WO2009150792A1 - 燃料処理装置 - Google Patents

燃料処理装置 Download PDF

Info

Publication number
WO2009150792A1
WO2009150792A1 PCT/JP2009/002440 JP2009002440W WO2009150792A1 WO 2009150792 A1 WO2009150792 A1 WO 2009150792A1 JP 2009002440 W JP2009002440 W JP 2009002440W WO 2009150792 A1 WO2009150792 A1 WO 2009150792A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
outer peripheral
peripheral wall
processing apparatus
filling space
Prior art date
Application number
PCT/JP2009/002440
Other languages
English (en)
French (fr)
Inventor
雅俊 中村
貴嗣 中川
裕二 筒井
寺西 正俊
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2009544339A priority Critical patent/JP4536153B2/ja
Priority to CN2009800004531A priority patent/CN101679033B/zh
Priority to EP09762223.7A priority patent/EP2287113B1/en
Priority to US12/666,891 priority patent/US7883675B2/en
Publication of WO2009150792A1 publication Critical patent/WO2009150792A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus

Definitions

  • the present invention relates to a fuel processing apparatus for producing a hydrogen-rich reformed gas by steam reforming a hydrocarbon fuel gas such as city gas or LPG.
  • a heater having an overall shape of a cylindrical body and having a burner at the center thereof is disposed; a reformer in which a reforming catalyst is charged around the heater; 2.
  • a fuel processing apparatus in which a converter filled with a carbon oxide (CO) conversion catalyst and a CO remover filled with a carbon monoxide (CO) removal catalyst are arranged in parallel in the axial direction.
  • CO carbon oxide
  • CO carbon monoxide
  • Patent Document 1 the raw material and reforming water are supplied to a gas flow path that functions as an evaporator provided around the heater, and the raw material and steam are supplied to the reformer.
  • the reformed gas is produced by sequentially supplying the hydrogen-containing gas sent from the reformer to the transformer provided on the outer periphery of the gas flow path and the CO remover.
  • FIG. 1 is a longitudinal sectional view showing a configuration of a fuel processing apparatus described in Patent Document 1.
  • the outlet 4a of the exhaust gas passage 4 is open to the outside.
  • a first gas flow path 6 that functions as an evaporator is disposed on the outer periphery of the outlet side portion of the exhaust gas passage 4 of the heater 5.
  • a reformer 8 filled with a reforming catalyst 7 is disposed on the outer periphery of the portion of the exhaust gas passage 4 on the side where high-temperature exhaust gas flows from the combustion cylinder 3.
  • a second gas passage 9 is provided for allowing the hydrogen-containing gas sent from the reformer 8 to flow toward the outer periphery of the first gas passage 6.
  • a reformer 11 filled with a CO shift catalyst 10 is disposed on the reformer 8 side portion on the outer periphery of the first gas flow path 6; from the reformer 8 on the outer periphery of the first gas flow path 6.
  • a CO remover 14 filled with a CO removal catalyst 13 is disposed on the radially outer side via the third gas flow path 12 on the radially inner side in the portion on the far side.
  • the raw material is supplied to the inlet portion 6a of the first gas passage 6; the supplied raw material is supplied with reforming water supplied through the heating coil 15 wound around the outer periphery of the transformer 11 and the CO remover 14, and the inlet. Mixed in part 6a.
  • the raw material and the reforming water are heated while passing through the first gas flow path 6 that functions as an evaporator.
  • the high temperature raw material and steam are supplied to the reformer 8, and the raw material is steam reformed by the action of the reforming catalyst 7 to become a hydrogen-rich hydrogen-containing gas.
  • the hydrogen-containing gas sent from the reformer 8 is supplied to the converter 11 through the second gas flow path 9, and carbon monoxide (CO) in the hydrogen-containing gas is reduced by the action of the CO conversion catalyst 10. Is done.
  • the hydrogen-containing gas delivered from the transformer 11 is mixed with the air introduced from the air inlet 16a in the air mixing space 16 provided between the transformer 11 and the third gas flow path 12.
  • the hydrogen-containing gas mixed with air is supplied to the CO remover 14 via the third gas flow path 12, CO is removed by the action of the CO removal catalyst 13, and the hydrogen-containing gas is sent out from the outlet 17.
  • the temperature at the downstream portion of the transformer 11 is maintained at a temperature suitable for the reaction (for example, 200 ° C.), and the inlet temperature of the CO remover 14 is set to a temperature at which the oxidation reaction is not excessively promoted (for example, 150 ° C.). Can be maintained. That is, there is an advantage that the temperatures of the transformer 11 and the CO remover 14 can be maintained at appropriate temperatures.
  • Patent Document 2 discloses a fuel reformer filled with a granular reforming catalyst. Specifically, a plurality of partition plates are installed at intervals along the direction in which the raw fuel flows, and the granular reforming catalyst is filled on the arranged partition plates. A through hole is formed in the partition plate; a gap is provided between the partition plate and the cylinder of the fuel reformer.
  • the fuel processing apparatus 1 configured as shown in FIG. 1 when the fuel processing apparatus 1 configured as shown in FIG. 1 is discarded after being used for a predetermined period, it is preferable to reuse the resources to be discarded. In particular, it is extremely important from the viewpoint of resource saving and cost to separate and recover the reforming catalyst 7, the CO shift catalyst 10 and the CO removal catalyst 13 containing noble metals and efficiently recycle them.
  • the fuel processing device 1 since the fuel processing device 1 has a cylindrical shape, it cannot be easily determined from the appearance which catalyst is filled in which part at the recovery processing site. Therefore, it is conceivable to specify the catalyst filling position and the removal method in the specifications of the fuel processing apparatus 1.
  • An object of the present invention is to provide a fuel processor capable of easily and separately collecting a catalyst filled in a fuel processor.
  • the fuel processing apparatus includes a catalyst that is surrounded by a cylindrical outer peripheral wall, or a cylindrical inner peripheral wall and an outer peripheral wall, and that is filled in a catalyst filling space disposed along the axis of the cylinder.
  • a fuel processing apparatus for supplying a gas to produce a reformed gas comprising the following means. (1) Extracting portion display means for displaying the position of the catalyst extracting portion for extracting the filled catalyst to the outside on the outer peripheral surface of the outer peripheral wall. (2) Opening assisting means for assisting in forming a catalyst extraction opening in the catalyst extraction portion.
  • the catalyst extraction opening can be easily formed in the catalyst extraction portion displayed by the extraction portion display means on the outer peripheral surface of the outer peripheral wall, and the catalyst filling space is filled through the catalyst extraction opening.
  • the catalyst can be easily taken out. That is, the catalyst can be easily and reliably recovered without taking the trouble of confirming the position of the catalyst filling space.
  • a catalyst take-out section displayed by the take-out section display means can be installed for each catalyst.
  • FIG. 2A is a perspective view showing a configuration of a main part of a first example of the fuel processor according to Embodiment 1
  • FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A
  • FIG. FIG. 2 is a cross-sectional view showing the main configuration of the first example of the fuel processing apparatus according to Embodiment 1
  • FIG. 2D is the main configuration of the first example of the fuel processing apparatus according to Embodiment 1
  • It is sectional drawing which shows, Comprising: It is a figure which shows a state when removing the catalyst.
  • FIG. 3A is a perspective view showing a main configuration of a second example of the fuel processing apparatus according to Embodiment 1;
  • FIG. 3A is a perspective view showing a main configuration of a second example of the fuel processing apparatus according to Embodiment 1;
  • FIG. 3A is a perspective view showing a main configuration of a second example of the fuel processing apparatus according to Embodiment 1;
  • FIG. 3B shows a second example of the fuel processing apparatus according to Embodiment 1
  • FIG. 3C is a cross-sectional view showing the main configuration of a second example of the fuel processor according to Embodiment 1, and shows the state when the catalyst is being taken out.
  • FIG. 4A is a perspective view showing a configuration of a main part of a third example of the fuel processing apparatus according to the first embodiment
  • FIG. 4B shows a third example of the fuel processing apparatus according to the first embodiment.
  • FIG. 4C is a cross-sectional view showing the main configuration of a third example of the fuel processor according to Embodiment 1, and shows the state when the catalyst is being taken out.
  • FIG. 5A is a perspective view showing a main configuration of a fourth example of the fuel processing apparatus according to Embodiment 1;
  • FIG. 5B shows a fourth example of the fuel processing apparatus according to Embodiment 1;
  • FIG. 5C is a cross-sectional view showing the main configuration of a fourth example of the fuel processor according to Embodiment 1, and shows the state when the catalyst is being taken out.
  • FIG. 6A is a perspective view showing a configuration of a main part of a fifth example of the fuel processor according to Embodiment 1
  • FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A
  • FIG. 6D is a cross-sectional view showing the main configuration of the fifth example of the fuel processing apparatus according to the first embodiment;
  • FIG. 6D is the main configuration of the fifth example of the fuel processing apparatus according to the first embodiment. It is sectional drawing which shows, Comprising: It is a figure which shows a state when removing the catalyst.
  • FIG. 7A is a perspective view showing a main part configuration of the fuel processing apparatus according to the second embodiment
  • FIG. 7B is a cross-sectional view showing a main part configuration of the fuel processing apparatus according to the second embodiment
  • FIG. 7C is a cross-sectional view showing the main configuration of the fuel processor according to Embodiment 2 and shows the second state in which the catalyst is being taken out.
