a work tool is a work tool that drives a long-axis tip tool in a straight line, thereby causing the tip tool to perform a predetermined machining operation.
  • a motor, a motion conversion mechanism, a dynamic vibration absorber, and a handle part are provided at least.
  • the “work tool” here includes a wide range of work tools such as a hammer, a hammer drill, a jigsaw, a reciprocating saw, and the like that perform a work on a workpiece by linearly moving a tip tool.
  • the drive motor is configured as a motor housed in the tool body.
  • the motion conversion mechanism is housed in the tool body and is disposed on the tool front end side with respect to the longitudinal direction of the tip tool, and is configured to convert the rotational motion of the drive motor into a linear motion and transmit it to the tip tool.
  • the “motion conversion mechanism” typically includes a crankshaft driven by gear meshing engagement with a motor shaft of a drive motor, a crank arm connected to the crankshaft, and a piston connected to the crank arm.
  • a crank mechanism that drives the tip tool by converting the rotational motion of the motor shaft of the drive motor into the linear motion of the piston can be used.
  • the crank shaft of the crank mechanism is disposed closer to the tool front end side than the motor shaft of the drive motor in the long axis direction of the tip tool.
  • the dynamic vibration absorber is housed in the tool body and includes a dynamic vibration absorber body, a weight, and a coil spring.
  • the dynamic vibration absorber body is configured as a portion that is disposed in an intermediate region between the motion conversion mechanism and the handle portion and has an accommodation space.
  • the crank mechanism as described above is employed as the motion conversion mechanism, the movement is performed in a region between the crank shaft of the crank mechanism and the handle portion and on the upper end side of the tool with respect to the motor shaft of the drive motor.
  • a vibration absorber body is disposed.
  • the weight is configured as a mass portion that is accommodated in the accommodating space of the dynamic vibration absorber main body so that linear motion in the major axis direction of the tip tool is possible.
  • the coil spring extends in the major axis direction of the tip tool between at least one of the front side and the rear side of the weight and the dynamic vibration absorber body side, and elastically supports the weight in the major axis direction.
  • Configured as The weight supported in a resilient manner by the coil spring linearly moves in the long axis direction of the tip tool, thereby damping the tool body during the machining operation.
  • the handle portion is configured as a handle portion for holding a tool connected to the tool rear end side of the tool main body from the drive motor.
  • this linear motion direction is not limited to the major axis direction of the tip tool, but it is sufficient if it has at least a component in the major axis direction of the tip tool. .
  • the work tool according to the present invention employs a configuration in which the dynamic vibration absorber main body is disposed in an intermediate region between the motion conversion mechanism and the handle portion. As a result, it is not necessary to form a new arrangement space for arranging the dynamic vibration absorber body, and the space in the tool body can be used effectively, thereby enabling a rational arrangement of the dynamic vibration absorber. Is done.
  • the dynamic vibration absorber body in the intermediate region between the motion conversion mechanism and the handle portion can be arranged closer to the long axis of the tip tool, or on the extended line of the long axis of the tip tool. Therefore, it is possible to efficiently reduce the vibration caused by the driving of the tip tool, and it is possible to realize a dynamic vibration absorber having a high vibration reduction effect and excellent vibration damping.
  • the weight includes a spring accommodating portion extending in a concave shape in the longitudinal direction of the tip tool on at least one of the front side and the rear side of the weight.
  • the spring accommodating portion is configured to accommodate one end of a coil spring that supports the weight in a resilient manner.
  • the spring accommodating portion may be provided on the front surface side or the rear surface side of the weight, or the spring accommodating portion may be provided on both the front surface side and the rear surface side of the weight.
  • the spring accommodating portion includes a front side spring accommodating portion and a rear surface extending in a concave shape in the longitudinal direction of the tip tool on the front side and the rear side of the weight. It consists of a side spring accommodating part.
  • the front-side spring accommodating portion accommodates one end of a coil spring that elastically supports the weight from the front of the weight
  • the rear-side spring accommodating portion is one end of the coil spring that elastically supports the weight from the rear of the weight.
  • the front-side spring accommodating portion and the rear-side spring accommodating portion are arranged so that all or part of them overlap each other in the direction intersecting with the extending direction of these spring accommodating portions.
  • the dynamic vibration absorber is arranged on the tool body, it is particularly effective when the arrangement space in the long axis direction of the tool body is restricted.
  • the coil spring when the coil springs housed in the front-side spring housing part and the coil springs housed in the rear-side spring housing part overlap, the coil spring is larger when considered with a dynamic vibration absorber having the same dimensions in the major axis direction. Therefore, it is possible to stably impart high vibration damping properties by the large coil spring.
  • the weight is configured as a weight member having a circular cross section in a direction intersecting with the long axis direction of the tip tool.
  • a plurality of front side spring accommodating portions are arranged at equal intervals on the front side of the weight member in the circumferential direction of the weight member, and a rear side spring accommodating portion is arranged on the rear side of the weight member in the circumferential direction of the weight member.
  • the elastic force of the plurality of coil springs can be exerted on the front surface side and the rear surface side of the weight member in a balanced manner.
  • the motion conversion mechanism includes a first space, a striking element, and a second space.
  • the first space is configured as a closed space.
  • the striking element has a function of striking the tip tool using the air pressure of the first space.
  • the second space is configured as a space that generates air pressure fluctuation that is opposite in phase to the air pressure fluctuation phase of the first space.
  • the “opposite phase of air pressure fluctuation” between the first space and the second space typically, when the striking element strikes the tip tool, the first space has a relatively high pressure.
  • the dynamic vibration absorber has a front chamber, a rear chamber, and a communication path.
  • the front chamber and the rear chamber are partitioned by weights in the dynamic vibration absorber body, and are configured as partition chambers formed before and after the weight in the major axis direction of the tip tool.
  • the communication path has a function of communicating the rear chamber and the second space.
  • the air in the second space is introduced into the rear chamber of the dynamic vibration absorber through the communication path according to the pressure fluctuation in the second space, and the weight of the dynamic vibration absorber is actively driven. By doing so, it is possible to cause the dynamic vibration absorber to perform a vibration damping action.
  • the second space is disposed on the tool front end side with respect to the longitudinal axis direction of the tip tool with respect to the dynamic vibration absorber body.
  • the communication path is constituted by a communication pipe disposed so as to pass through the front chamber and the weight sequentially from the second space and then communicate with the rear chamber. According to such a structure, the arrangement
  • the said communicating pipe extended linearly in the major axis direction of the front-end tool, it was penetrated by the outer surface of the said communicating pipe, and the said communicating pipe
  • the inner surface of the weight is in slidable contact with the weight, and thus has a function as a guide member that guides the linear motion of the weight in the long axis direction.
  • the linear movement in the major axis direction of the weight is smoothed through the communication pipe, and the communication pipe has a function of introducing the air in the second space into the rear chamber of the dynamic vibration absorber.
  • a function as a guide member for guiding the linear movement of the weight in the long axis direction can be provided.
  • the vibration reduction effect of the dynamic vibration absorber can be enhanced by a minimum weight increase without increasing the size of the tool body. It became possible to realize rational arrangement and improved vibration control.
  • FIG. 1 is a side sectional view showing an overall configuration of a hammer drill 101 according to the present embodiment.
  • FIG. 2 is a partially enlarged view of the dynamic vibration absorber 151 in FIG. 3 is a diagram showing a cross-sectional structure taken along line AA of the dynamic vibration absorber 151 in FIG. 2
  • FIG. 4 is a diagram showing a cross-sectional structure taken along line BB of the dynamic vibration absorber 151 in FIG. is there.
  • the electric hammer drill 101 is generally viewed as a main body 103 that forms an outline of the hammer drill 101, and a tip region in the major axis direction of the main body 103 (see FIG. 1).
  • the tool holder 137 connected to the middle left), the long-axis hammer bit 119 detachably attached to the tool holder 137, the other end of the main body 103 in the long-axis direction (the right side in the figure), particularly the main body
  • the part 103 is mainly composed of a tool gripping hand grip 105 connected to a tool rear end side of a drive motor 111 described later.
  • the hammer bit 119 is capable of relative reciprocation in the major axis direction (major axis direction of the main body 103) with respect to the tool holder 137, and relative rotation in the circumferential direction is restricted. It is configured as a member held in a state.
  • the main body 103, the hammer bit 119, and the handgrip 105 here constitute the “tool main body”, “tip tool”, and “handle portion” in the present invention, respectively.
  • the hammer bit 119 side is referred to as the front or tool front end side
  • the handgrip 105 side is referred to as the rear or tool rear end side.
  • the main body 103 is configured as a housing that houses a drive motor 111, a motion conversion mechanism 113, a striking element 115, a power transmission mechanism 117, and a dynamic vibration absorber 151.
  • this main-body part 103 may be comprised by the combination of the separate housing which accommodates one or more of said to-be-accepted elements.
  • the rotational output of the drive motor 111 is appropriately converted into a linear motion by the motion conversion mechanism 113 and then transmitted to the striking element 115, and the long axis direction of the hammer bit 119 (through the striking element 115 ( An impact force in the horizontal direction in FIG. 1 is generated.
  • this hammer drill 101 provided with the striking element 115 is also referred to as a striking tool.
  • the rotation output of the drive motor 111 is appropriately decelerated by the power transmission mechanism 117 and then transmitted as a rotational force to the hammer bit 119, and the hammer bit 119 is rotated in the circumferential direction.
  • the drive motor 111 here corresponds to the “drive motor” in the present invention.
  • the motion conversion mechanism 113 converts the rotational motion of the motor shaft 111a of the drive motor 111 into a linear motion and transmits it to the striking element 115, and is driven by gear meshing engagement with the motor shaft 111a of the drive motor 111.
  • a crank mechanism including a crankshaft 121, a crank arm 123, a piston 125, and the like.
  • the crankshaft 121 includes a crankshaft 121a and an eccentric pin 121b that is eccentrically provided on the crankshaft 121a.
  • One end of the crank arm 123 is connected to the eccentric pin 121b of the crankshaft 121, and the other end is connected to the piston 125.
  • the piston 125 constitutes a driver for driving the so-called striking element 115, and can slide in the cylinder 141 in the same direction as the major axis direction of the hammer bit 119.
  • the motion conversion mechanism 113 is disposed on the tool front end side with respect to the longitudinal direction of the hammer bit 119 relative to the drive motor 111. More specifically, the crankshaft 121a and the eccentric pin 121b of the crankshaft 121 in each part of the motion conversion mechanism 113 are arranged on the tool front end side with respect to the long axis direction of the hammer bit 119 relative to the motor shaft 111a of the drive motor 111. It is installed.
  • the motion conversion mechanism 113 here constitutes the “motion conversion mechanism” in the present invention.
  • the striking element 115 is slidably disposed on the striker 143 slidably disposed on the bore inner wall of the cylinder 141 and the tool holder 137, and transmits the kinetic energy of the striker 143 to the hammer bit 119. And an impact bolt 145 as an intermediate element.
  • the striking element 115 here corresponds to the “striking element” in the present invention.
  • An air chamber 141 a that is closed between the piston 125 and the striker 143 is formed in the cylinder 141.
  • the striker 143 is driven by the principle of a so-called “air spring” using the air in the air chamber 141 a of the cylinder 141 that accompanies the sliding movement of the piston 125, and serves as an intermediate element slidably disposed on the tool holder 137.
  • the impact bolt 145 collides (hits), and the impact force is transmitted to the hammer bit 119 via the impact bolt 145.
  • the crank chamber 165 that accommodates the crankshaft 121 and the crank arm 123 has a phase opposite to that of the air pressure fluctuation of the air chamber 141a. It is configured as a space that generates air pressure fluctuations. That is, when the striking element 115 strikes the hammer bit 119, the crank chamber 165 has a relatively low pressure in a state in which the air chamber 141a has a relatively high pressure, while the air chamber 141a has a relative pressure after the end of the striking.
  • the air pressure fluctuation pattern is substantially reversed between the air chamber 141a and the crank chamber 165 so that the crank chamber 165 has a relatively high pressure.
  • the air chamber 141a here corresponds to the “first space” in the present invention
  • the crank chamber 165 here corresponds to the “second space” in the present invention.
  • the tool holder 137 is configured to be rotatable, and is configured to be rotated at a reduced speed from the drive motor 111 via the power transmission mechanism 117.
  • the power transmission mechanism 117 is an intermediate gear 131 that is rotationally driven by the drive motor 111, a small bevel gear 133 that rotates together with the intermediate gear 131, and a large bevel gear that meshes with and engages with the small bevel gear 133 and rotates about the major axis of the main body 103.
  • the rotation of the drive motor 111 is transmitted to the tool holder 137 and further transmitted to the hammer bit 119 held by the tool holder 137.
  • the hammer drill 101 applies a striking force in the major axis direction to the hammer bit 119 so as to process the workpiece, so-called hammering work, a striking force in the major axis direction, and a rotational force in the circumferential direction.
  • a so-called hammer drilling operation is performed so as to perform the processing operation of the workpiece by appropriately switching, but since this is not directly related to the present invention, the description thereof will be given. Omitted.
  • shock and periodic vibration in the long axis direction of the hammer bit occurs in the main body 103.
  • the main vibration as a vibration suppression target generated in the main body 103 is the compression reaction force when the piston 125 and the striker 143 compress the air in the air chamber 141a, and the striker 143 causes the hammer bit 119 to pass through the impact bolt 145. This is a striking reaction force generated slightly after the compression reaction force when striking.
  • the hammer drill 101 is configured to include a dynamic vibration absorber 151 to suppress the vibration generated in the main body 103.
  • the dynamic vibration absorber 151 is disposed on the dynamic vibration absorber main body 153, the vibration damping weight 155, and the front end side and the rear end side of the weight 155, respectively.
  • the coil spring 157 is mainly composed of front and rear coil springs 157 extending in the direction.
  • the dynamic vibration absorber main body 153 has a hollow or cylindrical housing space, and is provided as a cylindrical guide portion that allows the weight 155 to slide stably.
  • the dynamic vibration absorber main body 153 here corresponds to the “dynamic vibration absorber main body” in the present invention.
  • this intermediate region is a region between the crankshaft 121a and the eccentric pin 121b of the crankshaft 121 and the handgrip 105, and the tool upper end side of the motor shaft 111a of the drive motor 111 (FIG. 1). It is defined as the upper (middle) area. Therefore, in the present embodiment, the dynamic vibration absorber main body 153 is disposed in this intermediate region between the motion conversion mechanism 113 and the hand grip 105. Accordingly, it is not necessary to form a new arrangement space for arranging the dynamic vibration absorber main body 153, and the space in the main body portion 103 can be used effectively, so that the rational arrangement of the dynamic vibration absorber 151 can be achieved. Is possible.
  • This intermediate region between the motion conversion mechanism 113 and the handgrip 105 is preferably arranged closer to the long axis of the hammer bit 119 or on the extended line of the long axis of the hammer bit 119.
  • the weight 155 is configured as a mass portion that is slidably disposed in the accommodation space of the dynamic vibration absorber body 153 so as to move in the long axis direction (long axis direction of the hammer bit 119) in the accommodation space of the dynamic vibration absorber body 153.
  • the Specifically, the weight 155 is configured as a weight member having a circular cross section in the direction intersecting the long axis direction of the hammer bit 119.
  • the weight 155 here corresponds to a “weight” and a “weight member” in the present invention.
  • the coil spring 157 applies the elastic force opposite to the weight 155. It is configured as an elastic body that supports the weight 155.
  • the coil spring 157 here corresponds to the “coil spring” in the present invention.
  • the dynamic vibration absorber 151 having the above-described configuration housed in the main body 103 has a weight 155 and a coil spring that are vibration damping elements in the dynamic vibration absorber 151 with respect to the main body 103 that is the object of vibration suppression when the hammer drill 101 is processed. 157 cooperate to perform passive vibration suppression. As a result, the vibration generated in the main body portion 103 of the hammer drill 101 is suppressed, and the main body portion 103 is suppressed during processing.
  • the weight 155 configured as described above has a spring housing space 156 having an annular cross section extending in a concave shape in the major axis direction over a predetermined region on the front end side and the rear end side in the major axis direction of the hammer bit 119.
  • This spring accommodating space 156 one end portion of the coil spring 157 is accommodated.
  • the spring accommodating space 156 here corresponds to the “spring accommodating portion” in the present invention.
  • Each annular spring accommodating space 156 is a space portion extending in the longitudinal direction in the long axis direction of the hammer bit 119, and has an outer cylindrical tubular portion 155a and a cylindrical shape inside the tubular portion 155a. It is configured as a hollow space (groove) surrounded by the columnar portion 155b.
  • the cylindrical portion 155a and the columnar portion 155b may have a separate structure or an integral structure.
  • a total of six spring accommodating spaces 156 are arranged on the same plane with respect to the direction intersecting the major axis direction of the hammer bit 119.
  • these six spring accommodating spaces 156 include three first spring accommodating spaces 156 a formed on the front end side of the weight 155 (the left region of the weight 155 in FIG. 2), and the weight 155.
  • Three second spring accommodating spaces 156b formed on the rear end side (the right region of the weight 155 in FIG. 2) are arranged alternately and at equal intervals in the circumferential direction of the weight 155.
  • Each coil spring 157 housed in each spring housing space 156 is fixed in such a manner that the spring front end 157a is attached and fixed to the spring front end fastening portion 158, and the spring rear end 157b is attached to the spring rear end fastening portion 159.
  • the first spring accommodating space 156a here corresponds to the “front side spring accommodating portion” in the present invention
  • the second spring accommodating space 156b here corresponds to the “rear side spring accommodating portion” in the present invention.
  • the plurality of spring accommodating portions 156 are arranged in a balanced manner on the front side and the rear side of the weight 155, it is easy to balance the center of gravity of the weight 155.
  • the elastic force of the plurality of coil springs can be applied to the front side and the rear side of the weight 155 in a balanced manner.
  • the front wall portion of the dynamic vibration absorber body 153 is used as the spring front end fixing portion 158 to which the spring front end 157a is attached and fixed.
  • the spring rear end fastening portion 159 to which the rear end 157b is attached and fixed the bottom portion (terminal portion) of the first spring accommodating space 156a is used.
  • the bottom portion (terminal portion) of the second spring housing space 156b is used as the spring front end fastening portion 158 to which the spring front end 157a is attached and fixed.
  • the rear wall portion of the dynamic vibration absorber body 153 is used as the spring rear end fastening portion 159 to which the spring rear end 157b is attached and fixed.
  • the front and rear coil springs 157 cause an elastic biasing force in the major axis direction of the hammer bit 119 to act on the weight 155 in an opposing manner.
  • the weight 155 is movable in the major axis direction of the hammer bit 119 in a state where the elastic biasing force of the front and rear coil springs 157 acts in an opposing manner.
  • the first spring accommodating space 156a and the second spring accommodating space 156b are both formed wider than the wire diameter of the coil spring 157, whereby the coil spring 157 is formed on the inner surface of the cylindrical portion 155a and the columnar portion 155b. It is preferable to arrange it loosely so as not to contact the outer surface.
  • the dynamic vibration absorber 151 has a structure in which the spring accommodating space 156 is formed inside the weight 155 and one end of the coil spring 157 is disposed in the spring accommodating space 156.
  • the length of the hammer bit 119 of the dynamic vibration absorber 151 in a state in which the coil spring 157 is housed and assembled in the spring housing space 156 of the weight 155 can be suppressed. It is possible to reduce the size of the vibration absorber 151.
  • the cylindrical portion 155a having a mass higher in density than the coil spring 157 is disposed on the outer peripheral side of the coil spring 157.
  • the weight 155 it is possible to increase the mass of the weight 155 as a damping element, and the space utilization efficiency is improved, as compared with the conventional configuration in which a coil spring having a density lower than that of the weight is arranged on the outer peripheral side of the weight. As a result, the vibration damping force of the dynamic vibration absorber 151 can be increased. Further, by arranging the cylindrical portion 155a of the weight 155 on the outer periphery of the coil spring 157, the contact length in the moving direction of the weight 155 with respect to the wall surface of the dynamic vibration absorber main body 153, that is, the axial length of the sliding surface is increased. Therefore, stable operation of the weight 155 can be easily ensured.
  • the first spring accommodating spaces 156a and the second spring accommodating spaces 156b are disposed so as to partially overlap.
  • the coil spring 157 accommodated in the first spring accommodating space 156a and the coil spring 157 accommodated in the second spring accommodating space 156b are partially in the direction intersecting the extending direction of these coil springs.
  • the dynamic vibration absorber 151 is disposed in the main body portion 103, it is particularly effective when the arrangement space in the major axis direction of the main body portion 103 is restricted.
  • the coil spring 157 housed in the first spring housing space 156a and the coil spring 157 housed in the second spring housing space 156b partially overlap, the dynamic vibration absorber having the same dimension in the major axis direction is considered.
  • the coil spring can be further increased in size, and high vibration damping can be stably imparted by the increased coil spring.
  • the dynamic vibration absorber 151 can be made compact (downsized) after the vibration damping force of the dynamic vibration absorber 151 is increased.
  • the vibration reduction effect of the dynamic vibration absorber 151 can be enhanced by a minimum weight increase without increasing the size of the 103.
  • the dynamic vibration absorber 151 includes a first working chamber 161 and a second working chamber 163 in the dynamic vibration absorber body 153.
  • the first working chamber 161 and the second working chamber 163 are defined by a weight 155 in the dynamic vibration absorber body 153, and are configured as a space portion formed before and after the weight 155 with respect to the longitudinal direction of the hammer bit 119. Is done.
  • the first working chamber 161 is configured as a space behind the weight 155 (left side in FIG. 2).
  • the first working chamber 161 is always in communication with the crank chamber 165 having a sealed structure that is not in communication with the outside through the first communication hole 162a of the communication pipe 162.
  • the second working chamber 163 communicates with a gear chamber 164 in which the motor shaft 111a of the drive motor 111 is disposed through a second communication hole 163a formed in the outer peripheral wall of the dynamic vibration absorber body 153.
  • the first working chamber 161 and the second working chamber 163 here correspond to the “rear chamber” and the “front chamber” in the present invention, respectively.
  • the pressure in the crank chamber 165 fluctuates as the motion conversion mechanism 113 is driven. This is based on the fact that the volume of the crank chamber 165 changes as the piston 125, which is a constituent member of the motion conversion mechanism 113, linearly moves in the front-rear direction in the cylinder 141. Therefore, in the present embodiment, the air in the crank chamber 165 is introduced into the first working chamber 161 in accordance with the pressure fluctuation in the crank chamber 165, and the weight 155 of the dynamic vibration absorber 151 is actively driven. The dynamic vibration absorber 151 is caused to perform a vibration damping action.
  • the dynamic vibration absorber body 153 is provided with a communication pipe 162 having a first communication hole 162a as shown in FIG.
  • the dynamic vibration absorber 151 also acts as an active vibration damping mechanism by forced vibration that actively drives the weight 155 in addition to the above-described passive vibration damping action.
  • the generated vibration is more effectively suppressed.
  • the communication pipe 162 is configured as a piping member that extends in a straight line in the long axis direction of the hammer bit 119, and the second operation is performed from a crank chamber 165 disposed on the tool front end side with respect to the dynamic vibration absorber body 153. After sequentially passing through the chamber 163 and the weight 155, the first working chamber 161 is disposed. According to such a configuration, it is possible to realize an arrangement form of the communication pipe 162 that allows the crank chamber 165 and the first working chamber 161 to communicate with each other at the shortest distance.
  • the communication pipe 162 is configured to extend linearly in the major axis direction of the hammer bit 119 and to penetrate the center of the cross-sectional circle of each part of the weight 155.
  • the outer surface 162b of the communication tube 162 and the inner surface 155c of the weight 155 penetrating the communication tube 162 are in sliding contact with each other, whereby the communication tube 162 performs linear motion in the major axis direction of the weight 155. It is comprised as a guide member to guide.
  • the linear movement in the major axis direction of the weight 155 is smoothed, and the communication pipe 162 has a function of introducing the air in the crank chamber 165 into the first working chamber 161 of the dynamic vibration absorber 151.
  • the function as a guide member for guiding the linear movement of the weight 155 in the major axis direction can be given, which is reasonable.
  • the air When air flows between the crank chamber 165 and the first working chamber 161 through the first communication hole 162a of the communication pipe 162, the air is communicated with the gear chamber 164 according to the pressure of the first working chamber 161.
  • the volume of the second working chamber 163 changes. Specifically, when the pressure in the first working chamber 161 is relatively high, the volume of the second working chamber 163 decreases while the air in the second working chamber 163 flows out to the gear chamber 164, while the first working chamber 163 decreases. When the pressure of 161 becomes relatively low, the volume of the second working chamber 163 increases while the air in the gear chamber 164 flows into the second working chamber 163. As a result, the forced excitation that actively drives the weight 155 is smoothly performed without being obstructed by the air in the second working chamber 163.
  • the recessed spring accommodating spaces 156 are provided on the front end side and the rear end side of the weight 155, and one end of the coil spring 157 is accommodated in the spring accommodating space 156.
  • a structure in which one end portion of the coil spring 157 is fixed to the front end side and the rear end side of the weight 155 without providing the spring accommodating space 156 in the weight 155 can be adopted.
  • the spring accommodating space 156 or the fastening portion of the coil spring 157 can be provided on at least one of the front end side and the rear end side of the weight 155 as necessary.
  • the three first spring accommodating spaces 156a formed on the front end side of the weight 155 and the three second spring accommodating spaces 156b formed on the rear end side of the weight 155 are the weight 155.
  • the arrangement of the first spring accommodating spaces 156a on the front end side of the weight 155 and the first arrangement on the rear end side of the weight 155 are described.
  • the arrangement of the two spring accommodating spaces 156b can be changed as appropriate.
  • the communication pipe 162 extends from the crank chamber 165 to the second working chamber 163.
  • a structure other than this can be selected as the structure of the communication pipe 162.
  • a member corresponding to the communication pipe 162 may be disposed so as to communicate with the first working chamber 161 from the crank chamber 165 via the outside of the dynamic vibration absorber body 153 of the dynamic vibration absorber 151.
  • the communication pipe 162 is also used as a guide member that guides the linear motion of the weight 155 in the major axis direction.
  • a member corresponding to the communication pipe 162 is used. Otherwise, the guide function of the weight 155 may be achieved.
  • the hammer drill 101 is described as an example of the work tool.
  • the present invention is applied to various work tools that perform the work of processing the workpiece by moving the tip tool linearly.
  • the invention can be applied.
  • the present invention can be suitably used for a jigsaw or a reciprocating saw that cuts a workpiece by moving a saw blade back and forth linearly.
  • FIG. 3 is a view showing a cross-sectional structure of the dynamic vibration absorber 151 in FIG.
  • FIG. 3 is a view showing a cross-sectional structure of the dynamic vibration absorber 151 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

【課題】 動吸振器を搭載する作業工具において、動吸振器の合理的な配置及び制振性向上を実現するのに有効な技術を提供する。 【解決手段】 本発明にかかる作業工具としてのハンマドリル101は、本体部103、本体部103に収容された駆動モータ111、運動変換機構113及び動吸振器151と、本体部103のうち駆動モータ111よりも工具後端側に連接された工具把持用のハンドグリップ105とを備え、運動変換機構113は、ハンマビット119の長軸方向に関し駆動モータ111よりも工具前端側に配設され、駆動モータ111の回転運動を直線運動に変換してハンマビット119に伝達する構成とされ、動吸振器151は、運動変換機構113とハンドグリップ105との間の中間領域に配設されるとともに収容空間を有する動吸振器本体と、ハンマビット119の長軸方向への直線運動が可能となるように動吸振器本体の収容空間に収容されるウェイトと、ウェイトの前面側及び後面側と動吸振器本体側との間においてハンマビット119の長軸方向に延在して、当該長軸方向に関しウェイトを弾発状に支持するコイルバネとを含む構成とされ、コイルバネによって弾発状に支持されたウェイトが、ハンマビット119の長軸方向に直線運動することで、加工作業時における本体部103の制振がなされる構成とされる。

Description

作業工具
 本発明は、ハンマやハンマドリル等のように先端工具を直線状に駆動する作業工具の構築技術に関する。
 特開2004-154903号公報は、制振機構が設けられた電動ハンマの構成を開示している。この電動ハンマは、ハンマ作業に伴うハンマビット長軸方向の振動を制振する手段としての動吸振器を備え、これによりハンマ作業時のハンマの低振動化を図っている。動吸振器は、コイルバネによる付勢力が作用した状態で直線運動可能とされたウェイトを有し、当該ウェイトが先端工具の長軸方向に運動することでハンマ作業時におけるハンマの制振を行う構成とされる。
 一方、動吸振器を搭載するこの種の作業工具の設計に際しては、動吸振器の構造を更に工夫することによって、動吸振器の合理的な配置を可能とするとともに、振動低減効果の高い制振性に優れた動吸振器を実現する技術が要請される。
 本発明は、動吸振器を搭載する作業工具において、動吸振器の合理的な配置及び制振性向上を実現することを目的とする。
 上記課題を達成するため、本発明に係る作業工具は、長軸の先端工具を直線状に駆動させ、これによって当該先端工具に所定の加工作業を遂行させる作業工具であって、工具本体、駆動モータ、運動変換機構、動吸振器及びハンドル部を少なくとも備える。ここでいう「作業工具」には、ハンマ、ハンマドリル、ジグソー、レシプロソー等といったように、先端工具が直線運動することで被加工材に加工作業を行う態様の作業工具が広く包含される。駆動モータは、工具本体に収容されたモータとして構成される。運動変換機構は、工具本体に収容され、先端工具の長軸方向に関し駆動モータよりも工具前端側に配設され、駆動モータの回転運動を直線運動に変換して先端工具に伝達する構成とされる。ここでいう「運動変換機構」として、典型的には駆動モータのモータ軸との間のギア噛み合い係合によって駆動されるクランク軸、クランク軸に接続されたクランクアーム、クランクアームに接続されたピストン等からなり、駆動モータのモータ軸の回転運動をピストンの直線運動に変換して先端工具を駆動するクランク機構を用いることができる。運動変換機構としてこのようなクランク機構を採用する場合には、クランク機構のクランク軸は、先端工具の長軸方向に関し駆動モータのモータ軸よりも工具前端側に配設される。
 動吸振器は、工具本体に収容され、動吸振器本体、ウェイト及びコイルバネを含む構成とされる。動吸振器本体は、運動変換機構とハンドル部との間の中間領域に配設されるとともに収容空間を有する部位として構成される。運動変換機構として上記のようなクランク機構を採用する場合には、クランク機構のクランク軸とハンドル部との間の領域であって、且つ駆動モータのモータ軸よりも工具上端側の領域に、動吸振器本体が配設される。ウェイトは、先端工具の長軸方向への直線運動が可能となるように動吸振器本体の収容空間に収容される質量部分として構成される。コイルバネは、ウェイトの前面側及び後面側の少なくとも一方と動吸振器本体側との間において先端工具の長軸方向に延在して、当該長軸方向に関しウェイトを弾発状に支持する弾性要素として構成される。そして、コイルバネによって弾発状に支持されたウェイトが、先端工具の長軸方向に直線運動することで、加工作業時における工具本体の制振を行なう。ハンドル部は、工具本体のうち駆動モータよりも工具後端側に連接された工具把持用のハンドル部分として構成される。なお、本発明における「ウェイトの直線運動」に関しては、この直線運動方向が、先端工具の長軸方向のみに限られるものではなく、先端工具の長軸方向の成分を少なくとも有していれば足りる。
 ところで、上述のように先端工具の長軸方向に関し駆動モータよりも工具前端側に運動変換機構が配設された上記構成の作業工具にあっては、運動変換機構とハンドル部との間の中間領域に空きスペースが形成され易い。そこで、本発明に係る作業工具では、運動変換機構とハンドル部との間の中間領域に動吸振器本体を配設する構成を採用している。これにより、動吸振器本体を配設する新たな配設空間を形成する必要がなく、工具本体内の空間を有効利用することができ、以って動吸振器の合理的な配置が可能とされる。
 また、運動変換機構とハンドル部との間の中間領域の動吸振器本体は、先端工具の長軸線により近づけて配設することや、先端工具の長軸線の延長線上に配設することが可能となるため、先端工具の駆動に起因する振動を効率的に低減させることができ、振動低減効果の高い制振性に優れた動吸振器を実現することが可能となる。
 本発明に係る更なる作業工具の好ましい形態では、前記のウェイトは、当該ウェイトの前面側及び後面側の少なくとも一方において先端工具の長軸方向に凹み状に延在するバネ収容部を備え、このバネ収容部は、ウェイトを弾発状に支持するコイルバネの一端部を収容する構成とされる。本構成に関しては、ウェイトの前面側または後面側にバネ収容部が設けられてもよいし、或いはウェイトの前面側及び後面側の両方にバネ収容部が設けられてもよい。このような構成によれば、ウェイトの内部にコイルバネの一端部を収容するバネ収容部を設けることで、ウェイトのバネ収容部にコイルバネが収容され組みつけられた状態での動吸振器の先端工具の長軸方向に関する長さを抑えることができ、当該長軸方向に関し動吸振器のコンパクト化を図ることが可能となる。
 また、本発明に係る更なる作業工具の好ましい形態では、前記のバネ収容部は、ウェイトの前面側及び後面側において先端工具の長軸方向に凹み状に延在する前面側バネ収容部及び後面側バネ収容部からなる。そして前面側バネ収容部は、ウェイトの前方からウェイトを弾発状に支持するコイルバネの一端部を収容し、後面側バネ収容部は、ウェイトの後方からウェイトを弾発状に支持するコイルバネの一端部を収容するとともに、前面側バネ収容部と後面側バネ収容部は、これらバネ収容部の延在方向と交差する方向に関し、全部または一部が互いに重なるように配設されている。すなわち、前面側バネ収容部と後面側バネ収容部の全部または一部が、また前面側バネ収容部に収容されたコイルバネと後面側バネ収容部に収容されたコイルバネの全部または一部がオーバーラップして配置されている。このような構成によれば、バネ収容部にコイルバネが組みつけられた状態でのウェイトの先端工具の長軸方向に関する長さを更に抑えることができ、当該長軸方向に関し動吸振器の更なるコンパクト化を図るとともに、簡便な構造で且つ軽量化を図るのに有効とされる。その結果、動吸振器を工具本体に配置する際、工具本体の長軸方向の配置スペースに制約を受けるような場合に特に有効となる。また、前面側バネ収容部に収容されたコイルバネと後面側バネ収容部に収容されたコイルバネがオーバーラップする分、長軸方向に関し同一寸法の動吸振器で考えた場合には、コイルバネをより大型化することができ、大型化したコイルバネによって高い制振性を安定して付与することが可能となる。
 また、本発明に係る更なる作業工具の好ましい形態では、前記のウェイトは、先端工具の長軸方向と交差する方向に関する断面が円形とされたウェイト部材として構成される。そして、ウェイト部材の前面側には当該ウェイト部材の周方向に関し前面側バネ収容部の複数が等間隔で配設され、ウェイト部材の後面側には当該ウェイト部材の周方向に関し後面側バネ収容部の複数が等間隔で配設された構成とされる。このような構成によれば、ウェイト部材の前面側及び後面側に複数のバネ収容部がバランス良く配置されるため、ウェイト部材の重心バランスが取り易い。また、ウェイト部材の前面側及び後面側に複数のコイルバネがバランス良く配置されるため、複数のコイルバネの弾発力をウェイト部材の前面側及び後面側にバランス良く作用させることが可能となる。
 また、本発明に係る更なる作業工具の好ましい形態では、前記の運動変換機構は、第1の空間、打撃要素及び第2の空間を含む。第1の空間は、閉鎖された空間として構成される。打撃要素は、第1の空間の空気圧を利用して先端工具を打撃する機能を有する。第2の空間は、第1の空間の空気圧変動の位相とは逆位相となる空気圧変動を生じる空間として構成される。ここでいう第1の空間と第2の空間との間の「空気圧変動の逆位相」に関しては、典型的には、打撃要素が先端工具を打撃する際に第1の空間が相対的に高圧化される状態においては第2の空間が相対的に低圧化される一方、打撃終了後に第1の空間が相対的に低圧化される状態においては第2の空間が相対的に高圧化されるように、空気圧の変動パターンが第1の空間と第2の空間との間で概ね逆になる態様を示すものである。また、前記の動吸振器は、前室及び後室、連通路を有する構成とされる。前室及び後室は、動吸振器本体内においてウェイトによって区画され、先端工具の長軸方向に関しウェイトを挟んでその前後に形成される区画室として構成される。連通路は、後室と第2の空間とを連通する機能を有する。このような構成によれば、第2の空間内の圧力変動に伴って第2の空間内の空気を連通路を通じて動吸振器の後室に導入し、動吸振器のウェイトを積極的に駆動することによって、動吸振器に制振作用を行なわせることが可能となる。
 また、本発明に係る更なる作業工具の好ましい形態では、前記の第2の空間は、先端工具の長軸方向に関し動吸振器本体よりも工具前端側に配設される。また、前記の連通路は、この第2の空間から前室及びウェイトを順次貫通した後に後室に通じるように配設された連通管によって構成されている。このような構成によれば、第2の空間と後室との間を最短距離にて連通させることが可能な連通管の配置形態が実現される。
 また、本発明に係る更なる作業工具の好ましい形態では、前記の連通管は、先端工具の長軸方向に直線状に延在するとともに、当該連通管の外面と当該連通管に貫設された前記ウェイトの内面とが摺接する構成とされ、これによりウェイトの長軸方向の直線運動をガイドするガイド部材としての機能を有する。このような構成によれば、連通管を介してウェイトの長軸方向の直線運動が円滑化されるとともに、第2の空間内の空気を動吸振器の後室に導入する機能を有する連通管に対し、更にウェイトの長軸方向の直線運動をガイドするガイド部材としての機能を付与することができるため合理的である。
 本発明によれば、動吸振器を搭載する作業工具において、工具本体を大型化することなく最低限の重量増加によって動吸振器の振動低減効果を高めることができ、以って動吸振器の合理的な配置及び制振性向上を実現することが可能となった。
 以下、本発明にかかる「作業工具」の一実施の形態につき、図1~図4を参照しつつ説明する。本実施の形態は、作業工具の一例として電動式のハンマドリルを用いて説明する。図1は本実施の形態のハンマドリル101の全体構成を示す側断面図である。図2は図1中の動吸振器151の部分拡大図である。また、図3は図2中の動吸振器151のA-A線に関する断面構造を示す図であり、図4は図2中の動吸振器151のB-B線に関する断面構造を示す図である。
 本実施の形態に係る電動式のハンマドリル101は、図1に示すように、概括的に見て、ハンマドリル101の外郭を形成する本体部103、当該本体部103の長軸方向に関する先端領域(図中左側)に接続されたツールホルダ137、当該ツールホルダ137に着脱自在に取付けられた長軸のハンマビット119、本体部103の長軸方向に関する他端部(図中右側)に、特には本体部103のうち後述する駆動モータ111よりも工具後端側に連接された工具把持用のハンドグリップ105を主体として構成される。ハンマビット119は、ツールホルダ137に対し、その長軸方向(本体部103の長軸方向)への相対的な往復動が可能に、かつその周方向への相対的な回動が規制された状態で保持される部材として構成される。ここでいう本体部103、ハンマビット119及びハンドグリップ105がそれぞれ、本発明における「工具本体」、「先端工具」及び「ハンドル部」を構成している。なお本実施の形態では、説明の便宜上、ハンマビット119側を前或いは工具前端側、ハンドグリップ105側を後或いは工具後端側という。
 本体部103は、駆動モータ111、運動変換機構113、打撃要素115、動力伝達機構117及び動吸振器151を収容したハウジングとして構成されている。なお、この本体部103は、上記の被収容要素の1または複数を収容する別々のハウジングの組み合わせによって構成されてもよい。本実施の形態では、駆動モータ111の回転出力は、運動変換機構113によって直線運動に適宜変換された上で打撃要素115に伝達され、当該打撃要素115を介してハンマビット119の長軸方向(図1における左右方向)への衝撃力を発生する。したがって、打撃要素115を備えるこのハンマドリル101は、打撃工具とも称呼される。また、駆動モータ111の回転出力は、動力伝達機構117によって適宜減速された上でハンマビット119に回転力として伝達され、当該ハンマビット119が周方向に回転動作される。ここでいう駆動モータ111が本発明における「駆動モータ」に相当する。
 運動変換機構113は、駆動モータ111のモータ軸111a回転運動を直線運動に変換して打撃要素115に伝達するものであり、駆動モータ111のモータ軸111aとの間のギア噛み合い係合によって駆動されるクランク軸121、クランクアーム123、ピストン125等からなるクランク機構によって構成される。クランク軸121は、クランクシャフト121aと、このクランクシャフト121aに偏心して設けられた偏心ピン121bを備える構成とされる。クランクアーム123は、その一端部がクランク軸121の偏心ピン121bに接続され、その他端部がピストン125に接続されている。ピストン125は、いわゆる打撃要素115を駆動する駆動子を構成するものであり、シリンダ141内をハンマビット119の長軸方向と同方向に摺動可能とされる。本実施の形態では、この運動変換機構113は、ハンマビット119の長軸方向に関し駆動モータ111よりも工具前端側に配設されている。より具体的には、運動変換機構113の各部位のうちクランク軸121のクランクシャフト121a及び偏心ピン121bが、ハンマビット119の長軸方向に関し駆動モータ111のモータ軸111aよりも工具前端側に配設されている。ここでいう運動変換機構113が本発明における「運動変換機構」を構成している。
 打撃要素115は、シリンダ141のボア内壁に摺動自在に配置された打撃子としてのストライカ143と、ツールホルダ137に摺動自在に配置されるとともに、ストライカ143の運動エネルギーをハンマビット119に伝達する中間子としてのインパクトボルト145とを主体として構成される。ここでいう打撃要素115が、本発明における「打撃要素」に相当する。シリンダ141内には、ピストン125とストライカ143との間に閉鎖された空気室141aが形成される。ストライカ143は、ピストン125の摺動動作に伴うシリンダ141の空気室141aの空気を利用して、いわゆる「空気バネ」の原理によって駆動され、ツールホルダ137に摺動自在に配置された中間子としてのインパクトボルト145に衝突(打撃)し、当該インパクトボルト145を介してハンマビット119に打撃力を伝達する。
 一方、ピストン125を挟んで空気室141aの反対側(工具後端側)において、クランク軸121及びクランクアーム123を収容するクランク室165は、空気室141aの空気圧変動の位相とは逆位相となる空気圧変動を生じる空間として構成される。すなわち、打撃要素115がハンマビット119を打撃する際に空気室141aが相対的に高圧化される状態においてはクランク室165が相対的に低圧化される一方、打撃終了後に空気室141aが相対的に低圧化される状態においてはクランク室165が相対的に高圧化されるように、空気圧の変動パターンが空気室141aとクランク室165との間で概ね逆になる構成とされる。ここでいう空気室141aが本発明における「第1の空間」に相当し、またここでいうクランク室165が本発明における「第2の空間」に相当する。
 一方、ツールホルダ137は、回転可能に構成され、駆動モータ111から動力伝達機構117を介して減速して回転される構成とされる。動力伝達機構117は、駆動モータ111によって回転駆動される中間ギア131、中間ギア131と共に回転する小ベベルギア133、当該小ベベルギア133と噛み合い係合し、本体部103の長軸回りに回転する大ベベルギア135等からなり、駆動モータ111の回転をツールホルダ137に伝達し、更には当該ツールホルダ137に保持されたハンマビット119へと伝達する。なお、ハンマドリル101は、ハンマビット119に対し長軸方向への打撃力のみを加えて被加工材の加工作業を行う、いわゆるハンマ作業と、長軸方向への打撃力と周方向への回転力とを加えて被加工材の加工作業を行う、いわゆるハンマドリル作業とを適宜切り替えて遂行できるように構成されるが、このことについては、本発明には直接的には関係しないため、その説明を省略する。
 ハンマドリル101の加工作業時(ハンマビット119の駆動時)において、本体部103にはハンマビット長軸方向の衝撃的かつ周期的な振動が発生する。なお、本体部103に生ずる制振対象としての主たる振動は、ピストン125とストライカ143が空気室141aの空気を圧縮したときの圧縮反力、及びストライカ143がインパクトボルト145を介してハンマビット119を打撃したときの、圧縮反力よりも僅かに遅れて発生する打撃反力である。
 ハンマドリル101は、本体部103に生ずる上記振動を制振するべく、動吸振器151を備える構成とされる。図2に示すように、この動吸振器151は、動吸振器本体153と、制振用のウェイト155と、当該ウェイト155の前端側と後端側にそれぞれ配置され、ハンマビット119の長軸方向に延在する前後のコイルバネ157とを主体として構成される。
 動吸振器本体153は、中空状ないし断面円筒状の収容空間を有し、ウェイト155の摺動動作を安定的に行わせる筒状のガイド部として備えられる。ここでいう動吸振器本体153が本発明における「動吸振器本体」に相当する。
 ところで、上述のようにハンマビット119の長軸方向に関し駆動モータ111よりも工具前端側に運動変換機構113が配設された上記構成にあっては、運動変換機構113とハンドグリップ105との間の中間領域に空きスペースが形成され易い。この中間領域は、具体的には、クランク軸121のクランクシャフト121a及び偏心ピン121bとハンドグリップ105との間の領域であって、且つ駆動モータ111のモータ軸111aよりも工具上端側(図1中の上側)の領域として規定される。そこで、本実施の形態では、運動変換機構113とハンドグリップ105との間のこの中間領域に、動吸振器本体153が配設されている。これにより、動吸振器本体153を配設する新たな配設空間を形成する必要がなく、本体部103内の空間を有効利用することができ、以って動吸振器151の合理的な配置が可能とされる。運動変換機構113とハンドグリップ105との間のこの中間領域は、更にハンマビット119の長軸線により近づけて配設したり、ハンマビット119の長軸線の延長線上に配設するのが好ましい。これにより、ハンマビット119の駆動に起因する振動を効率的に低減させることができ、振動低減効果の高い制振性に優れた動吸振器を実現することが可能となる。
 ウェイト155は、動吸振器本体153の収容空間を長軸方向(ハンマビット119の長軸方向)に移動するべく動吸振器本体153の収容空間に摺動自在に配置された質量部分として構成される。具体的には、このウェイト155は、ハンマビット119の長軸方向と交差する方向に関する断面が円形とされたウェイト部材として構成される。ここでいうウェイト155が、本発明における「ウェイト」及び「ウェイト部材」に相当する。
 コイルバネ157は、ウェイト155が動吸振器本体153の収容空間を長軸方向(ハンマビット119の長軸方向)に移動する際に、当該ウェイト155に対向状の弾発力を付与するように当該ウェイト155を支持する弾性体として構成される。またここでいうコイルバネ157が本発明における「コイルバネ」に相当する。
 本体部103に収容された上記構成の動吸振器151は、ハンマドリル101の加工作業時において、制振対象である本体部103に対して、動吸振器151における制振要素であるウェイト155及びコイルバネ157が協働して受動的な制振を行なう。これによりハンマドリル101の本体部103に生ずる上記の振動が抑制され、加工作業時における本体部103の制振がなされることとなる。
 また、上記構成のウェイト155は、ハンマビット119の長軸方向に関する前端側と後端側に所定領域にわたって、当該長軸方向に凹み状に延在する断面円環状のバネ収容空間156を有し、このバネ収容空間156にコイルバネ157の一端部を収容する構成とされる。ここでいうバネ収容空間156が本発明における「バネ収容部」に対応する。各円環状のバネ収容空間156は、ハンマビット119の長軸方向に長手状に延在する空間部分であり、外側の円筒形状の筒状部155aと、この筒状部155aの内側の円柱状の柱状部155bとによって囲まれる刳り貫き状の空間(溝)として構成される。筒状部155aと柱状部155bは、別体構造であってもよいし或いは一体構造であってもよい。
 本実施の形態では、このバネ収容空間156は、図3及び図4に示すように、ハンマビット119の長軸方向と交差する方向に関する同一平面上に計6つ配設されている。特に図4に示すように、これら6つのバネ収容空間156は、ウェイト155の前端側(図2中のウェイト155の左側領域)に形成された3つの第1バネ収容空間156aと、ウェイト155の後端側(図2中のウェイト155の右側領域)に形成された3つの第2バネ収容空間156bが、ウェイト155の周方向に交互に且つ等間隔で配設された構成になっている。そして、各バネ収容空間156に収容された各コイルバネ157は、その収容状態においてバネ前端157aがバネ前端止着部158に取り付け固定され、またバネ後端157bがバネ後端止着部159に取り付け固定される。ここでいう第1バネ収容空間156aが本発明における「前面側バネ収容部」に相当し、またここでいう第2バネ収容空間156bが本発明における「後面側バネ収容部」に相当する。このように、本実施の形態では、ウェイト155の前面側及び後面側に複数のバネ収容部156がバランス良く配置されるため、ウェイト155の重心バランスが取り易い。また、ウェイト155の前面側及び後面側に複数のコイルバネがバランス良く配置されるため、複数のコイルバネの弾発力をウェイト155の前面側及び後面側にバランス良く作用させることが可能となる。
 このとき、第1バネ収容空間156aに収容された前端側のコイルバネ157に関しては、バネ前端157aが取り付け固定されるバネ前端止着部158として動吸振器本体153の前壁部分が用いられ、バネ後端157bが取り付け固定されるバネ後端止着部159として第1バネ収容空間156aの底部(終端部)が用いられる。一方、第2バネ収容空間156bに収容された後側のコイルバネ157に関しては、バネ前端157aが取り付け固定されるバネ前端止着部158として第2バネ収容空間156bの底部(終端部)が用いられ、バネ後端157bが取り付け固定されるバネ後端止着部159として動吸振器本体153の後壁部分が用いられる。これによって前後のコイルバネ157は、ウェイト155に対しハンマビット119の長軸方向に関する弾性付勢力を対向状に作用させる。すなわち、ウェイト155は、前後のコイルバネ157による弾性付勢力が対向状に作用した状態で、ハンマビット119の長軸方向に移動可能とされる。なお、第1バネ収容空間156a及び第2バネ収容空間156bは、いずれもコイルバネ157の線径よりも幅広状に形成されており、これによりコイルバネ157が筒状部155aの内面及び柱状部155bの外面に接触しないように遊嵌状に配置されるのが好ましい。
 本実施の形態に係る動吸振器151は、上述のように、ウェイト155の内側にバネ収容空間156を形成し、このバネ収容空間156にコイルバネ157の一端部を配置する構成としている。これにより、ウェイト155のバネ収容空間156にコイルバネ157が収容され組みつけられた状態での動吸振器151のハンマビット119の長軸方向に関する長さを抑えることができ、当該長軸方向に関し動吸振器151のコンパクト化を図ることが可能となる。また、本実施の形態の動吸振器151では、コイルバネ157の外周側には当該コイルバネ157よりも密度の高い質量を有する筒状部155aが配置されることになる。このため、ウェイトの外周側に当該ウェイトよりも密度の低いコイルバネを配置する従来の構成に比べて、制振要素としてのウェイト155の質量を増やすことが可能となり、空間利用効率が向上する。その結果、動吸振器151の制振力を高めることができる。また、コイルバネ157の外周にウェイト155の筒状部155aが配置されることでウェイト155の動吸振器本体153の壁面に対する移動方向の接触長さ、すなわち摺動面の軸方向長さを長く取ることが可能となってウェイト155の安定動作を容易に確保できる。
 また本実施の形態では特に、図2に示すように、ウェイト155に形成されるバネ収容空間156のうち、第1バネ収容空間156aと第2バネ収容空間156bが部分的に重なるように配設され(オーバーラップして配置され)、また第1バネ収容空間156aに収容されるコイルバネ157と第2バネ収容空間156bに収容されるコイルバネ157は、これらコイルバネの延在方向と交差する方向に関し部分的に重なるように配設されている(オーバーラップして配置されている)。このような構成によれば、バネ収容空間156(156a,156b)にコイルバネ157が組みつけられた状態でのウェイト155の長軸方向に関する長さを更に抑えることができ、当該長軸方向に関し動吸振器151の更なるコンパクト化を図るとともに、簡便な構造で且つ軽量化を図るのに有効とされる。その結果、動吸振器151を本体部103に配置する際、本体部103の長軸方向の配置スペースに制約を受けるような場合に特に有効となる。また、第1バネ収容空間156aに収容されたコイルバネ157と第2バネ収容空間156bに収容されたコイルバネ157が部分的にオーバーラップする分、長軸方向に関し同一寸法の動吸振器で考えた場合には、コイルバネをより大型化することができ、大型化したコイルバネによって高い制振性を安定して付与することが可能となる。
 以上のように、本実施の形態によれば、動吸振器151の制振力を高めた上で、当該動吸振器151をコンパクト化(小型化)することができるため、ハンマドリル101の本体部103を大型化することなく最低限の重量増加によって動吸振器151の振動低減効果を高めることが可能となる。
 また、図2に示すように、本実施の形態では、動吸振器151は、動吸振器本体153内に第1作動室161及び第2作動室163を有する。これら第1作動室161及び第2作動室163は、動吸振器本体153内においてウェイト155によって区画され、ハンマビット119の長軸方向に関しウェイト155を挟んでその前後に形成される空間部分として構成される。
 第1作動室161は、ウェイト155よりも後側(図2中の左側)の空間として構成される。この第1作動室161は、外部と非連通状態とされた密閉構造のクランク室165に対し連通管162の第1連通孔162aを通じて常時に連通されている。一方、第2作動室163は、動吸振器本体153の外周壁に形成された第2連通孔163aを介して、駆動モータ111のモータ軸111aが配設されるギア室164に連通されている。ここでいう第1作動室161及び第2作動室163がそれぞれ、本発明における「後室」及び「前室」に相当する。
 ところでクランク室165内の圧力は、運動変換機構113の駆動に伴い変動する。これは、運動変換機構113の構成部材であるピストン125がシリンダ141内を前後方向に直線運動することに伴いクランク室165の容積が変化することに基づくものである。そこで、本実施の形態では、このクランク室165内の圧力変動に伴ってクランク室165内の空気を第1作動室161に導入し、動吸振器151のウェイト155を積極的に駆動することによって動吸振器151に制振作用を行なわせることとしている。この具体的な構成として、本実施の形態では、動吸振器本体153に図2に示すように、第1連通孔162aを有する連通管162を設けている。これにより、動吸振器151は、上述した受動的な制振作用に加え、ウェイト155を積極的に駆動する強制加振による能動的な制振機構としても作用し、ハンマ作業時に本体部103に生ずる振動を更に効果的に抑制する。この連通管162は、特にハンマビット119の長軸方向に直線状に延在する配管部材として構成され、動吸振器本体153よりも工具前端側に配設されたクランク室165から、第2作動室163及びウェイト155を順次貫通した後に第1作動室161に通じるように配設されている。このような構成によれば、クランク室165と第1作動室161との間を最短距離にて連通させることが可能な連通管162の配置形態を実現することが可能となる。
 また、上記の連通管162は、ハンマビット119の長軸方向に直線状に延在するともに、ウェイト155の各部位のうち断面円の中心を貫通するように構成されている。このような構成においては、連通管162の外面162bと当該連通管162に貫設されたウェイト155の内面155cとが摺接し、これにより連通管162は、ウェイト155の長軸方向の直線運動をガイドするガイド部材として構成されている。このような構成によれば、ウェイト155の長軸方向の直線運動が円滑化されるとともに、クランク室165内の空気を動吸振器151の第1作動室161に導入する機能を有する連通管162に対し、更にウェイト155の長軸方向の直線運動をガイドするガイド部材としての機能を付与することが可能となるため合理的である。
 なお、このクランク室165と第1作動室161との間で連通管162の第1連通孔162aを通じて空気が流通する際、第1作動室161の圧力に応じて、ギア室164に連通された第2作動室163の容積が変化する。具体的には、第1作動室161の圧力が相対的に高くなると、第2作動室163の空気がギア室164に流出しつつ第2作動室163の容積が減少する一方、第1作動室161の圧力が相対的に低くなると、ギア室164の空気が第2作動室163に流入しつつ第2作動室163の容積が増加する。これにより、ウェイト155を積極的に駆動する強制加振が第2作動室163の空気によって妨げられることなく円滑に遂行されることとなる。
 なお、上述した実施の形態では、ウェイト155の前端側と後端側に凹み状のバネ収容空間156を設け、このバネ収容空間156にコイルバネ157の一端部を収容する場合について記載したが、本発明では、ウェイト155にバネ収容空間156を設けることなく、当該ウェイト155の前端側と後端側にコイルバネ157の一端部を止着するような構造を採用することもできる。このとき、コイルバネ157のバネ収容空間156或いは止着箇所は、必要に応じてウェイト155の前端側及び後端側の少なくとも一方に設けることができる。
 また、上述した実施の形態では、ウェイト155の前端側に形成された3つの第1バネ収容空間156aと、ウェイト155の後端側に形成された3つの第2バネ収容空間156bが、ウェイト155の周方向に交互に且つ等間隔で配設された構成について記載したが、本発明では、ウェイト155の前端側における第1バネ収容空間156aの配設態様や、ウェイト155の後端側における第2バネ収容空間156bの配設態様は必要に応じて適宜変更可能である。
 また、上述した実施の形態では、クランク室165と動吸振器151の第1作動室161とを連通する連通管162の構成に関し、当該連通管162が、クランク室165から、第2作動室163及びウェイト155を順次貫通した後に第1作動室161に通じるように配設される場合について記載したが、本発明では、連通管162の構造としてこれ以外の構造を選択することもできる。例えば、連通管162に相当する部材が、クランク室165から動吸振器151の動吸振器本体153の外部を経由して、第1作動室161に通じるように配設されてもよい。また、上述した実施の形態では、この連通管162が、ウェイト155の長軸方向の直線運動をガイドするガイド部材として兼用される場合について記載したが、本発明では、連通管162に相当する部材以外によって、ウェイト155のガイド機能が達成されてもよい。
 また、上述した実施の形態では、作業工具の一例としてハンマドリル101を例にとって説明しているが、先端工具を直線状に動作させて被加工材の加工作業を遂行する種々の作業工具に対し本発明を適用することが可能である。例えば、鋸刃を直線状に往復動作させて被加工材の切断作業を行うジグソーあるいはレシプロソー等に対し本発明を好適に用いることができる。
本実施の形態のハンマドリル101の全体構成を示す側断面図である。 図1中の動吸振器151の部分拡大図である 図2中の動吸振器151のA-A線に関する断面構造を示す図である。 図2中の動吸振器151のB-B線に関する断面構造を示す図である。
101 ハンマドリル(作業工具)
103 本体部(工具本体)
105 ハンドグリップ
111 駆動モータ
111a モータ軸
113 運動変換機構
115 打撃要素
117 動力伝達機構
119 ハンマビット(先端工具)
121 クランク軸
121a クランクシャフト
121b 偏心ピン
123 クランクアーム
125 ピストン
131 中間ギア
133 小ベベルギア
135 大ベベルギア
137 ツールホルダ
141 シリンダ
141a 空気室
143 ストライカ
145 インパクトボルト
151 動吸振器
153 動吸振器本体
155 ウェイト
155a 筒状部
155b 柱状部
155c 内面
156 バネ収容空間(バネ収容部)
156a 第1バネ収容空間(前面側バネ収容部)
156b 第2バネ収容空間(後面側バネ収容部)
157 コイルバネ
157a バネ前端
157b バネ後端
158 バネ前端止着部
159 バネ後端止着部
161 第1作動室
162 連通管
162a 第1連通孔
162b 外面
163 第2作動室
163a 第2連通孔
164 ギア室
165 クランク室

Claims (7)

  1.  長軸の先端工具を直線状に駆動させ、これによって当該先端工具に所定の加工作業を遂行させる作業工具であって、
     工具本体と、
     前記工具本体に収容された駆動モータ、運動変換機構及び動吸振器と、
     前記工具本体のうち前記駆動モータよりも工具後端側に連接された工具把持用のハンドル部と、を備え、
     前記運動変換機構は、前記先端工具の長軸方向に関し前記駆動モータよりも工具前端側に配設され、前記駆動モータの回転運動を直線運動に変換して前記先端工具に伝達する構成とされ、
     前記動吸振器は、前記運動変換機構と前記ハンドル部との間の中間領域に配設されるとともに収容空間を有する動吸振器本体と、前記先端工具の長軸方向への直線運動が可能となるように前記動吸振器本体の前記収容空間に収容されるウェイトと、前記ウェイトの前面側及び後面側の少なくとも一方と前記動吸振器本体側との間において前記先端工具の長軸方向に延在して、当該長軸方向に関し前記ウェイトを弾発状に支持するコイルバネとを含む構成とされ、前記コイルバネによって弾発状に支持された前記ウェイトが、前記先端工具の長軸方向に直線運動することで、加工作業時における前記工具本体の制振がなされることを特徴とする作業工具。
  2.  請求項1に記載の作業工具であって、
     前記ウェイトは、当該ウェイトの前面側及び後面側の少なくとも一方において前記先端工具の長軸方向に凹み状に延在するバネ収容部を備え、前記バネ収容部は、前記ウェイトを弾発状に支持する前記コイルバネの一端部を収容する構成であることを特徴とする作業工具。
  3.  請求項1または2に記載の作業工具であって、
     前記バネ収容部は、前記ウェイトの前面側及び後面側において前記先端工具の長軸方向に凹み状に延在する前面側バネ収容部及び後面側バネ収容部からなり、
     前記前面側バネ収容部は、前記ウェイトの前方から前記ウェイトを弾発状に支持する前記コイルバネの一端部を収容し、前記後面側バネ収容部は、前記ウェイトの後方から前記ウェイトを弾発状に支持する前記コイルバネの一端部を収容するとともに、前記前面側バネ収容部と前記後面側バネ収容部は、これらバネ収容部の延在方向と交差する方向に関し、全部または一部が互いに重なるように配設されていることを特徴とする作業工具。
  4.  請求項3に記載の作業工具であって、
     前記ウェイトは、前記先端工具の長軸方向と交差する方向に関する断面が円形とされたウェイト部材として構成され、前記ウェイト部材の前面側には当該ウェイト部材の周方向に関し前記前面側バネ収容部の複数が等間隔で配設され、前記ウェイト部材の後面側には当該ウェイト部材の周方向に関し前記後面側バネ収容部の複数が等間隔で配設された構成であることを特徴とする作業工具。
  5.  請求項1~4のうちのいずれか1項に記載の作業工具であって、
     前記運動変換機構は、閉鎖された第1の空間と、前記第1の空間の空気圧変動を利用して前記先端工具を打撃する打撃要素と、前記第1の空間とは異なる領域に配設され、前記第1の空間の空気圧変動の位相とは逆位相となる空気圧変動を生じる第2の空間を含み、
     前記動吸振器は、前記動吸振器本体内において前記ウェイトによって区画され、前記先端工具の長軸方向に関し前記ウェイトを挟んでその前後に形成される前室及び後室と、前記後室と前記第2の空間とを連通する連通路を有する構成であることを特徴とする作業工具。
  6.  請求項5に記載の作業工具であって、
     前記第2の空間は、前記先端工具の長軸方向に関し前記動吸振器本体よりも工具前端側に配設され、
     前記連通路は、前記第2の空間から前記前室及び前記ウェイトを順次貫通した後に前記後室に通じるように配設された連通管によって構成されていることを特徴とする作業工具。
  7.  請求項6に記載の作業工具であって、
     前記連通管は、前記先端工具の長軸方向に直線状に延在するとともに、当該連通管の外面と当該連通管に貫設された前記ウェイトの内面とが摺接する構成とされ、これにより前記ウェイトの長軸方向の直線運動をガイドするガイド部材とされることを特徴とする作業工具。
PCT/JP2009/060879 2008-06-19 2009-06-15 作業工具 WO2009154171A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2011101689/02A RU2505390C2 (ru) 2008-06-19 2009-06-15 Электроинструмент
EP09766619.2A EP2301719B1 (en) 2008-06-19 2009-06-15 Work tool
US12/999,208 US8668026B2 (en) 2008-06-19 2009-06-15 Power tool comprising a dynamic vibration reducer
CN200980123024.3A CN102066056B (zh) 2008-06-19 2009-06-15 作业工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-161027 2008-06-19
JP2008161027A JP5214343B2 (ja) 2008-06-19 2008-06-19 作業工具

Publications (1)

Publication Number Publication Date
WO2009154171A1 true WO2009154171A1 (ja) 2009-12-23

Family

ID=41434087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060879 WO2009154171A1 (ja) 2008-06-19 2009-06-15 作業工具

Country Status (6)

Country Link
US (1) US8668026B2 (ja)
EP (1) EP2301719B1 (ja)
JP (1) JP5214343B2 (ja)
CN (1) CN102066056B (ja)
RU (1) RU2505390C2 (ja)
WO (1) WO2009154171A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343577A (zh) * 2010-08-03 2012-02-08 株式会社牧田 作业工具

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336781B2 (ja) * 2008-07-07 2013-11-06 株式会社マキタ 作業工具
US9981372B2 (en) * 2012-12-31 2018-05-29 Robert Bosch Tool Corporation Reciprocating tool with fluid driven counterweight
US9573207B2 (en) * 2013-05-09 2017-02-21 Makita Corporation Reciprocating cutting tool
JP6179270B2 (ja) * 2013-08-22 2017-08-16 アイシン精機株式会社 車両用ドア開閉装置
EP2942158A1 (de) * 2014-05-09 2015-11-11 HILTI Aktiengesellschaft Handwerkzeugmaschine
EP3028820A1 (de) * 2014-12-03 2016-06-08 HILTI Aktiengesellschaft Handwerkzeugmaschine und Steuerungsverfahren dafür
EP3028821A1 (de) * 2014-12-03 2016-06-08 HILTI Aktiengesellschaft Steuerungsverfahren für eine Handwerkzeugmaschine
US20160340849A1 (en) * 2015-05-18 2016-11-24 M-B-W, Inc. Vibration isolator for a pneumatic pole or backfill tamper
EP3381619B1 (en) * 2015-11-26 2022-11-30 Koki Holdings Co., Ltd. Reciprocating work machine
US10864609B2 (en) * 2017-09-28 2020-12-15 Makita Corporation Dust collector
US10814468B2 (en) 2017-10-20 2020-10-27 Milwaukee Electric Tool Corporation Percussion tool
EP3743245B1 (en) 2018-01-26 2024-04-10 Milwaukee Electric Tool Corporation Percussion tool
US11571796B2 (en) 2018-04-04 2023-02-07 Milwaukee Electric Tool Corporation Rotary hammer
US11400577B2 (en) * 2019-06-11 2022-08-02 Makita Corporation Impact tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154903A (ja) 2002-11-07 2004-06-03 Makita Corp 作業工具
JP2007237304A (ja) * 2006-03-07 2007-09-20 Hitachi Koki Co Ltd 打撃工具
JP2007237301A (ja) * 2006-03-07 2007-09-20 Hitachi Koki Co Ltd 電動工具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875731A (en) * 1956-03-23 1959-03-03 Buckeye Steel Castings Co Vibration absorbers for reciprocating tools
SU550507A1 (ru) * 1975-08-13 1977-03-15 Предприятие П/Я А-1698 Амортизирующее устройство с регулируемой жесткостью
DE3122979A1 (de) * 1981-06-10 1983-01-05 Hilti AG, 9494 Schaan Bohr- oder meisselhammer
JP3424870B2 (ja) * 1995-02-28 2003-07-07 株式会社マキタ 打撃工具の空打ち防止装置
CN1422730A (zh) * 2001-12-06 2003-06-11 陈秀如 气动工具的减震装置
DE10254813A1 (de) * 2002-11-23 2004-06-03 Hilti Ag Elektrohandwerkzeugmaschine mit schwingungsentkoppelter Schlagwerksbaugruppe
JP4195818B2 (ja) * 2003-01-16 2008-12-17 株式会社マキタ 電動ハンマ
DE602004026134D1 (de) * 2003-04-01 2010-05-06 Makita Corp Kraftwerkzeug
DE502004007445D1 (de) 2004-07-14 2008-08-07 Aeg Electric Tools Gmbh Handgeführter Bohrhammer oder Meisselhammer
JP4647957B2 (ja) 2004-08-27 2011-03-09 株式会社マキタ 作業工具
JP4815119B2 (ja) * 2004-10-15 2011-11-16 株式会社マキタ 往復作動式作業工具
US7806201B2 (en) 2007-07-24 2010-10-05 Makita Corporation Power tool with dynamic vibration damping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154903A (ja) 2002-11-07 2004-06-03 Makita Corp 作業工具
JP2007237304A (ja) * 2006-03-07 2007-09-20 Hitachi Koki Co Ltd 打撃工具
JP2007237301A (ja) * 2006-03-07 2007-09-20 Hitachi Koki Co Ltd 電動工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2301719A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343577A (zh) * 2010-08-03 2012-02-08 株式会社牧田 作业工具
EP2415565A1 (en) * 2010-08-03 2012-02-08 Makita Corporation Power tool
US8844647B2 (en) 2010-08-03 2014-09-30 Makita Corporation Power tool
RU2577639C2 (ru) * 2010-08-03 2016-03-20 Макита Корпорейшн Приводной инструмент

Also Published As

Publication number Publication date
CN102066056A (zh) 2011-05-18
JP2010000564A (ja) 2010-01-07
US8668026B2 (en) 2014-03-11
JP5214343B2 (ja) 2013-06-19
US20110155405A1 (en) 2011-06-30
EP2301719A4 (en) 2011-12-14
CN102066056B (zh) 2014-05-07
RU2011101689A (ru) 2012-07-27
RU2505390C2 (ru) 2014-01-27
EP2301719A1 (en) 2011-03-30
EP2301719B1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5214343B2 (ja) 作業工具
JP5336781B2 (ja) 作業工具
JP6096593B2 (ja) 往復動式作業工具
US8016047B2 (en) Electrical power tool with anti-vibration mechanisms of different types
JP5128998B2 (ja) 手持式作業工具
JP5290666B2 (ja) 打撃工具
JP4659737B2 (ja) 作業工具
US8240395B2 (en) Hand-held power tool
JP7080606B2 (ja) 作業工具
JP5496812B2 (ja) 作業工具
WO2013111460A1 (ja) 打撃工具
JP5294726B2 (ja) 手持式作業工具
WO2007105742A1 (en) Electrically-driven power tool
JP5147449B2 (ja) 作業工具
JP4815119B2 (ja) 往復作動式作業工具
JP2007175836A (ja) 打撃工具
WO2015166995A1 (ja) 作業工具
JP7365197B2 (ja) 往復動工具
JP4757043B2 (ja) 作業工具
JP2007175837A (ja) 打撃工具
JP2016140934A (ja) 動力工具
JP2012232371A (ja) 打撃工具
JP2010052118A (ja) 打撃工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123024.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009766619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011101689

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12999208

Country of ref document: US