WO2009150905A1 - 回転機械のシール構造 - Google Patents

回転機械のシール構造 Download PDF

Info

Publication number
WO2009150905A1
WO2009150905A1 PCT/JP2009/058202 JP2009058202W WO2009150905A1 WO 2009150905 A1 WO2009150905 A1 WO 2009150905A1 JP 2009058202 W JP2009058202 W JP 2009058202W WO 2009150905 A1 WO2009150905 A1 WO 2009150905A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
seal ring
fin
steam
peripheral surface
Prior art date
Application number
PCT/JP2009/058202
Other languages
English (en)
French (fr)
Inventor
中野 隆
西本 慎
上原 秀和
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US12/993,886 priority Critical patent/US9399925B2/en
Priority to KR1020107027119A priority patent/KR101321207B1/ko
Priority to CN200980121373.1A priority patent/CN102057191B/zh
Priority to EP09762335.9A priority patent/EP2287500B1/en
Publication of WO2009150905A1 publication Critical patent/WO2009150905A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/025Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring
    • F16J15/442Free-space packings with floating ring segmented
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals

Definitions

  • the present invention relates to a seal structure used for a rotating shaft portion of a rotating machine.
  • the labyrinth seal structure includes a fin that protrudes in a ring shape on a rotating shaft or a stationary portion that faces the rotating shaft and is provided in a plurality of stages along the axial direction, and a surface (facing surface) that faces the fin. . Since the sealing performance, in other words, the performance of the rotating machine is determined by the number of fins and the distance between the fin and the facing surface, to improve the performance of the rotating machine, it is necessary to reduce the distance between the fin and the facing surface. It has been demanded.
  • Rotating machines are generally designed so that the rotating shaft rotates at a constant rotational speed within the rated rotational speed range. Therefore, the speed range where the vibration level of the rotating shaft reaches its maximum while the rotational speed is rising shortly after startup (hereinafter referred to as dangerous). Called the velocity range).
  • the rotating shaft reaches the rated rotational speed range (rated operation) through this critical speed range.
  • the rotating shaft and the stationary portion are thermally expanded by the high-temperature steam introduced after startup, but initially the temperature variation in each portion is large, so the rotating shaft and stationary There is a partial difference in the thermal elongation of the part.
  • the rotating shaft and the stationary portion move relatively in the axial direction and the radial direction, and therefore the distance between the fin and the facing surface is reduced, and the fin may come into contact with the facing surface.
  • the fin comes into contact with the facing surface, the fin and the facing surface are worn, and the set interval between the fin and the facing surface during rated operation becomes larger than the initial setting, so that the sealing performance is deteriorated accordingly.
  • the distance between the fin and the opposed surface is set so that the fin does not contact the opposed surface main body even at the vibration level in this critical speed range, and thus the distance during rated operation cannot be made very small.
  • the set interval between the fin and the opposed surface is different at the start / stop and the rated operation, that is, at the start / stop, the interval is set. Is used to ensure safety and to reduce the interval during rated operation to improve the sealing performance.
  • the pressure difference of the working fluid acting on the outer peripheral surface and inner peripheral surface of the movable seal ring is not large.
  • the movable seal ring is positioned outward by the biasing force. That is, the set interval between the fin and the opposing surface maintains a large state.
  • the pressure difference between the working fluid acting on the outer peripheral surface and inner peripheral surface of the movable seal ring increases accordingly, so that the movable seal ring moves inward by overcoming the urging force of the elastic body. Will do.
  • the movable seal ring moves to the inner end of the moving range. In other words, the set interval between the fin and the opposing surface remains small.
  • a seal structure is used in which an abradable film is formed on the opposite surface that generates little heat upon contact. Since the influence at the time of contact should be relieved by the film, the distance between the fin and the facing surface can be further reduced, and the sealing performance can be improved.
  • the fin and the opposing surface move relative to each other in the axial direction as well, but if they come into contact with each other during the movement, there is a greater risk of damage to the fin. Further, in the case where the gap between the fin and the facing surface is made small by using the abradable film, the film is scraped off on the surface by this contact, leading to deterioration of the sealing performance.
  • the present invention provides a seal structure that can actively control the operation of a movable seal ring, improve seal performance, and improve reliability, and a rotary machine using the seal structure.
  • one aspect of the present invention is a seal structure that partitions a high-pressure part and a low-pressure part, and at least one high-pressure side seal that is held by a stationary part on the high-pressure side so as to face the peripheral surface of the rotating member.
  • the seal ring is a movable seal ring that is movable in a substantially radial direction at least partially in the circumferential direction and is urged outward by an elastic body, and faces the fin and the fin.
  • An adjustable movable seal ring that partitions the high-pressure part and the low-pressure part by a facing surface, and a connection flow path connected to a single pressure source is provided on the low-pressure side of the adjustable movable seal ring.
  • An adjustment flow path connected to the same pressure source as the low pressure side on the high pressure portion side of the adjustable movable seal ring, and an on-off valve provided in the adjustment flow path for opening and closing the adjustment flow path. Is a sealing structure of a rotating machine.
  • the movable seal ring is movable in a substantially radial direction and is urged outward by the elastic body.
  • pressure is applied to the inner peripheral surface and the outer peripheral surface of the movable seal ring from the fluid passing therethrough, and the force is directed outward and inward, respectively.
  • the pressure of the fluid acting on the inner peripheral surface gradually decreases as it goes to the low pressure portion side, but the pressure of the fluid acting on the outer peripheral surface is the pressure on the high pressure portion, that is, the high pressure portion side of the seal ring.
  • the force acting on the surface is greater than the force acting on the inner peripheral surface.
  • the adjustment flow path that connects the flow path to the same pressure source as the low pressure section, and the on-off valve that is provided in the adjustment flow path and opens and closes the adjustment flow path Therefore, when the on-off valve is opened, the pressure on the high-pressure part side of the seal ring is the pressure of the high-pressure part reduced to some extent by the high-pressure side seal ring and the pressure of the pressure source connected to the adjustment flow path. It is equalized. Since the adjustment flow path is connected to the same pressure source as that of the low-pressure part, the pressure becomes substantially equal to the pressure on the low-pressure part side of the seal ring. That is, the differential pressure across the seal ring is reduced.
  • the movable seal ring can be positioned substantially outside in the radial direction.
  • the on-off valve is sometimes closed when the rotating member and the stationary part are in a thermally steady state, in other words, for example, in a rated operation state or in a stable operation state.
  • the open valve is opened as an initial state so that the pressure difference between the high-pressure part side and the low-pressure part side is kept small even when the load increases. Therefore, the movable seal ring is located on the outside, and the set distance between the fin and the opposing surface is kept large, so that both contact even if the actual distance greatly fluctuates (approaches). There is no safety.
  • the on-off valve is closed.
  • the pressure difference between the high-pressure part and the low-pressure part is large, so when the on-off valve is closed, the pressure on the high-pressure side of the seal ring suddenly increases. Will increase.
  • the pressure difference between the fluids acting on the outer peripheral surface and the inner peripheral surface of the movable seal ring suddenly increases, so that the movable seal ring overcomes the biasing force of the elastic body and moves inward.
  • the closed release valve is opened.
  • the on-off valve is opened, the pressure on the high-pressure part side of the seal ring is quickly equalized by the pressure of the high-pressure part and the pressure source connected to the adjustment flow path. The pressure is almost the same.
  • the movable seal ring reliably moves in the radial direction by opening and closing the on-off valve, so that the operation timing can be guaranteed.
  • the operation timing can be guaranteed.
  • the operation of the movable seal ring in the radial direction can be reliably controlled by opening and closing the on-off valve.
  • interval of the fin and rated surface in rated operation can be set small, for example, and a sealing performance can be improved.
  • this interval is set large, and the contact between the fin and the opposing surface can be reliably prevented, so that the reliability of the seal structure can be improved.
  • the rotating member and the stationary portion are in a thermally steady state means that the rotating member and the stationary portion are in a state where there is almost no relative positional variation in the axial direction and the radial direction.
  • This can be determined, for example, by a measurement signal from an extension meter that detects relative positional fluctuations in the axial direction of the rotating member and the stationary part and a gap sensor that detects relative positional fluctuations in the radial direction. In addition to this, it is also possible to make a judgment by combining the rotational speed, load status, temperature, pressure, and the like.
  • a control unit for controlling opening and closing of the on-off valve is provided, and the control unit is configured to close the on-off valve when the rotating member and the stationary unit are in a thermally steady state. It is preferable.
  • the control unit appropriately determines, for example, that the rotating member and the stationary unit are thermally in a steady state by using measurement results such as a differential differential meter, a gap sensor, a rotation speed, a load state, a temperature, a pressure, and the like. In some cases, the on-off valve is automatically closed.
  • an abradable coating made of an abradable material may be formed on the facing surface.
  • fever when a fin contacts can be suppressed significantly, for example.
  • interval of a fin and an opposing surface can be set so that a certain amount of contact may be permitted, the set space
  • the adjustment flow path that connects the flow path to the same pressure source as that of the low pressure section at the position on the high pressure portion side of the seal ring, and the adjustment flow path is provided with the adjustment flow path. Since the on-off valve for opening and closing the flow path is provided, the sealing performance can be improved and the reliability can be improved. Moreover, the reliability improvement and performance improvement of a rotary machine using this can be aimed at.
  • FIG. 1 is a longitudinal sectional view of a steam turbine 1 according to the present embodiment.