  • FIG. FIG. 8A is a perspective view showing the main configuration of the fuel processing apparatus according to Embodiment 3;
  • FIG. 8B is a perspective view showing the main configuration of the fuel processing apparatus according to Embodiment 3;
  • FIG. 8C is a cross-sectional view showing a configuration of a main part of the fuel processor according to Embodiment 3, and shows a state in which a catalyst is taken out.
  • FIG. 10 is a half cross-sectional front view of a fuel processor according to Embodiment 4.
  • FIG. 10A is a cross-sectional view of the CO removal catalyst extraction portion of the fuel treatment apparatus according to Embodiment 4;
  • FIG. 10B is a cross-sectional view of the CO removal catalyst extraction portion of the fuel treatment apparatus according to Embodiment 4. It is a figure which shows the state which is taking out the catalyst.
  • FIG. 10A is a cross-sectional view of the CO removal catalyst extraction portion of the fuel treatment apparatus according to Embodiment 4;
  • FIG. 10B is a cross-sectional view of the CO removal catalyst extraction portion of the fuel treatment apparatus according to Embodiment 4. It is
  • FIG. 11A is a front view of a CO shift catalyst removal unit of a fuel processor according to Embodiment 4;
  • FIG. 11B is a cross-sectional view taken along the line BB in FIG. 11A.
  • FIG. 12A is a side view of the CO shift catalyst removal unit of the fuel processor according to Embodiment 4, and shows a first step of taking out the CO shift catalyst;
  • FIG. 12B is related to Embodiment 4 It is a side view of the CO shift catalyst take-out part of the fuel processor, and is a view showing a second step of taking out the CO shift catalyst.
  • FIG. 13A is a vertical side view of the reforming catalyst take-out part of the fuel processor according to Embodiment 4 and shows a first step of taking out the reforming catalyst;
  • FIG. 13C is a longitudinal side view of the reforming catalyst take-out portion of the fuel processing apparatus, showing the second step of taking out the reforming catalyst;
  • FIG. 13C is the removal of the reforming catalyst of the fuel processing apparatus according to Embodiment 4; It is a vertical side view of a section, and is a view showing a third step of taking out the reforming catalyst.
  • FIG. 2 is a diagram showing a first example of the main configuration of the fuel processor according to Embodiment 1 of the present invention.
  • 2A is a perspective view of the main part of the fuel processor;
  • FIG. 2B is a cross-sectional view taken along the line AA of FIG. 2A;
  • FIG. 2C is a cross-sectional view of the main part of the fuel processor;
  • FIG. 2D is a cross-sectional view of the main part of the fuel processor, showing a state where the catalyst is being taken out.
  • the fuel processor 21 includes an outer peripheral wall 22, an inner peripheral wall 23, and a cylindrical catalyst filling space 24 between the outer peripheral wall 22 and the inner peripheral wall 23.
  • a granular catalyst 25 is filled in the catalyst filling space 24, a granular catalyst 25 is filled.
  • the particle size of the catalyst 25 is not particularly limited, but may be about 2 mm.
  • the catalyst filling space 24 is partitioned by an upper shelf 26a that sets the upper end surface and a lower shelf 26b that sets the lower end surface.
  • middle shelf board 26c may be arrange
  • the shelf plates 26a, 26b, and 26c are preferably porous annular plates in which a large number of holes are formed so that the source gas and the hydrogen-containing gas flow.
  • the hole diameter may be smaller than the particle diameter of the catalyst 25 to prevent the catalyst 25 from falling off through the hole, for example, less than 1 mm.
  • the shelf plates 26a, 26b, and 26c are bonded or joined together by welding 28 as necessary, with a curved portion 27 formed on the inner peripheral portion being crimped to the outer peripheral surface of the inner peripheral wall 23.
  • the outer peripheral portions of the shelf plates 26a, 26b and 26c may be in contact with the inner peripheral surface of the outer peripheral wall 22 or may have a minute gap; Preferably not.
  • the catalyst extraction part 29 is set in the part facing the catalyst filling space 24 of the outer peripheral wall 22.
  • the catalyst take-out portion 29 has a size that extends over substantially the entire length of the catalyst filling space 24 in the axial direction, and the width dimension in the circumferential direction is set to be an appropriate part in the circumferential direction.
  • the catalyst extraction portion 29 is, for example, an oval shape, and is partitioned by an annular shallow groove 30 provided along the outline thereof. As a result, the annular shallow groove 30 also serves as an extraction portion display means.
  • the circumferential width of the catalyst extraction part 29 is set to be at least larger than the particle diameter of the catalyst 25, and is actually preferably set to several times to several tens of times, for example, about 20 mm. Further, since the annular shallow groove 30 acts as a cut line, the catalyst extraction portion 29 can be cut and removed from the outer peripheral wall 22, and the catalyst extraction opening 40 can be formed. Therefore, the annular shallow groove 30 also serves as an opening formation assisting means.
  • the annular shallow groove 30 is both an extraction portion display means and an opening formation auxiliary means; however, the extraction portion display means and the opening formation auxiliary means may be configured separately.
  • an annular shallow groove 30 as an opening formation assisting unit is formed on the inner peripheral surface of the outer peripheral wall 22 corresponding to the catalyst extraction unit; the catalyst extraction unit display unit is engraved or lasered on the outer peripheral surface of the outer cylindrical wall 22. It may be displayed by printing or may be displayed with a protrusion.
  • the annular shallow groove 30 can be formed by press forming at the same time when the outer peripheral wall 22 is formed; for example, when forming the outer peripheral wall 22 by press forming a stainless steel plate, the annular shallow groove 30 is simultaneously formed by press forming.
  • the groove 30 may be formed.
  • the outer peripheral wall 22 is exposed to a high temperature when the fuel processor is driven.
  • the depth of the annular shallow groove 30 is about 1/5 to 1/20 of the thickness of the steel sheet so that the annular shallow groove 30 does not crack or break due to thermal stress caused by high temperature. It is preferable to make it.
  • Catalyst display means 31 for displaying the type of the catalyst 25 taken out from the catalyst take-out portion 29 is provided at a suitable place on the outer surface of the catalyst take-out portion 29 or near the side portion.
  • the catalyst display means 31 can be formed by engraving or laser printing.
  • a catalyst removal method may be displayed on the display unit of the catalyst display unit 31. The method for removing the catalyst is preferably displayed in schematic form.
  • the type and composition of the catalyst 25 differ depending on the function required for it; for example, whether it is a reforming catalyst, a carbon monoxide shift catalyst, or a carbon monoxide removal catalyst.
  • the catalyst 25 is often an alloy containing a noble metal, and an example of an alloy containing a noble metal is a ruthenium catalyst.
  • the catalyst display means 31 preferably displays the content or content ratio of a noble metal (for example, ruthenium).
  • the content may be expressed, for example, by weight; the content ratio may be expressed, for example, by weight%, but is not particularly limited.
  • the catalyst display means 31 may display a catalyst removal method. If the removal method is displayed, it is read, and the catalyst removal opening 40 is formed in the catalyst removal portion 29 according to the method.
  • a hook hole 32 is formed using a drill (not shown) or the like in the lower portion of the catalyst extraction portion 29, and a bar (not shown) or the like is hooked on the hook hole 32 so that the direction of the arrow is shown.
  • the outer peripheral wall 22 is cut along a cut line formed by the oval annular shallow groove 30.
  • the catalyst extraction part 29 is easily cut off from the outer peripheral wall 22, and the catalyst extraction opening 40 is formed.
  • the catalyst 25 is taken out through the formed catalyst outlet opening 40.
  • the catalyst 25 is recovered in the recovery container 33. Since the inner peripheral portions of the shelf plates 26a, 26b and 26c are curved like the curved portion 27, the filled catalyst 25 is easily taken out.
  • FIG. 3 is a diagram illustrating a second example of the main configuration of the fuel processing apparatus according to the first embodiment.
  • 3A is a perspective view of the main part of the fuel processing apparatus;
  • FIG. 3B is a cross-sectional view of the main part of the fuel processing apparatus;
  • FIG. 3C is a main part of the fuel processing apparatus showing a state in which the catalyst is taken out. It is sectional drawing of a part.
  • a shaft portion 34 that is a protruding portion is integrally fixed to the outer surface of the lower end portion of the catalyst extraction portion 29.
  • the shaft portion 34 may have a polygonal head portion 34a at the tip thereof.
  • FIG. 3B when removing the catalyst 25, the head portion 34a of the shaft portion 34 is rotated using a spanner (not shown) or the like, and the fixing portion of the headed shaft portion 34 of the catalyst extraction portion 29 is moved. Threading and hooking holes 32 are formed. Thereafter, as shown in FIG. 3C, the catalyst 25 is recovered in the recovery container 33 as in the case of the first example.
  • FIG. 4 is a diagram illustrating a third example of the main configuration of the fuel processing apparatus according to the first embodiment.
  • 4A is a perspective view of the main part of the fuel processing apparatus;
  • FIG. 4B is a cross-sectional view of the main part of the fuel processing apparatus;
  • FIG. 4C is a main part of the fuel processing apparatus showing a state in which the catalyst is taken out. It is sectional drawing of a part.
  • a protruding shaft 35 as a protruding portion is integrally fixed to the outer surface of the lower end portion of the catalyst extraction portion 29.
  • the projecting shaft 35 is hit with a hammer (not shown) or the like, and the fixing portion of the projecting shaft 35 of the catalyst extracting portion 29 is broken and hooked. Hole 32 is formed.
  • the catalyst 25 is recovered in the recovery container 33 as in the case of the first example.
  • FIG. 5 is a diagram illustrating a fourth example of the main configuration of the fuel processing apparatus according to the first embodiment.
  • 5A is a perspective view of the main part of the fuel processing apparatus;
  • FIG. 5B is a cross-sectional view of the main part of the fuel processing apparatus;
  • FIG. 5C is a main part of the fuel processing apparatus showing a state in which the catalyst is taken out. It is sectional drawing of a part.
  • a bottomed short tube 36 that is a protruding portion is integrally fixed to the lower end portion of the catalyst extraction portion 29.
  • FIG. 5C when the catalyst 25 is taken out, the tip of a bar (not shown) is inserted into the short tube 36, and the lower part of the catalyst take-out part 29 is pry open as shown by an arrow. Accordingly, the catalyst 25 is recovered in the recovery container 33 as in the case of the first configuration example.
  • FIG. 6 is a diagram illustrating a fifth example of the main configuration of the fuel processing apparatus according to the first embodiment.
  • 6A is a perspective view of the main part of the fuel processor;
  • FIG. 6B is a cross-sectional view taken along the line AA of FIG. 6A;
  • FIG. 6C is a cross-sectional view of the main part of the fuel processor;
  • FIG. 6D is a cross-sectional view of the main part of the fuel processing device, showing a state where the catalyst is being taken out.
  • the shelf plates 126a, 126b and 126c have their inner peripheral portions in contact with the outer peripheral surface of the inner peripheral wall 23, and are fixed together by welding 28 as necessary.
  • the shelf plates 126a, 126b, and 126c are arranged such that their outer peripheral portions abut against the outer peripheral wall 22 or have a minute gap, and are not fixed to the outer peripheral wall 22.
  • the shelf plates 126a, 126b, and 126c have a predetermined angle of inclination, and the position of the inner peripheral portion is higher than the position of the outer peripheral portion.
  • the catalyst filled in the catalyst filling space 24 is supported in multiple stages by the shelf plate, so that the catalyst is filled in the catalyst filling space 24 due to catalyst deterioration. Can be prevented from deviating toward the lower part of the substrate, and the decrease in catalytic action can be suppressed.
  • the shelf plates 126a, 126b, and 126c are inclined at a predetermined angle, and the outer peripheral portion is below the inner peripheral portion. Therefore, as shown in FIG. 6D, when the catalyst is taken out, the catalyst 25 appropriately falls along the slope of the shelf board, so that the taking-out workability is improved.
  • the fuel processor 21 (or 121) of the first embodiment has the oval annular shallow groove 30 formed on the outer peripheral surface or the inner peripheral surface of the outer peripheral wall surrounding the catalyst filling space 24.
  • the annular shallow groove 30 covers substantially the entire length of the catalyst filling space 24 in the axial direction.
  • the annular shallow groove 30 functions as opening formation assisting means for assisting formation of a catalyst extraction opening for taking out the catalyst;
  • the annular shallow groove 30 on the outer peripheral surface of the outer peripheral wall serves as extraction part display means for displaying the catalyst extraction part 29. Also works.
  • the filled catalyst can be easily and separately collected. Specifically, the following effects can be obtained.
  • the annular shallow groove 30 also functions as an opening formation assisting means. That is, when an external force is applied to the catalyst extraction part 29, stress concentrates on the annular shallow groove 30 on the periphery thereof, and the cutting is easily performed along the annular shallow groove 30. For this reason, it is possible to easily open the catalyst extraction portion 29 and to extract the catalyst 25 with good workability.
  • the fuel processor 21 may be filled with a different type of catalyst 25 in each of the plurality of catalyst filling spaces 24. If each of the catalyst filling spaces 24 is provided with an extraction portion display means and an opening formation assisting means, there is no possibility that different types of catalysts 25 will be mixed and taken out, and the catalysts 25 are surely sorted by type. It can be recovered.
  • the annular shallow groove 30 extends over substantially the entire length of the catalyst filling space 24 in the axial direction, the formed catalyst extraction opening also becomes an opening over the substantially entire length of the catalyst filling space 24 in the axial direction. Therefore, the catalyst 25 can be taken out with good workability. Further, since the annular shallow groove 30 is annular and curved, the thermal stress acting on the outer peripheral wall 22 does not concentrate locally, and there is no possibility that the annular shallow groove 30 breaks unexpectedly.
  • the type of the catalyst 25 to be taken out can be easily specified, and the separation and recovery can be performed easily and reliably.
  • Specific examples of the catalyst display means may be characters, symbols, patterns, etc., predetermined for each catalyst.
  • the printing method is preferably stamping or laser processing; on the other hand, the printing / coating of paint may not be suitable because the display may deteriorate due to exposure to high temperatures.
  • the opening forming auxiliary means for forming the catalyst extraction opening is provided in combination with the extraction section display means or separately from the extraction section display means, the catalyst extraction opening of the required size can be easily provided.
  • the catalyst filled in the catalyst filling space can be taken out with good workability.
  • an opening formation assisting means comprising an annular shallow groove surrounding the periphery of the catalyst extraction part, when an external force is applied to the catalyst extraction part, stress is concentrated in the shallow groove and the shallow groove is easily cut. . For this reason, the entire catalyst extraction portion can be easily cut and removed, and a catalyst extraction opening having a size necessary for extracting the catalyst with good workability can be easily formed.
  • the depth of the annular shallow groove is formed to a depth that does not cause a crack or breakage due to thermal stress acting on the outer peripheral wall.
  • a resectable head portion 34 (see FIG. 3), a projecting shaft 35 (see FIG. 4), and a short tube 36 with a bottom (see FIG. 5).
  • Protruding portions such as reference
  • holes may be formed in the wall surface by cutting them out. An external force is applied to the projecting portion to cut it to form a catching hole 32, and a tool such as a bar is hooked on the formed catching hole 32 to strongly pull one end of the wall surface surrounded by the annular shallow groove 30.
  • Shelf plates 26a, 26b and 26c may be provided that divide the catalyst filling space 24 into two or more regions arranged in the axial direction. Each shelf is fixed to the inner peripheral wall of the catalyst filling space 24 and is not fixed to the outer peripheral wall. By supporting the catalyst filled in the catalyst filling space 24 in multiple stages on the shelf plate, it is possible to prevent the catalyst from being gathered in the lower part of the catalyst filling space 24 due to the deterioration of the catalyst and lowering the catalytic action. Furthermore, although the catalyst filling space 24 is divided into a plurality of portions by the shelf plate, the shelf plates 26a, 26b, and 26c are not fixed to the outer peripheral wall, so that the catalyst covers substantially the entire length in the axial direction of the catalyst filling space 24. A take-out opening can be formed, and the catalyst can be taken out with good workability.
  • FIG. 7 is a diagram showing a main configuration of the fuel processor according to Embodiment 2 of the present invention.
  • FIG. 7A is a perspective view of the main part of the fuel processor;
  • FIG. 7B is a cross-sectional view of the main part of the fuel processor showing the first state when the catalyst is removed;
  • It is sectional drawing of the catalyst extraction state of the principal part of a fuel processing apparatus which shows the 2nd state at the time of extraction.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description of overlapping portions is omitted.
  • the catalyst extraction portion 29 partitioned by the oval annular shallow groove 30 is provided over substantially the entire length of the catalyst filling space 24 in the axial direction.
  • an annular shallow groove 37 is formed on the outer peripheral surface of the outer peripheral wall 22 over the entire circumference.
  • Two or more annular shallow grooves 37 are formed instead of one. That is, the annular shallow grooves 37 are formed at least at both end positions in the axial direction of the catalyst filling space 24, preferably at positions corresponding to the shelf plates 26 a and 26 b that define both ends of the catalyst filling space 24.
  • an annular shallow groove 37 may be formed between the both end positions, that is, at a position facing the intermediate shelf 26c.
  • the annular shallow groove 37 functions as an extraction portion display means and an opening formation auxiliary means.
  • the outer peripheral wall 22 between the upper shelf 26a and the intermediate shelf 26c is cut and removed to form a catalyst extraction opening 40, and the upper shelf 26a
  • the catalyst 25 between the intermediate shelf 26c is taken out; and as shown in FIG. 7C, the outer peripheral wall 22 between the intermediate shelf 26c and the lower shelf 26b is cut and removed to form a catalyst extraction opening 40;
  • the catalyst 25 between the intermediate shelf 26c and the lower shelf 26b is taken out. In this way, the entire amount of the catalyst 25 filled in the catalyst filling space 24 can be taken out with good workability.
  • FIG. 8 is a diagram showing a main configuration of a fuel processor according to Embodiment 3 of the present invention.
  • FIG. 8A is a perspective view of the main part of the fuel processor;
  • FIG. 8B is a diagram showing a state in which a catalyst extraction opening is formed;
  • FIG. 8C is a diagram of the fuel processor in a state in which the catalyst is being removed. It is sectional drawing of the principal part.
  • an extraction portion display mark 38 for displaying the catalyst extraction portion is provided on the outer peripheral surface of the outer peripheral wall 22 surrounding the catalyst filling space 24.
  • the outer peripheral wall 22 is drilled with a drill 39 or the like at the position of the extraction portion display mark 38.
  • the catalyst 25 can be taken out with good workability using the hole formed by the perforation as the catalyst taking-out opening 40.
  • Embodiment 3 is a reference example of a plurality of extraction portion display marks 38 and a catalyst extraction opening 40 that is perforated with the extraction portion display mark 38 as a mark.
  • the opening formation assisting unit the same configuration as that of the fuel processing apparatuses of the first and second embodiments can be applied.
  • FIG. 9 is a half cross-sectional front view of a fuel processor according to Embodiment 4 of the present invention.
  • the fuel processing apparatus 100 includes a CO remover 14 filled with a CO removal catalyst 13 and a CO shifter 11 filled with a CO conversion catalyst 10.
  • the outer peripheral wall of the CO remover 14 and the outer peripheral wall of the CO transformer 11 are both the upper outer peripheral wall 41.
  • the upper outer peripheral wall 41 is provided with a CO removal catalyst take-out portion 42 at an appropriate position corresponding to the CO remover 14, and a CO shift catalyst take-out portion 43 at an appropriate position corresponding to the CO converter 11. ing.
  • the fuel processing apparatus 100 includes a reformer 8 filled with the reforming catalyst 7.
  • the outer peripheral wall of the reformer 8 is an outer peripheral wall 8a; a lower outer peripheral wall 44 is disposed outside the outer peripheral wall 8a via a second gas passage 9.
  • a reforming catalyst take-out portion 45 is disposed at a proper position on the outer peripheral wall 44.
  • CO removal catalyst take-out part 42, CO shift catalyst take-out part 43 and reforming catalyst take-out part 45 each have take-out part display means and opening formation assisting means.
  • a shelf 18 similar to the shelf 26c in the first embodiment is disposed inside the catalyst filling space of the reformer 8; the shelf 18 extends the catalyst filling space in its axial direction. It is divided into two or more regions arranged.
  • FIG. 10A is a cross-sectional view of the CO removal catalyst extraction unit 42 of the fuel processor according to Embodiment 4;
  • FIG. 10B is a cross-sectional view of the CO removal catalyst extraction unit 42 showing a state where the catalyst is being extracted. .
  • the CO removal catalyst take-out portion 42 includes a cylindrical projection 46 with a closed end protruding from the upper outer peripheral wall 41 and an annular groove formed over the entire circumference of the peripheral wall of the cylindrical projection 46. 47.
  • the tip of the cylindrical protrusion 46 is hit with a hammer 48 or the like.
  • the tip end portion of the cylindrical projection 46 is broken and removed, and the catalyst extraction opening 49 is formed.
  • the CO removal catalyst 13 can be taken out through the catalyst extraction opening 49.
  • the catalyst removal opening 49 for taking out the CO removal catalyst 13 can be easily formed. Further, since the annular groove 47 is formed in the peripheral wall of the cylindrical protrusion 46, it is not easily affected by thermal stress acting on the upper outer peripheral wall 41.
  • FIG. 11A is a front view of the CO shift catalyst extraction unit 43;
  • FIG. 11B is a cross-sectional view taken along the line BB of FIG. 11A.
  • the CO shift catalyst removal portion 43 has an oval annular shallow groove 50 and partitions the catalyst removal portion 51.
  • the annular shallow groove 50 is formed in a portion of the upper outer peripheral wall 41 facing the CO transformer 11 and is an oval having a length slightly shorter than the axial length of the CO transformer 11. Further, a U-shaped hook member 52 is fixed to the upper portion of the catalyst extraction portion 51.
  • FIG. 12A is a side view of the CO conversion catalyst extraction unit 43 showing the first step of taking out the CO conversion catalyst 10;
  • FIG. 11B is a CO conversion catalyst extraction unit showing the second step of taking out the CO conversion catalyst 10 43 is a side view of 43.
  • FIG. 12A is a side view of the CO conversion catalyst extraction unit 43 showing the first step of taking out the CO conversion catalyst 10;
  • FIG. 11B is a CO conversion catalyst extraction unit showing the second step of taking out the CO conversion catalyst 10 43 is a side view of 43.
  • FIG. 12A is a side view of the CO conversion catalyst extraction unit 43 showing the first step of taking out the CO conversion catalyst 10;
  • FIG. 11B is a CO conversion catalyst extraction unit showing the second step of taking out the CO conversion catalyst 10 43 is a side view of 43.
  • the CO conversion catalyst extraction unit 43 has the same basic configuration as that of the first embodiment, and can obtain the same effect.
  • FIGS. 13A to 13C are vertical side views of the reforming catalyst take-out portion 45 showing the process of taking out the reforming catalyst of the fuel processing apparatus 100.
  • FIG. 13A to 13C are vertical side views of the reforming catalyst take-out portion 45 showing the process of taking out the reforming catalyst of the fuel processing apparatus 100.
  • the reforming catalyst extraction unit 45 includes a catalyst extraction unit 56 and an inner catalyst extraction unit 58.
  • the catalyst extraction part 56 is installed on the lower outer peripheral wall 44 and is partitioned by an oval annular shallow groove 55.
  • the annular shallow groove 55 has an oval shape with a length slightly shorter than the axial length of the reformer 8.
  • the inner catalyst extraction portion 58 is installed on the outer peripheral wall 8 a of the reformer 8, is in a position facing the annular shallow groove 55, and is partitioned by the annular shallow groove 57.
  • a U-shaped hook member 59 is fixed to the upper end portion of the catalyst extraction portion 56.
  • a pair of connecting pieces 60 are arranged in the vicinity of the lower portion of the hook member 59 and on the opposing surfaces of the catalyst extraction portion 56 and the inner catalyst extraction portion 58, respectively.
  • a pair of connection piece 60 is arrange
  • one end of a tool such as the burl 53 is inserted between a pair of connecting pieces 60 between the catalyst take-out portion 56 and the inner take-out portion 58, and the other end of the burl 53. Pull down as indicated by the arrow. Then, the catalyst extraction part 56 and the inner extraction part 58 are easily separated from the lower outer peripheral wall 44 and the outer peripheral wall 8a of the reformer 8 along the annular shallow groove 55 and the annular shallow groove 57, respectively. Thereby, the catalyst extraction opening 61 is formed.
  • the reforming catalyst 7 can be taken out and recovered through the catalyst take-out opening 61, and the same effect as in the first embodiment can be obtained.
  • the projecting portion that can be excised is provided at one end of the wall surface surrounded by the annular shallow groove, and the projecting portion is excised by applying an external force to the projecting portion.
  • a hole can be formed in the wall surface.
  • the opening formation assisting means is a shallow groove extending over the entire circumference in the circumferential direction of the outer peripheral wall, and the shallow groove can be disposed at at least both end positions in the axial direction of the catalyst filling space. If the outer peripheral wall is cut along the shallow groove, the entire circumference of the catalyst filling space is opened, so that the catalyst can be taken out with good workability.
  • the opening formation assisting means can be constituted by a cylindrical protrusion having a closed end protruding from the outer peripheral wall of the catalyst filling space and an annular groove formed over the entire circumference of the peripheral wall of the cylindrical protrusion.
  • the above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.
  • the specific configurations of the CO removal catalyst extraction unit 42 and the CO conversion catalyst extraction unit 43 shown in the embodiments are not limited to those illustrated and described.
  • the configurations of the CO removal catalyst extraction unit 42 and the CO shift catalyst extraction unit 43 may be opposite to each other, or any of the configurations may be applied to both.
  • the configuration of the CO removal catalyst extraction unit 42 and the CO shift catalyst extraction unit 43 may be any one of the configuration examples shown in the first embodiment.
  • the specific configuration of the reforming catalyst extraction unit 45 is not limited to that illustrated and described.
  • the configuration examples of the catalyst extraction unit 29 and the configurations of the catalyst extraction units 42 and 43 may be applied to the catalyst extraction unit 56 and the inner catalyst extraction unit 58, respectively.
  • the catalyst filling space 24 surrounded by the cylindrical inner peripheral wall 23 and the outer peripheral wall 22 has been described.
  • the catalyst charging space 24 may be surrounded only by the outer peripheral wall 22. That is, any configuration may be used as long as the position of the catalyst extraction portion is displayed on the outer peripheral surface of the outer peripheral wall and the opening formation assisting means is provided in the catalyst extraction portion.
  • the shelf need not be fixed to the outer peripheral wall surrounding the catalyst filling space.
  • the shelf board is not fixed to the inner peripheral wall 23.
  • the name of the fuel processing apparatus is for convenience of explanation, and of course may be a fuel reformer or the like. Furthermore, the fuel gas used by the fuel processing apparatus, the type and number of catalysts, the processing method, and the like are not limited to the above-described embodiments.
  • the fuel processing apparatus communicates with the catalyst filling space without taking the trouble of confirming the position of the catalyst filling space by forming an opening in the catalyst removal portion indicated by the removal portion display means on the outer peripheral wall. An opening can be formed. Thereby, the catalyst filled in the catalyst filling space can be easily taken out. In addition, since an opening can be formed for each catalyst filling space and the catalyst can be taken out, it can be reliably sorted and collected for each type of catalyst, and the possibility of taking out different types of catalysts in a mixed manner is reduced.
  • the present invention it is possible to recover and recycle a catalyst in a fuel processing apparatus that reforms a hydrocarbon-based fuel gas to produce a hydrogen-rich reformed gas and supplies it to the fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

 本発明により、内蔵されている触媒を容易にかつ分別して回収することができる燃料処理装置が提供される。本発明の燃料処理装置(21)は、筒状の内周壁と外周壁とにより囲まれた触媒充填空間(24)充填された触媒に燃料ガスを供給して、改質ガスを製造する。燃料処理装置(21)は、筒状の触媒充填空間(24)の外周壁の外周面に、触媒取出部(29)を表示する取出部表示手段と、触媒を取り出す触媒取出開口の形成を補助する開口形成補助手段とを有する。取出部表示手段及び開口形成補助手段は例えば、触媒充填空間(24)の軸心方向の略全長にわたって、触媒充填空間(24)の外周壁に形成された長円形の環状浅溝(30)である。使用期間経過後の燃料処理装置(21)から触媒(25)を回収するときに、環状浅溝(30)により囲まれた触媒取出部(29)を切除して、触媒取出開口(40)を形成する。

Description

燃料処理装置
 本発明は、都市ガスやLPGなどの炭化水素系燃料ガスを水蒸気改質して水素リッチな改質ガスを製造する燃料処理装置に関する。
 従来の燃料処理装置の例には、全体形状が円筒体状で、その中心部にバーナーを備えた加熱器が配設され;加熱器の周囲に改質触媒を充填した改質器と、一酸化炭素(CO)変成触媒を充填した変成器と、一酸化炭素(CO)除去触媒を充填したCO除去器とを軸心方向に並列して配設されている燃料処理装置が知られている(例えば、特許文献1を参照)。この燃料処理装置において、原料と改質水を、加熱器の周囲に設けた蒸発器として機能するガス流路に供給して、原料と水蒸気を改質器に供給する。さらに、改質器より送出された水素含有ガスを、ガス流路の外周に設けた変成器と、CO除去器とに順次供給することで、改質ガスが製造される。
 図1は、特許文献1に記載の燃料処理装置の構成を示す縦断面図である。
 図1に示す燃料処理装置1は全体形状が円筒体状であり、その外面を覆う断熱材1aによって断熱されている。燃料処理装置1の中心部には、バーナー2を配置した燃焼筒3とその外周の排気ガス通路4とからなる加熱器5が配設される。排気ガス通路4の出口4aは外部に開放されている。加熱器5の排気ガス通路4の出口側部分の外周に、蒸発器として機能する第1のガス流路6が配設される。排気ガス通路4の燃焼筒3から高温の排気ガスが流入する側の部分の外周に、改質触媒7を充填した改質器8が配設されている。改質器8の外周には、改質器8から送出された水素含有ガスを、第1のガス流路6の外周側に向けて流通させる第2のガス流路9が配設されている。第1のガス流路6の外周の改質器8側の部分には、CO変成触媒10を充填した変成器11が配設され;第1のガス流路6の外周の改質器8から遠い側の部分には、径方向内側の第3のガス流路12を介して径方向外側に、CO除去触媒13を充填したCO除去器14が配設されている。
 第1のガス通路6の入口部6aに原料が供給され;供給された原料は、変成器11及びCO除去器14の外周に巻回された加熱コイル15を通して供給される改質水と、入口部6aにおいて混合される。原料と改質水は、蒸発器として機能する第1のガス流路6を通過する間に加熱される。高温の原料と水蒸気は改質器8に供給され、改質触媒7の作用で原料が水蒸気改質されて水素リッチな水素含有ガスとなる。
 改質器8から送出された水素含有ガスは、第2のガス流路9を通って変成器11に供給され、CO変成触媒10の作用で水素含有ガス中の一酸化炭素(CO)が低減される。変成器11から送出された水素含有ガスは、変成器11と第3のガス流路12との間に設けられた空気混合空間16で、空気導入口16aから導入された空気と混合される。空気と混合された水素含有ガスは、第3のガス流路12を介してCO除去器14に供給され、CO除去触媒13の作用でCOを除去されて、出口17から水素含有ガスが送出される。
 図1に示す燃料処理装置は、CO除去器14と高温の第1のガス流路6との間に介在する第3のガス流路12を有する。そのため、変成器11の下流部での温度を反応にとって適切な温度(例えば200℃)に保持しつつ、CO除去器14の入口温度を酸化反応が過剰に促進されない温度(例えば、150℃)に維持することができる。つまり、変成器11とCO除去器14の温度を適温に維持できるという利点がある。
 特許文献2には、粒状改質触媒が充填された燃料改質器が開示されている。具体的には、原燃料が通流する方向に沿って間隔を隔てて複数の仕切板が設置され、配置された仕切板の上に粒状改質触媒が充填されている。仕切板には貫通穴が形成されており;仕切板と、燃料改質器の筒体との間に隙間が設けられている。
 また、再利用可能な部材を明示してリサイクルを促進する試みもある(特許文献3などを参照)。
特開2007-331985号公報 特開平8-208202号公報 特開平11-26896号公報
 ところで、図1に示したような構成の燃料処理装置1を所定期間使用した後に廃棄する場合には、廃棄する資源を再利用することが好ましい。特に、貴金属を含む改質触媒7、CO変成触媒10、及びCO除去触媒13をそれぞれ分別回収して、効率的に再生利用することが、省資源並びにコスト面から極めて重要である。しかしながら、燃料処理装置1は円筒体状であるため、回収処理現場において、いずれの触媒がいずれの部位に充填されているかを外観から容易に判断することができない。そこで、燃料処理装置1の仕様書に、触媒の充填位置や取り出し方法を明記しておくことが考えられる。ところが、多種類の燃料処理装置を処理する回収処理現場において、各仕様書を逐一確認することは事実上困難であり、各触媒を分別回収することは困難である。また、燃料処理装置1の外面は滑らかな円筒面であるので、触媒を取り出すための開口を容易に形成することができない。
 本発明は、燃料処理装置に充填されている触媒を、容易にかつ分別して回収することができる燃料処理装置を提供することを目的とする。
 本発明の燃料処理装置は、筒状の外周壁、又は筒状の内周壁と外周壁とにより囲まれ、前記筒の軸心に沿って配置された触媒充填空間に充填された触媒に、燃料ガスを供給して改質ガスを製造する燃料処理装置であって、以下の手段を備える。
 (1)前記充填された触媒を外部に取り出すための触媒取出部の位置を、前記外周壁の外周面に表示する取出部表示手段。
 (2)前記触媒取出部に触媒取出開口を形成することを補助する開口形成補助手段。
 本発明によれば、外周壁の外周面にある取出部表示手段が表示する触媒取出部に、触媒取出開口を容易に形成することができ、触媒取出開口を通して触媒充填空間内に充填されている触媒を容易に外部に取り出すことができる。つまり、触媒充填空間の位置を確認する手間を掛けずに、触媒を容易かつ確実に回収することができる。
 また、複数種類の触媒がそれぞれ、異なる触媒充填空間に充填されている場合には、触媒毎に、取出部表示手段が表示する触媒取出部を設置することができる。それにより、種類の異なる触媒を混在して回収することなく、触媒の種類ごとに確実に分別して回収することができる。
従来例の燃料処理装置の構成を示す縦断面図 図2Aは、実施の形態1に係る燃料処理装置の、第1の例の要部構成を示す斜視図であり;図2Bは、図2AのA-A矢視断面図であり;図2Cは、実施の形態1に係る燃料処理装置の、第1の例の要部構成を示す断面図であり;図2Dは、実施の形態1に係る燃料処理装置の、第1の例の要部構成を示す断面図であって、触媒を取出しているときの状態を示す図である。 図3Aは、実施の形態1に係る燃料処理装置の、第2の例の要部構成を示す斜視図であり;図3Bは、実施の形態1に係る燃料処理装置の、第2の例の要部構成を示す断面図であり;図3Cは、実施の形態1に係る燃料処理装置の、第2の例の要部構成を示す断面図であって、触媒を取出しているときの状態を示す図である。 図4Aは、実施の形態1に係る燃料処理装置の、第3の例の要部構成を示す斜視図であり;図4Bは、実施の形態1に係る燃料処理装置の、第3の例の要部構成を示す断面図であり;図4Cは、実施の形態1に係る燃料処理装置の、第3の例の要部構成を示す断面図であって、触媒を取出しているときの状態を示す図である。 図5Aは、実施の形態1に係る燃料処理装置の、第4の例の要部構成を示す斜視図であり;図5Bは、実施の形態1に係る燃料処理装置の、第4の例の要部構成を示す断面図であり;図5Cは、実施の形態1に係る燃料処理装置の、第4の例の要部構成を示す断面図であって、触媒を取出しているときの状態を示す図である。 図6Aは、実施の形態1に係る燃料処理装置の、第5の例の要部構成を示す斜視図であり;図6Bは、図6AのA-A矢視断面図であり;図6Cは、実施の形態1に係る燃料処理装置の、第5の例の要部構成を示す断面図であり;図6Dは、実施の形態1に係る燃料処理装置の、第5の例の要部構成を示す断面図であって、触媒を取出しているときの状態を示す図である。 図7Aは、実施の形態2に係る燃料処理装置の要部構成を示す斜視図であり;図7Bは、実施の形態2に係る燃料処理装置の要部構成を示す断面図であって、触媒を取出している第1の状態を示す図であり;図7Cは、実施の形態2に係る燃料処理装置の要部構成を示す断面図であって、触媒を取出している第2の状態を示す図である。 図8Aは、実施の形態3に係る燃料処理装置の要部構成を示す斜視図であり;図8Bは、実施の形態3に係る燃料処理装置の要部構成を示す斜視図であって、触媒取出開口を形成する状態を示す図であり;図8Cは、実施の形態3に係る燃料処理装置の要部構成を示す断面図であって、触媒を取出している状態を示す図である。 実施の形態4に係る燃料処理装置の半断面正面図である。 図10Aは、実施の形態4に係る燃料処理装置の、CO除去触媒取出部の断面図であり;図10Bは、実施の形態4に係る燃料処理装置の、CO除去触媒取出部の断面図であって、触媒を取出している状態を示す図である。 図11Aは、実施の形態4に係る燃料処理装置の、CO変成触媒取出部の正面図であり;図11Bは、図11AのB-B矢視断面図である。 図12Aは、実施の形態4に係る燃料処理装置のCO変成触媒取出部の側面図であって、CO変成触媒を取出す第1工程を示す図であり;図12Bは、実施の形態4に係る燃料処理装置のCO変成触媒取出部の側面図であって、CO変成触媒を取出す第2工程を示す図である。 図13Aは、実施の形態4に係る燃料処理装置の改質触媒取出部の縦断側面図であって、改質触媒を取出す第1工程を示す図であり;図13Bは、実施の形態4に係る燃料処理装置の改質触媒取出部の縦断側面図であって、改質触媒を取出す第2工程を示す図であり;図13Cは、実施の形態4に係る燃料処理装置の改質触媒取出部の縦断側面図であって、改質触媒を取出す第3工程を示す図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 〔第1の構成例〕
 図2は、本発明の実施の形態1に係る燃料処理装置の要部構成の第1の例を示す図である。図2Aは、燃料処理装置の要部の斜視図であり;図2Bは、図2AのA-A矢視断面図であり;図2Cは、燃料処理装置の要部の断面図であり;図2Dは、触媒を取出している状態を示す、燃料処理装置の要部の断面図である。
 図2A~Dに示すように、燃料処理装置21は、外周壁22、内周壁23、外周壁22と内周壁23の間に筒状の触媒充填空間24とを備える。
 触媒充填空間24内には、粒状の触媒25が充填されている。触媒25の粒径は、特に限定されないが、約2mm程度であればよい。触媒充填空間24は、その上端面を設定する上部棚板26aと、下端面を設定する下部棚板26bにより区画されている。また必要に応じて、これらの棚板26aと棚板26bとの間に、中間棚板26cが配置されてもよい。中間棚板26cは、触媒が劣化したときに、触媒充填空間24の下部に偏り、触媒作用が十分に発揮されなくなるのを防止することができる。
 棚板26a,26b及び26cは、原料ガスや水素含有ガスが流通するように、孔が多数形成されている多孔環状板であることが好ましい。孔の穴径は、孔を通って触媒25が脱落することを防止するため、触媒25の粒径よりも小さければよく、例えば、1mm未満であればよい。
 棚板26a,26b及び26cは、内周部に形成された湾曲部27が内周壁23の外周面に圧着され、必要に応じて溶接28により一体的に固着又は接合される。一方、棚板26a,26b及び26cの外周部は、外周壁22の内周面に当接されていても、もしくは微小の隙間をあけていてもよいが;いずれにしても外周壁22に固着されていないことが好ましい。
 外周壁22の触媒充填空間24に対向する部分に触媒取出部29が設定される。触媒取出部29は、触媒充填空間24の軸心方向の略全長にわたる大きさを有し、周方向の幅寸法は、周方向の適当な一部となるように設定される。触媒取出部29は、例えば長円形であり、その外形線に沿って設けた環状浅溝30にて区画されている。その結果、環状浅溝30は取出部表示手段ともなる。
 触媒取出部29の周方向の幅寸法は、少なくとも触媒25の粒径よりも大きく設定され、実際には数倍~十数倍程度、例えば約20mmに設定されることが好ましい。また、環状浅溝30は切り取り線として作用するので、外周壁22から触媒取出部29を切断除去することができ、触媒取出開口40を形成することができる。そのため、環状浅溝30は開口形成補助手段ともなる。
 環状浅溝30は、取出部表示手段でもあり、かつ開口形成補助手段でもあるが;取出部表示手段と開口形成補助手段とを別途に構成してもよい。例えば、開口形成補助手段としての環状浅溝30を、触媒取出部に対応する外周壁22の内周面に形成して;触媒取出部表示手段を、外筒壁22の外周面に刻印やレーザ印字加工にて表示したり、突部を設けて表示してもよい。
 環状浅溝30は、外周壁22を成形するときに、同時にプレス成形して形成することができ;例えば、ステンレス鋼板をプレス成形して外周壁22を作製するときに、同時にプレス成形により環状浅溝30を形成すればよい。
 燃料処理装置を駆動しているときに、外周壁22は高温に晒される。高温により生じる熱ストレスによって、環状浅溝30から亀裂が発生したり、破断したりすることがないように、環状浅溝30の深さは、鋼板の厚さの1/5~1/20程度にすることが好ましい。
 触媒取出部29の外面の適所若しくは側部近傍に、触媒取出部29から取り出される触媒25の種類を表示する触媒表示手段31が設けられている。触媒表示手段31は、刻印やレーザ印字加工により形成されうる。また、触媒表示手段31の表示部に、触媒25の種類に加えて、触媒の取出し方法を表示してもよい。触媒の取出し方法は、略図で表示することが好ましい。
 以上の構成において、触媒充填空間24から触媒25を取り出して回収する際には、外周壁22に形成されている触媒取出部29を確認して、その表面又は近傍に設けられている触媒表示手段31を読み取って、取り出す触媒25の種類を確認する。
 触媒25は、それに求められる機能;例えば改質触媒であるのか、一酸化炭素変成触媒であるのか、又は一酸化炭素除去触媒であるのかによって、その種類や組成が異なる。触媒25は、貴金属を含む合金であることが多く、貴金属を含む合金の例には、ルテニウム触媒がある。触媒表示手段31は、好ましくは貴金属(例えばルテニウム)の含有量又は含有比率を表示する。含有量は、例えば重量で表示すればよく;含有比率は、例えば重量%で表示すればよいが、特に限定されない。
 また、触媒表示手段31は、触媒の取出し方法を表示してもよい。取出し方法が表示されていればそれを読み取って、その方法に従って触媒取出部29に触媒取出開口40を形成する。
 図2Dに示されるように、触媒取出部29の下部にドリル(図示せず)などを用いて引掛穴32を形成し、この引掛穴32にバール(図示せず)などを引っ掛けて矢印の方向に強くと、長円形の環状浅溝30からなる切り取り線に沿って、外周壁22が切断される。そして、触媒取出部29が外周壁22から容易に切り取られて、触媒取出開口40が形成される。形成された触媒取出開口40を通して、触媒25が外部に取り出される。触媒25は、回収容器33に回収される。棚板26a,26b及び26cの内周部を、湾曲部27のように湾曲させているので、充填された触媒25が外部に取出されやすい。
 〔第2の構成例〕
 図3は、実施の形態1に係る燃料処理装置の要部構成の第2の例を示す図である。図3Aは、燃料処理装置の要部の斜視図であり;図3Bは、燃料処理装置の要部の断面図であり;図3Cは、触媒を取出している状態を示す、燃料処理装置の要部の断面図である。
 図3Aに示すように、触媒取出部29の下端部外面に、突出部である軸部34が一体的に固着されている。軸部34は、その先端に多角形の頭部34aを有していてもよい。図3Bに示すように、触媒25を取出す際には、軸部34の頭部34aをスパナ(図示せず)などを用いて回転させ、触媒取出部29の頭付き軸部34の固着部をねじ切り、引掛穴32を形成する。その後は図3Cに示すように、上記第1の例の場合と同様に、触媒25が回収容器33に回収される。
 〔第3の構成例〕
 図4は、実施の形態1に係る燃料処理装置の要部構成の第3の例を示す図である。図4Aは、燃料処理装置の要部の斜視図であり;図4Bは、燃料処理装置の要部の断面図であり;図4Cは、触媒を取出している状態を示す、燃料処理装置の要部の断面図である。
 図4Aに示すように、触媒取出部29の下端部外面に、突出部である突軸35が一体的に固着されている。図4Bの矢印で示すように、触媒25を取出す際には、突軸35をハンマー(図示せず)などで打撃して、触媒取出部29の突軸35の固着部を破断して、引掛穴32を形成する。その後は図4Cに示すように、上記第1の例の場合と同様に、触媒25が回収容器33に回収される。
 〔第4の構成例〕
 図5は、実施の形態1に係る燃料処理装置の要部構成の第4の例を示す図である。図5Aは、燃料処理装置の要部の斜視図であり;図5Bは、燃料処理装置の要部の断面図であり;図5Cは、触媒を取出している状態を示す、燃料処理装置の要部の断面図である。
 図5A及び図5Bに示すように、触媒取出部29の下端部に、突出部である有底の短管36が一体的に固着されている。図5Cに示すように、触媒25を取出す際には、短管36にバール(図示せず)の先端部を差し込み、矢印のように触媒取出部29の下部をこじ開ける。それにより、上記第1の構成例の場合と同様に、触媒25が回収容器33に回収される。
 〔第5の構成例〕
 図6は、実施の形態1に係る燃料処理装置の要部構成の第5の例を示す図である。図6Aは、燃料処理装置の要部の斜視図であり;図6Bは、図6AのA-A矢視断面図であり;図6Cは、燃料処理装置の要部の断面図であり;図6Dは、触媒を取出している状態を示す、燃料処理装置の要部の断面図である。図2と同一構成部材には同一番号を付して重複箇所の説明を省略する。
 棚板126a,126b及び126cは、その内周部が内周壁23の外周面に当接しており、必要に応じて溶接28により一体的に固着されている。一方、棚板126a,126b及び126cは、その外周部が外周壁22に当接もしくは微小隙間をあけて配置されており、外周壁22には固定されていない。ここで、棚板126a,126b及び126cは所定角度の傾斜を有しており、内周部の位置を外周部の位置よりも高くしてある。
 このように第5の構成例では、第1の構成例と同様に、触媒充填空間24に充填された触媒を棚板にて多段で支持することで、触媒の劣化によって触媒が触媒充填空間24の下部に偏ることを防止し、触媒作用の低下を抑制することができる。さらに、棚板126a,126b及び126cは、所定角度で傾斜しており、外周部が内周部よりも下にある。そのため図6Dに示すように、触媒を取り出すときに、触媒25が棚板の斜面に沿って適度に落ちるので、取り出し作業性が高まる。
 実施の形態1の各構成例は、後述の実施の形態2~4にも適用されうる。
 以上の説明のように、実施の形態1の燃料処理装置21(又は121)は、触媒充填空間24を囲む外周壁の外周面又は内周面に形成された長円形の環状浅溝30を有し、環状浅溝30は触媒充填空間24の軸心方向の略全長にわたって覆っている。環状浅溝30は、触媒を取り出す触媒取出開口の形成を補助する開口形成補助手段として機能し;外周壁の外周面にある環状浅溝30は、触媒取出部29を表示する取出部表示手段としても機能する。触媒取出部29に、触媒取出開口を形成することにより、充填されている触媒を、容易にかつ分別して回収することができる。具体的には、以下の効果を得ることができる。
 (1)使用期間経過後の燃料処理装置21に充填されている触媒25を回収するときに、外周壁22の環状浅溝30により囲まれた触媒取出部29を切除して、触媒取出開口40を形成することができる。そのため、触媒充填空間24の位置を確認する手間を掛けずに、確実に触媒充填空間24に連通する開口を形成することができる。これにより、充填されている触媒25を容易に取り出すことができる。また、環状浅溝30は開口形成補助手段としても機能する。つまり、触媒取出部29に外力を作用させると、その周縁の環状浅溝30に応力が集中して、環状浅溝30に沿って容易に切断が生じる。このため、触媒取出部29に容易に開口をすることができ、作業性良く触媒25を取り出すことができる。
 (2)燃料処理装置21には、複数の触媒充填空間24のそれぞれに、異なる種類の触媒25が充填されていることがある。触媒充填空間24のそれぞれに、取出部表示手段と開口形成補助手段とを備えていれば、種類の異なる触媒25を混在して取り出してしまうおそれがなく、触媒25を種類ごとに確実に分別して回収することができる。
 (3)環状浅溝30が、触媒充填空間24の軸心方向の略全長にわたっていれば、形成される触媒取出開口も、触媒充填空間24の軸心方向の略全長にわたる開口となる。そのため、触媒25を作業性良く取り出すことができる。また環状浅溝30は、環状であって湾曲しているので、外周壁22に作用する熱ストレスが局部に集中することがなく、環状浅溝30が不測に破断するおそれもなくなる。
 (4)触媒取出部29に、触媒の種類を表示する触媒表示手段31を設ければ、取り出す触媒25の種類を容易に特定でき、分別回収を容易かつ確実に行うことができる。触媒表示手段の具体例は、触媒毎に予め決められた文字・記号・模様などでありうる。また、その印字方法は、打刻やレーザ加工などが好適であり;一方、塗料の印刷・塗布は、高温に晒されて表示が劣化する可能性があるので好適でない場合がある。
 (5)取出部表示手段と兼用して、もしくは取出部表示手段とは別途に、触媒取出開口を形成するための開口形成補助手段を設けてあるので、必要な大きさの触媒取出開口を容易に形成することができ、触媒充填空間に充填された触媒を作業性良く取り出すことができる。
 (6)触媒取出部の周縁を取り囲む環状浅溝からなる開口形成補助手段を有するので、触媒取出部に外力を作用させると、その浅溝に応力が集中して、浅溝が容易に切断する。このため、触媒取出部全体を容易に切断除去することができ、作業性良く触媒を取り出すのに必要な大きさの触媒取出開口を、容易に形成することができる。環状浅溝の深さは、外周壁に作用する熱ストレスによって亀裂が発生したり、破断したりするおそれのない深さに形成される。
 (7)環状浅溝30にて囲まれた壁面の一端部に、切除可能な頭付き軸部34(図3参照)や突軸35(図4参照)や有底の短管36(図5参照)などの突出部を設けて、これらを切除することによって壁面に穴をできるようにしてもよい。この突出部に外力を作用させて切除して、引掛穴32を形成し、形成された引掛穴32にバールなどの工具を引っ掛けて環状浅溝30により囲まれた壁面の一端部を強く引っ張ることで、環状浅溝30にて囲まれた壁面の全体を切除することで、触媒取出部29に容易に触媒取出開口を形成することができる。
 (8)触媒充填空間24を、軸心方向に配列した2以上の領域に分割する棚板26a,26b及び26cを設けてもよい。各棚板は、触媒充填空間24の内周壁に固着され、外周壁とは固着されていない。触媒充填空間24に充填された触媒を棚板にて多段で支持することで触媒の劣化によって触媒が触媒充填空間24の下部にかたまってしまって触媒作用が低下するのを防止することができる。さらに、棚板によって触媒充填空間24が複数に分割されているにも係わらず、棚板26a,26b及び26cが外周壁に固定されていないため、触媒充填空間24の軸心方向略全長にわたる触媒取出開口を形成することができ、触媒の取り出しを作業性良く行うことができる。
 (実施の形態2)
 図7は、本発明の実施の形態2に係る燃料処理装置の要部構成を示す図である。図7Aは、燃料処理装置の要部の斜視図であり;図7Bは、触媒を取出すときの第1の状態を示す、燃料処理装置の要部の断面図であり;図7Cは、触媒を取出すときの第2の状態を示す、燃料処理装置の要部の触媒取出状態の断面図である。本実施の形態の説明に当たり、実施の形態1と共通の構成要素については同一番号を付して重複箇所の説明を省略する。
 実施の形態1では、触媒充填空間24の軸心方向の略全長にわたって、長円形の環状浅溝30にて区画された触媒取出部29を設けた。一方、実施の形態2では、図7Aに示すように、外周壁22の外周面に、周方向全周にわたる環状浅溝37が形成されている。環状浅溝37は1本ではなく、2本以上形成されている。つまり、触媒充填空間24の軸心方向の少なくとも両端位置、好ましくは触媒充填空間24の両端を区画している棚板26a,26bのそれぞれに対応する位置に、環状浅溝37が形成されている。さらに必要に応じて、前記両端位置の間、つまり中間棚板26cに対向する位置にも環状浅溝37を形成してもよい。環状浅溝37は、取出部表示手段及び開口形成補助手段として作用する。
 図7Bに示すように、触媒25を回収するときに、上部棚板26aと中間棚板26cとの間の外周壁22を切断除去して触媒取出開口40を形成して、上部棚板26aと中間棚板26cとの間の触媒25を取り出し;さらに図7Cに示すように、中間棚板26cと下部棚板26bとの間の外周壁22を切断除去して触媒取出開口40を形成し、中間棚板26cと下部棚板26bとの間の触媒25を取り出す。このようにして、触媒充填空間24に充填された触媒25の全量を作業性良く取り出すことができる。
 (実施の形態3)
 図8は、本発明の実施の形態3に係る燃料処理装置の要部構成を示す図である。図8Aは、燃料処理装置の要部の斜視図であり;図8Bは、触媒取出開口を形成する状態を示す図であり;図8Cは、触媒を取出している状態を示す、燃料処理装置の要部の断面図である。
 図8Aに示すように、触媒充填空間24を囲む外周壁22の外周面に、触媒取出部を表示する取出部表示マーク38が設けられている。図8Bに示すように、触媒25を回収するときに、取出部表示マーク38の位置で、ドリル39等により外周壁22を穿孔する。図8Cに示すように、穿孔により形成された孔を触媒取出開口40として、触媒25を作業性良く取り出すことができる。
 実施の形態3は、複数の取出部表示マーク38と、取出部表示マーク38を目印に穿孔される触媒取出開口40の参考例である。開口形成補助手段については、実施の形態1,2の燃料処理装置と同様の構成を適用することができる。
 (実施の形態4)
 本実施の形態は、図1の従来例の燃料処理装置1に、本発明を適用した例である。図9は、本発明の実施の形態4に係る燃料処理装置の半断面正面図である。図1と同一構成部材には同一番号を付して重複箇所の説明を省略する。
 図9に示すように、燃料処理装置100は、CO除去触媒13を充填したCO除去器14と、CO変成触媒10を充填したCO変成器11とを備える。CO除去器14の外周壁及びCO変成器11の外周壁はいずれも上部外周壁41である。上部外周壁41には、CO除去器14に対応する部分の適所にCO除去触媒取出部42が配設され、CO変成器11に対応する部分の適所にCO変成触媒取出部43が配設されている。
 また、燃料処理装置100は、改質触媒7を充填した改質器8を備える。改質器8の外周壁は外周壁8aであり;外周壁8aの外側には、第2のガス通路9を介して下部外周壁44が配設されている。外周壁44の適所に、改質触媒取出部45が配設されている。
 これらCO除去触媒取出部42、CO変成触媒取出部43及び改質触媒取出部45はそれぞれ、取出部表示手段及び開口形成補助手段を有している。また、改質器8の触媒充填空間の内部には、上記実施の形態1における棚板26cと同様の棚板18が配設され;棚板18は、触媒充填空間を、その軸心方向に配列した2以上の領域に分割している。
 図10Aは、実施の形態4に係る燃料処理装置のCO除去触媒取出部42の断面図であり;図10Bは、触媒を取出している状態を示す、CO除去触媒取出部42の断面図である。
 図10Aに示すように、CO除去触媒取出部42は、上部外周壁41に突設された先端閉鎖の筒状突部46と、筒状突部46の周壁の全周にわたって形成された環状溝47とで構成されている。CO除去触媒13を取り出す際には、図10Aの矢印で示すように、ハンマー48等で筒状突部46の先端部を打撃する。すると図10Bに示すように、筒状突部46の先端部が破断・除去されて触媒取出開口49が形成される。この触媒取出開口49を通してCO除去触媒13を取り出すことができる。
 このように、CO除去触媒取出部42の筒状突部46の周壁を、環状溝47に沿って切断することで、CO除去触媒13を取り出す触媒取出開口49を容易に形成することができる。また、環状溝47は筒状突部46の周壁に形成されているので、上部外周壁41に作用する熱ストレスの影響を受けにくい。
 図11Aは、CO変成触媒取出部43の正面図であり;図11Bは、図11AのB-B矢視断面図である。
 図11A及びBに示すように、CO変成触媒取出部43は、長円形の環状浅溝50を有し、触媒取出部51を区画している。環状浅溝50は、上部外周壁41のCO変成器11に対向する部位に形成されており、CO変成器11の軸方向の長さよりも若干短い長さの長円形である。さらに、触媒取出部51の上部にコ字状のフック部材52が固着されている。
 図12Aは、CO変成触媒10を取出す第1工程を示す、CO変成触媒取出部43の側面図であり;図11Bは、上記CO変成触媒10を取出す第2工程を示す、CO変成触媒取出部43の側面図である。
 図12Aに示すように、CO変成触媒10を取り出すときに、バール53等の工具の一端部をフック部材52に挿入し、バール53の他端部を矢印で示すように強く引き下げる。すると、環状浅溝50に沿って触媒取出部51が上部外周壁41から容易に切り取られて、触媒取出開口54が形成される。図12Bに示すように、触媒取出開口54を通して、CO変成触媒10が外部に取り出されて回収される。
 このように、CO変成触媒取出部43は、上記実施の形態1と基本構成が同一であり、同様の効果を得ることができる。
 図13A~Cは、上記燃料処理装置100の改質触媒を取出す工程を示す、改質触媒取出部45の縦断側面図である。
 図13AとBに示すように、改質触媒取出部45は、触媒取出部56と内側触媒取出部58とからなる。触媒取出部56は下部外周壁44に設置されており、長円形の環状浅溝55で区画されている。環状浅溝55は、改質器8の軸方向の長さよりも若干短い長さの長円形状である。一方、内側触媒取出部58は、改質器8の外周壁8aに設置されており、環状浅溝55に対向する位置にあり、環状浅溝57で区画されている。
 触媒取出部56の上端部には、コ字状のフック部材59が固着されている。フック部材59の下部近傍であって、触媒取出部56と内側触媒取出部58との対向面に、それぞれ一対の連結片60が配置されている。一対の連結片60は、互いに間隔をあけて配置されている。
 図13Aに示すように、改質触媒7を取り出すときに、バール53等の工具の一端部をフック部材59に挿入し、バール53の他端部を矢印で示すように強く引き下げる。すると図13Bに示すように、触媒取出部56の上端部(連結片60の位置まで)が、環状浅溝55に沿って下部外周壁44から切り離されて、外側に折り曲げられる。
 次に図13Bに示すように、バール53などの工具の一端部を、触媒取出部56と内側取出部58との間にある一対の連結片60の間に挿入し、バール53の他端部を矢印で示すように強く引き下げる。すると、触媒取出部56及び内側取出部58は、それぞれ環状浅溝55及び環状浅溝57に沿って、下部外周壁44及び改質器8の外周壁8aから容易に切り離される。それにより、触媒取出開口61が形成される。この触媒取出開口61を通して、改質触媒7を外部に取り出して回収することができ、実施の形態1と同様の効果を得ることができる。
 このように本実施の形態によれば、環状浅溝にて囲まれた壁面の一端部に、切除可能な突出部が設けられており、その突出部に外力を作用させて突出部を切除することで、壁面に穴を形成することができる。形成された穴にバールなどの工具を引っ掛けて、環状浅溝にて囲まれた壁面の一端部を強く引っ張ることで、環状浅溝にて囲まれた壁面を切除して、触媒取出部に触媒取出開口を形成することができる。
 開口形成補助手段は、外周壁の周方向全周にわたる浅溝であり、浅溝を触媒充填空間の軸心方向の少なくとも両端位置に配置されうる。浅溝に沿って外周壁を切断すれば、触媒充填空間の全周が開口するので、作業性良く触媒を取り出すことができる。
 また、開口形成補助手段は、触媒充填空間の外周壁に突設された先端閉鎖の筒状突部と、筒状突部の周壁の全周にわたって形成された環状溝にて構成されうる。筒状突部の周壁を環状溝の位置で切断して筒状突部の先端部を除去することで、触媒取出開口を容易に形成することができる。また、環状溝は、筒状突部の周壁に形成されているので、触媒充填空間の外周壁に作用する熱ストレスの影響を受けにくい。
 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されない。例えば、各実施の形態で示したCO除去触媒取出部42やCO変成触媒取出部43の具体的な構成は、図示して説明したものに限定されるものではない。また、CO除去触媒取出部42やCO変成触媒取出部43の構成を、互いに逆の構成にしてもよいし、いずれかの構成を両方に適用してもよい。さらにCO除去触媒取出部42やCO変成触媒取出部43の構成は、実施の形態1で示した構成例のいずれかの構成にしてもよい。
 改質触媒取出部45の具体的な構成も図示して説明したものに限らない。例えば、触媒取出部56と内側触媒取出部58それぞれに対して、触媒取出部29の各構成例や、触媒取出部42,43の構成を適用してもよい。
 また、上記各実施の形態では、筒状の内周壁23と外周壁22とにより囲まれる触媒充填空間24について説明したが、触媒充填空間24は外周壁22だけに取り囲まれる態様でもよい。すなわち、外周壁の外周面に触媒取出部の位置が表示され、かつ、この触媒取出部に開口形成補助手段が設けられる構造であれば、どのような構成でもよい。
 また、上記各実施の形態では、棚板が内周壁23に固着される形態について説明したが、棚板は触媒充填空間を囲む外周壁に固着されていなければよい。例えば、触媒充填空間24が外周壁22だけに取り囲まれる構造の場合、棚板は内周壁23に固着されることはない。
 燃料処理装置という名称は、説明の便宜上であり、燃料改質器等であってもよいことは勿論である。さらに、上記燃料処理装置が使用する燃料ガス、触媒の種類、数及び処理方法などは前述した実施の形態に限られない。
 2008年6月13日出願の特願2008-155417の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明に係る燃料処理装置は、外周壁の取出部表示手段で表示された触媒取出部に開口を形成することによって、触媒充填空間の位置を確認する手間を掛けずに、触媒充填空間に連通する開口を形成することができる。これにより、触媒充填空間内に充填されている触媒を容易に取り出すことができる。また、触媒充填空間毎に開口を形成して触媒を取り出すことができるので、触媒の種類ごとに確実に分別して回収することができ、種類の異なる触媒を混在して取り出すおそれを低減する。
 特に本発明により、炭化水素系燃料ガスを改質して水素リッチな改質ガスを製造して燃料電池に供給する燃料処理装置における触媒を回収して、リサイクルさせることができる。
 18,26a~26c,126a~126c 棚板
 21,100,121 燃料処理装置
 22 外周壁
 23 内周壁
 24 触媒充填空間
 25 触媒
 29,51,56 触媒取出部
 30,37,50,55,57 環状浅溝(取出部表示手段、開口形成補助手段)
 31 触媒表示手段
 32 引掛穴
 34 頭付き軸部(突出部)
 35 突軸(突出部)
 36 短管(突出部)
 38 取出部表示マーク(取出部表示手段)
 40,49,54,61 触媒取出開口
 41 上部外周壁
 42 CO除去触媒取出部
 43 CO変成触媒取出部
 44 下部外周壁
 45 改質触媒取出部
 46 筒状突部
 47 環状溝
 58 内側触媒取出部
 70 燃料ガス
 71 空気
 72 水
 73 水素含有ガス
 74 排気ガス
 

Claims (10)

  1.  筒状の外周壁、又は筒状の内周壁と外周壁とにより囲まれ、前記筒の軸心に沿って配置された触媒充填空間に充填された触媒に、燃料ガスを供給して改質ガスを製造する燃料処理装置において、
     触媒取出部の位置を、前記外周壁の外周面に表示する取出部表示手段と、
     前記触媒取出部に触媒取出開口を形成することを補助する開口形成補助手段と、
     を備える燃料処理装置。
  2.  前記触媒充填空間を、前記軸心方向に配列した2以上の領域に分割する1又は複数の棚板を有し、
     前記棚板は、前記触媒充填空間を囲む外周壁に固着されていない、
     請求項1に記載の燃料処理装置。
  3.  前記触媒充填空間を、前記軸心方向に配列した2以上の領域に分割する1又は複数の棚板を有し、
     前記棚板は、前記触媒充填空間を囲む内周壁に固着される、
     請求項1に記載の燃料処理装置。
  4.  前記開口形成補助手段は、前記取出部表示手段と同一であるか、又は別途の手段である、請求項1に記載の燃料処理装置。
  5.  前記充填された触媒の種類を表示する触媒表示手段をさらに備える、請求項1に記載の燃料処理装置。
  6.  前記触媒取出部は、前記外周壁の周方向の一部に設置され、かつ
     前記開口形成補助手段は、前記外周壁の外周面又は内周面に形成され、前記触媒取出部の周縁を取り囲む環状浅溝からなる、請求項1に記載の燃料処理装置。
  7.  前記触媒取出部は、前記触媒充填空間の軸心方向の略全長にわたって設置され、長円形である、請求項5に記載の燃料処理装置。
  8.  前記環状浅溝により取り囲まれた外周壁の外周面に設けられた切除可能な突出部であって、切除されると外周壁に貫通穴が形成される突出部を有する、請求項5に記載の燃料処理装置。
  9.  前記触媒取出部は、前記外周壁の周方向の全周にわたって設置され、
     前記開口形成補助手段は、前記外周壁の外周面又は内周面に形成され、周方向の全周にわたる2本以上の浅溝からなり、
     前記浅溝は、触媒充填空間の軸心方向の少なくとも両端に配置されている、請求項1に記載の燃料処理装置。
  10.  前記開口形成補助手段は、前記触媒充填空間を囲む外周壁の外周面に設けられた先端閉鎖の筒状突部と、前記筒状突部の周壁の全周にわたって形成された溝とからなる、請求項1に記載の燃料処理装置。
PCT/JP2009/002440 2008-06-13 2009-06-01 燃料処理装置 WO2009150792A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009544339A JP4536153B2 (ja) 2008-06-13 2009-06-01 燃料処理装置
CN2009800004531A CN101679033B (zh) 2008-06-13 2009-06-01 燃料处理装置
EP09762223.7A EP2287113B1 (en) 2008-06-13 2009-06-01 Fuel processor
US12/666,891 US7883675B2 (en) 2008-06-13 2009-06-01 Fuel treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008155417 2008-06-13
JP2008-155417 2008-06-13

Publications (1)

Publication Number Publication Date
WO2009150792A1 true WO2009150792A1 (ja) 2009-12-17

Family

ID=41416505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002440 WO2009150792A1 (ja) 2008-06-13 2009-06-01 燃料処理装置

Country Status (6)

Country Link
US (1) US7883675B2 (ja)
EP (1) EP2287113B1 (ja)
JP (1) JP4536153B2 (ja)
KR (1) KR100998812B1 (ja)
CN (1) CN101679033B (ja)
WO (1) WO2009150792A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083534A1 (ja) * 2010-01-05 2011-07-14 パナソニック株式会社 燃料処理装置
WO2014002472A1 (ja) 2012-06-25 2014-01-03 パナソニック株式会社 燃料処理装置
WO2014002470A1 (ja) 2012-06-25 2014-01-03 パナソニック株式会社 燃料処理装置
US9266729B2 (en) 2011-11-16 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Fuel processor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118430A2 (en) 2012-02-09 2013-08-15 Panasonic Corporation Fuel processor
EP2707326B1 (en) 2012-06-25 2017-04-05 Panasonic Intellectual Property Management Co., Ltd. Fuel processor
KR101898788B1 (ko) * 2016-12-30 2018-09-13 주식회사 두산 연료처리장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208202A (ja) 1995-01-30 1996-08-13 Fuji Electric Co Ltd 燃料改質器
JPH1126896A (ja) 1997-07-09 1999-01-29 Ricoh Co Ltd プリント回路基板
JP2005247596A (ja) * 2004-03-01 2005-09-15 Mitsubishi Heavy Ind Ltd 改質装置
JP2007331985A (ja) 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 水素生成装置、およびそれを用いた燃料電池発電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812802B1 (de) * 1996-06-15 1999-08-18 dbb fuel cell engines GmbH Reformierungsreaktor, insbesondere zur Wasserdampfreformierung von Methanol
US6139810A (en) * 1998-06-03 2000-10-31 Praxair Technology, Inc. Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes
EP1394103B1 (en) * 2001-06-04 2007-08-29 Tokyo Gas Company Limited Cylindrical water vapor reforming unit
JP2003063593A (ja) 2001-08-24 2003-03-05 Heiwa Corp 粒状物排出口のシャッター機構
JP5058809B2 (ja) * 2005-09-30 2012-10-24 パナソニック株式会社 水素生成装置及び燃料電池システム
JP4312257B2 (ja) 2006-06-21 2009-08-12 パナソニック株式会社 燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208202A (ja) 1995-01-30 1996-08-13 Fuji Electric Co Ltd 燃料改質器
JPH1126896A (ja) 1997-07-09 1999-01-29 Ricoh Co Ltd プリント回路基板
JP2005247596A (ja) * 2004-03-01 2005-09-15 Mitsubishi Heavy Ind Ltd 改質装置
JP2007331985A (ja) 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 水素生成装置、およびそれを用いた燃料電池発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2287113A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083534A1 (ja) * 2010-01-05 2011-07-14 パナソニック株式会社 燃料処理装置
JP4918629B2 (ja) * 2010-01-05 2012-04-18 パナソニック株式会社 燃料処理装置
US9266729B2 (en) 2011-11-16 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Fuel processor
WO2014002472A1 (ja) 2012-06-25 2014-01-03 パナソニック株式会社 燃料処理装置
WO2014002470A1 (ja) 2012-06-25 2014-01-03 パナソニック株式会社 燃料処理装置
US9144781B2 (en) 2012-06-25 2015-09-29 Panasonic International Property Management Co., Ltd. Fuel processing device

Also Published As

Publication number Publication date
EP2287113A1 (en) 2011-02-23
CN101679033B (zh) 2013-02-27
JPWO2009150792A1 (ja) 2011-11-10
EP2287113A4 (en) 2011-08-03
KR20100031668A (ko) 2010-03-24
JP4536153B2 (ja) 2010-09-01
CN101679033A (zh) 2010-03-24
EP2287113B1 (en) 2015-03-18
KR100998812B1 (ko) 2010-12-06
US20100202938A1 (en) 2010-08-12
US7883675B2 (en) 2011-02-08

Similar Documents

Publication Publication Date Title
JP4536153B2 (ja) 燃料処理装置
EP2564140B1 (en) Gas-to-liquid technology
WO2002018269A3 (en) Process for generating hydrogen-rich gas
MX2011013415A (es) Proceso de reduccion basado en gas reformado con descarbonizacion del gas combustible para el reformador.
JP2001017853A (ja) ラジアル・フロー・リアクタの改良型スカラップ状導管
WO2018140686A1 (en) Systems and methods for improving natural gas usage in steam methane reformers
JP4700603B2 (ja) 部分酸化改質器−改質交換器配列
EP2543628B1 (en) Hydrogen generator
CA2351873A1 (en) A device for recovery of hydrogen
BRPI0700938A (pt) recuperador reformador autotérmico integrado
US8431095B2 (en) Catalytic reactor
JP5269271B1 (ja) 燃料処理装置
EP2892982A1 (en) Method for starting-up a gas to liquid process
EP2707326B1 (en) Fuel processor
WO2011083534A1 (ja) 燃料処理装置
EP3552696A1 (en) Reactor
JP2007090321A (ja) 流体処理装置及びその製造方法
JP2009291824A (ja) 抵抗溶接方法及び溶接構造体
US20110073809A1 (en) Reduction Of CO2 Emissions From A Steam Methane Reformer And/Or Autothermal Reformer Using H2 As A Fuel
JP5463767B2 (ja) 加熱炉へのヒータ設置方法
JP4088262B2 (ja) 燃料ガス製造装置の始動方法
JP2008126188A (ja) メタル担体およびメタル担体の製造方法
JP6634614B2 (ja) 水素生成装置
EP3659965B1 (en) Method for the production of steam in a steam reforming plant
JP2015231920A (ja) 水素製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000453.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009544339

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20097025079

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009762223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12666891

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE