WO2009151017A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2009151017A1
WO2009151017A1 PCT/JP2009/060420 JP2009060420W WO2009151017A1 WO 2009151017 A1 WO2009151017 A1 WO 2009151017A1 JP 2009060420 W JP2009060420 W JP 2009060420W WO 2009151017 A1 WO2009151017 A1 WO 2009151017A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
motor
speed
fuel
cell system
Prior art date
Application number
PCT/JP2009/060420
Other languages
English (en)
French (fr)
Inventor
片野 剛司
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801204681A priority Critical patent/CN102047484B/zh
Priority to DE112009001410.0T priority patent/DE112009001410B4/de
Priority to US12/994,892 priority patent/US8546035B2/en
Publication of WO2009151017A1 publication Critical patent/WO2009151017A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • the hybrid fuel cell system includes a fuel cell and a battery (secondary battery) as power sources.
  • the fuel cell and the battery are connected in parallel to the load, and between the fuel cell and the load, and the battery.
  • a high-voltage converter for performing voltage conversion is inserted between each load.
  • the present invention has been made in view of the above-described circumstances, and provides a fuel cell system capable of ensuring responsiveness during acceleration even when a motor having a lower torque than conventional ones is used. Objective.
  • a fuel cell system of the present invention comprises a fuel cell and a fuel cell for a moving body comprising a motor capable of regenerative control whose rotational speed changes according to a load required for the fuel cell.
  • a determination unit for determining whether the fuel cell load is decreasing and the moving speed is equal to or higher than a set speed, and a positive determination result is obtained by the determination unit.
  • a rotation speed control means for avoiding regenerative control of the motor and reducing the rotation speed of the motor by inertial operation.
  • the inertial operation is performed without performing regenerative control.
  • the acceleration force may be smaller than that in the conventional case, so a motor with a small torque (ie, It is possible to adopt a small motor), and it is possible to realize a reduction in cost and a reduction in the size of the apparatus as compared with the prior art. That is, when the motor speed is reduced by inertial operation, the reduction in the speed can be reduced compared to the case where the motor speed is reduced by regenerative operation. Thus, it is possible to employ a small motor.
  • the determination unit determines whether the moving body is decelerating and the moving speed is equal to or higher than a setting.
  • a motor that drives a pump that supplies a reaction gas to the fuel cell, and the set speed is a level of external noise generated when the moving body moves at the set speed, and the motor is rotated by the inertia operation.
  • a mode in which the speed is set in consideration of the level of internal noise generated in some cases is preferable.
  • the motor is a motor that drives a circulation pump that returns at least a part of the fuel off-gas discharged from the fuel cell to the fuel gas supply path, and the motor is driven by the inertia operation.
  • First detection means for detecting whether or not the rotational speed of the motor has fallen below a lower limit threshold due to a decrease in the rotational speed; and fuel supplied to the fuel cell when the rotational speed of the motor falls below a lower limit value
  • An aspect further comprising an adjusting means for increasing the concentration of hydrogen gas contained in the gas is also preferable.
  • a purge path is branchedly connected to the circulation path, and the adjusting means controls the amount of the fuel off gas discharged to the outside using a purge valve provided in the purge path.
  • a mode in which the concentration of hydrogen gas contained in the fuel gas supplied to the fuel cell is increased by adjustment is also preferable.
  • the motor is a motor that drives a compressor that supplies oxidizing gas to the fuel cell
  • the rotation speed of the motor is a lower limit due to a decrease in the rotation speed of the motor due to the inertia operation.
  • Second detection means for detecting whether or not the threshold value is below, and scavenging of the supply path of the oxidizing gas using the oxidizing gas supplied to the fuel cell when the rotational speed of the motor falls below a lower limit value
  • An aspect further comprising scavenging treatment means for performing is also preferable.
  • a bypass path for connecting at least part of the unreacted oxidizing gas to the outside is connected between the oxidizing gas supply path and the oxidizing gas discharge path, and the bypass path discharges to the outside.
  • a bypass valve for adjusting the amount of unreacted gas to be supplied is provided, and the amount of oxidizing gas supplied to the fuel cell is adjusted using the bypass valve when the supply passage is scavenged by the scavenging processing means.
  • the aspect which further comprises the bypass valve adjustment means to do is also preferable.
  • FIG. 6 is a configuration diagram of a fuel cell system according to Modification 2.
  • FIG. 1 is a configuration diagram of a fuel cell system 1 according to a first embodiment.
  • the fuel cell system 1 according to the present embodiment is configured so that the load required for the fuel cell (electric power required from various motors, auxiliary machines, etc.) is decreasing and the moving speed is set for the pump that supplies the reaction gas to the fuel cell.
  • the speed is higher than the speed, there is a feature in that the number of rotations of the motor driving the pump is reduced by inertial operation (operation in a state where power supply to the motor is stopped) without performing regenerative control.
  • the load required for the fuel cell is decreasing includes, for example, when the vehicle is decelerating and when the vehicle is not decelerating and is accelerating downhill or the like . That is, the fact that the load required for the fuel cell is decreasing is not limited to the case where the vehicle is decelerating but includes the case where the vehicle is accelerating.
  • the fuel cell system 1 mounted on a fuel cell vehicle is assumed to be described.
  • the vehicle 100 such as an electric vehicle and a hybrid vehicle, and various mobile bodies other than the vehicle 100 (for example, (Ships, airplanes, robots, etc.)
  • the fuel cell system 1 includes a fuel cell 2, an oxidizing gas piping system 3 that supplies air as an oxidizing gas to the fuel cell 2, a fuel gas piping system 4 that supplies hydrogen gas as a fuel gas to the fuel cell 2, A refrigerant piping system 5 that supplies refrigerant to the fuel cell 2, a power system 6 that charges and discharges the power of the system 1, and a control device 7 that performs overall control of the operation of the system 1 are provided.
  • the oxidizing gas and the fuel gas are collectively referred to as reaction gas as appropriate.
  • the fuel cell 2 is composed of, for example, a solid polymer electrolyte type and has a stack structure in which a large number of single cells are stacked.
  • the single cell has an air electrode (cathode) on one surface of an electrolyte made of an ion exchange membrane, a fuel electrode (anode) on the other surface, and a pair of the air electrode and the fuel electrode sandwiched from both sides.
  • An oxidizing gas is supplied to the oxidizing gas channel 2a of one separator, and a fuel gas is supplied to the fuel gas channel 2b of the other separator.
  • the fuel cell 2 generates electric power by the electrochemical reaction of the supplied fuel gas and oxidizing gas.
  • the electrochemical reaction in the fuel cell 2 is an exothermic reaction, and the temperature of the solid polymer electrolyte type fuel cell 2 is approximately 60 to 80 ° C.
  • the oxidizing gas piping system 3 includes a supply path 11 through which the oxidizing gas supplied to the fuel cell 2 flows and a discharge path 12 through which the oxidizing off gas discharged from the fuel cell 2 flows.
  • the supply path 11 communicates with the discharge path 12 via the oxidizing gas flow path 2a.
  • the oxidizing off gas is in a highly moist state because it contains moisture generated by the cell reaction of the fuel cell 2.
  • the supply path 11 is provided with a compressor 14 that takes in outside air via an air cleaner 13, and a humidifier 15 that humidifies the oxidizing gas fed to the fuel cell 2 by the compressor 14.
  • the oxidizing off gas is in a highly moist state because it contains moisture generated by the cell reaction of the fuel cell 2.
  • the amount of oxidizing gas supplied to the air electrode side of the fuel cell 2 is adjusted by controlling the number of revolutions of the motor 14 a that drives the compressor 14.
  • the back pressure on the air electrode side of the fuel cell 2 is adjusted by a back pressure adjusting valve 16 disposed in the discharge path 12 near the cathode outlet. In the vicinity of the back pressure adjustment valve 16, a pressure sensor P1 for detecting the pressure in the discharge passage 12 is provided.
  • the oxidizing off gas passes through the back pressure regulating valve 16 and the humidifier 15 and is finally exhausted into the atmosphere outside the system as exhaust gas.
  • the back pressure on the air electrode side of the fuel cell 2 is adjusted by a back pressure adjusting valve 16 disposed in the discharge path 12 near the cathode outlet.
  • a pressure sensor P1 for detecting the pressure in the discharge passage 12 is provided in the vicinity of the back pressure adjustment valve 16.
  • the oxidizing off gas passes through the back pressure regulating valve 16 and the humidifier 15 and is finally exhausted into the atmosphere outside the system as exhaust gas.
  • the fuel gas piping system 4 includes a hydrogen supply source 21, a supply path 22 through which hydrogen gas supplied from the hydrogen supply source 21 to the fuel cell 2 flows, and a supply path for supplying hydrogen offgas (fuel offgas) discharged from the fuel cell 2. 22, a circulation path 23 for returning to the junction point A of 22, a circulation pump 24 that pumps the hydrogen off-gas in the circulation path 23 to the supply path 22, and a purge path 25 that is branched and connected to the circulation path 23.
  • the amount of hydrogen off-gas returned to the supply path 22 is adjusted by controlling the number of rotations of the motor 24 a that drives the circulation pump 24.
  • the hydrogen gas flowing out from the hydrogen supply source 21 to the supply path 22 by opening the main valve 26 is supplied to the fuel cell 2 through the pressure regulating valve 27, other pressure reducing valves, and the shutoff valve 28.
  • the purge passage 25 is provided with a purge valve 33 for discharging the hydrogen off gas to a hydrogen diluter (not shown).
  • the refrigerant piping system 5 includes a refrigerant channel 41 communicating with the cooling channel 2 c in the fuel cell 2, a cooling pump 42 provided in the refrigerant channel 41, and a radiator 43 that cools the refrigerant discharged from the fuel cell 2. And a bypass passage 44 that bypasses the radiator 43, and a switching valve 45 that sets the flow of cooling water to the radiator 43 and the bypass passage 44.
  • the refrigerant flow path 41 has a temperature sensor 46 provided in the vicinity of the refrigerant inlet of the fuel cell 2 and a temperature sensor 47 provided in the vicinity of the refrigerant outlet of the fuel cell 2.
  • the refrigerant temperature detected by the temperature sensor 47 reflects the internal temperature of the fuel cell 2 (hereinafter referred to as the temperature of the fuel cell 2). Note that the temperature sensor 47 may detect the temperature of components around the fuel cell instead of (or in addition to) the refrigerant temperature. Further, the amount of refrigerant flowing through the refrigerant flow path 41 is adjusted by controlling the number of revolutions of the motor 42a and the like.
  • the power system 6 includes a high-voltage DC / DC converter 61, a battery 62, a traction inverter 63, a traction motor 64, and an auxiliary inverter (not shown) connected to each motor.
  • the high-voltage DC / DC converter 61 is a direct-current voltage converter that adjusts the direct-current voltage input from the battery 62 and outputs it to the traction inverter 63 side, and the direct-current input from the fuel cell 2 or the traction motor 64. And a function of adjusting the voltage and outputting it to the battery 62.
  • the charge / discharge of the battery 62 is realized by these functions of the high-voltage DC / DC converter 61. Further, the output voltage of the fuel cell 2 is controlled by the high voltage DC / DC converter 61.
  • the traction inverter 63 converts a direct current into a three-phase alternating current and supplies it to the traction motor 64.
  • the traction motor 64 is, for example, a three-phase AC motor.
  • the traction motor 64 constitutes, for example, a main power source of the vehicle 100 on which the fuel cell system 1 is mounted, and is connected to the wheels 101L and 101R of the vehicle 100.
  • the driving of the compressor 14, the circulation pump 24, and the cooling pump 42 is controlled by the corresponding motors 14a, 24a, 42a.
  • the motors 14a and 24a mounted on the compressor 14 and the circulation pump 24 according to the present embodiment operate the same regeneration control function as that of the prior art, that is, the pump motor operates as a generator, and converts mechanical energy into electrical energy.
  • the function of reducing the rotational speed of the motor by inertial driving when the vehicle is decelerating and the vehicle speed is equal to or higher than the predetermined speed (hereinafter referred to as inertial rotational speed reducing function) Realized (details will be described later).
  • the driving of these motors is controlled by the control device 7.
  • the control device 7 is configured as a microcomputer having a CPU, a ROM, and a RAM inside.
  • the CPU executes a desired calculation according to the control program and performs various processes and controls such as control of normal operation.
  • the ROM stores control programs and control data processed by the CPU.
  • the RAM is mainly used as various work areas for control processing.
  • the control device 7 inputs detection signals from various sensors such as various pressure sensors P1, temperature sensors 46 and 47, and an accelerator opening sensor 70 that detects the accelerator opening of the vehicle 100, and each component (compressor). 14 and the back pressure adjusting valve 16).
  • various sensors such as various pressure sensors P1, temperature sensors 46 and 47, and an accelerator opening sensor 70 that detects the accelerator opening of the vehicle 100, and each component (compressor). 14 and the back pressure adjusting valve 16).
  • control device 7 determines the number of revolutions of the motor 14a for driving the air compressor 14 and the motor 24a for driving the circulation pump 24 based on the vehicle speed V detected by the accelerator opening sensor 70 and the like, the operation instruction of the brake pedal, and the like. To control.
  • the motor 14a and the motor 24a are collectively referred to as a reaction gas supply control motor.
  • FIG. 2 is a diagram illustrating changes in the vehicle speed of the vehicle
  • FIG. 3 illustrates the relationship between the rotational speed of the reaction gas supply control motor and the accelerator opening when the vehicle speed changes as shown in FIG. FIG.
  • the change in the rotation speed of the reaction gas supply control motor in the related art is indicated by a broken line
  • the change in the rotation speed of the reaction gas supply control motor in the present embodiment is indicated by a solid line.
  • the control device 7 obtains the deceleration width df per unit time and the vehicle speed V of the vehicle based on the detection signal from the accelerator opening sensor 70 or the like.
  • the control device (determination means) 7 determines whether or not the obtained deceleration width df exceeds the deceleration width upper limit value dfth stored in the memory 80, and the vehicle speed V of the vehicle is stored in the memory 80. It is determined whether or not Vth is exceeded (see the following formulas (1) and (2)). In FIG. 2, it is assumed that the following expressions (1) and (2) are satisfied (when the determination result is affirmative). df> dfth (1) V> Vth (2)
  • the deceleration width upper limit value dfth and the vehicle speed lower limit value Vth stored in the memory 80 can be arbitrarily set / changed according to the system design or the like.
  • the vehicle speed lower limit value (set speed) Vth is preferably determined in consideration of external noise such as tire noise and wind noise during vehicle travel. Specifically, if the external noise is large, the noise of the air compressor 14 and the circulation pump 24 (hereinafter referred to as pump noise (internal noise)) generated by the rotation of the reaction gas supply control motor is drowned out by the external noise. There is no sense of incongruity.
  • this vehicle speed lower limit value Vth is used even when the rotational speed of the air compressor 14 and the circulation pump 24 is reduced only by coasting (that is, when the rotational speed of the motor is maintained higher than that in the prior art; FIG. 3), it is desirable to set the value so as to be extinguished by external noise such as tire noise and wind noise when the vehicle is running. It should be noted that the vehicle speed at which the pump noise is drowned out by the external noise may be obtained in advance through experiments or the like.
  • FIG. 4 is a diagram illustrating the relationship between the rotational speed of the reaction gas supply control motor and the load torque.
  • the load torque also increases.
  • the motor 24a of the circulation pump 24 that circulates the fuel gas increases in the flow rate of the circulating fuel gas as the rotational speed increases, and the pressure loss increases as the flow rate increases. Torque increases.
  • the motor 14a of the air compressor 14 that supplies the oxidizing gas has a rotational speed and a load torque corresponding to the flow rate and pressure of the oxidizing gas, respectively, and the pressure (load torque) increases as the flow rate (rotational speed) increases. .
  • the motor is usually designed in consideration of the acceleration torque indicated by hatching and the load torque indicated by solid line in FIG. If the acceleration torque (that is, acceleration force) can be small, the motor can be reduced in size accordingly. In other words, a motor with a small torque can be employed.
  • FIGS. 5 and 6 show a non-regenerative torque control process in the case of controlling the motor 14a that drives the air compressor 14a among the reaction gas supply control motors 14a and 24a
  • FIG. 6 shows the motor that drives the hydrogen circulation pump 24a.
  • the non-regenerative torque control process in the case of controlling 24a is shown.
  • common steps are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the control device (determination means) 7 obtains the deceleration width df per unit time based on the detection signal from the accelerator opening sensor 70 and the like, and the obtained deceleration width df is the deceleration width upper limit value dfth stored in the memory 80. It is determined whether or not it has been exceeded (step S1).
  • step S1 the control device (determination means) 7 ends the non-regenerative torque control process, while the determined deceleration width df If the deceleration width upper limit value dfth is exceeded (see the above equation (1)), the process proceeds to step S2 to determine whether or not the load change speed of the fuel cell 2 exceeds the lower limit value.
  • step S2 determines whether or not the load change speed of the fuel cell 2 exceeds the lower limit value.
  • the vehicle speed V exceeds the vehicle speed lower limit value Vth stored in the memory 80.
  • attention may be paid to the output current, output voltage, and output power of the fuel cell 2, and the determination may be made based on whether or not these parameter values exceed a set lower limit value.
  • step S3 the rotational speed of the motor 14a of the air compressor 14 is reduced by inertial operation without performing regenerative control.
  • control device (second detection means) 7 determines whether or not the rotational speed of the motor 14a is below the rotational speed lower limit value Uth1 stored in the memory 80 (step S4).
  • control device (scavenging processing means) 7 performs the scavenging process by supplying power to the motor 14a (step S5).
  • step S1 By performing the scavenging process, a decrease in the rotational speed of the motor 14a is suppressed, and the generated water (residual water) accumulated at the cathode of the fuel cell is discharged to the outside, so that residual water that adversely affects power generation
  • the power generation efficiency of the fuel cell 2 at the time of reacceleration is increased.
  • the control device 7 returns to step S1, repeatedly executes the above-described series of steps, and when a negative determination result “NO” is obtained in step S1 or step S2, the above-described processing ends.
  • Step S5a When the control device 7 proceeds from step S1 to step S2 to step S3, the controller 7 reduces the rotational speed of the motor 24a of the circulation pump 24 by inertial operation. Thereafter, the control device (first detection means) 7 determines whether or not the rotational speed of the motor 24a is below the rotational speed lower limit value Uth2 stored in the memory (step S4). When the control device (adjusting means) 7 determines that the rotational speed of the motor 14a has fallen below the rotational speed lower limit value Uth2, the process for increasing the hydrogen concentration in the circulation system (specifically, performing a purge process or increasing the supply pressure) (Step S5a).
  • the control device 7 adjusts the valve opening of the purge valve 33 and the on / off time of the valve.
  • the hydrogen concentration in the circulation system increases, the average molecular weight decreases, and the pressure loss decreases.
  • the load torque of the motor 24a decreases, and the decrease in the rotational speed of the motor 24a is delayed.
  • the effect of increasing the power generation efficiency of the fuel cell 2 at the time of reacceleration is obtained by increasing the hydrogen concentration in the circulation system.
  • the control device 7 returns to step S1 and repeatedly executes the series of steps described above. When a negative result “NO” is obtained in step S1 or step S2, the above-described processing is terminated.
  • the rotational speed of the motor is reduced by inertial driving without performing regenerative control.
  • the acceleration force may be smaller than that in the conventional case, so a motor with a small torque (ie, It is possible to adopt a small motor), and it is possible to realize a reduction in cost and a reduction in the size of the apparatus as compared with the prior art.
  • the scavenging process is executed when the rotational speed of the motor 14 a of the air compressor 14 falls below a predetermined value, thereby suppressing a decrease in the rotational speed of the motor 14 a and restarting. It becomes possible to increase the power generation efficiency of the fuel cell 2 during acceleration.
  • the non-regenerative torque control process described above is performed when the vehicle speed is equal to or higher than a predetermined value.
  • the pump noise of the air compressor 14 or the circulation pump 24 may be external noise such as tire noise or wind-on when the vehicle is running. Since it is carried out when the noise is drowned out, it is possible to prevent problems such as giving the driver an uncomfortable feeling.
  • a bypass path 18 that leads and an air bypass valve 19 that adjusts the flow rate of the oxidizing gas flowing through the bypass path 18 (that is, the bypass amount of the oxidizing gas) are provided.
  • the control device (bypass valve adjusting means) 7 controls the valve opening of the air bypass valve 19 and the opening / closing time interval so that the electrolyte membrane is not dried more than necessary when the scavenging process is executed.
  • the control content of the air bypass valve 19 may be mapped in advance and stored in the memory 80 or the like.
  • SYMBOLS 1 Fuel cell system, 2 ... Fuel cell, 7 ... Control apparatus, 14 ... Air compressor, 14a, 24a, 42a ... Motor, 24 ... Circulation pump, 42 ... Cooling pump, 70 ... accelerator opening sensor, 90 ... brake pedal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】従来に比してトルクの低いモータを利用しても加速時の応答性を確保することが可能な燃料電池システムを提供する。 【解決手段】制御装置は、燃料電池に要求される負荷(各種モータや補機などから要求される電力)が低下中かつ移動速度が設定速度以上である場合に、回生制御を行うことなく、惰性運転によってエアコンプレッサや循環ポンプ、冷却ポンプのモータの回転数を低減させる。これにより、その後、運転手がアクセルペダルを踏み込むなどして再加速を行ったとしても(図3のβ2参照)、従来に比して加速力は小さくて良いため、トルクの小さなモータを採用することが可能となる。

Description

燃料電池システム
 本発明は、燃料電池システムに関する。
 石油依存の車社会の将来像が懸念されている現代では、ハイブリッド燃料電池システムを搭載した自動車の普及が期待されている。ハイブリッド燃料電池システムは、電力源として燃料電池とバッテリ(二次電池)を備えており、燃料電池とバッテリは負荷に対して並列に接続されるとともに、燃料電池と負荷との間、及びバッテリと負荷との間にはそれぞれ電圧変換を行うための高圧コンバータが介挿されている。
 ところで、自動車などの車両に搭載されたハイブリッド燃料電池システムの負荷は、建物などに設置される定置型のハイブリッド燃料電池システムの負荷に比べて変動が著しく大きい。
 このため、燃料電池に反応ガス(酸化ガスや燃料ガス)を供給する各ポンプなどの回転数は、当該負荷の変動に応じて大きく変動する。例えば、運転手がアクセルペダルの踏み込みを急に止めると(図3のα1参照)、負荷は大きく減少する。この負荷の減少に応じて各ポンプの回転数も低下させる必要があり、従来は下記特許文献1に記載の如く、各ポンプの回生制御(すなわち、ポンプのモータを発電機として動作させ、機械エネルギーを電気エネルギーに変換して電源等に帰還させること)により、負荷の減少に応じて各ポンプの回転数を低下させていた(図3のα2参照)。
特開平5-111299号公報
 ところで、負荷の減少に併せて各ポンプの回生制御を行うと、モータの回転数が大きく低下するが、モータの回転数が大きく低下した状態で再加速指令(例えば、急発進指令)が行われる場合(例えば平坦な道路から上り坂にさしかかり、アクセルペダルを踏み込む場合など)もある。
 従来は、このような再加速指令に応えるべく(すなわち、加速時の応答性を確保するべく)、各ポンプを駆動するモータとして高いトルク性能を発揮できる高トルクモータを使用していたが、かかるモータを使用した場合には、高コスト化を招来するとともに、装置が大型化してしまうといった問題があった。
 本発明は以上説明した事情を鑑みてなされたものであり、従来に比してトルクの低いモータを利用しても加速時の応答性を確保することが可能な燃料電池システムを提供することを目的とする。
 上記目的を達成するべく、本発明の燃料電池システムは、燃料電池と、該燃料電池に要求される負荷に応じて回転数が変化する回生制御可能なモータとを備えた移動体用の燃料電池システムであって、燃料電池負荷が低下中であり、かつ、移動速度が設定速度以上であるか否かを判断する判断手段と、前記判断手段によって肯定的な判断結果が得られた場合には、前記モータの回生制御を回避し、惰性運転によって前記モータの回転数の低減を行う回転数制御手段とを具備する。
 かかる構成によれば、燃料電池に要求される負荷(各種モータや補機などから要求される電力)が低下中かつ移動速度が設定速度以上である場合に、回生制御を行うことなく、惰性運転によって該モータの回転数を低減させる。これにより、その後、運転手がアクセルペダルを踏み込むなどして再加速を行ったとしても(図3のβ2参照)、従来に比して加速力は小さくて良いため、トルクの小さなモータ(すなわち、小型のモータ)を採用することが可能となり、従来に比して低コスト化、装置の小型化を実現することが可能となる。すなわち、惰性運転によってモータの回転数を低減させた場合には、回生運転によってモータの回転数を低減させた場合に対して、回転数の低減を小さくすることができ、これにより、従来に比して小型のモータを採用することが可能となる。
 ここで、上記構成にあっては、前記判断手段は、前記移動体が減速中であり、かつ、移動速度が設定以上であるか否かを判断する態様が好ましく、また、前記モータは、前記燃料電池に反応ガスを供給するポンプを駆動するモータであり、前記設定速度は、該移動体が前記設定速度で移動した場合に生じる外部騒音のレベルと、前記惰性運転によって前記モータを回転させた場合に生じる内部騒音のレベルとを考慮して設定された速度である態様が好ましい。
 また、上記構成にあっては、前記モータは、前記燃料電池から排出された燃料オフガスの少なくとも一部を燃料ガスの供給路に戻す循環ポンプを駆動するモータであり、前記惰性運転による前記モータの回転数の低下により、該モータの回転数が下限閾値を下回ったか否かを検知する第1検知手段と、前記モータの回転数が下限値を下回った場合に、前記燃料電池に供給される燃料ガス中に含まれる水素ガスの濃度を高める調整手段とをさらに具備する態様も好ましい。
 さらにまた、上記構成にあっては、前記循環路にはパージ路が分岐接続され、前記調整手段は、前記パージ路に設けられたパージ弁を利用して前記燃料オフガスを外部に排出する量を調整することで、前記燃料電池に供給される燃料ガス中に含まれる水素ガスの濃度を高める態様も好ましい。
 また、上記構成にあっては、前記モータは、前記燃料電池に酸化ガスを供給するコンプレッサを駆動するモータであり、前記惰性運転による前記モータの回転数の低下により、該モータの回転数が下限閾値を下回ったか否かを検知する第2検知手段と、前記モータの回転数が下限値を下回った場合に、前記燃料電池に供給する酸化ガスを利用して、該酸化ガスの供給路の掃気を行う掃気処理手段とをさらに具備する態様も好ましい。
 さらにまた、前記酸化ガスの供給路と前記酸化ガスの排出路との間には、未反応の酸化ガスの少なくとも一部を外部へ導くバイパス路が接続され、前記バイパス路には、外部に排出する未反応ガスの量を調整するバイパス弁が設けられ、前記掃気処理手段によって前記供給路の掃気が行われる際、前記バイパス弁を利用して前記燃料電池に供給される酸化ガスの量を調整するバイパス弁調整手段とをさらに具備する態様も好ましい。
 以上説明したように、本発明によれば、高トルクモータを利用せずとも加速時の応答性を確保することが可能となる。
本実施形態に係る燃料電池システムの構成図である。 同実施形態に係る車両の車速の変化を例示した図である。 同実施形態に係る車速が変化する場合のモータの回転数とアクセル開度の関係を例示した図である。 同実施形態に係るモータの回転数と負荷トルクとの関係を例示した図である。 同実施形態に係る非トルク制御処理を示すフローチャートである。 同実施形態に係る非トルク制御処理を示すフローチャートである。 変形例2に係る燃料電池システムの構成図である。
 以下、添付図面を参照して、本発明の好適な実施形態について説明する。先ず、本発明の燃料電池システムの概要について説明する。
A.本実施形態
 図1は、第1実施形態に係る燃料電池システム1の構成図である。
 本実施形態に係る燃料電池システム1は、燃料電池に反応ガスを供給するポンプに関して、燃料電池に要求される負荷(各種モータや補機などから要求される電力)が低下中かつ移動速度が設定速度以上である場合に、回生制御を行うことなく、惰性運転(モータに対する電力の供給を停止した状態での運転)によって、該ポンプを駆動するモータの回転数を低減させる点に特徴がある。ここで、「燃料電池に要求される負荷が低下中」とは、例えば車両が減速中である場合のほか、該車両が減速中ではなくても下り坂などで加速している場合なども含む。すなわち、燃料電池に要求される負荷が低下中とは、車両が減速中である場合に限定されず、車両が加速している場合も含む趣旨である。
 なお、本実施形態では、燃料電池自動車(FCHV)に搭載された燃料電池システム1を想定して説明を行うが、電気自動車、ハイブリッド自動車などの車両100や車両100以外の各種移動体(例えば、船舶や飛行機、ロボット等)にも適用可能である。
 燃料電池システム1は、燃料電池2と、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3と、燃料ガスとしての水素ガスを燃料電池2に供給する燃料ガス配管系4と、燃料電池2に冷媒を供給する冷媒配管系5と、システム1の電力を充放電する電力系6と、システム1の運転を統括制御する制御装置7と、を備える。酸化ガス及び燃料ガスは、適宜、反応ガスと総称する。
 燃料電池2は、例えば固体高分子電解質型で構成され、多数の単セルを積層したスタック構造を備える。単セルは、イオン交換膜からなる電解質の一方の面に空気極(カソード)を有し、他方の面に燃料極(アノード)を有し、さらに空気極及び燃料極を両側から挟みこむように一対のセパレータを有する。一方のセパレータの酸化ガス流路2aに酸化ガスが供給され、他方のセパレータの燃料ガス流路2bに燃料ガスが供給される。供給された燃料ガス及び酸化ガスの電気化学反応により、燃料電池2は電力を発生する。燃料電池2での電気化学反応は発熱反応であり、固体高分子電解質型の燃料電池2の温度は、およそ60~80℃となる。
 酸化ガス配管系3は、燃料電池2に供給される酸化ガスが流れる供給路11と、燃料電池2から排出された酸化オフガスが流れる排出路12と、を有する。供給路11は、酸化ガス流路2aを介して排出路12に連通する。酸化オフガスは、燃料電池2の電池反応により生成された水分を含むため高湿潤状態となっている。
 供給路11には、エアクリーナ13を介して外気をとり込むコンプレッサ14と、コンプレッサ14により燃料電池2に圧送される酸化ガスを加湿する加湿器15と、が設けられる。
 酸化オフガスは、燃料電池2の電池反応により生成された水分を含むため高湿潤状態となっている。燃料電池2の空気極側に供給される酸化ガス量は、コンプレッサ14を駆動するモータ14aの回転数等を制御することで調整する。燃料電池2の空気極側の背圧は、カソード出口付近の排出路12に配設された背圧調整弁16によって調整される。背圧調整弁16の近傍には、排出路12内の圧力を検出する圧力センサP1が設けられる。酸化オフガスは、背圧調整弁16及び加湿器15を経て最終的に排ガスとしてシステム外の大気中に排気される。
 燃料電池2の空気極側の背圧は、カソード出口付近の排出路12に配設された背圧調整弁16によって調整される。背圧調整弁16の近傍には、排出路12内の圧力を検出する圧力センサP1が設けられる。酸化オフガスは、背圧調整弁16及び加湿器15を経て最終的に排ガスとしてシステム外の大気中に排気される。
 燃料ガス配管系4は、水素供給源21と、水素供給源21から燃料電池2に供給される水素ガスが流れる供給路22と、燃料電池2から排出された水素オフガス(燃料オフガス)を供給路22の合流点Aに戻すための循環路23と、循環路23内の水素オフガスを供給路22に圧送する循環ポンプ24と、循環路23に分岐接続されたパージ路25と、を有する。供給路22に戻される水素オフガス量は、循環ポンプ24を駆動するモータ24aの回転数等を制御することで調整される。また、元弁26を開くことで水素供給源21から供給路22に流出した水素ガスは、調圧弁27その他の減圧弁、及び遮断弁28を経て、燃料電池2に供給される。パージ路25には、水素オフガスを水素希釈器(図示省略)に排出するためのパージ弁33が設けられる。
 冷媒配管系5は、燃料電池2内の冷却流路2cに連通する冷媒流路41と、冷媒流路41に設けられた冷却ポンプ42と、燃料電池2から排出される冷媒を冷却するラジエータ43と、ラジエータ43をバイパスするバイパス流路44と、ラジエータ43及びバイパス流路44への冷却水の通流を設定する切替え弁45と、を有する。冷媒流路41は、燃料電池2の冷媒入口の近傍に設けられた温度センサ46と、燃料電池2の冷媒出口の近傍に設けられた温度センサ47と、を有する。温度センサ47が検出する冷媒温度は、燃料電池2の内部温度(以下、燃料電池2の温度という。)を反映する。なお、温度センサ47は、冷媒温度の代わりに(あるいは加えて)、燃料電池周辺の部品温度)を検出するようにしても良い。また、冷媒流路41を流れる冷媒の量は、モータ42aの回転数等を制御することで調整される。
 電力系6は、高圧DC/DCコンバータ61、バッテリ62、トラクションインバータ63、トラクションモータ64のほか、各モータに接続された補機インバータ(図示略)を備えている。高圧DC/DCコンバータ61は、直流の電圧変換器であり、バッテリ62から入力された直流電圧を調整してトラクションインバータ63側に出力する機能と、燃料電池2又はトラクションモータ64から入力された直流電圧を調整してバッテリ62に出力する機能と、を有する。高圧DC/DCコンバータ61のこれらの機能により、バッテリ62の充放電が実現される。また、高圧DC/DCコンバータ61により、燃料電池2の出力電圧が制御される。
 トラクションインバータ63は、直流電流を三相交流に変換し、トラクションモータ64に供給する。トラクションモータ64は、例えば三相交流モータである。トラクションモータ64は、燃料電池システム1が搭載される例えば車両100の主動力源を構成し、車両100の車輪101L,101Rに連結される。
 コンプレッサ14、循環ポンプ24、冷却ポンプ42の駆動は、対応する各モータ14a、24a、42aによって制御される。ここで、本実施形態に係るコンプレッサ14及び循環ポンプ24に搭載されたモータ14a、24aは、従来と同様の回生制御機能、すなわちポンプのモータを発電機として動作させ、機械エネルギーを電気エネルギーに変換して電源等に帰還させる機能を実現するほか、車両が減速中かつ車速が所定速度以上である場合に、惰性運転によって該モータの回転数を低減させる機能(以下、惰性回転数低減機能)を実現する(詳細は後述)。これら各モータの駆動は、制御装置7によって制御される。
 制御装置7は、内部にCPU,ROM,RAMを備えたマイクロコンピュータとして構成される。CPUは、制御プラグラムに従って所望の演算を実行して、通常運転の制御など、種々の処理や制御を行う。ROMは、CPUで処理する制御プログラムや制御データを記憶する。RAMは、主として制御処理のための各種作業領域として使用される。
 制御装置7は、各種の圧力センサP1や温度センサ46、47、並びに、車両100のアクセル開度を検出するアクセル開度センサ70など、各種センサからの検出信号を入力し、各構成要素(コンプレッサ14、背圧調整弁16など)に制御信号を出力する。
 また、制御装置7は、アクセル開度センサ70などによって検出される車速Vやブレーキペダルの操作指示などに基づき、エアコンプレッサ14を駆動するモータ14aや循環ポンプ24を駆動するモータ24aの回転数などを制御する。なお、以下の説明では、便宜上、モータ14a、モータ24aを反応ガス供給制御モータと総称する。
 図2は、当該車両の車速の変化を例示した図であり、図3は、図2に示すように車速が変化する場合の反応ガス供給制御モータの回転数とアクセル開度の関係を例示した図である。なお、図3では、従来における反応ガス供給制御モータの回転数の変化を破線で示し、本実施例における反応ガス供給制御モータの回転数の変化を実線で示す。
 図2及び図3に示すように、運転手がアクセルペダルの踏み込みを止めると(時刻t0参照)、当該車両は減速を始める。制御装置7は、このときアクセル開度センサ70等からの検出信号に基づき、単位時間当たりの減速幅dfを求めるとともに、当該車両の車速Vを求める。制御装置(判断手段)7は、求めた減速幅dfがメモリ80に格納された減速幅上限値dfthを超えたか否かを判断するとともに、車両の車速Vがメモリ80に格納された車速下限値Vthを超えたか否かを判断する(下記式(1)、(2)参照)。なお、図2では、下記式(1)、(2)を満たす場合(判断結果が肯定的な場合)を想定する。
 df>dfth ・・・(1)
 V>Vth   ・・・(2)
 ここで、メモリ80に格納される減速幅上限値dfth及び車速下限値Vthは、システム設計などに応じて任意に設定・変更可能である。ただし、車速下限値(設定速度)Vthについては、車両走行時のタイヤのノイズや風きり音などの外部騒音を考慮して決定するのが望ましい。具体的には、外部騒音が大きければ、反応ガス供給制御モータの回転によって生じるエアコンプレッサ14や循環ポンプ24の騒音(以下、ポンプ騒音(内部騒音))は、外部騒音にかき消されるために運転手等に違和感を与えることはない。よって、この車速下限値Vthは、エアコンプレッサ14や循環ポンプ24を惰性運転によってのみ回転数を低減したとしても(すなわち、従来に比べてモータの回転数が高い状態を維持するような場合;図3参照)、車両走行時のタイヤのノイズや風きり音などの外部騒音にかき消される程度の値に設定するのが望ましい。なお、ポンプ騒音が外部騒音にかき消される程度の車速は、予め実験などによって求めておけば良い。
 上述したように、従来は上記式(1)、(2)に示す条件を満たす場合であっても、車速の減速に伴って回生制御を行い、反応ガス供給制御モータ14a、24aの回転数を低下させていた(図3の破線参照)。これに対し、本実施形態では、制御装置(回転数制御手段)7は、上記式(1)、(2)に示す条件を満たすと判断すると、図3に実線で示す惰性回転数低減機能を実現する。
 ここで、図4は反応ガス供給制御モータの回転数と負荷トルクとの関係を例示した図である。
 図4に示すように、反応ガス供給制御モータの回転数が大きくなるにつれ、負荷トルクも大きくなる。具体的には、燃料ガスを循環する循環ポンプ24のモータ24aは、回転数が大きくなるにつれ、循環する燃料ガスの流量が増大し、この流量の増大に伴って圧力損失が大きくなることで負荷トルクが増大する。一方、酸化ガスを供給するエアコンプレッサ14のモータ14aは、回転数と負荷トルクがそれぞれ酸化ガスの流量と圧力に対応し、流量(回転数)の増大に伴って圧力(負荷トルク)が大きくなる。
 このように、いずれのモータも回転数の増大に伴って負荷トルクは大きくなるが、通常、モータは、図4に斜線で示す加速トルクと実線で示す負荷トルクを考慮して設計するため(図4に示す白丸参照)、加速トルク(すなわち、加速力)が小さくて良ければ、それだけモータを小型化することができる。別言すれば、トルクの小さなモータを採用することができる。
 この点、従来は、図3のα1に示すように、車速の減速に応じてモータの回転数を大きく低減していたため(回生制御機能の実現)、その後、運転手がアクセルペダルを踏み込むなどして再加速を行う場合を考慮すると(図3のα2参照)、トルクの大きなモータ(すなわち、急加速に応え得るトルクの大きなモータ)を採用する必要があり、高コスト化、装置の大型化を招くという問題があった。
 これに対し、本実施形態では、図3のβ1に示すように、上記(1)、(2)を満たす場合には、回生制御を行うことなく、惰性運転によってモータの回転数の低減を最小限に抑える(惰性回転数低減機能の実現)。これにより、その後、運転手がアクセルペダルを踏み込むなどして再加速を行ったとしても(図3のβ2参照)、従来に比して加速力は小さくて良いため、トルクの小さなモータ(すなわち、小型のモータ)を採用することが可能となり、従来に比して低コスト化、装置の小型化を実現することが可能となる。
 以下、惰性回転数低減機能を実現する際に、制御装置7によって実行される非回生トルク制御処理について図5、図6を参照しながら説明する。なお、図5は、反応ガス供給制御モータ14a、24aのうち、エアコンプレッサ14aを駆動するモータ14aを制御する場合の非回生トルク制御処理を示し、図6は、水素循環ポンプ24aを駆動するモータ24aを制御する場合の非回生トルク制御処理を示す。なお、図5及び図6に示すステップのうち、共通するステップには同一符号を付し、詳細な説明は割愛する。
<エアコンプレッサ14に適用した場合>
 制御装置(判断手段)7は、アクセル開度センサ70等からの検出信号に基づき、単位時間当たりの減速幅dfを求め、求めた減速幅dfがメモリ80に格納された減速幅上限値dfthを超えたか否かを判断する(ステップS1)。制御装置(判断手段)7は、求めた減速幅dfが減速幅上限値dfthを超えていない場合には(ステップS1;NO)、非回生トルク制御処理を終了する一方、求めた減速幅dfが減速幅上限値dfthを超えた場合には(上記式(1)参照)、ステップS2に進み、燃料電池2の負荷の変化速度が下限値を超えているか否かを判断する。なお、本実施形態では、燃料電池2の負荷の変化速度が下限値を超えているか否かを判断する一例として、車速Vがメモリ80に格納された車速下限値Vthを超えたか否かを判断する場合を想定する。ここで、「負荷」の検知態様としては、燃料電池2の出力電流や出力電圧、出力電力に着目し、これらのパラメータ値が設定された下限値を超えたか否かによって判断しても良い。
 制御装置(回転数制御手段)7は、燃料電池2の負荷の変化速度が下限値を超えていない(すなわち求めた車速Vが車速下限値Vthを超えていない)と判断すると、非回生トルク制御処理を終了する一方、燃料電池2の負荷の変化速度が下限値を超えた場合(すなわち求めた車速Vが車速下限値Vthを超えた場合)には(上記式(2)参照)、ステップS3に進み、回生制御を行うことなく、惰性運転によるエアコンプレッサ14のモータ14aの回転数の低減を行う。その後、制御装置(第2検知手段)7は、モータ14aの回転数がメモリ80に格納された回転数下限値Uth1を下回ったか否かを判断する(ステップS4)。制御装置(掃気処理手段)7は、モータ14aの回転数が回転数下限値Uth1を下回ったと判断すると、モータ14aに電力を供給することで掃気処理を実施する(ステップS5)。掃気処理を実行することで、モータ14aの回転数の低下は抑制されるとともに、燃料電池のカソード等に溜まった生成水(残水)は外部に排出されるため、発電に悪影響を与える残水は低減され、再加速時の燃料電池2の発電効率が高まるという効果が得られる。この後、制御装置7はステップS1に戻り、上述した一連のステップを繰り返し実行し、ステップS1またはステップS2において否定的な判定結果「NO」が得られると、以上説明した処理を終了する。
<水素循環ポンプ24に適用した場合>
 制御装置7は、ステップS1→ステップS2→ステップS3と進むと、惰性運転による循環ポンプ24のモータ24aの回転数の低減を行う。その後、制御装置(第1検知手段)7は、モータ24aの回転数がメモリに格納された回転数下限値Uth2を下回ったか否かを判断する(ステップS4)。制御装置(調整手段)7は、モータ14aの回転数が回転数下限値Uth2を下回ったと判断すると、循環系内の水素濃度を高める処理(具体的にはパージ処理を実行する又は供給圧力をアップする処理)を行う(ステップS5a)。
 例えば、パージ処理を実行する場合には、制御装置7はパージ弁33の弁開度や弁のオン、オフ時間を調整する。このようにしてパージ処理等を実行することで、循環系内の水素濃度は高まり、平均分子量が下がって圧力損失は減少する。これにより、モータ24aの負荷トルクは下がり、モータ24aの回転数低下が遅くなる。さらに、循環系内の水素濃度が高まることで、再加速時の燃料電池2の発電効率が高まるという効果が得られる。この後、制御装置7はステップS1に戻り、上述した一連のステップを繰り返し実行し、ステップS1またはステップS2において否定的な結果「NO」が得られると、以上説明した処理を終了する。
 以上説明したように、本実施形態によれば車両が減速中かつ車速が所定速度以上である場合に、回生制御を行うことなく、惰性運転によって該モータの回転数を低減させる。これにより、その後、運転手がアクセルペダルを踏み込むなどして再加速を行ったとしても(図4のβ2参照)、従来に比して加速力は小さくて良いため、トルクの小さなモータ(すなわち、小型のモータ)を採用することが可能となり、従来に比して低コスト化、装置の小型化を実現することが可能となる。
 さらに、エアコンプレッサ14に適用した場合には、エアコンプレッサ14のモータ14aの回転数が所定値を下回った場合に掃気処理を実行することで、モータ14aの回転数の低下を抑制するとともに、再加速時の燃料電池2の発電効率を高めることが可能となる。
 一方、水素循環ポンプ24に適用した場合には、水素循環ポンプ24のモータ24aの回転数が所定値を下回った場合にパージ処理等を実行することで、モータ24aの回転数の低下を抑制するとともに、再加速時の燃料電池2の発電効率を高めることが可能となる。
 さらに、以上説明した非回生トルク制御処理は、車速が所定値以上の場合、具体的にはエアコンプレッサ14や循環ポンプ24のポンプ騒音が、車両走行時のタイヤのノイズや風きりオンなどの外部騒音にかき消される程度の場合に実施されるため、運転手等に違和感を与えるといった問題も未然に防止することが可能となる。
B.変形例
<変形例1>
 上述した本実施形態では、エアコンプレッサ14を駆動するモータ14a及び水素循環ポンプ24を駆動するモータ24aに、本発明を適用した場合について説明したが、例えば冷却ポンプ42を駆動するモータ42aや、燃料電池40から供給される電力に応じて回転数が制御される他の補機類のモータ(図示略)にも同様に適用可能である。本発明は、燃料電池2から供給される電流や電圧に応じて回転数が変化するあらゆる回転体に適用可能である。
<変形例2>
 また、上述した本実施形態では特に言及しなかったが、エアコンプレッサ14を駆動するモータ14aに本発明を適用した場合、上述した掃気処理によって酸化ガスが必要以上に供給されるために(すなわち、酸化ガス過多のために)、燃料電池2の電解質膜が必要以上に乾燥してしまうことが懸念される。かかる問題を未然に防止するべく、エアバイパス弁などを利用してエアコンプレッサ14から燃料電池2に供給される酸化ガスの一部を未反応ガスのまま外部に排出するようにしても良い。
 具体的には、図7に示すように、酸化ガスの供給路11と排出路12との間に、未反応の酸化ガスの一部を燃料電池2をバイパスして排出通路(図示略)へ導くバイパス路18及びバイパス路18を流れる酸化ガス流量(すなわち、酸化ガスのバイパス量)を調整するエアバイパス弁19とを配設する。制御装置(バイパス弁調整手段)7は、上記掃気処理を実行する際、電解質膜が必要以上に乾燥しないように、エアバイパス弁19の弁開度や開閉時間の間隔等を制御する。なお、エアバイパス弁19の制御内容については、予めマップ化し、メモリ80等に格納しておけば良い。
1・・・燃料電池システム、2・・・燃料電池、7・・・制御装置、14・・・エアコンプレッサ、14a,24a,42a・・・モータ、24・・・循環ポンプ、42・・・冷却ポンプ、70・・・アクセル開度センサ、90・・・ブレーキペダル。

Claims (7)

  1.  燃料電池と、該燃料電池に要求される負荷に応じて回転数が変化する回生制御可能なモータとを備えた移動体用の燃料電池システムであって、
     燃料電池負荷が低下中であり、かつ、移動速度が設定速度以上であるか否かを判断する判断手段と、
     前記判断手段によって肯定的な判断結果が得られた場合には、前記モータの回生制御を回避し、惰性運転によって前記モータの回転数の低減を行う回転数制御手段と
     を具備する燃料電池システム。
  2.  前記判断手段は、前記移動体が減速中であり、かつ、移動速度が設定以上であるか否かを判断する、請求項1に記載の燃料電池システム。
  3.  前記モータは、前記燃料電池に反応ガスを供給するポンプを駆動するモータであり、
     前記設定速度は、該移動体が前記設定速度で移動した場合に生じる外部騒音のレベルと、前記惰性運転によって前記モータを回転させた場合に生じる内部騒音のレベルとを考慮して設定された速度である、請求項1または2に記載の燃料電池システム。
  4.  前記モータは、前記燃料電池から排出された燃料オフガスの少なくとも一部を燃料ガスの供給路に戻す循環ポンプを駆動するモータであり、
     前記惰性運転による前記モータの回転数の低下により、該モータの回転数が下限閾値を下回ったか否かを検知する第1検知手段と、
     前記モータの回転数が下限値を下回った場合に、前記燃料電池に供給される燃料ガス中に含まれる水素ガスの濃度を高める調整手段と
     をさらに具備する、請求項3に記載の燃料電池システム。
  5.  前記循環路にはパージ路が分岐接続され、
     前記調整手段は、前記パージ路に設けられたパージ弁を利用して前記燃料オフガスを外部に排出する量を調整することで、前記燃料電池に供給される燃料ガス中に含まれる水素ガスの濃度を高める、請求項4に記載の燃料電池システム。
  6.  前記モータは、前記燃料電池に酸化ガスを供給するコンプレッサを駆動するモータであり、
     前記惰性運転による前記モータの回転数の低下により、該モータの回転数が下限閾値を下回ったか否かを検知する第2検知手段と、
     前記モータの回転数が下限値を下回った場合に、前記燃料電池に供給する酸化ガスを利用して、該酸化ガスの供給路の掃気を行う掃気処理手段と
     をさらに具備する、請求項4に記載の燃料電池システム。
  7.  前記酸化ガスの供給路と前記酸化ガスの排出路との間には、未反応の酸化ガスの少なくとも一部を外部へ導くバイパス路が接続され、
     前記バイパス路には、外部に排出する未反応ガスの量を調整するバイパス弁が設けられ、
     前記掃気処理手段によって前記供給路の掃気が行われる際、前記バイパス弁を利用して前記燃料電池に供給される酸化ガスの量を調整するバイパス弁調整手段と
     をさらに具備する、請求項6に記載の燃料電池システム。
PCT/JP2009/060420 2008-06-10 2009-06-08 燃料電池システム WO2009151017A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801204681A CN102047484B (zh) 2008-06-10 2009-06-08 燃料电池系统
DE112009001410.0T DE112009001410B4 (de) 2008-06-10 2009-06-08 Brennstoffzellensystem
US12/994,892 US8546035B2 (en) 2008-06-10 2009-06-08 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008151736A JP4378735B1 (ja) 2008-06-10 2008-06-10 燃料電池システム
JP2008-151736 2008-06-10

Publications (1)

Publication Number Publication Date
WO2009151017A1 true WO2009151017A1 (ja) 2009-12-17

Family

ID=41416723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060420 WO2009151017A1 (ja) 2008-06-10 2009-06-08 燃料電池システム

Country Status (5)

Country Link
US (1) US8546035B2 (ja)
JP (1) JP4378735B1 (ja)
CN (1) CN102047484B (ja)
DE (1) DE112009001410B4 (ja)
WO (1) WO2009151017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195680A1 (en) * 2012-01-26 2013-08-01 Haskel International Inc. Electrically driven hydrogen pressure booster for a hydrogen driven vehicle

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8326477B2 (en) * 2010-02-26 2012-12-04 GM Global Technology Operations LLC Heel and toe driving on fuel cell vehicle
WO2014103589A1 (ja) * 2012-12-28 2014-07-03 日産自動車株式会社 燃料電池システム及びその制御方法
DE102014215536A1 (de) * 2014-08-06 2016-02-11 Volkswagen Aktiengesellschaft Bordnetzanordnung und Verfahren zum Betreiben eines Bordnetzes eines elektrisch antreibbaren Fortbewegungsmittels mit einer Brennstoffzelle
JP6146396B2 (ja) 2014-11-14 2017-06-14 トヨタ自動車株式会社 電動モーターによって駆動する車両、および、その車両の制御方法
JP6237583B2 (ja) * 2014-11-14 2017-11-29 トヨタ自動車株式会社 燃料電池システムおよびエアコンプレッサの回転数制御方法
JP6260516B2 (ja) 2014-11-14 2018-01-17 トヨタ自動車株式会社 燃料電池システムおよび燃料電池搭載車両
KR101655589B1 (ko) 2014-12-03 2016-09-07 현대자동차주식회사 연료전지 스택 드라이 모니터링 장치 및 방법
JP6404169B2 (ja) * 2015-04-02 2018-10-10 株式会社神戸製鋼所 圧縮機ユニットおよびガス供給装置
KR101745255B1 (ko) 2016-04-01 2017-06-08 현대자동차주식회사 연료전지 퍼지 제어방법
JP6597580B2 (ja) * 2016-12-12 2019-10-30 トヨタ自動車株式会社 燃料電池システム
US10714773B2 (en) 2017-11-28 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling system dT/dt based control
US10720655B2 (en) 2017-11-28 2020-07-21 Toyota Motor Engineering & Manufacturing North America, Inc. Partial derivative based feedback controls for pid
US10777831B2 (en) 2017-11-28 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based cooling system control strategy/method
US11094950B2 (en) 2017-11-28 2021-08-17 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based state estimator for cooling system controller
JP7247727B2 (ja) * 2019-04-16 2023-03-29 トヨタ自動車株式会社 燃料電池車両および燃料電池車両の制御方法
DE102019207309A1 (de) * 2019-05-20 2020-11-26 Audi Ag Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen
JP7380613B2 (ja) 2021-02-24 2023-11-15 トヨタ自動車株式会社 燃料電池システム
CN113428050A (zh) * 2021-06-24 2021-09-24 一汽解放汽车有限公司 一种氢燃料电池的主驱动架构及其响应控制方法
EP4119444A1 (en) * 2021-07-13 2023-01-18 Airbus Operations, S.L.U. Cooling system and method for cooling an electrical aircraft propulsion system
DE102022128711A1 (de) 2022-10-28 2024-05-08 MTU Aero Engines AG Flugzeug-Brennstoffzellen-Antrieb

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362851A (ja) * 2003-06-03 2004-12-24 Toyota Motor Corp 冷却液ポンプの制御
JP2006006088A (ja) * 2004-06-21 2006-01-05 Nissan Motor Co Ltd 圧縮機制御装置
JP2007012533A (ja) * 2005-07-01 2007-01-18 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2007250272A (ja) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd 流体制御システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685287A (en) * 1985-11-20 1987-08-11 Mitsubishi Denki Kabushiki Kaisha Compressor system and start-up method therefor
JPH05111299A (ja) 1991-10-14 1993-04-30 Matsushita Electric Ind Co Ltd 圧縮機駆動装置
US6488345B1 (en) * 2001-08-16 2002-12-03 General Motors Corporation Regenerative braking system for a batteriless fuel cell vehicle
US6924050B2 (en) * 2001-10-05 2005-08-02 Ford Motor Company Method for dissipating energy in a fuel cell generator system
JP2005251576A (ja) * 2004-03-04 2005-09-15 Toyota Motor Corp 燃料電池システムおよびこれを搭載する移動体
CN2733614Y (zh) * 2004-10-22 2005-10-12 上海神力科技有限公司 一种在输出功率突然增加的情况下可快速响应的燃料电池
JP4940541B2 (ja) 2004-11-09 2012-05-30 日産自動車株式会社 燃料電池システム
JP4686290B2 (ja) * 2005-07-28 2011-05-25 本田技研工業株式会社 車載用燃料電池システムおよびその制御方法
JP2007123029A (ja) * 2005-10-27 2007-05-17 Nissan Motor Co Ltd 燃料電池システム
JP5247000B2 (ja) * 2005-12-21 2013-07-24 日産自動車株式会社 車両のコースト減速制御装置
JP5007665B2 (ja) * 2007-02-05 2012-08-22 トヨタ自動車株式会社 燃料電池システム
JP4910791B2 (ja) * 2007-03-12 2012-04-04 トヨタ自動車株式会社 燃料電池システム
JP4868240B2 (ja) * 2007-05-10 2012-02-01 トヨタ自動車株式会社 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362851A (ja) * 2003-06-03 2004-12-24 Toyota Motor Corp 冷却液ポンプの制御
JP2006006088A (ja) * 2004-06-21 2006-01-05 Nissan Motor Co Ltd 圧縮機制御装置
JP2007012533A (ja) * 2005-07-01 2007-01-18 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2007250272A (ja) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd 流体制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195680A1 (en) * 2012-01-26 2013-08-01 Haskel International Inc. Electrically driven hydrogen pressure booster for a hydrogen driven vehicle

Also Published As

Publication number Publication date
DE112009001410T5 (de) 2011-04-14
US8546035B2 (en) 2013-10-01
JP2009301739A (ja) 2009-12-24
CN102047484A (zh) 2011-05-04
DE112009001410B4 (de) 2021-06-24
CN102047484B (zh) 2013-07-24
JP4378735B1 (ja) 2009-12-09
US20110076584A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4378735B1 (ja) 燃料電池システム
JP5062512B2 (ja) 燃料電池システム
JP5949946B2 (ja) 燃料電池システム
JP5783324B2 (ja) 燃料電池システム
US11050072B2 (en) Fuel cell system and operation control method of the same
KR100952967B1 (ko) 전압 제어 시스템 및 전압 제어 시스템을 포함한 차량
JP4364845B2 (ja) 燃料電池車両の制御装置および燃料電池車両の制御方法
KR101135654B1 (ko) 연료전지시스템 및 그 제어방법
JP5093555B2 (ja) 燃料電池システム及び移動体
WO2009096229A1 (ja) 燃料電池システム
JP4380676B2 (ja) 移動体
JP4727354B2 (ja) 電動車両の制御装置
JP4525112B2 (ja) 燃料電池車両の制御装置
JP2010146749A (ja) 燃料電池システム
JP5381427B2 (ja) 燃料電池システム
JP2004265683A (ja) 燃料電池発電制御システム
EP1953857B1 (en) Fuel cell system
JP5120593B2 (ja) 燃料電池システム
JP4624457B2 (ja) 燃料電池車両の制御装置および燃料電池車両の制御方法
JP4888654B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120468.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12994892

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001410

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09762447

Country of ref document: EP

Kind code of ref document: A1