  • FIG. 2 is an enlarged view of a main part of FIG.
  • the steam turbine 1 includes a turbine rotor (rotary body) 3 and a casing (stationary part) 5 that accommodates the turbine rotor 3. Both ends of the turbine rotor 3 are supported so as to be rotatable with respect to the bearing base 9 via bearings 7.
  • the interior space of the compartment 5 is partitioned into a high-pressure compartment space 13 and an intermediate-pressure compartment space 15 by a high-pressure dummy ring (stationary portion) 11.
  • the high-pressure dummy ring 11 is an annular member and is fixedly attached to the inside of the passenger compartment 5.
  • a large number of blades 17 projecting radially outwards are spaced apart along the axial direction L on the peripheral surface of the turbine rotor 3 corresponding to the high-pressure casing space 13 and the intermediate-pressure casing space 15. It is installed in multiple stages.
  • a plurality of blade rings 19 are attached along the axial direction L on the inside of the casing 5 corresponding to the high-pressure casing space 13 and the medium-pressure casing space 15.
  • a plurality of stationary blades 21 projecting radially inward are attached to each blade ring 19 in a plurality along the axial direction.
  • the stationary blade 21 expands the passing steam to generate velocity energy and changes the direction of flow to make the momentum in the rotational direction.
  • the moving blade 17 absorbs steam energy converted into velocity energy by the stationary blade 21 and converts it into rotational energy of the turbine rotor 3. For this reason, the moving blades 17 and the stationary blades 21 are alternately arranged in the axial direction L.
  • the moving blade 17 and the stationary blade 21 disposed in the high-pressure casing space 13 are collectively referred to as a high-pressure stage
  • the moving blade 17 and the stationary blade 21 disposed in the intermediate-pressure casing space 15 are collectively referred to as a medium-pressure stage. is there.
  • An annular high-pressure inlet 23 is provided on the medium-pressure compartment 15 side of the high-pressure compartment 13, and an annular high-pressure outlet (one pressure source) 25 is provided on the opposite side in the axial direction.
  • An annular medium pressure inlet portion 27 is provided on the intermediate pressure vehicle compartment space 15 on the high pressure compartment space 13 side, and an annular medium pressure outlet portion 29 is provided on the opposite side in the axial direction.
  • the high-pressure inlet 23 communicates with the main steam pipe 31 and is formed so that steam supplied from a boiler (not shown) flows through the main steam pipe 31. The inflowing steam works in the high-pressure stage and is led out from the high-pressure outlet 25 through the high-pressure outlet pipe 33 as high-pressure exhaust steam.
  • the high-pressure exhaust steam is introduced into the intermediate pressure inlet portion 27 through the intermediate pressure inlet pipe 35. At this time, the high-pressure exhaust steam may be reheated by a boiler (not shown).
  • the high-pressure exhaust steam introduced into the intermediate-pressure inlet 27 performs work at the intermediate-pressure stage, and is exhausted from the intermediate-pressure outlet 29 through the intermediate-pressure exhaust pipe 37.
  • a high-pressure side steam chamber (high-pressure part) 43 into which the steam flowing from the high-pressure inlet 23 into the high-pressure stage leaks is provided on the high-pressure dummy 39 on the high-pressure compartment space 13 side.
  • An intermediate pressure side steam chamber (low pressure portion) 45 communicating with the intermediate pressure inlet portion 27 is provided on the intermediate pressure chamber space 15 side of the high pressure dummy 39.
  • the intermediate pressure side steam chamber 45 is communicated with the high pressure outlet portion 25 through a pressure equalizing pipe (connection channel) 47 and is maintained at a pressure substantially equal to the pressure of the high pressure exhaust steam at the high pressure outlet portion 25.
  • the high pressure side steam chamber 43 has a pressure substantially equal to that of the leaked steam introduced into the high pressure stage. That is, the pressure in the high-pressure side steam chamber 43 is higher than the pressure in the medium-pressure side steam chamber 45.
  • the high pressure dummy 39 includes two active clearance control seal rings (corresponding to the seal ring of the present invention, hereinafter referred to as ACC seal ring) 49 and 3 along the axial direction from the intermediate pressure steam chamber 45 side.
  • Spring back seal rings (high-pressure side seal rings) 51 are provided.
  • These two ACC seal rings 49 constitute the movable seal structure of the present invention.
  • the high pressure outlet 25 is communicated with.
  • the adjustment pipe 55 is provided with an open / close valve 57 that opens and closes the steam flow path in the adjustment pipe 55.
  • the on-off valve 57 is, for example, an electromagnetic valve, and is opened / closed according to a control signal from the on-off valve control unit (control unit) 59.
  • the spring back seal ring 51 is an annular member held on the inner peripheral surface of the high-pressure dummy ring 11.
  • the inner peripheral surface of the springback seal ring 51 is provided with a plurality of fins protruding in a ring shape, and these fins and the turbine rotor 3 form a labyrinth seal structure.
  • the spring back seal ring 51 is divided into a plurality of, for example, two pieces in the circumferential direction, and can be moved in a substantially radial direction with respect to the high-pressure dummy ring 11, that is, in a direction in contact with and away from the turbine rotor 3. .
  • a spring 61 is interposed between the spring back seal ring 51 and the high-pressure dummy ring 11 on the outer peripheral side.
  • the spring back seal ring 51 is pressed toward the turbine rotor 3 by the spring 61 so as to maintain a predetermined positional relationship.
  • the fins of the spring back seal ring 51 come into contact with the turbine rotor 3, a part of the impact is absorbed by the spring 61.
  • the ACC seal ring 49 is an annular member held on the inner peripheral surface of the high-pressure dummy ring 11.
  • the ACC seal ring 49 has a substantially rectangular cross section along the axial direction L.
  • the end faces 63 on both sides in the axial direction L of the ACC seal ring 49 are provided with fitting grooves 65 extending over substantially the entire circumference.
  • a circumferential groove 67 is provided on the inner peripheral surface of the high-pressure dummy ring 11 so as to extend over substantially the entire circumference.
  • a projecting portion 69 that projects toward the inside of the circumferential groove 67 is provided at the inner circumferential side end of the circumferential groove 67 so as to extend over substantially the entire circumference.
  • the ACC seal ring 49 is fitted into the circumferential groove 67 so that the fitting groove 65 engages with the protruding portion 69, and is held by the high-pressure dummy ring 11.
  • a plurality of fins 71 projecting in a ring shape in the circumferential direction are installed along the axial direction L at intervals.
  • the fin 71 is implanted and attached to the ACC seal ring 49.
  • the fin 71 may be formed integrally with the ACC seal ring 49 by cutting.
  • the ACC seal ring 49 is divided in the circumferential direction and includes a pair of upper and lower movable seal rings 73 and a pair of left and right fixed seal rings 75.
  • the movable seal ring 73 extends in the circumferential direction over 120 ° in the center as seen in the cross section.
  • fixed seal rings 75 are arranged in a range of 30 ° on each side from the horizontal dividing surface of the machine.
  • the mating surface 77 where the movable seal ring 73 and the fixed seal ring 75 are joined is formed as a flat surface in a substantially horizontal direction.
  • a presser plate 81 that is urged by a disc spring (elastic body) 79 is attached to the mating surface 77.
  • the presser plate 81 constantly presses the movable seal ring 73 upward or downward (in a macro direction, in a radial direction and overlaps in the radial direction at the center of the movable seal ring 73) by a disc spring.
  • the movable seal ring 73 is guided in the vertical direction by a guide member (not shown).
  • the movable seal ring 73 is provided with a communication hole 68 for communicating the portion located on the high pressure side of the high pressure dummy 39 with the circumferential groove 67.
  • An abradable layer (abradable film) 85 is formed on the peripheral surface (opposing surface) 83 of the turbine rotor 3 facing the fins 71.
  • the abradable layer 85 is formed as follows.
  • a metal component mainly containing cobalt, nickel, chromium, aluminum, yttrium (CoNiCrAlY), containing boron nitride (h-BN) as a solid lubricant and polyester for controlling porosity is used. Then, it is sprayed by using atmospheric pressure plasma spraying (APS: Atmospheric Plasma Spraying).
  • the polyester contained in the abradable layer 85 disappears. Thereby, since the abradable layer 85 becomes a porous structure, the hardness of the abradable layer can be reduced and the amount of heat generated by sliding when contacting the fins 71 can be reduced.
  • the polyester content By adjusting the polyester content, the hardness and porosity of the abradable layer 85 can be adjusted. It is desirable to adjust the polyester content so that the hardness is, for example, 300 Hv or less and the porosity is, for example, 40% or more.
  • the high-pressure dummy 39 includes an extensometer that measures the relative positional relationship between the high-pressure dummy ring 11 and the turbine rotor 3 in the axial direction L and a gap sensor that measures the relative positional relationship in the radial direction K. It has been. If the measurement result of the gap sensor is used, the distance between the tip of the fin 71 and the peripheral surface of the turbine rotor 3 can be calculated.
  • the adjustment control unit 59 receives the measurement results of the differential differential meter and the gap sensor, and the information on the rotation speed of the turbine rotor 3 and the load status of the steam turbine 1 from the operation control unit that controls the operation of the steam turbine 1. A function for determining whether the ring 11 and the turbine rotor 3 are in a thermally steady state is provided. The adjustment control unit 59 controls the opening / closing of the on-off valve 57 based on the result.
  • the thermally steady state means that the high-pressure dummy ring 11 and the turbine rotor 3 are in a state where there is almost no relative position fluctuation in the axial direction L and the radial direction K.
  • the adjustment control unit 59 determines whether the high-pressure dummy ring 11 and the turbine rotor 3 are in a thermally steady state, the measurement results of the differential differential meter and the gap sensor, the rotational speed of the turbine rotor 3 and the steam
  • information on the load status of the turbine 1 is used, a part of this information may be used. Further, information such as the temperature and pressure of the inside of the passenger compartment 5 or the high temperature dummy 39 may be used.
  • each part of the steam turbine 1 thermally expands in the axial direction L and the radial direction K depending on the amount of heat of the steam.
  • each part has a different thermal expansion state, that is, there is a slow speed, the thermal expansion of each part is Until stable, the relative positions in the axial direction L and the radial direction K between the respective parts continue to change.
  • 6 is a plot of the amount by which the gap (displacement in the radial direction) between the high-pressure dummy ring 11 and the turbine rotor 3 changes depending on the load.
  • the pressure P1 of the high pressure side steam chamber 43 gradually increases.
  • the pressure P3 in the intermediate pressure side steam chamber 45 is equalized to the pressure of the high pressure exhaust steam in the high pressure outlet 25.
  • the pressure of the intermediate pressure side steam chamber 45 also increases. Since the pressure P1 of the high-pressure side steam chamber 43 is substantially the same as the pressure of the steam introduced into the high-pressure inlet 23, the pressure P1 of the medium-pressure side steam chamber 45 is substantially equal to the pressure of the high-pressure outlet 25.
  • the adjustment control unit 59 opens the on-off valve 57 so that the adjustment unit 53 of the high-pressure dummy 39 and the high-pressure outlet 25 are in communication. Therefore, the adjustment unit 53 is mixed with the steam in the high-pressure side steam chamber 43, which has been subjected to pressure loss by the three springback seal rings 51, and the steam in the high-pressure outlet unit 25.
  • the pressure P2 is equalized. For this reason, the pressure P ⁇ b> 2 of the adjustment unit 53 is substantially equal to the pressure of the high-pressure outlet unit 25 even when the vapor pressure of the high-pressure side steam chamber 43 increases. Therefore, the pressure P ⁇ b> 2 of the adjusting unit 53 is not so different from the pressure P ⁇ b> 3 of the intermediate pressure side steam chamber 45.
  • the pressure of the steam passing through the lower part acts on the inner peripheral surface of the movable seal ring 73 and tries to move the movable seal ring 73 outward in the radial direction.
  • the pressure of the steam flowing in through the clearance between the high-pressure side surface 63 and the high-pressure dummy ring 11 and the communication hole 68, that is, the pressure P2 of the adjusting portion 53 acts on the outer peripheral surface of the movable seal ring 73. An attempt is made to move the seal ring 73 radially inward.
  • the pressure of the steam passing through the lower part of the inner peripheral surface of the movable seal ring 73 is subjected to pressure loss by the fins 71, and thus gradually becomes lower than the pressure P2 of the adjusting unit 53 as it progresses. For this reason, the pressure which acts on an outer peripheral surface becomes larger than that of an inner peripheral surface. Since this differential pressure increases as the differential pressure between the pressure P2 of the adjusting portion 53 and the pressure P3 of the intermediate pressure side steam chamber 45 (pressure at the outlet of the movable seal ring 73) increases, the movable seal ring 73 The urging force is overcome and moved inward in the radial direction K.
  • the pressure P2 of the adjusting unit 53 and the pressure P3 of the intermediate pressure side steam chamber 45 are substantially equal, so the pressure difference (differential pressure) between the steam acting on the outer peripheral surface and the inner peripheral surface of the movable seal ring 73 is small. Therefore, the movable seal ring 73 is positioned outward by the biasing force of the disc spring 79, that is, at a position where the lower surface of the circumferential groove 65 contacts the lower surface of the protrusion 69. Thereby, since the set interval between the fin 71 and the peripheral surface 83 is maintained in a large state, the interval between the fin 71 and the opposed surface at the time of activation should be set with a margin with respect to the rapid approach. Therefore, contact between the fin 71 and the peripheral surface 83 can be prevented.
  • FIG. 5 shows a control flow of the adjustment control unit 59.
  • the adjustment control unit 59 starts control (step S1).
  • the adjustment control unit 59 receives the measurement results of the differential differential meter and the gap sensor, and the information on the rotation speed of the turbine rotor 3 and the load status of the steam turbine 1 from the operation control unit that controls the operation of the steam turbine 1. It is determined whether the ring 11 and the turbine rotor 3 are in a thermally steady state (step S2).
  • the adjustment control unit 59 determines that the high-pressure dummy ring 11 and the turbine rotor 3 are in a state in which there is almost no relative positional variation in the axial direction L and the radial direction K, the adjustment control unit 59 determines that the thermal control is in a steady state.
  • the adjustment control unit 59 determines that the thermal steady state is present, the adjustment control unit 59 instructs the on-off valve 57 to provide a closing signal (step S3).
  • the closing signal is transmitted, the on-off valve 57 is closed if it is open, and if it is already closed, that state is maintained.
  • the adjustment control unit 59 determines that it is not thermally in a steady state, it instructs the open / close valve 57 to provide an open signal (step S4).
  • the opening signal is transmitted, the on-off valve 57 is opened if it is closed, and if it is already opened, that state is maintained.
  • the high-pressure dummy ring 11 and the turbine rotor 3 are in a thermally steady state (for example, the point T on the one-dot chain line C in FIG. 6). Therefore, even if the load increases, the distance between the high-pressure dummy ring 11 and the turbine rotor 3 does not change.)
  • the adjustment control unit 59 detects this and instructs the opening / closing valve 57 to provide a closing signal. As a result, the on-off valve 57 is closed, and the adjustment pipe 55 cuts off the communication between the high-pressure outlet portion 25 and the adjustment portion 53.
  • the pressure of the high pressure outlet portion 25 does not act on the adjustment portion 53. Therefore, the pressure P2 of the adjustment portion 53 is set to three springback seals. The pressure in the high-pressure side steam chamber 43 lost by the ring 51 is quickly increased.
  • the pressure P1 of the high-pressure side steam chamber 43 is in the rated operation state, the pressure is higher than the pressure of the high-pressure exhaust steam, that is, the pressure P2 of the intermediate-pressure side steam chamber 45.
  • the pressure difference between the fluids acting on the outer peripheral surface and the inner peripheral surface of the movable seal ring 73 increases until the biasing force of the disc spring 79 is overcome. Will move inward. Therefore, the movable seal ring 73 is positioned inward, that is, a position where the upper surface of the circumferential groove 65 contacts the upper surface of the protrusion 69, that is, an inner end of the movement range.
  • the distance between the fin 71 formed by the movement of the movable seal ring 73 in the radial direction in the present embodiment and the peripheral surface 83 of the turbine rotor 3 is set.
  • the change in spacing is indicated by a thick line A.
  • a change in the distance between the high-pressure dummy ring 11 and the turbine rotor 3 is indicated by a one-dot chain line C. Since the set interval between the seal fin 71 that does not use the movable seal ring 73 and the peripheral surface 83 of the turbine rotor 3 is constant, a solid line B is obtained.
  • a change in the set interval between the fin 71 and the peripheral surface 83 of the turbine rotor 3 that does not include the adjustment pipe 55 and the on-off valve 57 described in the background art is indicated by a two-dot chain line E. ing.
  • the difference between the thick line A, the solid line B, the two-dot chain line E, and the one-dot chain line C is the distance between the peripheral surface 83 of the actual turbine rotor 3 and the fins 71.
  • the difference D1 between the thick line A and the two-dot chain line E and the one-dot chain line C becomes smaller than the difference D2 between the solid line B and the one-dot chain line C at a load larger than the point T which is the rated operation, and the sealing performance during the rated operation. Has improved.
  • the abradable layer 85 is formed on the peripheral surface 83 (facing the fins 71) of the turbine rotor 3, for example, heat generation when the fins 71 come into contact can be significantly suppressed. it can. For this reason, since the space
  • the adjustment control unit 59 When stopping the operation of the steam turbine 1 during the rated operation in which the on-off valve 57 is closed, the adjustment control unit 59 performs processing according to the flow of FIG. That is, it is determined whether the high-pressure dummy ring 11 and the turbine rotor 3 are in a thermally steady state. When it is detected that the high-pressure dummy ring 11 and the turbine rotor 3 are in an unsteady state, an open signal is instructed to the on-off valve 57. Thereby, the on-off valve 57 is opened, and the adjustment part 53 of the high-pressure dummy 39 and the high-pressure outlet part 25 are communicated.
  • the adjustment unit 53 is mixed with the steam in the high-pressure side steam chamber 43, which has been subjected to pressure loss by the three springback seal rings 51, and the steam in the high-pressure outlet unit 25.
  • the pressure P2 is equalized.
  • the pressure P ⁇ b> 2 of the adjusting unit 53 is not so different from the pressure P ⁇ b> 3 of the intermediate pressure side steam chamber 45.
  • the pressure difference between the steam acting on the outer peripheral surface and the inner peripheral surface of the movable seal ring 73 is reduced, so that the movable seal ring 73 is moved radially outward by the biasing force of the disc spring 79.
  • the fluctuation of the pressure of the adjusting portion 53 is large and abrupt, so that the fluctuation of the force acting in the radial direction of the movable seal ring 73 is increased accordingly.
  • the movable seal ring 73 can smoothly move in the radial direction without being affected by a large frictional force applied between the side surface 63 and the high-pressure dummy ring 11, so that the operation timing can be guaranteed.
  • the operation of the movable seal ring in the radial direction can be reliably controlled by opening and closing the on-off valve.
  • interval of the fin and rated surface in rated operation can be set small, for example, and a sealing performance can be improved.
  • this interval is set large, and the contact between the fin and the opposing surface can be reliably prevented, so that the reliability of the seal structure can be improved.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably. That is, in this embodiment, the ACC seal ring 49 is provided in two stages in the axial direction, but this may be one stage or three or more stages. Moreover, although the adjustment part 53 is installed between the ACC seal ring 49 and the spring back seal ring 51, it may be installed at an intermediate position between the plurality of spring back seal rings 51. Furthermore, although the springback seal ring 51 is used as the pressure loss member, the present invention is not limited to this, and any appropriate means can be used.
  • the peripheral surface 83 of the turbine rotor 3 is a smooth surface.
  • irregularities are formed along the axial direction L, and the length of the fins 71 is adjusted accordingly. You may make it adjust. In this way, since the passing steam moves in a zigzag manner, the sealing performance can be improved even at the same interval. Further, the abradable layer 85 may not be used.
  • the fins 71 are provided on the ACC seal ring 49 side, but may be provided on the turbine rotor 3 side as shown in FIG.
  • the fins 72 are integrated with the turbine rotor 3 and are formed by cutting, for example, but separate fins 72 may be implanted in the turbine rotor 3.
  • the ACC seal ring 49 is formed with irregularities along the axial direction L, and the length of the fin 72 is adjusted accordingly.
  • An abradable layer 87 is formed on the inner peripheral surface of the ACC seal ring 49.
  • the seal structure of the high-pressure dummy 39 is applied.
  • the seal structure of the grant G (see FIG. 1) that seals with the atmosphere, the tip 17 of the rotor blade 17 or the stationary blade 21 (see FIG. 2). ) May be applied to the seal structure.
  • the present invention can be applied not only to a steam turbine but also to a sealing structure of a rotary machine such as a gas turbine or a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)

Abstract

可動シールリングの動作を能動的に制御でき、シール性能を向上させ、信頼性を向上させ得るシール構造を提供する。高圧部と低圧部を仕切るシール構造(41)であって、高圧側にスプリングバックシールリング(51)を有し、低圧側にACCシールリング(49)と、フィン(71)とを有し、ACCシールリング(49)の一部は略半径方向に移動可能な可動シールリング(73)であり、フィン(71)および周面(83)によって高圧側蒸気室(43)と中圧側蒸気室(45)との間を仕切る調整可能な可動シールリング(73)を有し、調整可能な可動シールリング(73)の低圧側に高圧出口部(25)に接続させる均圧配管(47)を有し、ACCシールリング(49)の高圧側蒸気室(43)側で、高圧ダミー(39)を中圧側蒸気室(45)と同じ高圧出口部(25)に接続させる調整配管(55)と、調整配管(55)中の開閉弁(57)と、が備えられる。

Description

回転機械のシール構造
 本発明は、回転機械の回転軸部に用いられるシール構造に関するものである。
 蒸気タービン、ガスタービン、圧縮機等の回転機械では、回転軸部のシール構造として、いわゆる、ラビリンスシール構造が広く用いられている。
 ラビリンスシール構造は、回転軸あるいはこれと対向する静止部に、リング状に突出し、軸線方向に沿って複数段設けられたフィンと、このフィンと対向する面(対向面)とで構成されている。
 シール性能、言い換えると回転機械の性能は、フィンの数およびフィンと対向面との間隔で決定されるので、回転機械の性能を向上させるには、フィンと対向面との間隔を低減することが求められている。
 回転機械では、一般に定格回転速度域で回転軸が静定回転するように設計されているので、起動後間もなく回転速度が上昇中に回転軸の振動レベルが最大になる速度域(以下これを危険速度域と呼ぶ)が存在する。回転軸はこの危険速度域を経て定格回転速度域(定格運転)に達することになる。
 また、たとえば、蒸気タービン等の高温の蒸気を扱うものでは、起動後に導入された高温の蒸気によって回転軸および静止部が熱膨張するが、当初は各部における温度ムラが大きいため、回転軸および静止部の熱伸びに部分的に差異ができる。これにより、回転軸および静止部が軸線方向および半径方向において相対的に移動するので、フィンと対向面との間隔が小さくなりフィンが対向面に接触する恐れがある。フィンが対向面に接触すると、フィンおよび対向面が磨耗し、定格運転時のフィンと対向面との設定された間隔が初期設定よりも大きくなるので、その分シール性能が劣化する。
 フィンと対向面との間隔は、この危険速度域における振動レベルでもフィンが対向面本体と接触しないように設定されるため、定格運転時における間隔をあまり小さくすることができなかった。
 これに対し、たとえば、特許文献1に記載されているように、起動・停止時と定格運転時とでフィンと対向面との間の設定された間隔を異ならせ、すなわち、起動・停止時には間隔を大きくして安全性を確保し、定格運転時では間隔を小さくしてシール性能を向上させるものが用いられている。
 これは、静止部に取り付けられフィンを備えたシールリングの一部が、半径方向に移動可能とされるとともに弾性体によって常時外方に付勢される可動シールリングとされている。また、可動シールリングの内周面は通過する作動流体から外方に向かう圧力を受けている。この圧力は低圧部側に向かうに伴い除々に小さくなる。可動シールリングの外周面には高圧部の作動流体が流入し、可動シールリングはその圧力によって内方に向かい押圧されている。
 起動・停止時のように負荷が小さく高圧部と低圧部との圧力差が小さい時期では、可動シールリングの外周面と内周面とに作用する作動流体の圧力差が大きくないので、弾性体の付勢力によって可動シールリングは外方に位置させられる。すなわち、フィンと対向面との間の設定された間隔は大きな状態を維持することになる。
 蒸気タービンの負荷が上がるとそれに応じて可動シールリングの外周面と内周面とに作用する作動流体の圧力差が大きくなるので、弾性体の付勢力に打ち勝って可動シールリングは内方に移動することになる。そして、負荷が大きくなるに伴い、可動シールリングは移動範囲の内方端まで移動する。言い換えると、フィンと対向面との間の設定された間隔は小さな状態を維持することになる。
 また、対向面に接触時の発熱が小さいアブレーダブル材の皮膜を形成したシール構造も用いられている。これは、皮膜によって万一の接触時の影響を緩和できるので、フィンと対向面との間の間隔をさらに小さくし、シール性能を向上させることができる。
特開2000-97352号公報
 特許文献1に示されるものでは、可動シールリングは運転に伴い発生する高圧部と低圧部との圧力差によって半径方向位置、すなわち、フィンと対向面との間の間隔が自動的に調整されるが、このとき可動シールリングの低圧部側側面は、高圧部の圧力によって静止部に押圧されることになる。このため、可動シールリングが半径方向に移動する際、この低圧部側側面と静止部との間に摩擦力が作用するので、摺動する面の性状で決まる摩擦係数によって可動シールリングの動作範囲にばらつきが発生し、所定の動作タイミングを保証できない。この影響は、特許文献1のように徐々に差圧が増減するものでは大きくなる。
 また、定格運転中において最大の押圧力を受けるので、低圧部側側面と静止部との間の静止摩擦力は最大となる。このため、特に、負荷降下時において可動シールリングの動作タイミングが安定せず、ヒステリシスが発生する。これにより、たとえば、フィンおよび対向面の間隔が急速に接近する急激な蒸気温度降下現象を伴う負荷降下の場合に、可動シールリングの半径方向外方への退避が遅れ、フィンと対向面とが接触する恐れがある。
 フィンと対向面とは、上述のように軸線方向にも相対移動するが、その移動中に両者が接触するとフィンが損傷する恐れが大きくなる。
 また、アブレーダブル材の皮膜を用いてフィンと対向面との間の間隔を小さくしているものでは、この接触により皮膜が面上に削り取られることとなり、シール性能の劣化につながる。
 本発明は、上記課題に鑑み、可動シールリングの動作を能動的に制御でき、シール性能を向上させるとともに信頼性を向上させ得るシール構造およびこれを用いた回転機械を提供するものである。
 上記課題を解決するために、本発明は以下の手段を採用する。
 すなわち、本発明の一態様は、高圧部と低圧部を仕切るシール構造であって、その高圧側には回転部材の周面に対向するように静止部に保持された少なくとも1段の高圧側シールリングを有し、その低圧側には回転部材の周面に対向するように静止部に保持された少なくとも1段のシールリングと、該シールリングおよび前記回転部材の少なくとも一方にリング状に突出するフィンとを有し、前記シールリングは周方向の少なくとも一部が略半径方向に移動可能で、弾性体によって外側に向けて付勢されている可動シールリングであり、前記フィンおよび前記フィンに対向する対向面によって高圧部と低圧部との間を仕切る調整可能な可動シールリングを有し、該調整可能な可動シールリングの低圧側には一の圧力源に接続させる接続流路を有し、該調整可能な可動シールリングの高圧部側には前記低圧側と同じ一の圧力源に接続させる調整流路と、該調整流路に設けられ、該調整流路を開閉する開閉弁と、が備えられている回転機械のシール構造である。
 本態様によれば、可動シールリングは、略半径方向に移動可能で、弾性体によって外側に向けて付勢されている。一方、可動シールリングの内周面および外周面には、通過する流体から圧力が作用し、それぞれ外方に向かう力および内方へ向かう力となっている。内周面に作用する流体の圧力は低圧部側に向かうに伴い除々に小さくなるが、外周面に作用する流体の圧力は高圧部、すなわち、シールリングの高圧部側の圧力であるので、外周面に作用する力が内周面に作用する力よりも大きくなる。
 起動・停止時のように負荷が小さく高圧部と低圧部との圧力差が小さい時期では、可動シールリングの外周面と内周面とに作用する流体の圧力差が大きくないので、弾性体の付勢力によって可動シールリングは外方に位置させられる。したがって、フィンと対向面との間の設定された間隔は大きな状態が維持されるので、起動・停止時のフィンと対向面との急激な接近に対して余裕を持った間隔に設定することによってフィンと対向面との接触を防止できる。
 負荷が上がるとそれに応じて可動シールリングの外周面と内周面とに作用する流体の圧力差が大きくなるので、弾性体の付勢力に打ち勝って可動シールリングは内方に移動することになる。そして、負荷が大きくなるに伴い、可動シールリングは移動範囲の内方端まで移動する。したがって、フィンと対向面との間の設定された間隔は小さな状態が維持されるので、これを小さく設定することによってシール性能を向上させることができる。
 本態様によれば、シールリングの高圧部側の位置で、流路を低圧部と同じ圧力源に接続させる調整流路と、該調整流路に設けられ、該調整流路を開閉する開閉弁と、が備えられているので、開閉弁を開放するとシールリングの高圧部側の圧力は、高圧側シールリングによってある程度低下された高圧部の圧力と調整流路が接続する圧力源の圧力とで均圧される。調整流路は低圧部と同じ一の圧力源に接続されているので、シールリングの低圧部側の圧力と略同等の圧力となる。すなわち、シールリングの前後差圧が小さくなる。
 このように高圧部側と低圧部側との圧力差が小さいと、可動シールリングの外周面と内周面とに作用する流体の圧力差が小さくなるので、弾性体の付勢力によって可動シールリングは外方に位置させられる。したがって、フィンと対向面との間の設定された間隔は大きな状態が維持される。
 開閉弁を開放すると、調整流路の圧力が低下しても高圧側シールリングがあるので、この圧力低下が高圧部へ直接伝播せず、高圧部の圧力低下に伴う不具合を抑制することができる。
 一方、開閉弁を閉鎖すると、低圧部と同じ圧力源に接続されている調整流路が遮断されるので、シールリングの高圧部側の圧力はそのままシールリングに作用することになる。したがって、シールリングの高圧側の圧力の大きさによって可動シールリングは上述のようにシールリングの高圧部側の圧力に対応して外方に位置させられたり、内方に位置させられたりする。
 たとえば、起動・停止時のように、フィンと対向面との間隔および軸線方向の位置関係が不安定な状態の時には、開閉弁を開放しておくと、たとえ、高圧部と低圧部との間に大きな圧力差あったとしても可動シールリングを略半径方向の外側に位置させておくことができる。
 開閉弁は、回転部材および静止部が熱的に定常状態である、言い換えれば、たとえば、定格運転状態である、あるいは、運転が安定した状態である、時に閉鎖されているようにすることが望ましい。
 たとえば、起動時には、初期状態として開放弁は開放され、負荷が大きくなっても高圧部側と低圧部側との圧力差が小さい状態を維持するようにされている。したがって、可動シールリングは外方に位置し、フィンと対向面との間の設定された間隔は大きな状態が維持されるので、実際の間隔が大きく変動(接近)しても両者が接触することはなく安全である。
 そして、回転部材および静止部が熱的に定常状態となったことを確認し、開閉弁は閉鎖される。このように回転部材および静止部が熱的に定常状態である時には、高圧部と低圧部との間の圧力差が大きいので、開閉弁が閉鎖されると、シールリングの高圧側の圧力が急激に高まることになる。これにより可動シールリングの外周面と内周面とに作用する流体の圧力差が急激に大きくなるので、可動シールリングは弾性体の付勢力に打ち勝って内方に移動することになる。
 また、停止時には、回転部材および静止部が熱的に定常状態である時に、閉鎖されている開放弁は開放される。開閉弁が開放されると、シールリングの高圧部側の圧力は、高圧部の圧力と調整流路が接続する圧力源の圧力とで速やかに均圧され、シールリングの低圧部側の圧力と略同等の圧力となる。
 これにより可動シールリングの外周面と内周面とに作用する流体の圧力差が小さくなるので、弾性体の付勢力によって可動シールリングは外方に位置させられる。
 このように、回転部材および静止部が熱的に定常状態である時に開閉弁は閉鎖されているようにすると、開放あるいは閉鎖した際におけるシールリングの高圧部側の圧力の変動が大きく、かつ、急激となるので、可動シールリングの半径方向に作用する力が大きくなる。このため、可動シールリングはその側面と静止部との摩擦力に影響されずスムーズに半径方向に移動することができる。言い換えると、可動シールリングは開閉弁の開閉によって確実に半径方向に移動するので、動作タイミングを保証することができる。
 これにより、たとえば、フィンおよび対向面の間隔が急速に接近する急激な蒸気温度降下現象を伴う負荷降下の場合にも、可動シールリングの半径方向外方への退避が遅れることを抑制できるので、フィンと対向面とが接触する恐れを抑制することができる。
