WO2009154095A1 - 磁場センサー装置 - Google Patents

磁場センサー装置 Download PDF

Info

Publication number
WO2009154095A1
WO2009154095A1 PCT/JP2009/060436 JP2009060436W WO2009154095A1 WO 2009154095 A1 WO2009154095 A1 WO 2009154095A1 JP 2009060436 W JP2009060436 W JP 2009060436W WO 2009154095 A1 WO2009154095 A1 WO 2009154095A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
sensor device
field sensor
magnetic
output
Prior art date
Application number
PCT/JP2009/060436
Other languages
English (en)
French (fr)
Inventor
康彦 長▲崎▼
俊文 松岡
章 齋藤
宏一 奥住
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 国立大学法人京都大学 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to MX2010013823A priority Critical patent/MX2010013823A/es
Priority to EP09766543A priority patent/EP2290389A1/en
Priority to US12/999,272 priority patent/US8610429B2/en
Priority to RU2011101412/28A priority patent/RU2497140C2/ru
Priority to CA2734623A priority patent/CA2734623C/en
Priority to AU2009261302A priority patent/AU2009261302B2/en
Publication of WO2009154095A1 publication Critical patent/WO2009154095A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties

Definitions

  • the present invention relates to a magnetic field sensor device.
  • MI element Magneto-Impedance device
  • Japanese Patent Application Laid-Open No. 7-181239 discloses a magnetic impedance element.
  • the magnetic detection apparatus using this magneto-impedance element is developed.
  • Japanese Patent Application Laid-Open No. 2003-121517 and “Magnetic Sensor Science and Engineering” (written by Toshio Mouri, Corona Co., Ltd., March 10, 1998, p. 92-101) describe a magnetism using a magnetic impedance element. A detection device is described.
  • the electromagnetic exploration method that uses the electromagnetic induction phenomenon for underground exploration has been widely used for exploration of resources such as mines, geothermal, and oil, and underground structure investigations.
  • Various techniques have been developed as such an electromagnetic exploration method, and in particular, a technique for artificially generating an electromagnetic field in the basement and conducting an underground exploration has been put into practical use today.
  • Japanese Patent Application Laid-Open No. 2002-71828 describes an underground electromagnetic exploration method for obtaining a geological structure of a natural ground.
  • TDEM Time Domain Electromagnetic Method
  • an induction current generating transmission source is installed on the ground, and an alternating direct current having an on / off time is generally applied to the induction current generating transmission source.
  • the induced current flows to the ground surface so as to prevent the magnetic field formed so far from changing according to the law of electromagnetic induction.
  • This induced current diffuses toward the deep underground with time. Since the induced current attenuates according to the specific resistance of the current path, by measuring the magnetic field generated by the induced current on the ground surface as a function of time, the underground specific resistance distribution can be examined.
  • induction coils In conventional underground electromagnetic surveys, it was common to use induction coils as magnetic field sensors. However, the induction coil used in underground electromagnetic survey was large (for example, 1 m or more in length and 10 kg in weight or more). For this reason, it is difficult to carry out measurements at a large number of places in a short period of time due to the difficulty of transportation and installation, which hinders the improvement of the measurement efficiency of underground electromagnetic exploration.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic field sensor device suitable for underground electromagnetic exploration.
  • a magnetic field sensor device includes: In a magnetic field sensor device having a sensor unit including a magneto-impedance element having a magnetic amorphous structure, In the longitudinal direction of the magnetic amorphous structure, the magnetic amorphous structure has a rod-shaped core portion that guides a magnetic field to the magnetic amorphous structure.
  • the present invention it is possible to increase the sensitivity of the magnetic field sensor device by having the rod-shaped core portion in the longitudinal direction (magnetic field measurement direction) of the magnetic amorphous structure having the highest magnetic field sensitivity.
  • a magnetic field sensor device that can be made smaller and lighter than that can be realized.
  • the core portion may be provided on both sides in the longitudinal direction of the magnetic amorphous structure.
  • the core portion may be arranged so that the longitudinal direction of the magnetic amorphous structure and the longitudinal direction of the core portion are on the same straight line.
  • the core portion may be made of a high magnetic permeability material.
  • the high magnetic permeability material may be mu metal.
  • the high magnetic permeability material may be ferrite, for example.
  • An environmental magnetic field canceling unit that generates a correction magnetic field that cancels the environmental magnetic field input to the magnetic amorphous structure may be included.
  • the magnetic field to be observed can be accurately observed.
  • the environmental magnetic field canceling means may be a coil having the core portion as an axis.
  • An adjusting means for controlling the environmental magnetic field canceling means may be included so that the observation data falls within a desired range.
  • An observation means for observing a magnetic field including a magnetic field signal based on an output of a transmission source for generating an induced current over time; Storage means for storing observation data observed by the observation means; The observation data falls within a desired range based on a value obtained by integrating the observation data stored in the storage means in a period in which the integral value of the magnetic field signal based on the output of the transmission source for generating the induced current is zero.
  • correction means for correcting the reference value of the observation data may be included.
  • the correction means when the value obtained by integrating the observation data over a period that is an integral multiple of the output cycle exceeds the upper reference value, the correction means performs control to lower the reference value of the measurement data, and the observation data is multiplied by an integral multiple of the output cycle.
  • control for increasing the reference value of the measurement data may be performed.
  • the period in which the integrated value of the magnetic field signal based on the output of the induced current generating transmission source is 0 may be a period that is an integral multiple of the output period of the induced current generating transmission source that outputs alternating direct current.
  • the induced current generating transmission source is an alternating direct current (the positive output in the first half of the cycle and the negative output in the second half of the cycle are In the case of outputting a symmetric signal), it is a period that is an integral multiple of the output period of the induced current generating transmission source, or the output period is divided into four parts at equal time from the first period to the fourth period.
  • a combination of the first section and the third section or a combination of the second section and the fourth section can be used.
  • Amplifying means for amplifying the output signal of the sensor unit may control an offset amount of the amplification unit.
  • the storage means may store the observation data and the time data in association with each other.
  • the synchronization means may acquire time data synchronized with the output of the induced current generating transmission source by acquiring time information included in GPS information.
  • a stack for averaging a plurality of cycles of the observation data in the first half of the output cycle of the induced current generating transmission source that outputs alternating direct current and the data obtained by adding the sign inversion data of the observation data in the second half of the output cycle Including stack processing means for processing,
  • the observation unit may end the observation based on a noise level of the data after the stack processing.
  • FIG. 1 is a schematic diagram showing an outline of the configuration of the magnetic field sensor device according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of the configuration of the sensor unit.
  • FIG. 3 is a diagram illustrating an example of the appearance of the sensor unit.
  • FIG. 4 is a graph showing an experimental example for confirming an increase in sensitivity.
  • FIG. 5 is a circuit diagram illustrating an example of a drive circuit.
  • FIG. 6 is a circuit block diagram illustrating an example of the configuration of the recording unit.
  • FIG. 7 is a schematic diagram showing an outline of an arrangement example when the magnetic field sensor device is used for underground electromagnetic exploration.
  • FIG. 1 is a schematic diagram showing an outline of the configuration of the magnetic field sensor device according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of the configuration of the sensor unit.
  • FIG. 3 is a diagram illustrating an example of the appearance of the sensor unit.
  • FIG. 4 is a graph showing an experimental example for confirming an increase in
  • FIG. 8 is a timing chart of the output current, back electromotive force, and magnetic field of the induced current generating transmission source in the underground electromagnetic exploration method according to the present embodiment.
  • FIG. 9 is a flowchart showing an example of a magnetic field observation flow in the underground electromagnetic exploration method according to the present embodiment.
  • FIG. 10 is a flowchart showing an example of a flow in the environmental magnetic field canceling step in the underground electromagnetic exploration method according to the present embodiment.
  • FIG. 11 is a graph showing an example of an experimental example in which the magnitude of the correction magnetic field is determined.
  • FIG. 12 is a schematic diagram for explaining the correction process.
  • FIG. 13 is a schematic diagram for explaining the correction process.
  • FIG. 14 is a graph showing an example of data after the stack processing step.
  • FIG. 1 is a schematic diagram showing an outline of a configuration of a magnetic field sensor device according to the present embodiment.
  • the magnetic field sensor device 1 includes a sensor unit 100 and a processing unit 200.
  • a sensor unit 100 and a processing unit 200 are shown in FIG. 1, but a configuration having a plurality of sensor units for one recording unit may be used.
  • the sensor unit 100 includes a magneto-impedance element having a magnetic amorphous structure. In addition, the sensor unit 100 detects a magnetic field and transmits an output signal based on the detected magnitude of the magnetic field to the processing unit 200.
  • the processing unit 200 receives the output signal from the sensor unit 100, performs given signal processing, and then records it as observation data. In addition, various controls are performed on the sensor unit 100.
  • FIG. 2 is a schematic diagram illustrating an example of the configuration of the sensor unit 100.
  • the sensor unit 100 includes a magneto-impedance element 110 having a magnetic amorphous structure.
  • the magneto-impedance element 110 detects a magnetic field in the longitudinal direction.
  • the magneto-impedance element 110 detects a magnetic field in the vertical direction (arrow direction) in FIG.
  • the length of the magneto-impedance element 110 in the longitudinal direction is about 4 mm.
  • the sensor unit 100 includes a drive circuit 120.
  • the drive circuit 120 is a circuit for driving the magneto-impedance element 110 and outputting an output signal to the processing unit 200.
  • the sensor unit 100 may include a measurement coil 111 that is a part of the drive circuit 120 around the magnetic impedance element 110.
  • FIG. 5 is a circuit diagram showing an example of the drive circuit 120.
  • the circuit is centered on the Colpitts oscillation circuit 121 including the magneto-impedance element 110.
  • the Colpitts oscillation circuit 121 includes coils 111a, 111b, and 111c that become the measurement coil 111, a transistor 112, a resistor 113, capacitors 114 and 115, and a variable resistor 116.
  • the amplitude of the resonance voltage of the Colpitts oscillation circuit 121 is amplitude-modulated by the magnetic field H.
  • the amplitude-modulated voltage is detected through the Schottky barrier diode D. Thereafter, the difference voltage from the zero-point setting DC bias voltage Vb is amplified, and the output voltage Vout is output as an output signal.
  • the output voltage Vout is fed back to the Colpitts oscillation circuit 121.
  • the drive circuit 120 having high linearity and no hysteresis is realized.
  • the sensor unit 100 includes rod-shaped core units 130 and 131.
  • the core parts 130 and 131 are provided on both sides in the longitudinal direction of the magneto-impedance element 110 having a magnetic amorphous structure.
  • the core portions 130 and 131 have a function of guiding a magnetic field to the magnetic amorphous structure of the magnetoimpedance element 110.
  • the core portions 130 and 131 may be made of a high magnetic permeability material (for example, mu metal or ferrite).
  • FIG. 3 is a diagram showing an example of the appearance of the sensor unit 100 of the magnetic field sensor device 1 according to the present embodiment.
  • the sensor unit 100 includes a case 1000.
  • the case 1000 includes cylindrical portions 1001 and 1002 and a sensor support portion 1100.
  • the case 1000 has a total length of 250 mm and a diameter of 76 mm.
  • a sensor substrate 1200 including a magneto-impedance element 110 having a magnetic amorphous structure and a driving circuit 120 is installed on the support unit 1100, and core units 130 and 131 are installed inside the cylindrical units 1001 and 1002, respectively.
  • the magneto-impedance element 110 and the core portions 130 and 131 are arranged so that the longitudinal direction of the magneto-impedance element 110 and the longitudinal direction of the core portions 130 and 131 are on the same straight line.
  • the core portions 130 and 131 are made of mu metal having a permeability of about 10,000.
  • the core portions 130 and 131 each have a length in the longitudinal direction of about 12 cm and a diameter of about 5 mm.
  • the sensitivity of the magnetic field sensor can be increased by about 300 times compared to the case where the core portions 130 and 131 are not provided.
  • FIG. 4 is a graph showing an experimental example for confirming an increase in sensitivity due to the provision of the core portions 130 and 131.
  • a magnetic field sensor device is used in which the sensitivity of the magnetic field sensor device by the combination of the magneto-impedance element 110 and the drive circuit 120 is 0.0048 mV / nT.
  • the rod-shaped core portions 130 and 131 the sensitivity of the magnetic field sensor device can be increased, and further, a magnetic field sensor device that can be made smaller and lighter than a conventional induction coil can be realized.
  • the sensor unit 100 may include environmental magnetic field canceling means 140 and 141 that generate a correction magnetic field that cancels the environmental magnetic field input to the magnetic amorphous structure of the magnetic impedance element 110.
  • the environmental magnetic field canceling means 140 and 141 are each configured by a coil having the core portion 130 or 131 as an axis.
  • the magnetic field sensor device 1 may include adjusting means for controlling the environmental magnetic field canceling means 140 and 141 so that the observation data is within a desired range.
  • the processing unit 200 includes the function of the adjusting means. A configuration example of the processing unit 200 will be described later.
  • the magnetic impedance element 110 detects not the amount of change (time differentiation) of the magnetic field but the magnitude of the magnetic field itself.
  • an environmental magnetic field by normal geomagnetism exists at a magnetic flux density of about 0.5 gauss. Therefore, for example, when the detection sensitivity is set to 300 times by the core portions 130 and 131, the magneto-impedance element 110 detects an environmental magnetic field of about 150 gauss.
  • the detection range of the magnetic field sensor device is determined by the combination of the magnetic impedance element 110 and the drive circuit 120.
  • the combination of the commercially available magneto-impedance element 110 and the drive circuit 120 for example, there exists an element whose detection range is designed with a magnetic flux density of ⁇ 3 gauss. In this case, if the detection sensitivity is increased by 300 times by the core units 130 and 131, the drive circuit 120 is saturated only by the environmental magnetic field due to geomagnetism, and the measurement of the magnetic field becomes impossible.
  • the environmental magnetic field canceling means 140 and 141 canceling the environmental magnetic field input to the magnetic amorphous structure of the magnetic impedance element 110 by the environmental magnetic field canceling means 140 and 141, the observation is performed within the detection range determined by the combination of the magnetic impedance element 110 and the drive circuit 120. Data can be stored.
  • the environmental magnetic field canceling means 140 and 141 cancel the environmental magnetic field so that the environmental magnetic field level due to geomagnetism becomes the center of the detection range.
  • the magnetic field signal can be measured with high accuracy.
  • the environmental magnetic field is canceled by the environmental magnetic field canceling means 140 and 141 generating a magnetic field opposite to the environmental magnetic field by the geomagnetism.
  • the environmental magnetic field canceling means 140 and 141 generate a correction magnetic field having the same magnitude as that of the environmental magnetic field by the geomagnetism in the reverse direction, thereby canceling the environmental magnetic field so that the level of the environmental magnetic field by the geomagnetism becomes the center of the detection range. can do.
  • FIG. 6 is a circuit block diagram showing an example of the configuration of the processing unit 200.
  • the processing unit 200 may include an arithmetic processing device 220.
  • the arithmetic processing unit 220 acquires observation data, controls the environmental magnetic field canceling means 140 and 141, writes observation data to the storage means 240 described later, and other various arithmetic processes.
  • the arithmetic processing unit 200 may function as an adjusting unit that controls the environmental magnetic field canceling units 140 and 141 via the D / A converter 217.
  • the processing unit 200 receives the output signal Vout of the drive circuit 120 and, if necessary, the arithmetic processing unit 220 via the amplifier 210, the high-pass filter 211, the notch filter 212, the low-pass filter 213, the amplifier 214, and the A / D converter 215.
  • environmental noise caused by a power source such as 50 Hz or 60 Hz may be cut by the notch filter 212, or a signal having a frequency twice or more the sampling frequency may be cut by the low-pass filter 213.
  • the processing unit 200 may include a precision clock 230.
  • the precision clock 230 is a high precision timepiece, and may be a timepiece having an accuracy of 10 ⁇ 9 , for example.
  • the arithmetic processing unit 220 and the precision clock 230, and an amplifier 210, a high-pass filter 211, a notch filter 212, a low-pass filter 213, an amplifier 214, and an A / D converter 215 are used as necessary. It functions as an observation means 250 for observing the magnetic field over time. For example, when the magnetic field sensor device 1 according to the present embodiment is used for underground electromagnetic exploration using an induced current generating transmission source, a magnetic field including a magnetic field signal based on the output of the induced current generating transmission source is changed over time. It functions as observation means 250 for observation.
  • the processing unit 200 may include a storage unit 240.
  • the storage unit 240 stores the observation data observed by the observation unit 250.
  • the storage unit 240 may be configured to be removable like a memory card, or may be configured to incorporate a hard disk or the like in the processing unit 200.
  • observation data of a large value and a small value is input beyond the measurable range determined by the dynamic range of the amplification means (amplifier 214 in the present embodiment) that amplifies the output signal of the sensor unit 100, You may memorize
  • the arithmetic processing unit 220 also obtains the desired observation data based on a value obtained by integrating the observation data stored in the storage unit 240 in a period in which the integrated value of the magnetic field signal based on the output of the induced current generating transmission source is zero. It may function as a correction means for correcting the reference value of the observation data so that it falls within the range of.
  • the induced current generating transmission source is an alternating direct current (the positive output in the first half of the cycle and the negative output in the second half of the cycle are In the case of outputting a symmetric signal), it is a period that is an integral multiple of the output period of the induced current generating transmission source, or the output period is divided into four parts at equal time from the first period to the fourth period.
  • a combination of the first section and the third section or a combination of the second section and the fourth section can be used.
  • the correction means may automatically control the reference value of the observation data by controlling the offset amount of the amplification means that amplifies the output signal of the sensor unit 100, for example.
  • the amplifier 214 functions as an amplifying unit that amplifies the output voltage Vout of the sensor unit 100, and the arithmetic processing device 220 controls the offset amount of the amplifier 214 via the D / A converter 216.
  • the reference value of data is controlled.
  • the correction means uses observation data stored in the storage means 240 as an integer multiple of the output period.
  • the value integrated over the period of time exceeds the upper reference value, control is performed to lower the reference value of the measured data, and when the value obtained by integrating the observation data over a period that is an integral multiple of the output period falls below the lower reference value. May perform control to increase the reference value of the measurement data.
  • the processing unit 200 acquires time data synchronized with the output of the induction current generation transmission source. Synchronization means may be included. In the present embodiment, by acquiring time information included in GPS (Global Positioning System) information with a GPS (Global Positioning System) clock 231, time data synchronized with the output of the induction current generating transmission source is acquired. be able to.
  • GPS Global Positioning System
  • the storage means 240 may store observation data and time data in association with each other. This facilitates analysis of observation data when the magnetic field sensor device 1 is used for underground electromagnetic exploration.
  • the processing unit 200 may be connected to the input unit 300 and the output unit 310.
  • the input unit 300 and the output unit 310 input / output commands and data.
  • the input means 300 may be a keyboard.
  • the output unit 310 may be a display (monitor).
  • the underground electromagnetic exploration method using the magnetic field sensor device 1 The underground electromagnetic exploration method using the magnetic field sensor device 1 will be described. Various methods have been developed for the underground electromagnetic exploration method. In this embodiment, an underground electromagnetic exploration method in which an electromagnetic field is artificially generated in the underground to perform the underground exploration will be described.
  • an underground electromagnetic exploration method there are known a frequency domain underground electromagnetic exploration method that treats an electromagnetic response as a function of frequency and a time domain underground electromagnetic exploration method that treats an electromagnetic response as a function of time.
  • the frequency domain and the time domain are a pair of Fourier transforms and are theoretically equivalent.
  • a TDEM method Time Domain Electromagnetic Method
  • FIG. 7 is a schematic diagram showing an outline of an arrangement example when the magnetic field sensor device 1 is used for underground electromagnetic exploration.
  • the magnetic field sensor device 1 is disposed on the ground surface. In order to fix the position and inclination of the magnetic field sensor device 1, the magnetic field sensor device 1 may be disposed in a recess provided on the ground surface.
  • the induction current generating transmission source 2 is arranged on the ground surface.
  • a transmission loop 3 for causing the output current of the induced current generating transmission source 2 to flow and generating an induced current in the ground is also disposed on the ground surface.
  • an induced current is generated in the ground by the induced current generating transmission source 2 and the transmission loop 3.
  • the distance between the magnetic field sensor device 1 and the transmission loop 3 can be arbitrarily set according to the purpose of the underground electromagnetic survey.
  • the magnetic field sensor device 1 is arranged at a distance of about 0 km to 15 km from the transmission loop 3.
  • the output current I is alternating DC (a signal in which the positive output in the first half of the cycle and the negative output in the second half of the cycle are symmetrical), and the direction of the arrow in FIG. 7 is positive.
  • a positive output current I is outputted from the induction current generating transmission source 2 to the transmission loop 3.
  • the output current I is suddenly cut off.
  • a counter electromotive force is generated to maintain the same magnetic field before the interruption according to the law of electromagnetic induction, and an induced current is generated on the ground surface.
  • a negative output current I is output from the induction current generating transmission source 2 to the transmission loop 3.
  • the output current I is suddenly cut off. Such an operation is repeated at a period T.
  • induction currents attenuate according to the specific resistance of the current path formation. For this reason, using the magnetic field sensor device 1 installed on the ground surface, it is possible to detect the attenuation of the induced current as the time change of the magnetic field as shown in FIG. For example, when the underground has a high resistivity, the induced current decays rapidly, but when the underground has a low resistivity, it slowly decays.
  • the specific resistance distribution can be obtained.
  • the underground structure can be known based on this resistivity distribution.
  • magnetic field observation including an observation step of observing a magnetic field based on an induced current by the magnetic field sensor device 1 and a storage step of storing observation data of the magnetic field based on the induced current is performed at a plurality of measurement points provided on the ground surface. It is possible to know the underground structure by repeating and calculating the underground resistivity distribution based on the observation data at each measurement point.
  • a sensor unit 100 including a magneto-impedance element 110 having a magnetic amorphous structure as a core, and a rod shape for guiding a magnetic field to the magnetic amorphous structure in the longitudinal direction of the magnetic amorphous structure.
  • the magnetic field sensor device 1 includes environmental magnetic field canceling means 140 and 141 that generate a correction magnetic field that cancels the environmental magnetic field input to the magnetic amorphous structure
  • the observed value of the magnetic field falls within a desired range.
  • an environmental magnetic field canceling step of generating a correction magnetic field that cancels the environmental magnetic field input to the magnetic amorphous structure may be included.
  • the environmental magnetic field canceling step may be performed, for example, before the observation step.
  • FIG. 9 is a flowchart showing an example of a magnetic field observation flow in the underground electromagnetic exploration method according to the present embodiment.
  • an environmental magnetic field canceling step of generating a correction magnetic field that cancels the environmental magnetic field input to the magnetic amorphous structure is performed by the environmental magnetic field canceling means 140 and 141 so that the observed value falls within a desired range ( Step S100).
  • an observation step of observing the magnetic field based on the induced current is performed by the observation means 250 (step S110).
  • a storage step of storing observation data is performed by the storage unit 240 (step S120).
  • step S130 it is determined whether or not the magnetic field observation is finished (step S130). Whether or not the magnetic field observation has ended is determined by, for example, whether or not a predetermined number of observation steps have been executed, whether or not the observation step has been executed in a predetermined time, and whether or not an observation end command has been input. Also good.
  • step S130 If it is determined in step S130 that the magnetic field observation has not been completed, the process returns to step S110, and steps S110 to S130 are repeated until the observation is completed. If it is determined in step S130 that the magnetic field observation has been completed, the magnetic field observation flow is ended.
  • FIG. 10 is a flowchart showing an example of the flow in the environmental magnetic field canceling step in the underground electromagnetic exploration method according to the present embodiment.
  • the relationship between the reference voltages V1 and V2 is 0 ⁇ V2 ⁇ V1
  • the relationship between the correction magnetic field change widths ⁇ 1 and ⁇ 2 is 0 ⁇ 2 ⁇ 1.
  • the direction of the correction magnetic field is positive when it is opposite to the geomagnetism. Note that the change width and the number of change steps of the correction magnetic field can be arbitrarily set as necessary.
  • the environmental magnetic field canceling means 140 and 141 When the environmental magnetic field canceling process starts, the environmental magnetic field canceling means 140 and 141 generate a correction magnetic field with a preset initial value (step S200).
  • the initial value may be 0 (a state in which no correction magnetic field is generated).
  • the magnetic field is observed for a predetermined time by the observation means 250 of the magnetic field sensor device 1 (step S202).
  • the average value Va of the observation data stored in the storage means 240 is calculated based on the output voltage Vout of the drive circuit 120 of the sensor unit 100 within a predetermined time (step S204).
  • the average value Va is calculated by the arithmetic processing unit 220 of the processing unit 200, for example.
  • observation data of a large value and a small value is input beyond the measurable range determined by the dynamic range of the amplification means (amplifier 214 in the present embodiment) that amplifies the output signal of the sensor unit 100, You may memorize
  • step S206 it is determined whether or not the average value Va is greater than 0 (step S206). In the following description, it is assumed that all determination processes are performed by the arithmetic processing unit 220.
  • step S206 When it is determined in step S206 that the average value Va is greater than 0, it is determined whether or not the average value Va is smaller than the reference voltage V1 (step S208). When it is determined that the average value Va is not smaller than the reference voltage V1, the arithmetic processing unit 220 performs control to increase the magnitude of the correction magnetic field by the change width ⁇ 1 (step S308), and returns to step S202.
  • step S208 When it is determined in step S208 that the average value Va is smaller than the reference voltage V1, it is determined whether or not the average value Va is smaller than the reference voltage V2 (step S210). If it is determined that the average value Va is not smaller than the reference voltage V2, the arithmetic processing unit 220 performs control to increase the magnitude of the correction magnetic field by the change width ⁇ 2 (step S310), and returns to step S202.
  • step S210 If it is determined in step S210 that the average value Va is smaller than the reference voltage V2, the magnitude of the correction magnetic field is determined, and the process ends. That is, the average value Va satisfies the relationship 0 ⁇ Va ⁇ V2 at the end of processing.
  • step S206 When it is determined in step S206 that the average value Va is 0 or less, it is determined whether or not the average value Va is larger than the reference voltage ( ⁇ V1) (step S212). When it is determined that the average value Va is not larger than the reference voltage ( ⁇ V1), the arithmetic processing unit 220 performs control to reduce the magnitude of the correction magnetic field by the change width ⁇ 1 (step S312), and step S202. Return to.
  • step S212 If it is determined in step S212 that the average value Va is greater than the reference voltage ( ⁇ V1), it is determined whether or not the average value Va is greater than the reference voltage ( ⁇ V2) (step S214). If it is determined that the average value Va is not larger than the reference voltage ( ⁇ V2), the arithmetic processing unit 220 performs control to reduce the magnitude of the correction magnetic field by the change width ⁇ 2 (step S314), and step S202. Return to.
  • step S214 If it is determined in step S214 that the average value Va is larger than the reference voltage ( ⁇ V2), the magnitude of the correction magnetic field is determined, and the process ends. That is, the average value Va satisfies the relationship ⁇ V2 ⁇ Va ⁇ 0 at the end of processing.
  • the average value Va satisfies the relationship ⁇ V2 ⁇ Va ⁇ V2 at the end of processing. Further, when the average value Va is far from 0, control is performed to change the magnitude of the correction magnetic field with a large change width ⁇ 1, and after the average value Va falls within the range of ⁇ V1 ⁇ Va ⁇ V1, a small fluctuation width ⁇ 2 is set. The control to change the magnitude of the correction magnetic field is performed. As a result, the magnitude of the correction magnetic field for quickly and accurately keeping the average value Va within the range of ⁇ V2 ⁇ Va ⁇ V2 can be determined.
  • FIGS. 11A to 11C are schematic diagrams for determining the magnitude of the correction magnetic field based on the flow of FIG. 11A shows observation data input to the arithmetic processing unit 220, FIG. 11B shows storage data stored in the storage means 240, and FIG. 11C shows the magnitude of the correction magnetic field.
  • the horizontal axis represents time. Further, it is assumed that the measurable upper limit value of the magnetic field sensor device 1 is Vu, the measurable lower limit value is Vd, and the relationship of Vd ⁇ V1 ⁇ V2 ⁇ 0 ⁇ V2 ⁇ V1 ⁇ Vu is satisfied.
  • a correction magnetic field with an initial value set in advance is generated by the environmental magnetic field canceling means 140 and 141, and the magnetic field is observed for a predetermined time by the observation means 250 of the magnetic field sensor device 1 (step S200, S202).
  • the initial value of the correction magnetic field is 0 (a state where no correction magnetic field is generated).
  • the arithmetic processing unit 220 performs control to increase the correction magnetic field by the change amount ⁇ 1 (steps S204, S206, S208, and S308).
  • a correction magnetic field with a value changed based on the observation result in the period t1 is generated by the environmental magnetic field canceling means 140 and 141, and the magnetic field is observed by the observation means 250 of the magnetic field sensor device 1 for a predetermined time. (Step S202).
  • a part of the observation data is equal to or higher than the measurable upper limit value Vu.
  • the arithmetic processing unit 220 performs control to increase the correction magnetic field by the change amount ⁇ 1 (steps S204, S206, S208, and S308).
  • a correction magnetic field with a value changed based on the observation result in the period t2 is generated by the environmental magnetic field canceling means 140 and 141, and the magnetic field is observed by the observation means 250 of the magnetic field sensor device 1 for a predetermined time. (Step S202).
  • the arithmetic processing device 220 performs control to decrease the correction magnetic field by the change amount ⁇ 2 (steps S204, S206, S212, S214, and S314).
  • a correction magnetic field with a value changed based on the observation result in the period t3 is generated by the environmental magnetic field canceling means 140 and 141, and the magnetic field is observed by the observation means 250 of the magnetic field sensor device 1 for a predetermined time. (Step S202).
  • the arithmetic processing unit 220 determines the magnitude of the correction magnetic field and ends the environmental magnetic field canceling process (steps S204, S206, S208, and S210). In a subsequent period t5, the environmental magnetic field canceling means 140 and 141 generate a correction magnetic field having the same magnitude as that in the period t4.
  • magnetic field observation data including a magnetic field signal based on the output of the induced current generating transmission source is used as the magnetic field based on the output of the induced current generating transmission source of the induced current generating transmission source 2.
  • a correction step for correcting the reference value of the observation data may be further included so that the observation data falls within a desired range based on the value integrated in the period when the integral value of the signal is zero.
  • the induced current generating transmission source is an alternating direct current (the positive output in the first half of the cycle and the negative output in the second half of the cycle are In the case of outputting a symmetric signal), it is a period that is an integral multiple of the output period of the induced current generating transmission source, or the output period is divided into four parts at equal time from the first period to the fourth period.
  • a combination of the first section and the third section or a combination of the second section and the fourth section can be used.
  • the magnetic field sensor device 1 has a correction unit, and the correction unit controls the offset value of the amplification unit that amplifies the output signal of the sensor unit 100 to automatically control the reference value of the observation data.
  • the amplifier 214 functions as an amplifying unit that amplifies the output voltage Vout of the sensor unit 100, and the arithmetic processing unit 220 controls the offset amount of the amplifier 214 via the D / A converter 216. The reference value of data is controlled.
  • the correction unit transmits the observation data stored in the storage unit 240 to induction current generation transmission.
  • the value integrated over the integral multiple of the output cycle of the source 2 exceeds the upper reference value, control is performed to lower the reference value of the measured data, and the observation data is an integer of the output cycle of the transmission source 2 for generating the induced current
  • control for increasing the reference value of the measurement data may be performed.
  • the control of the reference value of the observation data can be performed, for example, during a period in which the induced current generating transmission source 2 supplies the output current to the transmission loop 3.
  • FIGS. 13 (A) to 13 (B) are schematic diagrams for explaining the correction process.
  • the horizontal axis is all time.
  • the integration period is set to be the same as the output cycle of the induction current generating transmission source 2.
  • Fig. 12 (A) shows observation data before performing the correction process.
  • the observation data includes random noise shown in FIG. 12 (B), a magnetic field signal based on the output of the induced current generating transmission source 2 shown in FIG. 12 (C), and temporal variation and observation of geomagnetism shown in FIG. 12 (D). It is considered that the three components of the drift amount due to the influence of the circuit of the means 250 are summed up.
  • the correction means When the integral value exceeds the upper limit reference value Iu or falls below the lower limit reference value Id, the correction means performs a process of changing the reference value of the observation data.
  • the upper limit reference value Iu and the lower limit reference value Id are determined so that the observation data falls within the measurable upper limit value Vu and the measurable lower limit value between Vd in consideration of the magnitude of random noise and the integration period.
  • the integral value exceeds the upper limit reference value Iu in the period T4. Therefore, as shown in FIG. 12F, the correction means performs a process of lowering the reference value of the observation data by ⁇ V after the period T5.
  • FIG. 13A shows the same observation data as FIG. 12A
  • FIG. 13B shows the observation data after the correction process.
  • the observation data shown in FIG. 13A includes data that exceeds the measurable upper limit value Vu after the period T5.
  • the measurement data can be set so that the measurable upper limit value Vu and the measurable lower limit value are between Vd.
  • the underground electromagnetic exploration method includes a synchronization process for acquiring time data synchronized with the output of the transmission source 2 for generating induced current, and in the storage process (step S120 in FIG. 9), the observation data, the time data, May be stored in association with each other.
  • the synchronization process may be performed, for example, before the observation process (step S110 in FIG. 9) or may be performed as appropriate during the observation process.
  • a GPS (Global Positioning System) clock is provided in the magnetic field sensor device 1 and the induced current generation transmission source 2, and each acquires time information included in GPS (Global Positioning System) information. Time data in which the magnetic field sensor device 1 and the output of the induction current generating transmission source 2 are synchronized can be acquired.
  • observation data can be easily analyzed by associating and storing the time data and the observation data in which the magnetic field sensor device 1 and the output of the induced current generating transmission source 2 are synchronized.
  • the underground electromagnetic survey method may include a stack processing step.
  • the stack process is a process of averaging a plurality of cycles of the observation data in the first half of the output cycle T of the transmission source 2 for generating induced current and the data obtained by adding the sign inversion data of the observation data in the second half of the output cycle T for a plurality of cycles. It is.
  • FIG. 14 is a graph showing an example of data after the stack processing step. Data in which stack processing is performed using observation data for 1 period, 2 periods, 4 periods, 8 periods, 16 periods, 32 periods, 64 periods, and 81 periods in order from the top of FIG. It is. It can be seen that the noise level is halved each time the amount of observation data (number of cycles) used for stack processing is quadrupled.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • the induced current is generated using the transmission loop 3, but the induced current is generated by installing a plurality of electrodes on the ground surface and passing the current between the electrodes through the ground. It may be generated.
  • Magnetic field sensor device 2. Induction current generating transmission source, 3. Transmission loop, 100 sensor section, 110 magnetic impedance element, 111, 111a, 111b, 111c measuring coil, 112 transistor, 113 resistance, 114, 115 capacitor, 116 variable Resistance, 120 drive circuit, 121 Colpitts oscillation circuit, 130, 131 core section, 140, 141 environmental magnetic field canceling means, 200 recording section, 210 amplifier, 211 high pass filter, 212 notch filter, 213 low pass filter, 214 amplifier, 215 A / D converter, 216, 217 D / A converter, 220 arithmetic processing unit, 230 precision clock, 231 GPS clock, 240 storage means, 250 observation means, 300 input means, 310 output means 500, 501 and 502 induced current, 1000 cases, 1001 and 1002 a cylindrical part, 1100 sensor support section, 1200 the sensor substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

 磁性非晶質構造体を持つ磁気インピーダンス素子110を含むセンサー部100を有する磁場センサー装置1において、磁性非晶質構造体の長手方向に、磁性非晶質構造体に磁場を導く棒状のコア部130及び131を有する。コア部130及び131は、磁性非晶質構造体の長手方向の両側に設けられていてもよい。コア部130及び131は、磁性非晶質構造体の長手方向とコア部130及び131の長手方向とが同一直線上になるように配置されていてもよい。磁性非晶質構造体に入力される環境磁場を相殺する補正磁場を発生させる環境磁場相殺手段140及び141を含んでもよい。

Description

磁場センサー装置
 本発明は、磁場センサー装置に関する。
 近年、磁性非晶質材料のインピーダンスが外部磁場によって変化することが発見され、磁気インピーダンス素子(MI素子;Magneto-Impedance device)が開発された。例えば特開平7-181239号公報には、磁気インピーダンス素子が記載されている。そして、この磁気インピーダンス素子を利用した磁気検出装置が開発されている。例えば特開2003-121517号公報や「磁気センサ理工学」(毛利佳年雄著、株式会社コロナ社、1998年3月10日、p.92-101)には、磁気インピーダンス素子を利用した磁気検出装置が記載されている。
 また、電磁誘導現象を利用して地下探査を行う電磁探査法は、鉱山、地熱、石油などの資源探査や地下構造調査に広く用いられてきた。このような電磁探査法として、各種の手法が開発されており、特に今日では、地下に人工的に電磁場を発生させ、地下探査を行う手法が実用化されている。例えば特開2002-71828号公報には、地山の地質構造を求める地下電磁探査方法が記載されている。
 従来の地下電磁探査法として代表的な手法の一つとして、TDEM法(Time Domain Electromagnetic Method)がある。TDEM法では、誘導電流発生用送信源を地上に設置し、一般的にオン/オフ時間のある交替直流を誘導電流発生用送信源に通電する。誘導電流発生用送信源に流していた電流を急激に遮断すると、電磁誘導の法則により、それまで形成されていた磁場が変化するのを妨げるように、誘導電流が地表面に流れる。
 この誘導電流は時間とともに地下深部に向けて拡散する。誘導電流はその電流経路の比抵抗に応じて減衰するため、誘導電流が作る磁場を時間の関数として地表で測定することにより、地下の比抵抗分布を調べることができる。
 従来の地下電磁探査においては、磁場センサーとして誘導コイルを用いるのが一般的であった。しかし、地下電磁探査で使用される誘導コイルは大型(例えば、長さ1m以上、重さ10kg以上)であった。そのため、その運搬や設置の困難性から、短期間で安価に多数の場所で測定を行うことは難しく、地下電磁探査の測定効率向上の妨げとなっていた。
 本発明は、以上のような事情に鑑みてなされたものであり、地下電磁探査に適した磁場センサー装置を提供することを目的とする。
 (1)本発明に係る磁場センサー装置は、
 磁性非晶質構造体を持つ磁気インピーダンス素子を含むセンサー部を有する磁場センサー装置において、
 前記磁性非晶質構造体の長手方向に、前記磁性非晶質構造体に磁場を導く棒状のコア部を有することを特徴とする。
 本発明によれば、磁場感度が最も大きい磁性非晶質構造体の長手方向(磁場測定方向)に棒状のコア部を有することにより磁場センサー装置の感度を高めることができ、さらに従来の誘導コイルに比べ小型かつ軽量化できる磁場センサー装置を実現することができる。
 (2)この磁場センサー装置において、
 前記コア部は、前記磁性非晶質構造体の長手方向の両側に設けられていてもよい。
 コア部を磁性非晶質構造体の長手方向の両側に設けることにより、効率よく磁性非晶質構造体に磁場を導くことができる。
 (3)この磁場センサー装置において、
 前記コア部は、前記磁性非晶質構造体の長手方向と前記コア部の長手方向とが同一直線上になるように配置されていてもよい。
 (4)この磁場センサー装置において、
 前記コア部は、高透磁率材料で構成されていてもよい。
 (5)この磁場センサー装置において、
 前記高透磁率材料は、ミューメタルであってもよい。
 高透磁率材料は、例えばフェライトなどであってもよい。
 (6)この磁場センサー装置において、
 前記磁性非晶質構造体に入力される環境磁場を相殺する補正磁場を発生させる環境磁場相殺手段を含んでもよい。
 環境磁場相殺することにより、観測対象となる磁場を精度よく観測することができる。
 (7)この磁場センサー装置において、
 前記環境磁場相殺手段は、前記コア部を軸とするコイルであってもよい。
 (8)この磁場センサー装置において、
 観測データが所望の範囲内となるように前記環境磁場相殺手段を制御する調整手段を含んでもよい。
 (9)この磁場センサー装置において、
 誘導電流発生用送信源の出力に基づく磁場信号を含む磁場を経時的に観測する観測手段と、
 前記観測手段で観測した観測データを記憶する記憶手段と、
 前記記憶手段に記憶された前記観測データを前記誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間で積分した値に基づいて、前記観測データが所望の範囲内となるように、前記観測データの基準値を補正する補正手段を含んでもよい。
 補正手段は、例えば、観測データを出力周期の整数倍の期間で積分した値が上限基準値を超えた場合には測定データの基準値を下げる制御を行い、観測データを出力周期の整数倍の期間で積分した値が下限基準値を下回った場合には測定データの基準値を上げる制御を行ってもよい。
 これにより、地磁気の時間変動による観測データの時間変動量を自動的に補正することができるため、磁気インピーダンス素子を飽和させることがなくなる。したがって、自動測定が可能になる。
 (10)この磁場センサーにおいて、
 前記誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間は、交替直流を出力する前記誘導電流発生用送信源の出力周期の整数倍の期間であってもよい。
 誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間は、例えば、誘導電流発生用送信源が交替直流(周期前半の正側の出力と周期後半の負側の出力が対称である信号)を出力する場合には、誘導電流発生用送信源の出力周期の整数倍の期間としたり、出力周期を第1区間から第4区間までに等しい時間で4分割した場合の第1区間と第3区間の組合せや第2区間と第4区間の組合せとしたりすることができる。
 (11)この磁場センサー装置において、
 前記センサー部の出力信号を増幅する増幅手段を含み、
 前記補正手段は、前記増幅手段のオフセット量を制御してもよい。
 (12)この磁場センサー装置において、
 前記誘導電流発生用送信源の出力と同期した時刻データを取得する同期手段を含み、
 前記記憶手段は、前記観測データと前記時刻データとを関連付けて記憶してもよい。
 (13)この磁場センサー装置において、
 前記同期手段は、GPS情報に含まれる時刻情報を取得することにより前記誘導電流発生用送信源の出力と同期した時間データを取得してもよい。
 (14)この磁場センサー装置において、
 交替直流を出力する前記誘導電流発生用送信源の出力周期の前半の前記観測データと、出力周期の後半の前記観測データの符号反転データを足し合わせたデータとを複数周期分合わせて平均するスタック処理を行うスタック処理手段を含み、
 前記観測手段は、前記スタック処理後のデータのノイズレベルに基づいて観測を終了してもよい。
図1は、本実施の形態に係る磁場センサー装置の構成の概略を示す模式図である。 図2は、センサー部の構成の一例を示す模式図である。 図3は、センサー部の外観の一例を示す図である。 図4は、感度の増加を確認する実験例を示すグラフである。 図5は、駆動回路の一例を示す回路図である。 図6は、記録部の構成の一例を示す回路ブロック図である。 図7は、磁場センサー装置を地下電磁探査に用いる場合の配置例の概略を示す模式図である。 図8は、本実施の形態に係る地下電磁探査方法における誘導電流発生用送信源の出力電流、逆起電力及び磁場のタイミングチャートである。 図9は、本実施の形態に係る地下電磁探査方法における磁場観測フローの一例を示すフローチャートである。 図10は、本実施の形態に係る地下電磁探査方法における環境磁場相殺工程でのフローの一例を示すフローチャートである。 図11は、補正磁場の大きさを決定した実験例の一例を示すグラフである。 図12は、補正工程を説明するための模式図である。 図13は、補正工程を説明するための模式図である。 図14は、スタック処理工程後のデータの一例を示すグラフである。
 以下、本発明を適用した実施の形態について図面を参照して説明する。ただし、本発明は以下の実施の形態に限定されるものではない。また、本発明は、以下の内容を自由に組み合わせたものを含むものとする。
 1.磁場センサー装置
 図1は、本実施の形態に係る磁場センサー装置の構成の概略を示す模式図である。
 本実施の形態に係る磁場センサー装置1は、センサー部100と処理部200を含む。説明を簡単にするために、図1においてはセンサー部100と処理部200を1つずつ示しているが、1つの記録部に対して複数のセンサー部を有する構成であってもよい。
 センサー部100は、磁性非晶質構造体を持つ磁気インピーダンス素子を含んで構成される。また、センサー部100は、磁場を検出し、検出した磁場の大きさに基づいた出力信号を処理部200に送信する。
 処理部200は、センサー部100からの出力信号を受信し、所与の信号処理を行った後、観測データとして記録する。また、センサー部100に対して種々の制御を行う。
 図2は、センサー部100の構成の一例を示す模式図である。
 センサー部100は、磁性非晶質構造体を持つ磁気インピーダンス素子110を含む。磁気インピーダンス素子110は、長手方向の磁場を検出する。本実施の形態においては、磁気インピーダンス素子110は、図2の上下方向(矢印方向)の磁場を検出する。本実施の形態においては、磁気インピーダンス素子110の長手方向の長さは4mm程度である。
 センサー部100は、駆動回路120を含む。駆動回路120は、磁気インピーダンス素子110を駆動し、処理部200に出力信号を出力するための回路である。また、センサー部100は、磁気インピーダンス素子110の周囲に、駆動回路120の一部となる測定用コイル111を含んでいてもよい。
 図5は、駆動回路120の一例を示す回路図である。図5に示す例では、磁気インピーダンス素子110を含んだコルピッツ発振回路121を中心とした回路となっている。コルピッツ発振回路121は、測定用コイル111となるコイル111a、111b及び111c、トランジスタ112、抵抗113、コンデンサ114及び115、可変抵抗116を含んで構成されている。
 この回路では、コルピッツ発振回路121の共振電圧の振幅が磁場Hによって振幅変調される。振幅変調された電圧がショットキーバリアダイオードDを通して検波される。その後、ゼロ点設定用の直流バイアス電圧Vbとの差電圧が増幅され、出力信号として出力電圧Voutが出力される。また、出力電圧Voutはコルピッツ発振回路121に帰還される。これにより、直線性が高くヒステリシスのない駆動回路120を実現している。
 センサー部100は、棒形状のコア部130及び131を含む。コア部130及び131は、磁性非晶質構造体を持つ磁気インピーダンス素子110の長手方向の両側に設けられている。コア部130及び131は、磁気インピーダンス素子110の磁性非晶質構造体に磁場を導く作用を持つ。コア部130及び131は、高透磁率材料(例えばミューメタルやフェライトなど)で構成されていてもよい。
 図3は、本実施の形態に係る磁場センサー装置1のセンサー部100の外観の一例を示す図である。センサー部100は、ケース1000を含む。ケース1000は、円筒部1001及び1002とセンサー支持部1100から構成されている。ケース1000の全長は250mm、直径は76mmである。
 また、磁性非晶質構造体を持つ磁気インピーダンス素子110と駆動回路120を含んだセンサー基板1200が支持部1100に設置され、コア部130及び131がそれぞれ円筒部1001及び1002の内部に設置される。磁気インピーダンス素子110とコア部130及び131は、磁気インピーダンス素子110の長手方向とコア部130及び131の長手方向が同一直線上になるように配置されている。
 本実施の形態においては、コア部130及び131は、透磁率10000程度のミューメタルで構成されている。また、コア部130及び131の長手方向の長さはそれぞれ12cm程度、直径は5mm程度である。この結果、磁場センサーの感度を、コア部130及び131を有さない場合に比べて約300倍とすることが可能になった。
 図4は、コア部130及び131を設けることによる感度の増加を確認する実験例を示すグラフである。この実験では、磁気インピーダンス素子110及び駆動回路120の組合せによる磁場センサー装置の感度が0.0048mV/nTである磁場センサー装置を用いている。
 この磁場センサー装置にコア部130及び131を設け、磁場強度1727.6nTの入力磁場を入力したときの出力電圧を示すグラフが図4である。図4のグラフより、磁場センサー装置の出力電圧は3.660V-0.848V=2.812Vであることが分かる。したがって、コア部130及び131を設けることによる感度の増幅率は、(2.812×1000/0.0048)/1727.6=327.7(倍)となっていることが分かる。
 このように、棒状のコア部130及び131を有することにより磁場センサー装置の感度を高めることができ、さらに従来の誘導コイルに比べ小型かつ軽量化できる磁場センサー装置を実現することができる。
 センサー部100は、磁気インピーダンス素子110の磁性非晶質構造体に入力される環境磁場を相殺する補正磁場を発生させる環境磁場相殺手段140及び141を含んでもよい。本実施の形態において、環境磁場相殺手段140及び141は、それぞれコア部130又は131を軸とするコイルで構成されている。
 また、磁場センサー装置1は、観測データが所望の範囲内となるように環境磁場相殺手段140及び141を制御する調整手段を含んでいてもよい。本実施の形態においては、処理部200が調整手段の機能を含んでいる。処理部200の構成例については後述する。
 磁気インピーダンス素子110は磁場の変化量(時間微分)ではなく、磁場の大きさそのものを検出する。また、通常の地磁気による環境磁場は磁束密度0.5ガウス程度で存在している。したがって、例えばコア部130及び131により検出感度を300倍とした場合には、磁気インピーダンス素子110は150ガウス程度の環境磁場を検出することになる。
 磁場センサー装置の検出範囲は、磁気インピーダンス素子110と駆動回路120の組合せで決まるものである。市販されている磁気インピーダンス素子110と駆動回路120の組合せでは、例えば検出範囲が磁束密度±3ガウスで設計されているものが存在する。この場合、コア部130及び131により検出感度を300倍とすると、地磁気による環境磁場のみで駆動回路120が飽和してしまい、磁場の測定は不可能になる。
 そこで、環境磁場相殺手段140及び141により磁気インピーダンス素子110の磁性非晶質構造体に入力される環境磁場を相殺することで、磁気インピーダンス素子110と駆動回路120の組合せで決まる検出範囲内に観測データを収めることが可能になる。
 また、特に観測対象となる磁場信号が地磁気による環境磁場よりも小さい場合には、環境磁場相殺手段140及び141が地磁気による環境磁場レベルが検出範囲の中心となるように環境磁場を相殺することにより、精度良く磁場信号を測定することができる。
 環境磁場の相殺は、環境磁場相殺手段140及び141が地磁気による環境磁場と逆向きの磁場を発生させることにより行われる。特に、環境磁場相殺手段140及び141が地磁気による環境磁場と同程度の大きさの補正磁場を逆向きに発生させることにより、地磁気による環境磁場レベルが検出範囲の中心となるように環境磁場を相殺することができる。
 図6は、処理部200の構成の一例を示す回路ブロック図である。
 処理部200は、演算処理装置220を含んでもよい。演算処理装置220は、観測データの取得や、環境磁場相殺手段140及び141の制御、後述する記憶手段240への観測データの書き込み、その他各種演算処理などを行う。
 また、演算処理装置200は、D/Aコンバータ217を介して環境磁場相殺手段140及び141を制御する調整手段として機能してもよい。
 処理部200は、駆動回路120の出力信号Voutを入力し、必要に応じて増幅器210、ハイパスフィルタ211、ノッチフィルタ212、ローパスフィルタ213、増幅器214、A/Dコンバータ215を介して演算処理装置220に入力する。例えば、ノッチフィルタ212で50Hzや60Hzなど電源に起因する環境ノイズをカットしたり、ローパスフィルタ213でサンプリング周波数の2倍以上の周波数の信号をカットしたりしてもよい。
 また、処理部200は、精密クロック230を含んでもよい。精密クロック230は、高精度の時計であり、例えば10-9の精度を有する時計であってもよい。
 本実施の形態においては、これら演算処理装置220及び精密クロック230と、必要に応じて増幅器210、ハイパスフィルタ211、ノッチフィルタ212、ローパスフィルタ213、増幅器214、A/Dコンバータ215を用いて、所望の磁場を経時的に観測する観測手段250として機能している。例えば本実施の形態に係る磁場センサー装置1を、誘導電流発生用送信源を用いた地下電磁探査に用いる場合には、誘導電流発生用送信源の出力に基づく磁場信号を含む磁場を経時的に観測する観測手段250として機能する。
 処理部200は、記憶手段240を含んでもよい。記憶手段240は、観測手段250で観測した観測データを記憶する。記憶手段240は、メモリーカードのように取り外し可能に構成してもよいし、処理部200内にハードディスクなどを内蔵して構成してもよい。なお、センサー部100の出力信号を増幅する増幅手段(本実施の形態においては増幅器214)のダイナミックレンジで決まる測定可能範囲を超えて大きい値と小さい値の観測データが入力された場合には、それぞれ測定可能範囲の最大値と最小値として記憶手段240に記憶してもよい。
 また、演算処理装置220は、記憶手段240に記憶された観測データを誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間で積分した値に基づいて、観測データが所望の範囲内となるように、観測データの基準値を補正する補正手段として機能してもよい。
 誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間は、例えば、誘導電流発生用送信源が交替直流(周期前半の正側の出力と周期後半の負側の出力が対称である信号)を出力する場合には、誘導電流発生用送信源の出力周期の整数倍の期間としたり、出力周期を第1区間から第4区間までに等しい時間で4分割した場合の第1区間と第3区間の組合せや第2区間と第4区間の組合せとしたりすることができる。
 補正手段は、例えば、センサー部100の出力信号を増幅する増幅手段のオフセット量を制御することで観測データの基準値を自動制御してもよい。本実施の形態においては、増幅器214がセンサー部100の出力電圧Voutを増幅する増幅手段として機能し、演算処理装置220がD/Aコンバータ216を介して増幅器214のオフセット量を制御することにより観測データの基準値を制御している。
 例えば本実施の形態に係る磁場センサー装置1を、誘導電流発生用送信源を用いた地下電磁探査に用いる場合には、補正手段は、記憶手段240に記憶された観測データを出力周期の整数倍の期間で積分した値が上限基準値を超えた場合には測定データの基準値を下げる制御を行い、観測データを出力周期の整数倍の期間で積分した値が下限基準値を下回った場合には測定データの基準値を上げる制御を行ってもよい。
 これにより、地磁気の時間変動の影響による観測データの時間変動量を自動的に補正することができるため、センサー部100や観測手段250を飽和させることがなくなる。したがって、自動測定が可能になる。
 本実施の形態に係る磁場センサー装置1を、誘導電流発生用送信源を用いた地下電磁探査に用いる場合には、処理部200は、誘導電流発生用送信源の出力と同期した時刻データを取得する同期手段を含んでもよい。本実施の形態においては、GPS(Global Positioning System)時計231でGPS(Global Positioning System)情報に含まれる時刻情報を取得することにより、誘導電流発生用送信源の出力と同期した時刻データを取得することができる。
 また、記憶手段240は、観測データと時刻データを関連付けて記憶してもよい。これにより、磁場センサー装置1を地下電磁探査に用いた場合の観測データの分析が容易になる。
 処理部200は、入力手段300及び出力手段310と接続されていてもよい。入力手段300及び出力手段310は、命令やデータを入出力する。入力手段300は、キーボードであってもよい。出力手段310は、ディスプレイ(モニタ)であってもよい。
 2.磁場センサー装置1を用いた地下電磁探査方法
 磁場センサー装置1を用いた地下電磁探査方法について説明する。地下電磁探査方法については種々の方法が開発されているが、本実施の形態においては、地下に人工的に電磁場を発生させ、地下探査を行う地下電磁探査方法について説明する。
 また、このような地下電磁探査方法として、電磁応答を周波数の関数として扱う周波数領域の地下電磁探査方法と、電磁応答を時間の関数として扱う時間領域の地下電磁探査方法とが知られている。周波数領域と時間領域とはフーリエ変換の対であり、理論的には等価である。本実施の形態においては、時間領域の地下電磁探査方法であるTDEM法(Time Domain Electromagnetic Method)について説明する。
 図7は、磁場センサー装置1を地下電磁探査に用いる場合の配置例の概略を示す模式図である。
 磁場センサー装置1は、地表面に配置される。磁場センサー装置1の位置や傾きを固定するために、地表面に設けた凹部の中に配置してもよい。
 誘導電流発生用送信源2は、地表面に配置される。また、誘導電流発生用送信源2の出力電流を流し、地中に誘導電流を発生させるための送信ループ3も地表面に配置される。本実施の形態においては、誘導電流発生用送信源2と送信ループ3により、地中に誘導電流を発生させる。なお、磁場センサー装置1と送信ループ3との距離は、地下電磁探査の目的に応じて任意に設定することが可能である。本実施の形態においては、磁場センサー装置1を送信ループ3から0km~15km程度の距離に配置している。
 図8(A)~(C)は、本実施の形態に係る地下電磁探査方法における誘導電流発生用送信源2の出力電流I、出力電流電流遮断後の逆起電力P及び出力電流電流遮断後の磁場Hのタイミングチャートである。出力電流Iは交替直流(周期前半の正側の出力と周期後半の負側の出力が対称である信号)であり、図7の矢印の向きを正とする。
 まず図8(A)に示すように、誘導電流発生用送信源2から送信ループ3に正の出力電流Iを出力する。次にこの出力電流Iを急激に遮断する。これにより、図8(B)に示すように、電磁誘導の法則により遮断前の同じ磁場を維持しようとする逆起電力が発生し、地表面に誘導電流が発生する。その後、誘導電流発生用送信源2から送信ループ3に負の出力電流Iを出力する。次にこの出力電流Iを急激に遮断する。かかる動作を周期Tで繰り返す。
 この地表面の誘導電流は、大地の比抵抗に応じて減衰するが、この電流の変化を妨げるような新しい誘導電流が地中に生じる。このプロセスが繰り返され、あたかも誘導電流500が、誘導電流501、誘導電流502へと地下深部に伝播していくような現象が発生する。
 これらの誘導電流は、電流経路地層の比抵抗に応じて減衰する。このため、地表に設置された磁場センサー装置1を用い、誘導電流の減衰を磁場の時間変化として図8(C)に示すように検出し、地下の比抵抗分布を知ることができる。例えば、地下が高比抵抗の場合は、誘導電流は急速に減衰していくが、低比抵抗の場合はゆっくり減衰する。
 したがって、磁場センサー装置1を測定ポイントに応じて次々と移動させながら、又は、複数の磁場センサー装置1をそれぞれの測定ポイントに設置して観測データを集め、この観測データを分析することにより地下の比抵抗分布を求めることができる。またこの比抵抗分布に基づき地下構造を知ることができる。
 すなわち、磁場センサー装置1により誘導電流に基づく磁場を観測する観測工程と、誘導電流に基づく磁場の観測データを記憶する記憶工程とを含む磁場観測を、地表面に設けられた複数の測定ポイントにおいて繰り返し行い、測定ポイントごとの観測データに基づき地下の比抵抗分布を演算することにより地下構造を知ることができる。
 また、磁場センサー装置として、磁性非晶質構造体をコアに持つ磁気インピーダンス素子110を含むセンサー部100と、磁性非晶質構造体の長手方向に、磁性非晶質構造体に磁場を導く棒状のコア部130及び131を有する磁場センサー装置1を用いることにより、従来の誘導コイルに比べ小型かつ軽量化できる磁場センサー装置を実現できるため、短期間で安価に多数の場所で測定を行うこと可能にした地下電磁探査を行うことができる。
 磁場センサー装置1が、磁性非晶質構造体に入力される環境磁場を相殺する補正磁場を発生させる環境磁場相殺手段140及び141を含む場合には、磁場の観測値が所望の範囲内となるように、磁性非晶質構造体に入力される環境磁場を相殺する補正磁場を発生させる環境磁場相殺工程を含んでもよい。環境磁場相殺工程は、例えば観測工程の前に行ってもよい。
 図9は、本実施の形態に係る地下電磁探査方法における磁場観測フローの一例を示すフローチャートである。
 まず、環境磁場相殺手段140及び141により、観測値が所望の範囲内となるように、磁性非晶質構造体に入力される環境磁場を相殺する補正磁場を発生させる環境磁場相殺工程を行う(ステップS100)。
 次に、観測手段250により、誘導電流に基づく磁場を観測する観測工程を行う(ステップS110)。次に、記憶手段240により、観測データを記憶する記憶工程を行う(ステップS120)。
 次に、磁場観測が終了したか否かを判定する(ステップS130)。磁場観測を終了したか否かは、例えば、所定回数の観測工程が実行されたか否か、所定時間において観測工程が実行されたか否か、観測終了命令が入力されたか否かなどにより判定してもよい。
 ステップS130により磁場観測を終了していないものと判定された場合には、ステップS110へ戻り、観測終了までステップS110からS130を繰り返す。ステップS130により磁場観測を終了したものと判定された場合には、磁場観測フローを終了する。
 図10は、本実施の形態に係る地下電磁探査方法における環境磁場相殺工程でのフローの一例を示すフローチャートである。本実施の形態においては、基準電圧V1及びV2の関係は0<V2<V1とし、補正磁場の変更幅δ1及びδ2の関係は0<δ2<δ1とする。また、補正磁場の向きは地磁気と逆向きを正とする。なお、補正磁場の変更幅や変更段階数は必要に応じて任意に設定することが可能である。
 環境磁場相殺工程が始まると、環境磁場相殺手段140及び141は、予め設定した初期値による補正磁場を発生させる(ステップS200)。初期値は0(補正磁場を全く発生させていない状態)であってもよい。
 次に磁場センサー装置1の観測手段250により所定時間に亘って磁場の観測を行う(ステップS202)。次に所定時間内におけるセンサー部100の駆動回路120の出力電圧Voutに基づき記憶手段240に記憶された観測データの平均値Vaを算出する(ステップS204)。平均値Vaの算出は、例えば処理部200の演算処理装置220で行う。なお、センサー部100の出力信号を増幅する増幅手段(本実施の形態においては増幅器214)のダイナミックレンジで決まる測定可能範囲を超えて大きい値と小さい値の観測データが入力された場合には、それぞれ測定可能範囲の最大値と最小値として記憶手段240に記憶してもよい。
 次に平均値Vaが0より大きいか否かを判定する(ステップS206)。以後、全ての判定処理は演算処理装置220で行うものとして説明する。
 ステップS206で平均値Vaが0より大きいものと判定された場合には、平均値Vaが基準電圧V1よりも小さいか否かを判定する(ステップS208)。平均値Vaが基準電圧V1よりも小さくないものと判定された場合には、演算処理装置220は補正磁場の大きさを変更幅δ1だけ大きくする制御を行い(ステップS308)、ステップS202へ戻る。
 ステップS208で平均値Vaが基準電圧V1よりも小さいものと判定された場合には、平均値Vaが基準電圧V2よりも小さいか否かを判定する(ステップS210)。平均値Vaが基準電圧V2よりも小さくないものと判定された場合には、演算処理装置220は補正磁場の大きさを変更幅δ2だけ大きくする制御を行い(ステップS310)、ステップS202へ戻る。
 ステップS210で平均値Vaが基準電圧V2よりも小さいものと判定された場合には、補正磁場の大きさを確定し、処理を終了する。つまり、平均値Vaは、処理終了時には0<Va<V2の関係を満たすことになる。
 ステップS206で平均値Vaが0以下と判定された場合には、平均値Vaが基準電圧(-V1)よりも大きいか否かを判定する(ステップS212)。平均値Vaが基準電圧(-V1)よりも大きくないものと判定された場合には、演算処理装置220は補正磁場の大きさを変更幅δ1だけ小さくする制御を行い(ステップS312)、ステップS202へ戻る。
 ステップS212で平均値Vaが基準電圧(-V1)よりも大きいものと判定された場合には、平均値Vaが基準電圧(-V2)よりも大きいか否かを判定する(ステップS214)。平均値Vaが基準電圧(-V2)よりも大きくないものと判定された場合には、演算処理装置220は補正磁場の大きさを変更幅δ2だけ小さくする制御を行い(ステップS314)、ステップS202へ戻る。
 ステップS214で平均値Vaが基準電圧(-V2)よりも大きいものと判定された場合には、補正磁場の大きさを確定し、処理を終了する。つまり、平均値Vaは、処理終了時には-V2<Va<0の関係を満たすことになる。
 すなわち、図10に示す環境磁場相殺工程でのフローでは、平均値Vaは、処理終了時には-V2<Va<V2の関係を満たすことになる。また、平均値Vaが0から遠い場合には大きな変更幅δ1で補正磁場の大きさを変更する制御を行い、平均値Vaが-V1<Va<V1の範囲に収まった後は小さな変動幅δ2で補正磁場の大きさを変更する制御を行っている。これにより、平均値Vaを速く正確に-V2<Va<V2の範囲に収めるための補正磁場の大きさを決定することができる。
 図11(A)~(C)は、図10のフローに基づき補正磁場の大きさを決定する模式図である。図11(A)は演算処理装置220に入力される観測データ、図11(B)は記憶手段240に記憶される記憶データ、図11(C)は補正磁場の大きさを示す。図11(A)~(C)の横軸はいずれも時間である。また、磁場センサー装置1の測定可能上限値をVu、測定可能下限値をVdとし、Vd<-V1<-V2<0<V2<V1<Vuの関係を満たすものとする。
 期間t1においては、予め設定した初期値による補正磁場を環境磁場相殺手段140及び141により発生させ、磁場センサー装置1の観測手段250により所定時間に亘って磁場の観測を行っている(ステップS200、S202)。図11に示す例では、補正磁場の初期値は0(補正磁場を全く発生させていない状態)である。
 図11(A)に示す例の期間t1においては、観測データの全てが測定可能上限値Vu以上となっている。したがって、記憶データは全てVuとなっているため、平均値Vaは0<V1<Vaの関係を満たす。よって、演算処理装置220は、補正磁場を変化量δ1だけ大きくする制御を行う(ステップS204、S206、S208、S308)。
 期間t2においては、期間t1での観測結果に基づき変更した値による補正磁場を環境磁場相殺手段140及び141により発生させ、磁場センサー装置1の観測手段250により所定時間に亘って磁場の観測を行っている(ステップS202)。
 期間t2においては、観測データの一部が測定可能上限値Vu以上となっている。図11に示す例では、平均値Vaは、まだ0<V1<Vaの関係を満たすものとする。よって、この場合も演算処理装置220は、補正磁場を変化量δ1だけ大きくする制御を行う(ステップS204、S206、S208、S308)。
 期間t3においては、期間t2での観測結果に基づき変更した値による補正磁場を環境磁場相殺手段140及び141により発生させ、磁場センサー装置1の観測手段250により所定時間に亘って磁場の観測を行っている(ステップS202)。
 期間t3においては、観測データの一部が測定可能下限値Vd以下となっている。図11に示す例では、平均値Vaは、まだ-V1<Va<0の関係を満たすものとする。この場合、演算処理装置220は、補正磁場を変化量δ2だけ小さくする制御を行う(ステップS204、S206、S212、S214、S314)。
 期間t4においては、期間t3での観測結果に基づき変更した値による補正磁場を環境磁場相殺手段140及び141により発生させ、磁場センサー装置1の観測手段250により所定時間に亘って磁場の観測を行っている(ステップS202)。
 期間t4においては、観測データの全てが測定可能下限値Vd以上測定可能上限値Vu以下の範囲に収まっている。図11に示す例では、平均値Vaは、0<Va<V2の関係を満たすものとする。この場合、演算処理装置220は、補正磁場の大きさを確定し、環境磁場相殺工程の処理を終了する(ステップS204、S206、S208、S210)。これ以後の期間t5においては、環境磁場相殺手段140及び141は、期間t4と同じ大きさの補正磁場を発生させる。
 このように環境磁場を相殺することにより、観測対象となる磁場を効率よく観測することができる。また環境磁場相殺工程の自動化も容易となる。
 本実施の形態に係る地下電磁探査方法は、誘導電流発生用送信源の出力に基づく磁場信号を含む磁場の観測データを誘導電流発生用送信源2の誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間で積分した値に基づいて、観測データが所望の範囲内となるように、観測データの基準値を補正する補正工程をさらに含んでもよい。
 誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間は、例えば、誘導電流発生用送信源が交替直流(周期前半の正側の出力と周期後半の負側の出力が対称である信号)を出力する場合には、誘導電流発生用送信源の出力周期の整数倍の期間としたり、出力周期を第1区間から第4区間までに等しい時間で4分割した場合の第1区間と第3区間の組合せや第2区間と第4区間の組合せとしたりすることができる。
 補正工程は、例えば、磁場センサー装置1が補正手段を有し、補正手段がセンサー部100の出力信号を増幅する増幅手段のオフセット量を制御することで観測データの基準値を自動制御してもよい。本実施の形態においては、増幅器214がセンサー部100の出力電圧Voutを増幅する増幅手段として機能し、演算処理装置220がD/Aコンバータ216を介して増幅器214のオフセット量を制御することで観測データの基準値を制御している。
 例えば本実施の形態に係る磁場センサー装置1を、誘導電流発生用送信源を用いた地下電磁探査に用いる場合には、補正手段は、記憶手段240に記憶された観測データを誘導電流発生用送信源2の出力周期の整数倍の期間で積分した値が上限基準値を超えた場合には測定データの基準値を下げる制御を行い、観測データを誘導電流発生用送信源2の出力周期の整数倍の期間で積分した値が下限基準値を下回った場合には測定データの基準値を上げる制御を行ってもよい。
 観測データの基準値の制御は、例えば、誘導電流発生用送信源2が送信ループ3に出力電流を供給している期間に行うことができる。
 図12(A)~12(F)及び図13(A)~13(B)は、補正工程を説明するための模式図である。横軸は全て時間である。また、積分期間は誘導電流発生用送信源2の出力周期と同一にしている。
 図12(A)は、補正工程を行う前の観測データである。観測データは、図12(B)に示すランダムノイズと、図12(C)に示す誘導電流発生用送信源2の出力に基づく磁場信号と、図12(D)に示す地磁気の時間変動や観測手段250の回路などの影響によるドリフト量の3成分が合計されたものと考えられる。
 図12(B)に示すランダムノイズと、図12(C)に示す誘導電流発生用送信源2の出力に基づく磁場信号は、誘導電流発生用送信源2の出力周期で積分すると、それぞれ0となる。したがって、図12(A)に示す観測データを誘導電流発生用送信源2の出力周期で積分すると、図12(D)に示す地磁気の時間変動や観測手段250の回路などの影響によるドリフト量の積分値のみを算出することができる。
 この積分値が上限基準値Iuを上回るか、下限基準値Idを下回った場合に、補正手段は観測データの基準値を変更する処理を行う。上限基準値Iu及び下限基準値Idは、ランダムノイズの大きさや積分期間を考慮して、観測データが測定可能上限値Vuと測定可能下限値をVdの間に収まるように決定する。図12(E)に示す例では、期間T4において積分値が上限基準値Iuを上回っている。したがって、図12(F)に示すように、補正手段は、期間T5以降においては観測データの基準値をΔVだけ下げる処理を行う。
 図13(A)は図12(A)と同一の観測データ、図13(B)は補正工程を行った後の観測データである。図13(A)に示す観測データでは期間T5以降において測定可能上限値Vuを上回るデータが含まれている。しかし、補正工程を行うことにより、図13(B)に示すように、測定データが測定可能上限値Vuと測定可能下限値をVdの間に収まるようにすることができる。
 本実施の形態に係る地下電磁探査方法は、誘導電流発生用送信源2の出力と同期した時間データを取得する同期工程を含み、記憶工程(図9のステップS120)では観測データと時間データとを関連付けて記憶してもよい。同期工程は、例えば観測工程(図9のステップS110)よりも前に行ったり、観測工程中に適宜行ったりしてもよい。
 本実施の形態においては、磁場センサー装置1及び誘導電流発生用送信源2にGPS(Global Positioning System)時計を設け、それぞれがGPS(Global Positioning System)情報に含まれる時刻情報を取得することにより、磁場センサー装置1と誘導電流発生用送信源2の出力とが同期した時刻データを取得することができる。
 このように、磁場センサー装置1と誘導電流発生用送信源2の出力とが同期した時刻データと観測データとを関連付けて記憶することにより、観測データの分析が容易になる。
 本実施の形態に係る地下電磁探査方法は、スタック処理工程を含んでもよい。スタック処理は、誘導電流発生用送信源2の出力周期Tの前半の観測データと、出力周期Tの後半の観測データの符号反転データを足し合わせたデータとを複数周期分合わせて、平均する処理である。
 図14は、スタック処理工程後のデータの一例を示すグラフである。図14の上から順に、1周期分、2周期分、4周期分、8周期分、16周期分、32周期分、64周期分、81周期分の観測データを用いてスタック処理を行ったデータである。スタック処理に用いる観測データの量(周期の回数)が4倍になるごとにノイズレベルが1/2倍になることが分かる。
 このように、スタック処理工程を含むことにより、ランダムノイズを打ち消し、測定精度を上げることができる。また、スタック処理工程後のノイズレベルを監視することにより、測定終了の自動化も可能となる。
 本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
 例えば、本実施の形態においては、送信ループ3を用いて誘導電流を発生させていたが、地表面に複数の電極を設置し、地中を介して電極間に電流を流すことにより誘導電流を発生させても構わない。
1 磁場センサー装置、2 誘導電流発生用送信源、3 送信ループ、100 センサー部、110 磁気インピーダンス素子、111,111a,111b,111c 測定用コイル、112 トランジスタ、113 抵抗、114,115コンデンサ、116 可変抵抗、120 駆動回路、121 コルピッツ発振回路、130,131 コア部、140,141 環境磁場相殺手段、200 記録部、210 増幅器、211 ハイパスフィルタ、212 ノッチフィルタ、213 ローパスフィルタ、214 増幅器、215 A/Dコンバータ、216,217 D/Aコンバータ、220 演算処理装置、230 精密時計、231 GPS時計、240 記憶手段、250 観測手段、300 入力手段、310 出力手段、500,501,502 誘導電流、1000 ケース、1001,1002 円筒部、1100 センサー支持部、1200 センサー基板

Claims (14)

  1.  磁性非晶質構造体を持つ磁気インピーダンス素子を含むセンサー部を有する磁場センサー装置において、
     前記磁性非晶質構造体の長手方向に、前記磁性非晶質構造体に磁場を導く棒状のコア部を有することを特徴とする磁場センサー装置。
  2.  請求項1に記載の磁場センサー装置において、
     前記コア部は、前記磁性非晶質構造体の長手方向の両側に設けられていることを特徴とする磁場センサー装置。
  3.  請求項2に記載の磁場センサー装置において、
     前記コア部は、前記磁性非晶質構造体の長手方向と前記コア部の長手方向とが同一直線上になるように配置されていることを特徴とする磁場センサー装置。
  4.  請求項1乃至3のいずれかに記載の磁場センサー装置において、
     前記コア部は、高透磁率材料で構成されていることを特徴とする磁場センサー装置。
  5.  請求項4に記載の磁場センサー装置において、
     前記高透磁率材料は、ミューメタルであることを特徴とする磁場センサー装置。
  6.  請求項1乃至3のいずれかに記載の磁場センサー装置において、
     前記磁性非晶質構造体に入力される環境磁場を相殺する補正磁場を発生させる環境磁場相殺手段を含むことを特徴とする磁場センサー装置。
  7.  請求項6に記載の磁場センサー装置において、
     前記環境磁場相殺手段は、前記コア部を軸とするコイルであることを特徴とする磁場センサー装置。
  8.  請求項6に記載の磁場センサー装置において、
     観測データが所望の範囲内となるように前記環境磁場相殺手段を制御する調整手段を含むことを特徴とする磁場センサー装置。
  9.  請求項1乃至3のいずれかに記載の磁場センサー装置において、
     誘導電流発生用送信源の出力に基づく磁場信号を含む磁場を経時的に観測する観測手段と、
     前記観測手段で観測した観測データを記憶する記憶手段と、
     前記記憶手段に記憶された前記観測データを前記誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間で積分した値に基づいて、前記観測データが所望の範囲内となるように、前記観測データの基準値を補正する補正手段を含むことを特徴とする磁場センサー装置。
  10.  請求項9に記載の磁場センサー装置において、
     前記誘導電流発生用送信源の出力に基づく磁場信号の積分値が0となる期間は、交替直流を出力する前記誘導電流発生用送信源の出力周期の整数倍の期間であることを特徴とする磁場センサー装置。
  11.  請求項9に記載の磁場センサー装置において、
     前記センサー部の出力信号を増幅する増幅手段を含み、
     前記補正手段は、前記増幅手段のオフセット量を制御することを特徴とする磁場センサー装置。
  12.  請求項9に記載の磁場センサー装置において、
     前記誘導電流発生用送信源の出力と同期した時刻データを取得する同期手段を含み、
     前記記憶手段は、前記観測データと前記時刻データとを関連付けて記憶することを特徴とする磁場センサー装置。
  13.  請求項12に記載の磁場センサー装置において、
     前記同期手段は、GPS情報に含まれる時刻情報を取得することにより前記誘導電流発生用送信源の出力と同期した時間データを取得することを特徴とする磁場センサー装置。
  14.  請求項9に記載の磁場センサー装置において、
     交替直流を出力する前記誘導電流発生用送信源の出力周期の前半の前記観測データと、出力周期の後半の前記観測データの符号反転データを足し合わせたデータとを複数周期分合わせて平均するスタック処理を行うスタック処理手段を含み、
     前記観測手段は、前記スタック処理後のデータのノイズレベルに基づいて観測を終了することを特徴とする磁場センサー装置。
PCT/JP2009/060436 2008-06-16 2009-06-08 磁場センサー装置 WO2009154095A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2010013823A MX2010013823A (es) 2008-06-16 2009-06-08 Dispositivo sensor de campo magnetico.
EP09766543A EP2290389A1 (en) 2008-06-16 2009-06-08 Magnetic field sensor device
US12/999,272 US8610429B2 (en) 2008-06-16 2009-06-08 Magnetic field sensor device
RU2011101412/28A RU2497140C2 (ru) 2008-06-16 2009-06-08 Датчиковое устройство измерения магнитного поля
CA2734623A CA2734623C (en) 2008-06-16 2009-06-08 Magnetic field sensor device
AU2009261302A AU2009261302B2 (en) 2008-06-16 2009-06-08 Magnetic field sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008157100A JP5492389B2 (ja) 2008-06-16 2008-06-16 磁場センサー装置
JP2008-157100 2008-06-16

Publications (1)

Publication Number Publication Date
WO2009154095A1 true WO2009154095A1 (ja) 2009-12-23

Family

ID=41434011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060436 WO2009154095A1 (ja) 2008-06-16 2009-06-08 磁場センサー装置

Country Status (9)

Country Link
US (1) US8610429B2 (ja)
EP (1) EP2290389A1 (ja)
JP (1) JP5492389B2 (ja)
AU (1) AU2009261302B2 (ja)
CA (1) CA2734623C (ja)
MX (1) MX2010013823A (ja)
PE (1) PE20110437A1 (ja)
RU (1) RU2497140C2 (ja)
WO (1) WO2009154095A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158324A1 (en) * 2010-11-26 2012-06-21 Stmicroelectronics S.R.L Magnetic sensor reading device, system and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134383B2 (en) * 2012-12-28 2015-09-15 Asahi Kasei Microdevices Corporation Hall device, magnetic sensor having same, and signal correcting method thereof
JP6149542B2 (ja) * 2013-06-27 2017-06-21 愛知製鋼株式会社 磁気検査装置および磁気検査方法
JP6255902B2 (ja) 2013-10-30 2018-01-10 Tdk株式会社 磁界検出装置
EP2896782A1 (en) * 2014-01-20 2015-07-22 Services Pétroliers Schlumberger Remote field testing using a permeable core
JP6422012B2 (ja) * 2014-02-18 2018-11-14 フジデノロ株式会社 磁気検出装置
CN108351390B (zh) * 2015-11-04 2021-08-27 Tdk株式会社 磁场检测装置及磁场检测方法
JP6666732B2 (ja) * 2016-01-29 2020-03-18 株式会社アドバンテスト 磁気ノイズ消去装置及び磁場測定装置
US10989834B2 (en) 2017-10-27 2021-04-27 Energy & Environmental Research Center Identifying subterranean structures using amorphous metal markers
WO2020113467A1 (zh) * 2018-12-05 2020-06-11 中国科学院地质与地球物理研究所 一种感应式磁传感器及电磁勘探设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181239A (ja) 1993-12-22 1995-07-21 Res Dev Corp Of Japan 磁気インピーダンス効果素子
JPH11148968A (ja) * 1997-11-14 1999-06-02 Daikin Ind Ltd Squid磁束計制御方法およびその装置
JP2000258517A (ja) * 1999-03-10 2000-09-22 Japan Science & Technology Corp 磁気インピーダンス効果マイクロ磁気センサ
JP2002071828A (ja) 2000-08-29 2002-03-12 Toda Constr Co Ltd 地下電磁探査方法、装置および情報記憶媒体
JP2003099886A (ja) * 2001-09-21 2003-04-04 Masahiko Sumikama 高感度磁気センサ装置及び交通量計測装置
JP2003121517A (ja) 2001-10-12 2003-04-23 Aichi Micro Intelligent Corp 磁気検出装置
JP2004325353A (ja) * 2003-04-25 2004-11-18 Asahi Kasei Electronics Co Ltd 磁気センサ
JP2005509889A (ja) * 2001-11-20 2005-04-14 ジェンテックス コーポレイション 動的に調整可能なバイアス設定を有する磁力計及びこれを組み込んだ電子式車両用コンパス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2059259C1 (ru) * 1992-04-06 1996-04-27 Махоткин Вячеслав Евгеньевич Магниточувствительный элемент
WO2006036752A2 (en) * 2004-09-22 2006-04-06 Quasar Federal Systems, Inc. Passive magnetic detection system for security screening
JP2006234581A (ja) * 2005-02-24 2006-09-07 Aichi Micro Intelligent Corp 電子コンパス及び方位測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181239A (ja) 1993-12-22 1995-07-21 Res Dev Corp Of Japan 磁気インピーダンス効果素子
JPH11148968A (ja) * 1997-11-14 1999-06-02 Daikin Ind Ltd Squid磁束計制御方法およびその装置
JP2000258517A (ja) * 1999-03-10 2000-09-22 Japan Science & Technology Corp 磁気インピーダンス効果マイクロ磁気センサ
JP2002071828A (ja) 2000-08-29 2002-03-12 Toda Constr Co Ltd 地下電磁探査方法、装置および情報記憶媒体
JP2003099886A (ja) * 2001-09-21 2003-04-04 Masahiko Sumikama 高感度磁気センサ装置及び交通量計測装置
JP2003121517A (ja) 2001-10-12 2003-04-23 Aichi Micro Intelligent Corp 磁気検出装置
JP2005509889A (ja) * 2001-11-20 2005-04-14 ジェンテックス コーポレイション 動的に調整可能なバイアス設定を有する磁力計及びこれを組み込んだ電子式車両用コンパス
JP2004325353A (ja) * 2003-04-25 2004-11-18 Asahi Kasei Electronics Co Ltd 磁気センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANEO MOURI: "Magnetic Sensor Technology", 10 March 1998, CORONA PUBLISHING CO., LTD., pages: 92 - 101

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158324A1 (en) * 2010-11-26 2012-06-21 Stmicroelectronics S.R.L Magnetic sensor reading device, system and method
US10473731B2 (en) * 2010-11-26 2019-11-12 Stmicroelectronics S.R.L. Magnetic sensor reading device, system and method

Also Published As

Publication number Publication date
US8610429B2 (en) 2013-12-17
PE20110437A1 (es) 2011-07-01
AU2009261302A1 (en) 2009-12-23
CA2734623C (en) 2015-11-24
AU2009261302B2 (en) 2014-02-20
JP5492389B2 (ja) 2014-05-14
JP2009300331A (ja) 2009-12-24
US20110133733A1 (en) 2011-06-09
RU2497140C2 (ru) 2013-10-27
MX2010013823A (es) 2011-04-04
CA2734623A1 (en) 2009-12-23
EP2290389A1 (en) 2011-03-02
RU2011101412A (ru) 2012-07-27

Similar Documents

Publication Publication Date Title
JP5492389B2 (ja) 磁場センサー装置
JP5424295B2 (ja) 地下電磁探査方法
US7659717B2 (en) Sensor for measuring magnetic flux
JP5924503B2 (ja) 磁気検出器
KR101207995B1 (ko) 저주파 교류 자기장 측정기의 교정을 위한 표준 장치
EA003855B1 (ru) Измерение магнитных полей с использованием струны, закрепленной на обоих концах
US9035648B2 (en) Magnetic sensor characterization
JP5811210B2 (ja) 磁気検出器
Sasada et al. Fundamental mode orthogonal fluxgate gradiometer
KR101137788B1 (ko) 외부 자기장 상쇄 장치
US9784800B2 (en) Inspection circuit for magnetic field detector, and inspection method for the same
JP6413111B2 (ja) 磁性体検出装置
EP2388608B1 (en) Fluxgate sensor circuit for measuring the gradient of a magnetic field
JPH03277901A (ja) 磁気式変位計
JP2005188948A (ja) ステンレス鋼材の硬さ測定方法及び装置
Tanriseven et al. Highly Sensitive Reliable Fluxgate Magnetometer Implementation
Mohd Nizam Amplifier and Filter for Geophone Sensitivity Studies
JP2015114205A (ja) 磁界検出装置および磁界検出装置の制御方法
JPH07113625B2 (ja) 鋼板の疵検出装置
JPS62187268A (ja) 高感度b−hル−プトレ−サ用回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766543

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009261302

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2734623

Country of ref document: CA

Ref document number: MX/A/2010/013823

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 001156-2010

Country of ref document: PE

Ref document number: 2009766543

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009261302

Country of ref document: AU

Date of ref document: 20090608

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011101412

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12999272

Country of ref document: US