 このように、開閉弁の開閉により可動シールリングの半径方向への動作を確実に制御できる。これにより、たとえば、定格運転中のフィンと対向面との間隔を小さく設定することができ、シール性能を向上できる。また、たとえば、起動・停止時にはこの間隔を大きく設定し、フィンと対向面との接触を確実に防止できるので、シール構造の信頼性を向上させることができる。
 なお、回転部材および静止部が熱的に定常状態であるとは、回転部材および静止部が軸線方向および半径方向において相対的な位置変動がほとんどない状態であることをいう。
 これは、たとえば、回転部材および静止部の軸線方向の相対的な位置変動を検出する伸び差計および半径方向の相対的な位置変動を検出するギャップセンサからの計測信号によって判断することができる。また、これに加えて、回転数、負荷状況、温度、圧力等を合わせて判断することもできる。
 上記態様において、前記開閉弁の開閉を制御する制御部が備えられ、該制御部は前記回転部材および前記静止部が熱的に定常状態であるときに前記開閉弁を閉鎖するようにされていることが好ましい。
 制御部は、たとえば、伸び差計、ギャップセンサ、回転数、負荷状況、温度、圧力等の計測結果を適宜用い回転部材および静止部が熱的に定常状態にあることを判定し、定常状態のときは開閉弁を自動的に閉鎖するようにする。
 上記態様において、前記対向面に、アブレーダブル材によって構成されたアブレーダブル皮膜が形成されているようにしてもよい。
 このように、対向面に、アブレーダブル材によって構成されたアブレーダブル皮膜が形成されているので、たとえば、フィンが接触した場合の発熱を大幅に抑制することができる。このため、フィンと対向面との間隔をある程度の接触を許容するように設定することができるので、フィンと対向面との間の設定された間隔をさらに小さくし、シール性能を向上させることができる。
 本発明にかかる回転機械のシール構造によれば、シールリングの高圧部側の位置で、流路を低圧部と同じ圧力源に接続させる調整流路と、該調整流路に設けられ、該調整流路を開閉する開閉弁と、が備えられているので、シール性能を向上できるとともに信頼性を向上させることができる。
 また、これを用いた回転機械の信頼性向上および性能向上を図ることができる。
本発明の一実施形態にかかる蒸気タービンの縦断面図である。 図1の部分拡大図である。 本発明の一実施形態にかかる可動シールリングの軸線に沿う断面図である。 本発明の一実施形態にかかるACCシールリングの概略旺盛を示す側面図である。 本発明の一実施形態にかかる調整制御部の処理を示すフロー図である。 本発明の一実施形態にかかる間隔の変化を従来のものと対比して示すグラフである。 本発明の一実施形態にかかる可動シールリングの別の実施態様を示す軸線に沿う断面図である。 本発明の一実施形態にかかる可動シールリングの別の実施態様を示す軸線に沿う断面図である。
1 蒸気タービン
3 タービンロータ
5 車室
11 高圧ダミー環
25 高圧出口部
39 高圧ダミー
41 シール構造
43 高圧側蒸気室
45 中圧側蒸気室
47 均圧配管
49 アクティブクリアランスコントロール(ACC)シールリング
51 スプリングバックシールリング
53 調整部
55 調整配管
57 開閉弁
59 調整制御部
71 フィン
73 可動シールリング
79 皿ばね
83 周面
85 アブレーダブル層
K 半径方向
L 軸線方向
 以下、本発明の一実施形態にかかるシール構造を備えた蒸気タービン1について、図1~図7を参照して説明する。この蒸気タービン1は高中圧一体型蒸気タービンと称されるものである。
 図1は、本実施形態にかかる蒸気タービン1の縦断面図である。図2は、図1の要部拡大図である。
 蒸気タービン1には、タービンロータ(回転体)3と、このタービンロータ3を収容する車室(静止部)5とが備えられている。
 タービンロータ3は、両端部が軸受7を介して軸受台9に対して回転可能に支持されている。
 車室5の内部空間は、高圧ダミー環(静止部)11によって高圧車室空間13と中圧車室空間15とに仕切られている。高圧ダミー環11は環状の部材で、車室5の内側に固定して取り付けられている。
 高圧車室空間13および中圧車室空間15に対応する部分のタービンロータ3の周面には、外方に向けて放射状に突出する多数の動翼17が、軸線方向Lに沿って間隔を空けて複数段取り付けられている。
 高圧車室空間13および中圧車室空間15に対応する部分の車室5の内側には、それぞれ翼環19が軸線方向Lに沿って複数取り付けられている。
 各翼環19には、内方に向けて放射状に突出する多数の静翼21が、軸線方向に沿って間隔を空けて複数取り付けられている。
 静翼21は、通過する蒸気を膨張させ速度エネルギーを発生させるとともに流れの向きを変えて回転方向の運動量とするものである。
 動翼17は、静翼21で速度エネルギーに変換された蒸気のエネルギーを吸収してタービンロータ3の回転エネルギーに変換するものである。
 このため、動翼17と静翼21とは、軸線方向Lにそれぞれ交互に配置されている。以下、高圧車室空間13に配置された動翼17および静翼21を高圧段と、中圧車室空間15に配置された動翼17および静翼21を中圧段と、総称することもある。
 高圧車室空間13の中圧車室空間15側には、環状の高圧入口部23が、軸線方向反対側には、環状の高圧出口部(一の圧力源)25が備えられている。
 中圧車室空間15の高圧車室空間13側には、環状の中圧入口部27が、軸線方向反対側には、環状の中圧出口部29が備えられている。
 高圧入口部23は、主蒸気管31と連通し、図示しないボイラから供給される蒸気が主蒸気管31を通って流入するように形成されている。流入した蒸気は高圧段で仕事をし、高圧排気蒸気として高圧出口部25から高圧出口配管33を通って導出される。この高圧排気蒸気は、中圧入口配管35を通って中圧入口部27へ導入される。
 このとき、高圧排気蒸気は図示しないボイラによって再加熱されるようにしてもよい。
 中圧入口部27へ導入された高圧排気蒸気は、中圧段で仕事をし、中圧出口部29から中圧排気配管37を通って排気される。
 次に、高圧ダミー環11とタービンロータ3との間隙である高圧ダミー39のシール構造41について説明する。
 高圧ダミー39の高圧車室空間13側には、高圧入口部23から高圧段へ流入する蒸気が漏れて流入する高圧側蒸気室(高圧部)43が設けられている。高圧ダミー39の中圧車室空間15側には、中圧入口部27と連通している中圧側蒸気室(低圧部)45が設けられている。
 中圧側蒸気室45は、均圧配管(接続流路)47によって高圧出口部25と連通され、高圧出口部25の高圧排気蒸気の圧力と略同等の圧力に維持されている。一方、高圧側蒸気室43は、高圧段に導入される蒸気の漏れたものであるので、それと略等しい圧力を有している。
 すなわち、高圧側蒸気室43の圧力の方が中圧側蒸気室45の圧力よりも高くなる。
 高圧ダミー39には、中圧蒸気室45側から軸線方向に沿って、2個のアクティブクリアランスコントロールシールリング(本発明のシールリングに相当する。以下、ACCシールリングと言う。)49と、3個のスプリングバックシールリング(高圧側シールリング)51と、が備えられている。
 この2個のACCシールリング49が本発明の可動シール構造を構成する。
 高圧ダミー39におけるACCシールリング49とスプリングバックシールリング51との間、言い換えると、ACCシールリング49の高圧側蒸気室43側、に位置する調整部53は、調整配管(調整流路)55によって高圧出口部25と連通されている。
 調整配管55には、調整配管55内の蒸気流路を開閉する開閉弁57が備えられている。開閉弁57は、たとえば、電磁弁とされ、開閉弁制御部(制御部)59からの制御信号に応じて開閉される。
 スプリングバックシールリング51は、高圧ダミー環11の内周面に保持された環状部材である。
 スプリングバックシールリング51の内周面には、リング状に突出した複数のフィンが備えられ、これらフィンとタービンロータ3とがラビリンスシール構造を形成する。
 スプリングバックシールリング51は、周方向に複数、たとえば、2個に分割され、それぞれ、高圧ダミー環11に略半径方向、すなわち、タービンロータ3に対して接離する方向に移動可能とされている。
 スプリングバックシールリング51の外周側には、高圧ダミー環11との間にスプリング61が介装されている。スプリングバックシールリング51はこのスプリング61によってタービンロータ3側に押圧され、所定の位置関係を保持するようにされている。
 スプリングバックシールリング51のフィンが、万一タービンロータ3に接触した時には、その衝撃の一部はスプリング61に吸収される。
 次に、ACCシールリング49について、図3および図4を用いて説明する。
 ACCシールリング49は、高圧ダミー環11の内周面に保持された環状部材である。
 ACCシールリング49は、軸線方向Lに沿った断面が略矩形状をしている。ACCシールリング49の軸線方向Lにおける両側の端面63には、略全周に亘り延在する嵌合溝65が設けられている。
 高圧ダミー環11の内周面には、周溝67が略全周に亘り延在するように設けられている。周溝67の内周側端部には、周溝67の内側に向けて突出する突出部69が略全周に亘り延在するように設けられている。
 ACCシールリング49は、嵌合溝65が突出部69に係合するようにして周溝67に嵌合され、高圧ダミー環11に保持されている。
 ACCシールリング49の内周面には、周方向にリング状に突出した複数のフィン71が軸線方向Lに沿って間隔を空けて設置されている。フィン71は、ACCシールリング49に植え込まれて取り付けられている。
 なお、フィン71は、ACCシールリング49と一体で、削り出しによって形成されるようにしてもよい。
 ACCシールリング49は、図4に示されるように、周方向に分割されており、上下一対の可動シールリング73と左右一対の固定シールリング75とで構成されている。
 可動シールリング73は、横断面で見てその中央位置に周方向120°に亘って延びている。その両端には、機械の水平分割面から両側各30°の範囲で固定シールリング75が配置されている。
 可動シールリング73と固定シールリング75とが接合する合せ面77は、略水平方向に平坦な面で形成されている。合せ面77には、図4に示されるように、固定シールリングに皿ばね(弾性体)79で付勢される押え板81が装着されている。押え板81は、皿ばねによって可動シールリング73を上方向あるいは下方向(マクロ的には半径方向であり、可動シールリング73の中央では半径方向に重なる)に常時押圧している。可動シールリング73は図示しない案内部材によって上下方向に案内されるようになっている。
 可動シールリング73には、高圧ダミー39の高圧側に位置する部分と周溝67とを連通させる連通孔68が備えられている。
 フィン71に対向するタービンロータ3の周面(対向面)83には、アブレーダブル層(アブレーダブル皮膜)85が形成されている。
 アブレーダブル層85は、次のように形成される。
 アブレーダブル材として、コバルト、ニッケル、クロム、アルミニウム、イットリウム(CoNiCrAlY)を含む金属成分を主体とし、固体潤滑材としての窒化ホウ素(h-BN)および気孔率制御のためのポリエステルを含有したものを用い、それを大気圧プラズマ溶射(APS:Atmosphric Plasma Spraying)を用いて溶射する。
 その後、500~650℃で加熱処理を行う。この熱量によってアブレーダブル層85に含まれるポリエステルが消失する。
 これによりアブレーダブル層85は多孔質組織となるので、アブレーダブル層の硬度を低減させることができるとともにフィン71と接触した際の摺動発熱量を低減することができる。
 ポリエステルの含有率を調節することによって、アブレーダブル層85の硬度および気孔率を調節することができる。硬度は、たとえば、300Hv以下に、気孔率は、たとえば、40%以上になるようにポリエステルの含有率を調節するのが望ましい。
 高圧ダミー39部には、高圧ダミー環11とタービンロータ3との間の軸線方向Lにおける相対的な位置関係を計測する伸び計および半径方向Kにおける相対的な位置関係を計測するギャップセンサが備えられている。ギャップセンサの計測結果を用いるとフィン71の先端部とタービンロータ3の周面との間隔が算出できる。
 調整制御部59は、伸び差計およびギャップセンサの計測結果、ならびに蒸気タービン1の運転を制御する運転制御部からのタービンロータ3の回転数および蒸気タービン1の負荷状況の情報を受け取り、高圧ダミー環11とタービンロータ3とが熱的に定常状態にあるかを判定する機能を備えている。調整制御部59は、その結果によって、開閉弁57の開閉を制御する。
 なお、熱的に定常状態とは、高圧ダミー環11とタービンロータ3とが軸線方向Lおよび半径方向Kにおいて相対的な位置変動がほとんどない状態であることをいう。
 ここでは、調整制御部59は、高圧ダミー環11とタービンロータ3とが熱的に定常状態にあるかを判定するに際して、伸び差計およびギャップセンサの計測結果ならびにタービンロータ3の回転数および蒸気タービン1の負荷状況の情報を用いるようにしているが、この一部の情報を用いるようにしてもよい。また、車室5内あるいは高温ダミー39の温度、圧力等の情報を用いるようにしてもよい。
 以上のように構成されるシール構造41の動作について説明する。
 蒸気タービン1が起動されると、主蒸気管31から蒸気が導入され、流入した蒸気は高圧段で仕事をし、高圧排気蒸気として高圧出口部25から高圧出口配管33を通って導出される。この高圧排気蒸気は、中圧入口配管35を通って中圧入口部27へ導入される。
 中圧入口部27へ導入された高圧排気蒸気は、中圧段で仕事をし、中圧出口部29から中圧排気配管37を通って排気される。
 そして、蒸気の導入量を徐々に増加し、蒸気タービンの負荷を上げる。
 このとき、蒸気の熱量によって蒸気タービン1の各部は軸線方向Lおよび半径方向Kに向かって熱伸びするが、各部で熱伸びの状況が異なる、すなわち、遅速があるので、各部の熱伸び等が安定するまでは、各部間相互の軸線方向Lおよび半径方向Kにおける相対位置は変化し続ける。図6の一点鎖線Cは、負荷によって高圧ダミー環11とタービンロータ3との間隙(半径方向の変位)が変化する量をプロットしたものである。
 また、高圧入口部23から高圧段に流入される蒸気の一部が、高圧側蒸気室43に漏れるので、高圧側蒸気室43の圧力P1も徐々に高くなる。
 一方、中圧側蒸気室45は、高圧出口部25と連通されているので、中圧側蒸気室45の圧力P3は高圧出口部25の高圧排気蒸気の圧力に均圧される。高圧側排気蒸気の圧力が高まるに連れて、中圧側蒸気室45の圧力も高まる。
 高圧側蒸気室43の圧力P1は高圧入口部23に導入される蒸気の圧力と略同一であるから、高圧出口部25の圧力と略等しい中圧側蒸気室45の圧力P3よりも大きくなる。
 蒸気タービン1の起動時には、調整制御部59は開閉弁57を開放し、高圧ダミー39の調整部53と高圧出口部25とを連通させている。
 したがって、調整部53には、3個のスプリングバックシールリング51によって圧力損失され低圧とされた高圧側蒸気室43の蒸気と、高圧出口部25の蒸気とが混合されるので、調整部53の圧力P2は均圧される。このため、調整部53の圧力P2は高圧側蒸気室43の蒸気圧力が高くなっても、高圧出口部25の圧力とほぼ等しい圧力となる。
 したがって、調整部53の圧力P2は、中圧側蒸気室45の圧力P3とあまり変わらない大きさとなる。
 可動シールリング73の内周面には、その下部を通過する蒸気の圧力が作用し、可動シールリング73を半径方向外側へ移動させようとする。一方、可動シールリング73の外周面には、高圧側側面63と高圧ダミー環11との隙間および連通孔68を通って流入した蒸気の圧力、すなわち、調整部53の圧力P2が作用し、可動シールリング73を半径方向内側へ移動させようとする。
 一般に、可動シールリング73の内周面の下部を通過する蒸気の圧力は、フィン71によって圧力損失を受けるので、調整部53の圧力P2よりも進行に伴い順次低圧になる。このため、外周面に作用する圧力が内周面のそれよりも大きくなる。この差圧は調整部53の圧力P2と中圧側蒸気室45の圧力P3(可動シールリング73の出口部の圧力)との差圧が大きいほど大きくなるので、可動シールリング73は皿ばね79の付勢力に打ち勝って半径方向K内側へ移動させられる。
 起動時には、調整部53の圧力P2と中圧側蒸気室45の圧力P3とが略等しいので、可動シールリング73の外周面と内周面とに作用する蒸気の圧力差(差圧)が小さい。したがって、皿ばね79の付勢力によって可動シールリング73は外方、すなわち、周溝65の下面が突起部69の下面に当接する位置に位置させられる。これにより、フィン71と周面83との間の設定された間隔は大きな状態が維持されるので、起動時のフィンと対向面との急激な接近に対して余裕を持った間隔に設定することによってフィン71と周面83との接触を防止できる。
 図5は調整制御部59の制御フローを示している。
 調整制御部59は、蒸気タービン1が起動されると、制御を開始する(ステップS1)。
 調整制御部59は、伸び差計およびギャップセンサの計測結果、ならびに蒸気タービン1の運転を制御する運転制御部からのタービンロータ3の回転数および蒸気タービン1の負荷状況の情報を受け取り、高圧ダミー環11とタービンロータ3とが熱的に定常状態にあるかを判定する(ステップS2)。
 調整制御部59は、高圧ダミー環11とタービンロータ3とが軸線方向Lおよび半径方向Kにおいて相対的な位置変動がほとんどない状態であると判定すると、熱的に定常状態にあると判定する。
 調整制御部59は、熱的に定常状態のあると判断すると、開閉弁57に閉鎖信号を指示する(ステップS3)。閉鎖信号が発信されると、開閉弁57が開放されていた場合は閉鎖され、既に、閉鎖されていれば、その状態を維持する。
 調整制御部59は、熱的に定常状態にないと判断すると、開閉弁57に開放信号を指示する(ステップS4)。開放信号が発信されると、開閉弁57が閉鎖されていた場合は開放され、既に、開放されていれば、その状態を維持する。
 蒸気タービン1の運転が進み、負荷が増加し、たとえば、定格運転になると、高圧ダミー環11とタービンロータ3とが熱的に定常状態になる(たとえば、図6の一点鎖線C上の点Tで負荷が上昇しても高圧ダミー環11とタービンロータ3との間隔が変化しなくなる。)。調整制御部59は、これを検知し、開閉弁57に閉鎖信号を指示する。これにより、開閉弁57は閉鎖され、調整配管55が、高圧出口部25と調整部53との連通を断つ。
 このように高圧出口部25と調整部53との連通が断たれると、調整部53へ高圧出口部25の圧力が作用しなくなるので、調整部53の圧力P2は、3個のスプリングバックシールリング51によって圧力損失された高圧側蒸気室43の圧力に速やかになる。
 このとき、高圧側蒸気室43の圧力P1は、定格運転状態にあるので、高圧排気蒸気の圧力、すなわち、中圧側蒸気室45の圧力P2よりも相当大きな圧力となっている。
 調整部53の蒸気の圧力が大きくなると、可動シールリング73の外周面と内周面とに作用する流体の圧力差が皿ばね79の付勢力に打ち勝つまで大きくなるので、可動シールリング73は半径方向内側に移動することになる。
 したがって、可動シールリング73は内方、すなわち、周溝65の上面が突起部69の上面に当接する位置、すなわち、移動範囲の内方端に位置させられる。
 このとき、開閉弁57が閉鎖されると、調整部53の圧力の変化は速やかに行われるので、可動シールリング73の外周面と内周面とに作用する流体の圧力差が急激に大きくなる。したがって、たとえ可動シールリング73の側面と高圧ダミー環11との間に摩擦力が作用したとしても可動シールリング73は速やかに、かつ、スムーズに内方に移動することになる。
 図6では、起動から定格に至る負荷上昇の過程で、本実施形態における可動シールリング73の半径方向への移動により形成されるフィン71とタービンロータ3の周面83との間の設定された間隔の変化が太線Aで示されている。高圧ダミー環11とタービンロータ3との間隔の変化は一点鎖線Cで示されている。可動シールリング73を用いないシールのフィン71とタービンロータ3の周面83との間の設定された間隔は一定であるので、実線Bのようになる。
 また、参考までに、背景技術で説明した調整配管55および開閉弁57を備えていないもののフィン71とタービンロータ3の周面83との間の設定された間隔の変化を二点鎖線Eで示している。
 太線A、実線Bおよび二点鎖線Eと一点鎖線Cとの差が、実際のタービンロータ3の周面83とフィン71と間の間隔となる。
 定格運転である点Tより大きい負荷のところで、太線Aおよび二点鎖線Eと一点鎖線Cとの差D1は、実線Bと一点鎖線Cとの差D2よりも小さくなり、定格運転中のシール性能が向上している。
 また、本実施形態では、タービンロータ3の(フィン71に対向する)周面83に、アブレーダブル層85が形成されているので、たとえば、フィン71が接触した場合の発熱を大幅に抑制することができる。このため、フィン71と周面83との間隔をある程度の接触を許容するように設定することができるので、フィン71と周面83との間の実際の間隔を太点線A’に示すようにさらに小さく(太点線A’と一点鎖線Cとの差D3)し、シール性能を向上させることができる。
 開閉弁57が閉鎖されている定格運転中の蒸気タービン1の運転を停止する場合には、調整制御部59は、図5のフローに沿って処理する。
 すなわち、高圧ダミー環11とタービンロータ3とが熱的に定常状態であるかを判定し、不定常状態になったことを検知すると、開閉弁57に開放信号を指示する。これにより、開閉弁57は開放され、高圧ダミー39の調整部53と高圧出口部25とを連通させる。これにより、調整部53には、3個のスプリングバックシールリング51によって圧力損失され低圧とされた高圧側蒸気室43の蒸気と、高圧出口部25の蒸気とが混合されるので、調整部53の圧力P2は均圧される。このため、調整部53の圧力P2は高圧側蒸気室43の蒸気圧力が定格運転中のように高くても、高圧出口部25の圧力とほぼ等しい圧力となる。
 したがって、調整部53の圧力P2は、中圧側蒸気室45の圧力P3とあまり変わらない大きさとなる。
 これにより可動シールリング73の外周面と内周面とに作用する蒸気の圧力差が小さくなるので、皿ばね79の付勢力によって可動シールリング73は半径方向外側に移動される。
 このとき、調整部53の圧力の変動が大きく、かつ、急激となるので、それだけ可動シールリング73の半径方向に作用する力の変動は大きくなる。このため、可動シールリング73は、側面63と高圧ダミー環11との間にかかる大きな摩擦力に影響されずスムーズに半径方向に移動することができるので、動作タイミングを保証することができる。
 これにより、たとえば、フィン71および周面83の間隔が急速に接近する急激な蒸気温度降下現象を伴う負荷降下の場合にも、可動シールリング73の半径方向外方への退避が遅れることを抑制できるので、フィン71と周面83とが接触する恐れを抑制することができる。
このように、開閉弁の開閉により可動シールリングの半径方向への動作を確実に制御できる。これにより、たとえば、定格運転中のフィンと対向面との間隔を小さく設定することができ、シール性能を向上できる。また、たとえば、起動・停止時にはこの間隔を大きく設定し、フィンと対向面との接触を確実に防止できるので、シール構造の信頼性を向上させることができる。
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
 すなわち、本実施形態では、ACCシールリング49は軸線方向に2段備えられているが、これは1段でも、3段以上でもよい。また、調整部53がACCシールリング49とスプリングバックシールリング51との間に設置されているが、これは複数のスプリングバックシールリング51の中間位置に設置してもよい。
 さらに、圧損部材としてスプリングバックシールリング51が用いられているが、これに限らず適宜な手段を用いることができる。
 また、本実施形態では、タービンロータ3の周面83は平滑面とされているが、図7に示されるように軸線方向Lに沿って凹凸が形成され、フィン71の長さをそれに合わせて調整するようにしてもよい。このようにすると通過する蒸気がジグザグに移動するので、同じ間隔でもシール性能を向上させることができる。
 また、アブレーダブル層85を用いないようにしてもよい。
 また、本実施形態では、フィン71がACCシールリング49側に設けられているが、図8に示されるようにタービンロータ3側に設けるようにしてもよい。このフィン72は、タービンロータ3と一体で、たとえば、削り出しで形成されたものであるが、別体のフィン72をタービンロータ3に植え込むようにしてもよい。
 また、図8のものでは、ACCシールリング49に軸線方向Lに沿って凹凸が形成され、フィン72の長さはそれに合わせて調整されている。ACCシールリング49の内周面にアブレーダブル層87が形成されている。
 本実施形態では、高圧ダミー39のシール構造に適用しているが、大気とのシールを行うグラントG(図1参照)のシール構造、動翼17あるいは静翼21の先端部分F(図2参照)のシール構造に適用するようにしてもよい。
 蒸気タービンでなく、ガスタービン、圧縮機等の回転機械のシール構造に適用することができる。

Claims (3)

  1.  高圧部と低圧部を仕切るシール構造であって、その高圧側には回転部材の周面に対向するように静止部に保持された少なくとも1段の高圧側シールリングを有し、その低圧側には回転部材の周面に対向するように静止部に保持された少なくとも1段のシールリングと、該シールリングおよび前記回転部材の少なくとも一方に備えられたリング状に突出するフィンとを有し、前記シールリングは周方向の少なくとも一部が略半径方向に移動可能で、弾性体によって外側に向けて付勢されている可動シールリングであり、前記フィンおよび前記フィンに対向する対向面によって高圧部と低圧部との間を仕切る調整可能な可動シールリングを有し、該調整可能な可動シールリングの低圧側には一の圧力源に接続させる接続流路を有し、
    該調整可能な可動シールリングの高圧部側を前記低圧側と同じ一の圧力源に接続させる調整流路と、
     該調整流路に設けられ、該調整流路を開閉する開閉弁と、が備えられている回転機械のシール構造。
  2.  前記開閉弁の開閉を制御する制御部が備えられ、該制御部は前記回転部材および前記静止部が熱的に定常状態であるときに前記開閉弁を閉鎖するようにされている請求項1に記載の回転機械のシール構造。
  3.  前記対向面に、アブレーダブル材によって構成されたアブレーダブル皮膜が形成されている請求項1または2に記載の回転機械のシール構造。
PCT/JP2009/058202 2008-06-09 2009-04-24 回転機械のシール構造 WO2009150905A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/993,886 US9399925B2 (en) 2008-06-09 2009-04-24 Seal structure for rotary machine
KR1020107027119A KR101321207B1 (ko) 2008-06-09 2009-04-24 회전 기계의 시일 구조
CN200980121373.1A CN102057191B (zh) 2008-06-09 2009-04-24 旋转机械的密封结构
EP09762335.9A EP2287500B1 (en) 2008-06-09 2009-04-24 Seal structure of rotary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008150929A JP4898743B2 (ja) 2008-06-09 2008-06-09 回転機械のシール構造
JP2008-150929 2008-06-09

Publications (1)

Publication Number Publication Date
WO2009150905A1 true WO2009150905A1 (ja) 2009-12-17

Family

ID=41416616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058202 WO2009150905A1 (ja) 2008-06-09 2009-04-24 回転機械のシール構造

Country Status (6)

Country Link
US (1) US9399925B2 (ja)
EP (1) EP2287500B1 (ja)
JP (1) JP4898743B2 (ja)
KR (1) KR101321207B1 (ja)
CN (1) CN102057191B (ja)
WO (1) WO2009150905A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430070A (zh) * 2015-11-10 2016-03-23 中国建设银行股份有限公司 消息发送方式及装置
EP2400113A3 (en) * 2010-06-23 2017-07-19 General Electric Company System for controlling thrust in steam turbine
KR20230048557A (ko) 2020-11-25 2023-04-11 미츠비시 파워 가부시키가이샤 시일 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397656A1 (de) * 2010-06-14 2011-12-21 Siemens Aktiengesellschaft Verfahren zur Einstellung der zwischen Schaufelblattspitzen von Laufschaufeln und einer Kanalwand vorhandenen Radialspalte sowie Vorrichtung zur Messung eines Radialspalts einer axial durchströmbaren Turbomaschine
US8568084B2 (en) * 2010-06-23 2013-10-29 General Electric Company System for controlling thrust in steam turbine
US9249887B2 (en) * 2010-08-03 2016-02-02 Dresser-Rand Company Low deflection bi-metal rotor seals
WO2013075739A1 (en) * 2011-11-23 2013-05-30 Abb Research Ltd A sealing system, an industrial robot with a sealing system, and a method for providing a sealing surface
US9175575B2 (en) * 2012-01-04 2015-11-03 General Electric Company Modification of turbine engine seal abradability
JP5851890B2 (ja) * 2012-03-08 2016-02-03 三菱重工業株式会社 軸シール装置
EP3002487B1 (en) * 2014-10-03 2018-12-12 General Electric Technology GmbH Sealing system
WO2016097905A1 (en) 2014-12-15 2016-06-23 Pirelli Tyre S.P.A. Method for managing a carcass structure building line, process and plant for building tyre carcass structures
ITUB20155442A1 (it) * 2015-11-11 2017-05-11 Ge Avio Srl Stadio di un motore a turbina a gas provvisto di una tenuta a labirinto
JP6188777B2 (ja) * 2015-12-24 2017-08-30 三菱日立パワーシステムズ株式会社 シール装置
JP6288486B1 (ja) 2017-02-24 2018-03-07 三菱重工コンプレッサ株式会社 蒸気タービンシステム及び蒸気タービンの起動方法
JP6888976B2 (ja) * 2017-02-28 2021-06-18 三菱重工業株式会社 軸シール装置、及び回転機械
JP6979321B2 (ja) * 2017-09-28 2021-12-08 三菱パワー株式会社 回転機械のシール装置及びこのシール装置を備える回転機械
JP7008487B2 (ja) * 2017-11-30 2022-01-25 三菱パワー株式会社 軸シール装置、および回転機械
JP6901416B2 (ja) * 2018-02-19 2021-07-14 三菱パワー株式会社 回転機械
JP7267109B2 (ja) * 2019-05-31 2023-05-01 三菱重工業株式会社 蒸気タービンのシールクリアランス調整方法
KR102594162B1 (ko) * 2023-05-12 2023-10-25 터보파워텍(주) 터빈용 액티브 클리어런스 컨트롤 실링 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182368U (ja) * 1987-05-19 1988-11-24
JPH09133004A (ja) * 1995-11-09 1997-05-20 Mitsubishi Heavy Ind Ltd タービン・アクティブクリアランス制御装置
JP2000097352A (ja) 1998-09-24 2000-04-04 Mitsubishi Heavy Ind Ltd ターボ回転機械の自動調整シール
JP2002228013A (ja) * 2001-02-01 2002-08-14 Mitsubishi Heavy Ind Ltd Acc型ラビリンスシール
JP2008002680A (ja) * 2006-06-19 2008-01-10 General Electric Co <Ge> ターボ機械の調整可能なシールの作動圧制御
JP2008170005A (ja) * 2007-01-11 2008-07-24 General Electric Co <Ge> ターボ機械の能動出没自在シール及び関連する方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH550348A (de) * 1972-10-11 1974-06-14 Bbc Brown Boveri & Cie Sperrmedium-labyrinthdichtung.
FR2221982A5 (ja) * 1973-03-14 1974-10-11 Technip Etud Construction
FR2317528A1 (fr) * 1975-07-11 1977-02-04 Creusot Loire Dispositif d'etancheite contre les sorties de gaz aux extremites de l'arbre rotatif d'un compresseur centrifuge
US4078809A (en) * 1977-01-17 1978-03-14 Carrier Corporation Shaft seal assembly for a rotary machine
US4193603A (en) * 1978-12-21 1980-03-18 Carrier Corporation Sealing system for a turbomachine
US4341093A (en) * 1980-12-01 1982-07-27 Mitsubishi Denki Kabushiki Kaisha Device for leading cooling liquid out of rotary electric machine with liquid cooled rotor
JPS60145404A (ja) 1984-01-09 1985-07-31 Toshiba Corp 蒸気タ−ビン
US4606652A (en) * 1984-06-20 1986-08-19 Rotoflow, Corporation Shaft seal for turbomachinery
JP2614211B2 (ja) 1986-02-28 1997-05-28 株式会社東芝 蒸気タービングランドスチームシール系統圧力調整装置
JPH0715036B2 (ja) * 1987-01-22 1995-02-22 宇部サイコン株式会社 艶消し熱可塑性樹脂組成物
JPS63227908A (ja) 1987-03-17 1988-09-22 Toshiba Corp 蒸気タ−ビンのグランド蒸気圧力制御装置
US4937006A (en) * 1988-07-29 1990-06-26 International Business Machines Corporation Method and apparatus for fluxless solder bonding
US5085443A (en) * 1990-05-29 1992-02-04 Amoco Corporation Labyrinth seal
US5603510A (en) * 1991-06-13 1997-02-18 Sanders; William P. Variable clearance seal assembly
US5749227A (en) * 1995-06-07 1998-05-12 Electric Boat Corporation Steam seal air removal system
CN1215251C (zh) 1996-08-05 2005-08-17 罗纳德·E·布兰登 流体涡轮机的密封装置
GB9717857D0 (en) * 1997-08-23 1997-10-29 Rolls Royce Plc Fluid Seal
EP1008759A1 (en) * 1998-12-10 2000-06-14 Dresser Rand S.A Gas compressor
US6325382B1 (en) * 1999-05-21 2001-12-04 Nippon Pillar Packing Co., Ltd. Non-contact type mechanical seal
IT1318065B1 (it) * 2000-06-29 2003-07-21 Nuovo Pignone Spa Sistema di tenuta e di pressurizzazione per il cuscino portante di una turbina a gas
US6715766B2 (en) * 2001-10-30 2004-04-06 General Electric Company Steam feed hole for retractable packing segments in rotary machines
US7066470B2 (en) * 2001-12-05 2006-06-27 General Electric Company Active seal assembly
US7150477B2 (en) * 2002-04-19 2006-12-19 S.D. Warren Company Rotary joints
GB2393766A (en) 2002-10-03 2004-04-07 Alstom A sealing arrangement for a turbine
US6957945B2 (en) * 2002-11-27 2005-10-25 General Electric Company System to control axial thrust loads for steam turbines
US6811154B2 (en) 2003-02-08 2004-11-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Noncontacting finger seal
CN100396885C (zh) 2003-05-21 2008-06-25 三菱重工业株式会社 轴密封机构、轴密封机构的组装结构和大型流体机械
US6991235B2 (en) * 2003-11-07 2006-01-31 The Boeing Company Gas-buffered seal assembly and method therefor
US8181967B2 (en) * 2006-06-27 2012-05-22 General Electric Company Variable clearance packing ring
JP4279857B2 (ja) 2006-07-20 2009-06-17 株式会社日立製作所 蒸気タービン、シール装置、及びそれらの制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182368U (ja) * 1987-05-19 1988-11-24
JPH09133004A (ja) * 1995-11-09 1997-05-20 Mitsubishi Heavy Ind Ltd タービン・アクティブクリアランス制御装置
JP2000097352A (ja) 1998-09-24 2000-04-04 Mitsubishi Heavy Ind Ltd ターボ回転機械の自動調整シール
JP2002228013A (ja) * 2001-02-01 2002-08-14 Mitsubishi Heavy Ind Ltd Acc型ラビリンスシール
JP2008002680A (ja) * 2006-06-19 2008-01-10 General Electric Co <Ge> ターボ機械の調整可能なシールの作動圧制御
JP2008170005A (ja) * 2007-01-11 2008-07-24 General Electric Co <Ge> ターボ機械の能動出没自在シール及び関連する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2287500A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2400113A3 (en) * 2010-06-23 2017-07-19 General Electric Company System for controlling thrust in steam turbine
CN105430070A (zh) * 2015-11-10 2016-03-23 中国建设银行股份有限公司 消息发送方式及装置
KR20230048557A (ko) 2020-11-25 2023-04-11 미츠비시 파워 가부시키가이샤 시일 장치
DE112021004096T5 (de) 2020-11-25 2023-06-01 Mitsubishi Heavy Industries, Ltd. Dichtungsvorrichtung

Also Published As

Publication number Publication date
JP4898743B2 (ja) 2012-03-21
US20110068539A1 (en) 2011-03-24
JP2009293784A (ja) 2009-12-17
EP2287500B1 (en) 2016-05-18
CN102057191A (zh) 2011-05-11
KR20110013441A (ko) 2011-02-09
EP2287500A4 (en) 2015-01-14
KR101321207B1 (ko) 2013-10-23
EP2287500A1 (en) 2011-02-23
US9399925B2 (en) 2016-07-26
CN102057191B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
JP4898743B2 (ja) 回転機械のシール構造
JP5411569B2 (ja) シール構造とその制御方法
US9291067B2 (en) Rotary machine aspirating seal assembly and method of assembling the same
JP4668976B2 (ja) 蒸気タービンのシール構造
JP2008542623A (ja) 隙間封じ装置付きガスタービン
WO2012039386A1 (ja) ターボ回転機械用の自動調整シール
CN104024581A (zh) 涡轮
WO2015115400A1 (ja) 軸シール装置及び回転機械
JP2019052641A (ja) ターボチャージャ
EP1645726A1 (en) A sealing arrangement
US9732622B1 (en) Self-balancing air riding seal for a turbine
JP6138617B2 (ja) 回転機械のシール構造および回転機械
JP5427798B2 (ja) 蒸気タービンのシール構造
JP5892880B2 (ja) 回転機械のシール構造及び回転機械
JP5221760B2 (ja) ターボ機械用アウターハウジングの熱負荷の軽減法
US8820748B2 (en) Sealing system for a turbomachine
JP5511561B2 (ja) 蒸気タービンのシール構造、およびその制御方法
CN109844267B (zh) 蒸汽涡轮
JP2017036799A (ja) 軸シール装置
JP5980369B2 (ja) ターボ回転機械及びその運転方法
KR101584156B1 (ko) 가스 터빈용 씨일 및 이를 구비하는 씨일 조립체
JP2013148152A (ja) 回転機械のシール構造及び回転機械
JP2002349209A (ja) タービンのシール構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121373.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107027119

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009762335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12993886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE