WO2009148122A1 - 負荷駆動装置 - Google Patents

負荷駆動装置 Download PDF

Info

Publication number
WO2009148122A1
WO2009148122A1 PCT/JP2009/060258 JP2009060258W WO2009148122A1 WO 2009148122 A1 WO2009148122 A1 WO 2009148122A1 JP 2009060258 W JP2009060258 W JP 2009060258W WO 2009148122 A1 WO2009148122 A1 WO 2009148122A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
unit
power
driving device
power consumption
Prior art date
Application number
PCT/JP2009/060258
Other languages
English (en)
French (fr)
Inventor
次夫 西村
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to JP2010515913A priority Critical patent/JP5143899B2/ja
Priority to DE112009001395T priority patent/DE112009001395T5/de
Priority to US12/990,695 priority patent/US8264271B2/en
Publication of WO2009148122A1 publication Critical patent/WO2009148122A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for

Definitions

  • the present invention relates to a load driving device for driving a load.
  • an in-vehicle load driving device is connected between a power source such as a generator or a battery and loads such as various lamps and various motors, and switches a power supplied from the power source to drive the load. Is provided.
  • a power source such as a generator or a battery
  • loads such as various lamps and various motors
  • switches a power supplied from the power source to drive the load Is provided.
  • the switching unit When the switching unit is turned on, power is supplied from the power source to the load via the load driving device. When the switching unit is turned off, power is not supplied from the power source to the load.
  • energy saving various energy saving measures (hereinafter referred to as energy saving) have been proposed in consideration of the environment and keeping the fuel cost of vehicles low.
  • a mechanical relay has been used as the switching unit, but recently a semiconductor relay has been used.
  • the load is driven by switching the semiconductor relay on / off appropriately instead of always turning on the semiconductor relay to drive the load (hereinafter referred to as normal drive).
  • energy saving drive By performing (hereinafter referred to as energy saving drive), it is conceivable to reduce the power applied to the load, and as a result, reduce the power consumption of the load (hereinafter referred to as load power consumption).
  • a fuel supply reference information providing method for providing a driver with information indicating the relationship between the remaining fuel amount of a vehicle and fuel consumption is disclosed (see Patent Document 1).
  • This information includes a plurality of different refueling amounts, the distance that the vehicle can travel when each refueling amount is refueled, and the expected fuel consumption when traveling the distance.
  • the driver refers to the provided information, and refuels the vehicle by an amount that does not cause a fuel shortage to the destination without filling the vehicle. As a result, the fuel efficiency of the vehicle is improved, and as a result, energy saving of the vehicle is promoted.
  • JP 2007-272798 A JP 2007-272798 A
  • the switching unit corresponding to the lamp when the switching unit corresponding to the lamp is intermittently turned on, the lamp becomes darker than when the switching unit is continuously turned on. For this reason, the driver who attaches importance to the ability of the load tends to avoid energy saving driving. In addition, drivers who are not interested in environmental problems are reluctant to execute energy-saving driving. That is, the conventional load driving device has a problem that it is difficult to promote energy saving of the vehicle. Accordingly, there is a demand for a load driving device that can increase the possibility that the driver actively performs energy saving driving or selects a vehicle having an energy saving driving function.
  • the fuel supply reference information providing method described in Patent Document 1 specifically shows the expected fuel consumption for a plurality of different fuel supply amounts, and therefore, the driver can easily select the fuel supply amount at which the predicted fuel consumption decreases.
  • the present invention has been made in view of such circumstances, and its main purpose is load power consumption when the switching unit is intermittently turned on, and estimated power consumption when the switching unit is continuously turned on. It is to provide a load driving device capable of specifically indicating a value indicating an energy saving effect and promoting energy saving by adopting a configuration for notifying a value related to the difference between the two.
  • Another object of the present invention is to save the configuration by calculating a value related to the difference between the load power consumption and the estimated power consumption based on the detection result of the current detector that detects the current value of the current flowing through the load.
  • An object of the present invention is to provide a load driving device capable of easily calculating a value indicating an energy effect with a simple circuit configuration.
  • Another object of the present invention is to provide a load driving device that can suppress an increase in the number of components by using a semiconductor relay with a current detection function.
  • Another object of the present invention is to enable energy saving driving and normal driving to be performed by a configuration in which the switching unit is intermittently / continuously turned on when the limit receiving unit receives power limit / unlimited.
  • An object of the present invention is to provide a load driving device that can be arbitrarily switched.
  • Still another object of the present invention is to provide a configuration in which the switching unit is PWM-controlled using the received duty ratio when the ratio receiving unit receives the duty ratio, so that the power given to the load can be arbitrarily set by the user.
  • An object of the present invention is to provide a load driving device that can increase or decrease.
  • a load driving device is a load driving device for driving a load, and corresponds to the load in order to limit the power applied to the load and a switching unit that switches the power applied to the load.
  • An intermittent control means for controlling the switching section to intermittently turn on, and when the intermittent control means controls the switching section, load power consumption of a load corresponding to the switching section, and the switching section
  • a calculation unit that calculates a value related to a difference from the estimated power consumption of the load when the switch is continuously turned on, and a notification unit that notifies the value calculated by the calculation unit.
  • the load driving device further includes a current detection unit that detects a current value of a current flowing through the load, and the calculation unit calculates at least the load power consumption based on a detection result of the current detection unit. It is characterized by being calculated.
  • a load driving device is characterized in that the switching unit and the current detection unit are combined with a semiconductor relay having a function of detecting a current value of a current flowing through the switching unit and the current detection unit.
  • a load driving device continuously controls a restriction receiving unit that accepts restriction / unrestriction of electric power applied to a load and a switching unit corresponding to the load when the restriction acceptance unit accepts restriction.
  • Continuous control means for turning on, and the intermittent control means controls the switching unit corresponding to the load to intermittently turn on when the restriction receiving unit receives the restriction. It is characterized by being.
  • a load driving device further includes a ratio receiving unit that receives a duty ratio when performing PWM control, and the intermittent control unit uses the duty ratio received by the ratio receiving unit to switch the switching unit. PWM control is performed.
  • the switching unit switches the power applied to the load
  • the intermittent control means controls the switching unit corresponding to the load to turn it on intermittently.
  • the power supplied to the load is limited as compared with the case where the switching unit is continuously turned on.
  • the calculation means calculates a value related to the difference between the load power consumption and the estimated power consumption.
  • the load power consumption is the actual power consumption of the load corresponding to the switching unit that is controlled to be intermittently turned on by the intermittent control means
  • the estimated power consumption is the continuous power consumption of the switching unit. Is the estimated power consumption of the load when it is turned on (that is, when normal driving is being executed).
  • the value calculated by the calculation means corresponds to a value indicating an energy saving effect (hereinafter referred to as an energy saving effect) by limiting the power applied to the load.
  • This value is, for example, the power difference obtained by subtracting the load power consumption from the estimated power consumption, the power amount difference obtained by integrating the power difference over time, or the electricity cost or fuel cost obtained based on the power difference or the power amount difference. is there.
  • the notification means notifies the value calculated by the calculation means. As a result, a value indicating the energy saving effect is specifically shown to the user of the load driving device.
  • the current detection unit detects the current value of the current flowing through the load.
  • This load is a load corresponding to at least the switching unit that is controlled to be intermittently turned on by the intermittent control means.
  • the calculation means calculates at least load power consumption based on the detection result of the current detection unit, and calculates a value related to a difference between the load power consumption and the estimated power consumption based on the calculation result.
  • the load power consumption includes, for example, the voltage value of the voltage applied to the load, the current value of the current flowing through the load (that is, the detection result of the current detection unit), and the ON / OFF ratio (for example, duty ratio) of the switching unit. Is easily obtained by multiplying by. That is, a value related to the difference between the load power consumption and the estimated power consumption (that is, a value indicating an energy saving effect) can be easily calculated.
  • the load drive device of this invention can be easily obtained by connecting a current detection part in series between the switching part and load which are included in the conventional load drive apparatus, for example. That is, a value indicating the energy saving effect can be calculated with a simple circuit configuration.
  • a current detection unit can also be used as a current detection unit that detects a current value of a current flowing through the switching unit, for example, in order to perform overheat protection control of the switching unit.
  • the circuit configuration can be further simplified and reduced in size.
  • the calculation means may also calculate the estimated power consumption based on the detection result of the current detection unit.
  • the estimated power consumption is easily obtained, for example, by multiplying the voltage value of the voltage applied to the load by the current value of the current flowing through the load (that is, the detection result of the current detection unit).
  • the calculation means may use a fixed value given in advance based on an experiment, for example, as the estimated power consumption.
  • the switching unit and the current detection unit are configured using a semiconductor relay having a function of detecting the current value of the current flowing through itself. That is, the load driving device of the present invention is equivalent to a circuit configuration in which the switching unit included in the conventional load driving device is replaced with a semiconductor relay with a current detection function, and therefore the number of parts does not change. As a result, the load driving device of the present invention can suppress an increase in the number of parts, and the circuit configuration can be simplified and reduced in size. Therefore, an increase in cost due to an increase in the number of parts, a complicated circuit configuration, and an increase in size can be suppressed. If a semiconductor relay with a current detection function is not used, a current detection unit must be added to the conventional load driving device, which increases the number of components.
  • the limit receiving unit receives a limit / unrestriction of power given to the load.
  • the continuous control means controls the switching unit corresponding to the load and turns it on continuously when the limit receiving unit receives unlimited.
  • the intermittent control means controls the switching unit corresponding to the load to intermittently turn on when the limit receiving unit receives the limit.
  • the limit receiving unit receives the limit
  • energy saving drive for driving the load by appropriately switching on / off the switching unit is executed, and the power supplied to the load is limited.
  • the restriction accepting unit accepts no restriction, normal driving is performed in which the switching unit is always turned on to drive the load, and the power given to the load is not restricted.
  • the user refers to the reported value indicating the energy-saving effect, and when the highest priority is given to improving the energy-saving effect, the user operates the limit reception unit to execute the energy-saving drive, and the highest priority is given to improving the load capacity.
  • the normal reception is executed by operating the limit receiving unit. Therefore, the user can determine whether to execute the normal driving or the energy saving driving based on a certain basis, instead of avoiding the energy saving driving in the dark clouds. In particular, when performing energy saving driving, the user can obtain a satisfaction that he / she actively contributes to energy saving.
  • the ratio receiving unit receives the duty ratio when performing the PWM control.
  • the intermittent control means performs PWM control of the switching unit using the duty ratio received by the ratio receiving unit. Therefore, when the ratio receiving unit receives a small duty ratio, the time during which the switching unit is turned off becomes longer, so that the power applied to the load decreases. On the other hand, when the ratio receiving unit receives a large duty ratio, the time during which the switching unit is turned on becomes longer, so that the power applied to the load increases.
  • the user refers to the notified value indicating the energy saving effect, and when performing energy saving drive while giving priority to the improvement of the energy saving effect, the user operates the ratio reception unit to decrease the duty ratio and the load capacity.
  • the energy saving drive is executed while giving priority to the improvement of the ratio, the duty ratio is increased by operating the ratio receiving unit. Therefore, the user can execute the energy saving drive so that both the energy saving effect and the load capacity are compatible, based on a firm basis, instead of avoiding the energy saving drive in the dark clouds.
  • the user who has been notified of the value indicating the energy saving effect can obtain the feeling that the energy saving driving has been executed. It is possible to obtain a feeling of keeping fuel costs low.
  • the user actively performs energy saving driving or selects a vehicle, a facility, or the like provided with the load driving device of the present invention.
  • the load driving device of the present invention can promote energy saving, environmental conservation, prevention of global warming, and the like.
  • the load driving device of the present invention improves the merchantability in that it specifically shows a value indicating the energy saving effect and contributes to environmental measures. Accordingly, the merchantability of vehicles, facilities and the like provided with the load driving device of the present invention is also improved.
  • FIG. 1 is a block diagram showing a configuration of a load driving device 1 according to Embodiment 1 of the present invention.
  • reference numeral 3 denotes a vehicle.
  • the vehicle 3 includes a plurality of loads 21 and 22 such as a headlight, an air conditioner blower, and a rear defogger, a load driving device 1 for driving the loads 21 and 22,
  • a power source 30 using a generator and a battery and an accessory switch 31 for switching on / off of power feeding to the entire loads 21 and 22 are mounted.
  • the loads 21 and 22 are supplied with power from the power source 30 via the load driving device 1.
  • the load driving device 1 is an ECU that includes a control unit 10, semiconductor relays 11 and 12, driving circuits 13 and 14, an operation unit 15, a display unit 16, and a ROM 17.
  • the energy saving drive for driving 21 and 22 and the normal drive for driving the loads 21 and 22 while supplying power without limitation are configured to be executed. Below, the detail of the load drive device 1 is demonstrated.
  • the control unit 10 is a control center of the load driving device 1 and includes an A / D converter that is fed from the power source 30 and a microprocessor that is fed from the A / D converter.
  • the control unit 10 has a function of inputting / outputting various signals to / from each unit of the load driving device 1 and detecting a voltage value of the input signal.
  • the control unit 10 has a function of detecting a voltage value of a voltage applied to the control unit 10 by the power supply 30.
  • the voltage applied to the control unit 10 by the power supply 30 corresponds to the voltage of the power supply 30.
  • the detection of the voltage value is repeatedly executed at predetermined time intervals.
  • the semiconductor relays 11 and 12 are each a semiconductor relay with a current detection function, and output the detection result of the current value to the control unit 10. More specifically, each of the semiconductor relays 11 and 12 functions as a switching unit that switches power supplied from the power supply 30 to each of the loads 21 and 22 and a current that detects a current value of a current flowing through the semiconductor relays 11 and 12 itself. And a function as a detection unit.
  • the semiconductor relay 11 is connected in series between the power source 30 and the load 21, and power is supplied from the power source 30 to the load 21 when the semiconductor relay 11 is on.
  • the current value detected by the semiconductor relay 11 corresponds to the current value of the current flowing through the load 21.
  • the semiconductor relay 12 has the same configuration as that of the semiconductor relay 11 and is connected in series between the power supply 30 and the load 22. For this reason, when the semiconductor relay 12 is on, power is supplied from the power supply 30 to the load 22.
  • the current value detected by the semiconductor relay 12 corresponds to the current value of the current flowing through the load 22.
  • the semiconductor relays 11 and 12 and the control unit 10 are connected in parallel to each other.
  • the drive circuits 13 and 14 drive the corresponding semiconductor relays 11 and 12, respectively.
  • each drive circuit 13, 14 outputs a predetermined signal to each semiconductor relay 11, 12 and stops outputting this signal. More specifically, each drive circuit 13, 14 outputs a continuous signal for continuously turning on each semiconductor relay 11, 12.
  • the drive circuits 13 and 14 output an intermittent signal for intermittently turning on the semiconductor relays 11 and 12. Furthermore, each drive circuit 13 and 14 completely stops the output of both the continuous signal and the intermittent signal in order to turn off each semiconductor relay 11 and 12 continuously.
  • Input / output of each of the continuous signal and the intermittent signal is controlled by the control unit 10.
  • the control unit 10 outputs one of a continuous control signal and an intermittent control signal, which will be described later, to each of the semiconductor relays 11 and 12.
  • the control unit 10 calculates the duty ratio d using the following equation (1) and gives the calculation result to the drive circuits 13 and 14.
  • d ⁇ ⁇ d 0
  • d 0 is a basic value of the duty ratio
  • is a coefficient of the basic value d 0 (hereinafter referred to as a ratio coefficient ⁇ )
  • ⁇ S , ⁇ M , and ⁇ W (0 ⁇ S ⁇ M ⁇ W ⁇ 1) is used.
  • the basic value d 0 of the duty ratio and the candidate values ⁇ S , ⁇ M , and ⁇ W of the ratio coefficient are stored in advance in the ROM 17, and the following numerical values are used in the present embodiment.
  • the basic value d 0 and the candidate values ⁇ S , ⁇ M , ⁇ W are common to the loads 21, 22, but the basic value d 0 and the candidate values ⁇ S , ⁇ M and ⁇ W may be stored in the ROM 17. Further, the number of candidate values may be two, or four or more.
  • the ROM 17 may store the expression (1), the expression (2) for calculating the basic value d 0 , and the candidate values ⁇ S , ⁇ M , and ⁇ W.
  • d 0 (V 0 / V) 2 (2)
  • V 0 is a predetermined reference voltage value
  • V is a voltage value of the power supply 30 detected by the control unit 10.
  • equation (3) for calculating the duty ratio d and candidate values V S , V M , and V L for the reference power consumption V 0 may be stored in the ROM 17.
  • d (V 0 / V) 2 (3)
  • the voltage value of the voltage applied to each of the loads 21 and 22 may be used.
  • the duty ratio d corresponding to each of the loads 21 and 22 is calculated using Expression (1), (2), or Expression (3).
  • the operation unit 15 uses a dial switch and is manually operated by the driver of the vehicle 3.
  • a predetermined signal hereinafter referred to as a ratio setting signal
  • the operation unit 15 is “strong”, “medium”, “weak”. Is switched to the three stages, the voltage level of the ratio setting signal is switched to the three stages.
  • the ratio setting signal is not output.
  • a high voltage (or low voltage) ratio setting signal is input to the control unit 10.
  • a medium voltage ratio setting signal between the high voltage and the low voltage is input to the control unit 10.
  • the high voltage (or low voltage) ratio setting signal is associated with the minimum value candidate value ⁇ S (or the maximum value candidate value ⁇ W ) of the ratio coefficient ⁇ , and the medium voltage ratio setting is performed.
  • the signal is associated with a moderate value candidate value ⁇ M of the ratio factor ⁇ .
  • the display unit 16 uses a liquid crystal display panel, and is controlled by the control unit 10 to display an arithmetic number indicating an energy saving effect by executing the energy saving drive.
  • the control unit 10 determines whether or not the accessory switch 31 is turned on (S11). If the accessory switch 31 remains off (NO in S11), the process of S11 is repeatedly executed. The process after S12 is executed.
  • the driver switches the operation unit 15 to “strong” when the energy saving drive that greatly restricts the electric power is desired, and switches the operation unit 15 to “medium” when the energy saving drive that moderately restricts the electric power is desired.
  • the operation unit 15 is switched to “weak”, and when the normal drive that does not limit the electric power is desired, the operation unit 15 is switched off. At this time, a high voltage, medium voltage, or low voltage ratio setting signal is output from the operation unit 15 to the control unit 10, or the ratio setting signal is not output.
  • the control unit 10 determines whether a ratio setting signal is input from the operation unit 15 (S12). When the ratio setting signal is not input from the operation unit 15 (NO in S12), the driver desires normal driving. For this reason, the control part 10 outputs the continuous control signal for performing normal drive to each of the drive circuits 13 and 14 (S13).
  • the drive circuits 13 and 14 to which the continuous control signal is input from the control unit 10 outputs the continuous signal to the semiconductor relays 11 and 12. As a result, the semiconductor relays 11 and 12 are continuously turned on. That is, the control unit 10 in S13 functions as a continuous control unit using the drive circuits 13 and 14.
  • the control unit 10 determines whether or not the accessory switch 31 is turned off (S14). If the accessory switch 31 is turned off (YES in S14), the control unit 10 stops outputting the continuous control signal (S15). ), The process returns to S11. As a result, the semiconductor relays 11 and 12 are continuously turned off. When the accessory switch 31 remains on (NO in S14), the control unit 10 determines whether a ratio setting signal is input from the operation unit 15 (S16). When the ratio setting signal is not yet input from the operation unit 15 (NO in S16), the driver desires to continue the continuous control means. For this reason, the control part 10 transfers a process to S14, continuing the output of the continuous control signal performed by S13.
  • the control part 10 When the ratio setting signal is input from the operation unit 15 when the continuous control signal is output (YES in S16), the driver desires switching from normal driving to energy saving driving. For this reason, the control part 10 performs the process after S17.
  • the ratio setting signal is input from the operation unit 15 when the continuous control signal and the intermittent control signal are not output (YES in S12)
  • the driver desires energy saving driving. For this reason, the control part 10 performs the process after S17.
  • the control unit 10 starts measuring elapsed time using a timer (not shown) or by counting the number of clocks input to the control unit 10 (S17). Further, the control unit 10 resets the variable ⁇ W to “0” (S18).
  • ⁇ W is a power amount difference, which will be described later, and in this embodiment, the power amount difference ⁇ W is used as a value indicating an energy saving effect by executing the energy saving drive.
  • the control unit 10 detects the voltage value of the ratio setting signal input from the operation unit 15 (S19), and based on the detection result, the ratio coefficient candidate values ⁇ S , ⁇ M , ⁇ W Is read out from the ROM 17 as a ratio coefficient ⁇ (S20), and the basic value d 0 of the duty ratio is read out from the ROM 17 (S21).
  • the candidate value ⁇ W (or the candidate value ⁇ S ) is set as the ratio coefficient ⁇ .
  • the candidate value ⁇ M is read as the ratio coefficient ⁇ .
  • the control unit 10 calculates the duty ratio d using the equation (1) (S22), and drives the intermittent control signal indicating the duty ratio d calculated in S22 to execute the energy saving drive. Output to each of the circuits 13 and 14 (S23).
  • the drive circuits 13 and 14 to which the intermittent control signal is input from the control unit 10 outputs an intermittent signal with a duty ratio d to the semiconductor relays 11 and 12.
  • the semiconductor relays 11 and 12 are intermittently turned on at an on / off ratio proportional to the duty ratio d. That is, the control unit 10 in S23 functions as an intermittent control unit using the drive circuits 13 and 14.
  • the control unit 10 determines whether or not the accessory switch 31 is turned off (S24). If the accessory switch 31 is turned off (YES in S24), the output of the intermittent control signal is stopped (S25). ) After the elapsed time has been counted, the process returns to S11. As a result, the semiconductor relays 11 and 12 are continuously turned off.
  • the control unit 10 determines whether or not the ratio setting signal is continuously input from the operation unit 15 (S26).
  • the control unit 10 detects the voltage value of the ratio setting signal input from the operation unit 15 (S27), determines whether the detection result has changed from the previous detection result (S28), If not changed (NO in S28), the process proceeds to S24 while continuing to output the intermittent control signal executed in S23.
  • the control unit 10 When the voltage value of the ratio setting signal input from the operation unit 15 changes (YES in S28), the control unit 10 returns the process to S20, and based on the detection result of S27, the ratio coefficient candidate value ⁇ S , One of ⁇ M and ⁇ W is read from the ROM 17 as a ratio coefficient ⁇ . Thereafter, the processes after S21 are executed, whereby the semiconductor relays 11 and 12 are PWM-controlled.
  • the control part 10 complete
  • the operation unit 15 functions as a limit receiving unit and a ratio receiving unit.
  • FIG. 4 is a flowchart showing the procedure of the energy saving effect notification process executed by the load driving device 1 according to Embodiment 1 of the present invention.
  • the controller 10 determines whether or not the elapsed time has been started in the process of S17 of the load drive process (S41). If the elapsed time has not been started (NO in S41), the energy saving drive has not been executed. , S41 is repeatedly executed. When the elapsed time is started (YES in S41), the energy saving drive is executed, and the control unit 10 detects the voltage value V of the power supply 30 (S42). After completing the processing of S42, the control unit 10 calculates the load power consumption P using the following formulas (4) to (6) (S43), and then uses the following formulas (7) to (9). It calculates an estimated power P E (S44).
  • P 21 d ⁇ V ⁇ I 21 (4)
  • P 22 d ⁇ V ⁇ I 22 (5)
  • P P 21 + P 22 (6)
  • P 21 and P 22 are load power consumptions of the loads 21 and 22 when energy-saving driving is performed
  • I 21 and I 22 are current values detected by the semiconductor relays 11 and 12, that is, the loads 21 and 22. 22 is a current value of a current flowing through each of 22.
  • P E21 V ⁇ I 21 (7)
  • P E22 V ⁇ I 22 (8)
  • P E P E21 + P E22 (9)
  • P E21 and P E22 are estimated power consumptions of the loads 21 and 22 when it is assumed that normal driving is executed.
  • the load driving device 1 uses the voltage value V to calculate the load power consumptions P 21 and P 22 and the estimated power consumptions P E21 and P E22 (4), (5), (7 ) And (8) are used.
  • the control unit 10 calculates the power difference ⁇ P using the following equation (10) (S45), and calculates the power amount difference ⁇ W using the following equation (11) (S46).
  • the power difference ⁇ P and the power amount difference ⁇ W are positive values, respectively, and the power difference ⁇ P increases when the operation unit 15 is switched from “weak” to “medium” and from “medium” to “strong”.
  • Expression (11) is an expression for integrating the power difference ⁇ P over time.
  • the control unit 10 determines whether or not a predetermined time (for example, 10 minutes) has elapsed (S47). If it has elapsed (YES in S47), the elapsed time measurement result is set to “0”.
  • the power amount difference ⁇ W calculated in S46 is displayed on the display unit 16 (S49), and the power amount difference ⁇ W is reset to “0” (S50).
  • the power amount difference ⁇ W is displayed on the display unit 16 as a value indicating the energy saving effect by executing the energy saving drive at every predetermined time (for example, every 10 minutes).
  • the driver obtains an actual feeling of energy saving by visually recognizing the electric energy difference ⁇ W displayed on the display unit 16. That is, the control unit 10 in S46 functions as a calculation unit, and the control unit 10 and the display unit 16 in S49 function as a notification unit.
  • the control unit 10 determines whether or not the elapsed time has been counted in the process of S29 of the load driving process (S51). ), If not completed (NO in S51), the process returns to S42 because the execution of the energy-saving drive is continued. When the elapsed time measurement is finished (YES in S51), the execution of the energy saving drive is finished, and therefore the control unit 10 returns the process to S41.
  • the load driving device 1 may cause the display unit 16 to display the power difference ⁇ P calculated in the process of S45. Further, when displaying the power amount difference ⁇ W or the power difference ⁇ P, the load driving device 1 not only displays the numerical value of the power amount difference ⁇ W or the power difference ⁇ P by an arithmetic number, but uses, for example, a line graph, a bar graph, or the like. May be displayed. In this case, the driver can sensuously grasp the magnitude of the power amount difference ⁇ W or the power difference ⁇ P, temporal changes, and the like.
  • the load driving device 1 generates power for the power difference ⁇ P or power amount for the power difference ⁇ W with the in-vehicle generator instead of displaying the power amount difference ⁇ W or the power difference ⁇ P on the display unit 16.
  • the amount of fuel required, the price of this fuel, or the distance that the vehicle 3 can travel using this fuel may be converted and displayed on the display unit 16.
  • the driver can more easily grasp how much energy can be saved by the energy-saving drive.
  • a coefficient to be multiplied by the power amount difference ⁇ W or the power difference ⁇ P is required.
  • this coefficient for example, a value obtained by experiment is stored in the ROM 17 at the time of factory shipment.
  • the load driving device 1 may display a value indicating an energy saving effect on the display unit 16 when the driver finishes driving the vehicle 3.
  • the load driving device 1 as described above can notify the driver of the power amount difference ⁇ W as a value indicating an energy saving effect.
  • the power amount difference ⁇ W is obtained by integrating the power difference ⁇ P, which is the difference between the estimated power consumption P E and the load power consumption P, over time. For example, the load power consumption P or the load obtained by integrating the load power consumption P over time. More energy saving than displaying the amount of power consumed or the amount of fuel consumed to drive the loads 21 and 22, the price of this fuel, or the distance that the vehicle 3 can travel using this fuel. Is easy to grasp.
  • the power consumption of the loads 21 and 22 is reduced by the amount of applied power, so the energy saving effect is improved, but the capacity of the loads 21 and 22 (lamp brightness, motor rotation) Speed).
  • the power consumption of the loads 21 and 22 is increased by the amount of applied power, so that the capacity of the loads 21 and 22 can be fully utilized, but energy saving can be achieved. Can not. Therefore, the driver can make the energy saving effect and the capacity of the loads 21 and 22 compatible with an appropriate balance by manually operating the operation unit 15 with reference to the notified power difference ⁇ W. Furthermore, since the load driving device 1 including the semiconductor relays 11 and 12 has a reduced number of partial points, the manufacturing cost can be reduced.
  • the configuration of the load driving device 1 is not limited to the configuration of the present embodiment.
  • the load driving device 1 is not limited to the one mounted on the vehicle 3.
  • the action / effect of the load driving device 1 is particularly effective when the vehicle 3 is provided.
  • one load 21 may be connected to the load driving device 1. In this case, the semiconductor relay 12 and the drive circuit 14 that are not connected to the load 22 are unnecessary.
  • an FET driven by the drive circuit 13 and a current sensor that detects the current value of the current flowing through the loads 21 and 22 and outputs the current value to the control unit 10 may be provided. .
  • the number of parts increases, but the other effects are not inferior to those of the load driving device 1 of the present embodiment.
  • a control unit having a function of a drive circuit may be provided, and the control unit may directly drive the semiconductor relays 11 and 12. In this case, the number of partial points is further reduced.
  • the notification is not limited to the notification by the display unit 16 and may be configured to perform notification by outputting a message, a melody, or the like from a voice output unit (not shown).
  • the display unit 16 may be configured to be shared by the load driving device 1 and the car navigation device or the in-vehicle television device. Furthermore, a display control unit for controlling the display unit 16 is provided separately from the control unit 10, and the control unit 10 calculates the power difference ⁇ P and outputs the calculation result to the display control unit. However, for example, the power amount difference ⁇ W may be calculated and displayed on the display unit 16. In this case, since a plurality of parts function as calculation means, the calculation load can be distributed.
  • an operation unit having a function of a limit receiving unit and an operation unit having a function of a ratio receiving unit may be provided instead of the operation unit 15 having the functions of a limit receiving unit and a ratio receiving unit.
  • two operation units 15 may be provided in order to accept on / off of energy saving drive and change of duty ratio for each of the semiconductor relays 11 and 12.
  • the operation unit 15 may be configured using a slide switch, and the operation unit 15 may be configured using a touch panel.
  • Embodiment 2 a description will be given of the load driving device 1 that notifies a value other than the electric energy difference ⁇ W as a value indicating an energy saving effect.
  • the configuration of the load driving device 1 is the same as the configuration of the load driving device 1 shown in FIG.
  • differences from the first embodiment will be described, and other parts corresponding to those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.
  • the value indicating the energy saving effect in this embodiment, the amount of fuel saved by executing the energy saving drive (hereinafter referred to as fuel saving drive (hereinafter referred to as fuel saving amount) ⁇ F, the amount of CO 2 reduced (hereinafter referred to as CO 2 ). 2 ) ⁇ G) and saved fuel cost (hereinafter referred to as fuel cost saving amount) ⁇ M.
  • a conversion coefficient for converting the amount of electric power into fuel consumption is A [L / Wh].
  • the fuel saving amount ⁇ F is calculated using the following equation (12).
  • the conversion coefficient A is a constant that depends on the energy conversion efficiency of the engine and on-vehicle generator provided in the vehicle 3, and a value obtained based on experiments or theory is stored in advance in the ROM 17, for example.
  • ⁇ F ⁇ W ⁇ A (12)
  • Equation (12) The load power consumption W and the load fuel consumption (hereinafter referred to as load fuel consumption) F of the loads 21 and 22 when energy saving driving is performed are expressed by the following equations (6) and (13), ( 14) and the estimated power consumption W E and the estimated fuel consumption F E of the entire loads 21 and 22 when it is assumed that normal driving has been executed are given by Equation (9) and Equation (15) below. , (16). However, equation (13) and (15) is an equation for integrating the load power P and the estimated power consumption P E time.
  • Equation (12) is obtained by transforming Equation (17).
  • W W + P (13)
  • F W ⁇ A (14)
  • W E W E + P E (15)
  • F E W E ⁇ A (16)
  • a conversion coefficient for converting the fuel consumption amount into the CO 2 emission amount is set to B [kg / L].
  • the CO 2 reduction amount ⁇ G is calculated using the following equation (18).
  • a conversion coefficient for converting fuel consumption into fuel cost is C [yen / L].
  • the fuel cost saving amount ⁇ M is calculated using the following equation (19).
  • the conversion coefficient C depends on the type of fuel and fluctuates according to the market price. Therefore, the conversion coefficient C needs to be input by the user using, for example, a numeric keypad (not shown) provided in the load driving device 1.
  • the conversion coefficient C may be received from the outside via the car navigation device.
  • the control unit 10 executes a load driving process similar to the load driving process shown in FIGS. 2 and 3 of the first embodiment, and executes an energy saving effect notification process substantially similar to the energy saving effect notification process shown in FIG. To do.
  • the control unit 10 uses the power amount difference ⁇ W calculated in S46 and the expressions (12), (18), and (19).
  • a fuel saving amount ⁇ F, a CO 2 reduction amount ⁇ G, and a fuel cost saving amount ⁇ M are calculated.
  • the control unit 10 causes the display unit 16 to display the fuel saving amount ⁇ F, the CO 2 reduction amount ⁇ G, and the fuel cost saving amount ⁇ M in the process of S49.
  • the control unit 10 may be configured to display the power amount difference ⁇ W on the display unit 16.
  • the load driving device 1 as described above has the same effects as the load driving device 1 of the first embodiment.
  • the driver can refer to a value with which the degree of energy saving is most easily grasped by the driver.
  • FIG. 3 The configuration of the load driving device 1 in the present embodiment is substantially the same as the configuration of the load driving device 1 shown in FIG. 1 of the first embodiment.
  • differences from the first embodiment will be described, and other parts corresponding to those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.
  • the load driving device 1 in the first embodiment notifies the driver of the power amount difference ⁇ W as a value indicating the energy saving effect. However, only by notifying the power amount difference ⁇ W, the driver cannot grasp the specific value of the load power consumption amount W. Therefore, the load driving device 1 according to the present embodiment simultaneously notifies not only a value indicating the energy saving effect (that is, a value related to the difference between the load power consumption and the estimated power consumption) but also a value related to the load power consumption. Specifically, the load driving device 1 is a load that is a value related to load power consumption and a power amount difference ⁇ W, a fuel saving amount ⁇ F, a CO 2 reduction amount ⁇ G, and a fuel cost saving amount ⁇ M that are values indicating an energy saving effect.
  • the power consumption W, load fuel consumption F, CO 2 emission G, and fuel cost M are all displayed on the display unit 16.
  • the load driving device 1 according to the first embodiment notifies the power amount difference ⁇ W during the predetermined time every predetermined time.
  • the load driving device 1 according to the present embodiment reports a value indicating an energy saving effect and a value related to load power consumption after the energy saving driving is started at every predetermined time.
  • the load driving device 1 according to the first embodiment notifies the value indicating the energy saving effect and the value related to the load power consumption at an arbitrary timing desired by the driver.
  • the load driving device 1 further includes a notification switch (not shown).
  • the control unit 10 executes a load driving process substantially similar to the load driving process shown in FIGS. 2 and 3 of the first embodiment. However, in step S18, the control unit 10 resets the power amount difference ⁇ W to “0” and also resets the load power consumption amount W to “0”.
  • FIG. 5 is a flowchart showing the procedure of the energy saving effect notification process executed by the load driving device 1 according to the third embodiment of the present invention. The processes of S41, S42, S45, S47, S48, and S51 in the figure are the same as the processes of the same reference numerals shown in FIG.
  • the control unit 10 similarly to the processing of S43 and S44 in the first embodiment, to calculate the load electric power consumption P and the estimated power P E (S61).
  • the control unit 10 calculates the power amount difference ⁇ W and the load power consumption amount W using the equations (11) and (13) (S62).
  • the control unit 10 determines whether or not the notification switch is turned on (S63). If the notification switch remains off (NO in S63), the process proceeds to S47. When the notification switch is turned on (YES in S11), the control unit 10 moves the process to S64 described later. In addition, after the process of S48 is completed, the control unit 10 moves the process to S64.
  • the control unit 10 uses the load power consumption W calculated in S62 and the following equations (20), (21), and (22) to calculate the load fuel consumption F, the CO 2 emission amount G, and the fuel cost. M is calculated (S64).
  • F W ⁇ A (20)
  • G F ⁇ B (21)
  • M F ⁇ C (22)
  • control unit 10 uses the power amount difference ⁇ W calculated in S62 and the equations (12), (18), and (19) to save the fuel saving amount ⁇ F, the CO 2 reduction amount ⁇ G, and the fuel cost saving amount.
  • ⁇ M is calculated (S65).
  • the control part 10 displays the alerting
  • the notification table may be configured to be displayed only when a predetermined time has elapsed in S47, or may be configured to be displayed only when the notification switch is turned on in S63.
  • FIG. 6 is a schematic diagram illustrating an example of a notification table displayed on the display unit 16.
  • load power consumption W (“200 Wh” in the figure) as an index of “consumption / discharge during current operation” and power consumption as an index of “energy saving effect”
  • the difference ⁇ W (“40 Wh” in the figure) is displayed side by side.
  • the “fuel consumption” column displays the load fuel consumption amount F (“10L” in the figure) and the fuel saving amount ⁇ F (“2L” in the figure), and the “fuel cost” column displays are fuel costs M (in FIG.
  • the driver who visually recognizes the notification table can easily grasp not only the value as an index of “energy saving effect” but also the value as an index of “consumption / discharge during current driving”.
  • the load driving device 1 as described above for example, if the power difference ⁇ W is sufficiently large, but the load power consumption W is excessively large, the driver determines that the degree of energy saving is insufficient. can do. In such a case, the driver can achieve further energy saving by turning off unnecessary loads 21 and 22, for example.
  • the load driving device 1 may include components that are not disclosed in the first to third embodiments.

Abstract

 使用者が省エネを行なった実感を得ることができ、省エネを促進して、商品性を向上させることができる。  このために、半導体リレー11,12は、負荷21,22を駆動するために電源30から与えられた電力をスイッチングし、更に、負荷21,22に流れる電流の電流値を検出する。制御部10は、駆動回路13,14を介して半導体リレー11,12を断続的にオンにすることによって、負荷21,22の消費電力を制限する。また、制御部10は、負荷21,22の負荷消費電力と、半導体リレー11,12を連続的にオンにしている場合の負荷21,22の推定消費電力とを、半導体リレー11が検出した電流値に基づいて夫々算出し、推定消費電力から負荷消費電力を減算した電力差に基づく電力量差(即ち、節約した電力量)を、省エネ効果を示す値として表示部16に表示させる。

Description

負荷駆動装置
 本発明は、負荷を駆動するための負荷駆動装置に関する。
 例えば車載用の負荷駆動装置は、発電機又はバッテリ等の電源と、各種ランプ、各種モータ等の負荷との間に接続され、負荷を駆動するために電源から与えられた電力をスイッチングするスイッチング部を備える。スイッチング部がオンにされた場合、負荷駆動装置を介して電源から負荷へ給電され、スイッチング部がオフにされた場合、電源から負荷へ給電されなくなる。
 近年、環境に配慮し、また、車両の燃料費を低く抑えるために、様々な省エネルギ(以下、省エネという)対策が提案されている。また、従来、スイッチング部としては機械式リレーが用いられていたが、最近では半導体リレーが用いられている。以上のことから、負荷駆動装置に関する省エネ対策としては、半導体リレーを常にオンにして負荷を駆動する(以下、通常駆動という)のではなく、半導体リレーのオン/オフを適宜に切り替えて負荷を駆動する(以下、省エネ駆動という)ことによって、負荷に与える電力を削減し、この結果、負荷の消費電力(以下、負荷消費電力という)を低減させることが考えられる。
 ところで、車両は残燃料量が少ない方が、車両の総重量が減少するため燃費が向上する。しかしながら、残燃料量が少ないと目的地に着くまでに燃料切れを起こす心配があるため、運転者が無駄に満タンにして燃費を悪化させるという事態を招く。
 このような不都合を解消するために、車両の残燃料量と燃費との関連性を示す情報を運転者に提供する給油参考情報提供方法が開示されている(特許文献1参照)。この情報には、複数の異なる給油量と、各給油量だけ給油した場合に車両が走行し得る距離と、この距離を走行した場合の予想燃費とが含まれている。
 運転者は、提供された情報を参考にして、車両を満タンにせずとも目的地まで燃料切れを起こさない量だけ車両に給油する。この結果、車両の燃費が向上し、延いては、車両の省エネが推進される。
特開2007-272798号公報
 例えばランプに対応するスイッチング部を断続的にオンにした場合、連続的にオンにした場合よりもランプが暗くなる。このため、負荷の能力を重視する運転者は、省エネ駆動を敬遠しがちである。また、環境問題に関心がない運転者は、省エネ駆動の実行に消極的である。つまり、従来の負荷駆動装置には、車両の省エネが促進され難いという問題がある。
 従って、運転者が積極的に省エネ駆動を実行したり、省エネ駆動機能を有する車両を選択したりする可能性を高めることができる負荷駆動装置が望まれている。
 ところで、特許文献1に記載されている給油参考情報提供方法は、複数の異なる給油量に対する予想燃費が夫々具体的に示されるため、予想燃費が低くなる給油量を運転者が選択し易い。
 本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、スイッチング部を断続的にオンにしている場合の負荷消費電力と、連続的にオンにしている場合の推定消費電力との差に関する値を報知する構成とすることにより、省エネルギ効果を示す値を具体的に示して、省エネを推進することができる負荷駆動装置を提供することにある。
 本発明の他の目的は、負荷に流れる電流の電流値を検出する電流検出部の検出結果に基づいて、負荷消費電力と推定消費電力との差に関する値を算出する構成とすることにより、省エネルギ効果を示す値を、簡易な回路構成で容易に算出することができる負荷駆動装置を提供することにある。
 本発明の他の目的は、電流検出機能付きの半導体リレーを用いる構成とすることにより、部品点数の増加を抑制することができる負荷駆動装置を提供することにある。
 本発明の他の目的は、制限受付部が電力の制限/無制限を受け付けた場合に、スイッチング部を断続的/連続的にオンにする構成とすることにより、省エネ駆動と通常駆動とを使用者の任意に切り替えることができる負荷駆動装置を提供することにある。
 本発明の更に他の目的は、比率受付部がデューティ比を受け付けた場合に、受け付けたデューティ比を用いてスイッチング部をPWM制御する構成とすることにより、負荷に与える電力を使用者の任意に増減することができる負荷駆動装置を提供することにある。
 第1発明に係る負荷駆動装置は、負荷を駆動するための負荷駆動装置であって、前記負荷に与える電力をスイッチングするスイッチング部と、前記負荷に与える電力を制限するために、前記負荷に対応するスイッチング部を制御して断続的にオンにする断続制御手段と、該断続制御手段が前記スイッチング部を制御している場合に、前記スイッチング部に対応する負荷の負荷消費電力と、前記スイッチング部を連続的にオンにしている場合の前記負荷の推定消費電力との差に関する値を算出する算出手段と、該算出手段が算出した値を報知する報知手段とを備えることを特徴とする。
 第2発明に係る負荷駆動装置は、前記負荷に流れる電流の電流値を検出する電流検出部を更に備え、前記算出手段は、少なくとも前記負荷消費電力を、前記電流検出部の検出結果に基づいて算出するようにしてあることを特徴とする。
 第3発明に係る負荷駆動装置は、前記スイッチング部と前記電流検出部とを、自身に流れる電流の電流値を検出する機能を有する半導体リレーで兼用してなることを特徴とする。
 第4発明に係る負荷駆動装置は、負荷に与える電力の制限/無制限を受け付ける制限受付部と、該制限受付部が無制限を受け付けた場合に、前記負荷に対応するスイッチング部を制御して連続的にオンにする連続制御手段とを更に備え、前記断続制御手段は、前記制限受付部が制限を受け付けた場合に、前記負荷に対応するスイッチング部を制御して断続的にオンにするようにしてあることを特徴とする。
 第5発明に係る負荷駆動装置は、PWM制御を行なう際のデューティ比を受け付ける比率受付部を更に備え、前記断続制御手段は、前記比率受付部が受け付けたデューティ比を用いて、前記スイッチング部をPWM制御するようにしてあることを特徴とする。
 第1発明にあっては、スイッチング部は、負荷に与える電力をスイッチングし、断続制御手段は、負荷に対応するスイッチング部を制御して断続的にオンにする。この結果、スイッチング部を連続的にオンにする場合よりも、負荷に与えられる電力が制限される。
 断続制御手段がスイッチング部を制御して断続的にオンにしている場合(即ち省エネ駆動を実行している場合)に、算出手段は、負荷消費電力と推定消費電力との差に関する値を算出する。ここで、負荷消費電力とは、断続制御手段によって断続的にオンになるよう制御されているスイッチング部に対応する負荷の実際の消費電力であり、推定消費電力とは、このスイッチング部を連続的にオンにしている場合(即ち通常駆動を実行している場合)の負荷の推定の消費電力である。
 従って、算出手段が算出する値は、負荷に与える電力を制限したことによる省エネルギ効果(以下、省エネ効果という)を示す値に相当する。この値は、例えば、推定消費電力から負荷消費電力を減算した電力差、この電力差を時間積算した電力量差、或いは、電力差又は電力量差に基づいて求めた電気代又は燃料費等である。
 報知手段は、算出手段が算出した値を報知する。この結果、負荷駆動装置の使用者に対して、省エネ効果を示す値が具体的に示される。
 第2発明にあっては、電流検出部は、負荷に流れる電流の電流値を検出する。この負荷とは、少なくとも、断続制御手段によって断続的にオンになるよう制御されているスイッチング部に対応する負荷である。
 算出手段は、電流検出部の検出結果に基づいて、少なくとも負荷消費電力を算出し、算出結果に基づいて、負荷消費電力と推定消費電力との差に関する値を算出する。
 負荷消費電力は、例えば、負荷に印加される電圧の電圧値と、負荷に流れる電流の電流値(即ち電流検出部の検出結果)と、スイッチング部のオン/オフの比率(例えばデューティ比)とを乗算することによって容易に求められる。つまり、負荷消費電力と推定消費電力との差に関する値(即ち、省エネ効果を示す値)を、容易に算出することができる。
 また、本発明の負荷駆動装置は、例えば従来の負荷駆動装置に含まれているスイッチング部と負荷との間に電流検出部を直列に接続することによって容易に得ることができる。つまり、省エネ効果を示す値を、簡易な回路構成で算出することができる。
 なお、このような電流検出部は、例えばスイッチング部の過熱保護制御を行なうために、スイッチング部に流れる電流の電流値を検出する電流検出部と兼用することができる。この場合、回路構成を更に簡易に、且つ小型にすることができる。
 ところで、算出手段は、電流検出部の検出結果に基づいて推定消費電力も算出してよい。この場合、推定消費電力は、例えば、負荷に印加される電圧の電圧値と、負荷に流れる電流の電流値(即ち、電流検出部の検出結果)とを乗算することによって容易に求められる。
 又は、算出手段は、例えば実験に基づいて予め与えられている固定値を推定消費電力として用いてもよい。
 第3発明にあっては、自身に流れる電流の電流値を検出する機能を有する半導体リレーを用いて、スイッチング部及び電流検出部を構成する。
 つまり、本発明の負荷駆動装置は、従来の負荷駆動装置に含まれているスイッチング部を、電流検出機能付きの半導体リレーに交換した回路構成に等しいため、部品点数は変化しない。
 この結果、本発明の負荷駆動装置は、部品点数の増加を抑制することができ、回路構成を簡易に、且つ小型にすることができる。従って、部品点数の増加、回路構成の複雑化及び大型化によるコストの増大を抑制することができる。
 仮に、電流検出機能付きの半導体リレーを用いない場合、従来の負荷駆動装置に電流検出部を追加しなければならないため、部品点数が増加する。
 第4発明にあっては、制限受付部は、負荷に与える電力の制限/無制限を受け付ける。
 連続制御手段は、制限受付部が無制限を受け付けた場合に、負荷に対応するスイッチング部を制御して連続的にオンにする。一方、断続制御手段は、制限受付部が制限を受け付けた場合に、負荷に対応するスイッチング部を制御して断続的にオンにする。
 つまり、制限受付部が制限を受け付けた場合、スイッチング部のオン/オフを適宜に切り替えて負荷を駆動する省エネ駆動が実行され、負荷に与えられる電力が制限される。一方、制限受付部が無制限を受け付けた場合、スイッチング部を常にオンにして負荷を駆動する通常駆動が実行され、負荷に与えられる電力が制限されない。
 一般的に、省エネ効果の向上と、負荷の能力(例えばランプの明るさ、空気調和機の空調能力等)の向上とを、同時的に図ることはできない。そこで、使用者は、報知された省エネ効果を示す値を参考にし、省エネ効果の向上を最優先する場合は、制限受付部を操作して省エネ駆動を実行し、負荷の能力の向上を最優先する場合は、制限受付部を操作して通常駆動を実行する。従って、使用者は、闇雲に省エネ駆動を忌避するのではなく、確たる根拠に基づいて、通常駆動を実行するか省エネ駆動を実行するかを判断することができる。特に、省エネ駆動を実行する場合、使用者は、自分が積極的に省エネに寄与しているという満足感を得ることができる。
 第5発明にあっては、比率受付部は、PWM制御を行なう際のデューティ比を受け付ける。
 断続制御手段は、比率受付部が受け付けたデューティ比を用いて、スイッチング部をPWM制御する。
 従って、比率受付部が、小さいデューティ比を受け付けた場合、スイッチング部がオフになっている時間が長くなるため、負荷に与えられる電力が減少する。一方、比率受付部が、大きいデューティ比を受け付けた場合、スイッチング部がオンになっている時間が長くなるため、負荷に与えられる電力が増大する。
 一般的に、省エネ効果の向上と、負荷の能力(例えばランプの明るさ、空気調和機の空調能力等)の向上とを、同時的に図ることはできない。そこで、使用者は、報知された省エネ効果を示す値を参考にし、省エネ効果の向上を優先しつつ省エネ駆動を実行する場合は、比率受付部を操作してデューティ比を減少させ、負荷の能力の向上を優先しつつ省エネ駆動を実行する場合は、比率受付部を操作してデューティ比を増加させる。従って、使用者は、闇雲に省エネ駆動を忌避するのではなく、確たる根拠に基づいて、省エネ効果と負荷の能力とが両立するように省エネ駆動を実行することができる。
 本発明の負荷駆動装置による場合、省エネ効果を示す値を報知された使用者が、省エネ駆動を実行した実感を得ることができ、延いては、環境問題の改善に寄与した実感、電気代又は燃料費等を低く抑えた実感等を得ることができる。また、このような実感を得ることによって、使用者は積極的に省エネ駆動を実行したり、本発明の負荷駆動装置を備える車両、施設等を選択したりするようになる。この結果、本発明の負荷駆動装置は、省エネ、環境保全、及び地球温暖化防止等を促進することができる。
 また、本発明の負荷駆動装置は、省エネ効果を示す値を具体的に示して環境対策に寄与するという点で商品性が向上する。従って、本発明の負荷駆動装置を備える車両、施設等の商品性も向上する。
本発明の実施の形態1に係る負荷駆動装置の構成を示すブロック図である。 本発明の実施の形態1に係る負荷駆動装置で実行される負荷駆動処理の手順を示すフローチャートである。 本発明の実施の形態1に係る負荷駆動装置で実行される負荷駆動処理の手順を示すフローチャートである。 本発明の実施の形態1に係る負荷駆動装置で実行される省エネ効果報知処理の手順を示すフローチャートである。 本発明の実施の形態3に係る負荷駆動装置で実行される省エネ効果報知処理の手順を示すフローチャートである。 本発明の実施の形態3に係る負荷駆動装置の表示部に表示される報知テーブルの一例を示す模式図である。
 1  負荷駆動装置
 10 制御部
 11,12  半導体リレー(スイッチング部,電流検出部)
 15 操作部(制限受付部,比率受付部)
 16 表示部(報知手段)
 21,22 負荷
 以下、本発明を、その実施の形態を示す図面に基づいて詳述する。
実施の形態 1.
 図1は、本発明の実施の形態1に係る負荷駆動装置1の構成を示すブロック図である。
 図中3は車両であり、車両3には、ヘッドライト、空気調和機のブロワ、リアデフォッガ等の複数の負荷21,22と、負荷21,22を駆動するための負荷駆動装置1と、車載発電機及びバッテリを用いてなる電源30と、負荷21,22全体への給電のオン/オフを切り替えるアクセサリスイッチ31とが搭載されている。負荷21,22は、電源30から負荷駆動装置1を介して給電される。
 負荷駆動装置1は、制御部10、半導体リレー11,12、駆動回路13,14、操作部15、表示部16、及びROM17を備えるECUであり、負荷21,22に与える電力を制限しつつ負荷21,22を駆動する省エネ駆動と、制限せずに給電しつつ負荷21,22を駆動する通常駆動とを切り替えて実行するよう構成されている。以下では、負荷駆動装置1の詳細について説明する。
 制御部10は、負荷駆動装置1の制御中枢であり、電源30から給電されるA/Dコンバータと、A/Dコンバータから給電されるマイクロプロセッサとを用いてなる。また、制御部10は、負荷駆動装置1の各部との間で各種の信号を入出力し、入力された信号の電圧値を検出する機能を有する。
 更に、制御部10は、電源30によって制御部10に印加される電圧の電圧値を検出する機能を有する。電源30によって制御部10に印加される電圧は、電源30の電圧に相当する。この電圧値の検出は、所定の時間間隔で繰り返し実行される。
 半導体リレー11,12は、夫々電流検出機能付きの半導体リレーであり、電流値の検出結果を制御部10へ出力する。更に詳細には、半導体リレー11,12夫々は、電源30から負荷21,22夫々に与える電力をスイッチングするスイッチング部としての機能と、半導体リレー11,12自身に流れる電流の電流値を検出する電流検出部としての機能とを有する。
 半導体リレー11は、電源30と負荷21との間に直列に接続されており、半導体リレー11がオンの場合は電源30から負荷21へ電力が供給される。半導体リレー11が検出する電流値は、負荷21に流れる電流の電流値に相当する。
 半導体リレー12は、半導体リレー11と同様の構成であって、電源30と負荷22との間に直列に接続されている。このため、半導体リレー12がオンの場合は電源30から負荷22へ電力が供給される。半導体リレー12が検出する電流値は、負荷22に流れる電流の電流値に相当する。
 半導体リレー11,12及び制御部10は、互いに並列に接続されている。
 駆動回路13,14夫々は、対応する半導体リレー11,12を駆動する。このために、各駆動回路13,14は、各半導体リレー11,12へ所定の信号を出力し、また、この信号の出力を停止する。
 更に詳細には、各駆動回路13,14は、各半導体リレー11,12を連続的にオンにするための連続信号を出力する。また、各駆動回路13,14は、各半導体リレー11,12を断続的にオンにするための断続信号を出力する。更に、各駆動回路13,14は、各半導体リレー11,12を連続的にオフにするために、連続信号及び断続信号両方の出力を完全に停止する。
 連続信号及び断続信号夫々の入出力は、制御部10によって制御される。このために制御部10は、後述する連続制御信号及び断続制御信号の何れか一方を各半導体リレー11,12へ出力する。
 また、断続信号のデューティ比d(0<d<100[%])は、制御部10によってPWM制御される。このため、デューティ比dを変更する際に、制御部10は下記の式(1)を用いてデューティ比dを算出し、算出結果を駆動回路13,14に与える。
  d=α×d   (1)
 ここで、dはデューティ比の基本値、αは基本値dの係数(以下、比率係数αという)であり、デューティ比dを増大させるか減少させるかに応じて、3種類の候補値α,α,α(0<α<α<α<1)の何れかひとつが用いられる。デューティ比dを“0”に近づけると各半導体リレー11,12がオフになっている時間が長くなって省エネの度合いが強くなり、“1”に近づけるとオンになっている時間が長くなって省エネの度合いが弱くなる。
 デューティ比の基本値dと比率係数の候補値α,α,αとは、ROM17に予め記憶されており、本実施の形態では、以下の数値が用いられる。
  d=85.2
  α=0.5
  α=0.8
  α=1.0
 これらの数値は、デューティ比dを算出するときに、制御部10によってROM17から読み出される。
 本実施の形態においては、基本値d及び候補値α,α,αは負荷21,22に共通であるが、負荷21,22毎に異なる基本値d及び候補値α,α,αがROM17に記憶されていてもよい。また、候補値は2個でもよく、4個以上でもよい。
 なお、式(1)、基本値d及び候補値α,α,αがROM17に記憶されている構成に限定されるものではない。例えば、デューティ比dの3種類の候補値d,d,d=42.6,68.16,85.2がROM17に記憶されていてもよい。
 また、式(1)、基本値dを算出するための式(2)及び候補値α,α,αがROM17に記憶されていてもよい。
  d=(V/V)2     (2)
 ここで、Vは予め定められている基準電圧値、Vは制御部10が検出した電源30の電圧値である。基準電圧値V=12[V]であり、電圧値V=13[V]である場合、d=85.2となる。
 更にまた、デューティ比dを算出するための式(3)と、基準消費電力Vの候補値V,V,Vが、ROM17に記憶されていてもよい。
  d=(V/V)2     (3)
 また、電圧値Vの代わりに、負荷21,22夫々に印加される電圧の電圧値を用いてもよい。この場合、式(1),(2)又は式(3)を用いて、各負荷21,22に対応するデューティ比dが算出される。
 操作部15は、ダイヤルスイッチを用いてなり、車両3の運転者によって手動で操作される。操作部15がオンにされている場合、操作部15から制御部10へ所定の信号(以下、比率設定信号という)が出力され、また、操作部15が「強」、「中」、「弱」の3段階に切り替えられることによって、比率設定信号の電圧の高低が3段階に切り替えられる。一方、操作部15がオフにされている場合、比率設定信号は出力されない。
 操作部15が「強」(又は「弱」)に切り替えられた場合、高電圧(又は低電圧)の比率設定信号が制御部10に入力される。また、操作部15が「中」に切り替えられた場合、高電圧と低電圧との間の中程度の電圧の比率設定信号が制御部10に入力される。
 ROM17において、高電圧(又は低電圧)の比率設定信号は、比率係数αの最小値の候補値α(又は最大値の候補値α)に関連付けられており、中程度の電圧の比率設定信号は、比率係数αの中程度の値の候補値αに関連付けられている。
 表示部16は、液晶表示パネルを用いてなり、制御部10に制御されて、省エネ駆動を実行したことによる省エネ効果を示す算数字を表示する。
 図2及び図3は、本発明の実施の形態1に係る負荷駆動装置1で実行される負荷駆動処理の手順を示すフローチャートである。
 制御部10は、アクセサリスイッチ31がオンになったか否かを判定し(S11)、オフのままである場合は(S11でNO)、S11の処理を繰り返し実行し、オンになった場合は(S11でYES)、S12以降の処理を実行する。
 運転者は、電力を大幅に制限する省エネ駆動を所望する場合は操作部15を「強」に切り替え、電力をほどほどに制限する省エネ駆動を所望する場合は操作部15を「中」に切り替え、電力をあまり制限しない省エネ駆動を所望する場合は操作部15を「弱」に切り替え、電力を制限しない通常駆動を所望する場合は操作部15をオフに切り替える。このとき、操作部15から制御部10へ、高電圧、中程度の電圧、若しくは低電圧の比率設定信号が出力されるか、又は、比率設定信号が出力されない。
 制御部10は、操作部15から比率設定信号が入力されたか否かを判定する(S12)。操作部15から比率設定信号が入力されていない場合(S12でNO)、運転者は通常駆動を所望している。このため、制御部10は、通常駆動を実行するための連続制御信号を駆動回路13,14夫々へ出力する(S13)。
 制御部10から連続制御信号が入力された駆動回路13,14は、半導体リレー11,12へ連続信号を出力する。この結果、半導体リレー11,12が連続的にオンにされる。つまり、S13における制御部10は、駆動回路13,14を用いて連続制御手段として機能する。
 S13の処理完了後、制御部10は、アクセサリスイッチ31がオフになったか否かを判定し(S14)、オフになった場合は(S14でYES)、連続制御信号の出力を停止し(S15)、処理をS11へ戻す。この結果、半導体リレー11,12が連続的にオフにされる。
 アクセサリスイッチ31がオンのままである場合(S14でNO)、制御部10は、操作部15から比率設定信号が入力されたか否かを判定する(S16)。操作部15から比率設定信号が未だに入力されていない場合(S16でNO)、運転者は連続制御手段の継続を所望している。このため、制御部10は、S13で実行した連続制御信号の出力を継続しつつ、処理をS14へ移す。
 連続制御信号を出力している場合に操作部15から比率設定信号が入力されたとき(S16でYES)、運転者は通常駆動から省エネ駆動への切り替えを所望している。このため、制御部10は、S17以降の処理を実行する。
 連続制御信号及び断続制御信号を出力していない場合に操作部15から比率設定信号が入力されたとき(S12でYES)、運転者は省エネ駆動を所望している。このため、制御部10は、S17以降の処理を実行する。
 制御部10は、図示しないタイマを用いて、又は制御部10に入力されるクロックの個数を計数することによって、経過時間の計時を開始する(S17)。また、制御部10は、変数ΔWを“0”にリセットする(S18)。
 ここで、ΔWは後述する電力量差であり、本実施の形態では、電力量差ΔWを、省エネ駆動を実行したことによる省エネ効果を示す値として用いる。
 S18の処理完了後、制御部10は、操作部15から入力される比率設定信号の電圧値を検出し(S19)、検出結果に基づいて、比率係数の候補値α,α,αの何れかひとつを比率係数αとしてROM17から読み出し(S20)、また、デューティ比の基本値dをROM17から読み出す(S21)。
 S20の処理において、検出された電圧値が、所定の第1電圧値未満(又は所定の第2電圧値超過)である場合は、候補値α(又は候補値α)が比率係数αとして読み出され、第1電圧値以上且つ第2電圧値以下である場合は、候補値αが比率係数αとして読み出される。
 S21の処理完了後、制御部10は、式(1)を用いてデューティ比dを算出し(S22)、省エネ駆動を実行すべく、S22で算出されたデューティ比dを示す断続制御信号を駆動回路13,14夫々へ出力する(S23)。
 制御部10から断続制御信号が入力された駆動回路13,14は、デューティ比dの断続信号を半導体リレー11,12へ出力する。この結果、半導体リレー11,12がデューティ比dに比例したオン/オフの割合で断続的にオンにされる。つまり、S23における制御部10は、駆動回路13,14を用いて断続制御手段として機能する。
 S23の処理完了後、制御部10は、アクセサリスイッチ31がオフになったか否かを判定し(S24)、オフになった場合は(S24でYES)、断続制御信号の出力を停止し(S25)、経過時間の計時を終了してから、処理をS11へ戻す。この結果、半導体リレー11,12が連続的にオフにされる。
 アクセサリスイッチ31がオンのままである場合(S24でNO)、制御部10は、操作部15から比率設定信号が入力され続けているか否かを判定する(S26)。操作部15から比率設定信号が入力され続けている場合(S26でYES)、運転者は省エネ駆動の継続を所望している。このため、制御部10は、操作部15から入力される比率設定信号の電圧値を検出して(S27)、検出結果が前回の検出結果から変化しているか否かを判定し(S28)、変化していない場合は(S28でNO)、S23で実行した断続制御信号の出力を継続しつつ、S24へ処理を移す。
 操作部15から入力される比率設定信号の電圧値が変化した場合(S28でYES)、制御部10は、処理をS20へ戻し、S27の検出結果に基づいて、比率係数の候補値α,α,αの何れかひとつを比率係数αとしてROM17から読み出す。この後、S21以降の処理が実行されることによって、半導体リレー11,12がPWM制御される。
 操作部15から比率設定信号が入力されなくなった場合(S26でNO)、運転者は通常駆動を所望している。このため、制御部10は、経過時間の計時を終了して(S29)、処理をS13へ移す。
 以上のような負荷駆動処理を制御部10が実行することによって、操作部15は、制限受付部及び比率受付部として機能する。
 図4は、本発明の実施の形態1に係る負荷駆動装置1で実行される省エネ効果報知処理の手順を示すフローチャートである。
 制御部10は、負荷駆動処理のS17の処理で経過時間の計時が開始されたか否かを判定し(S41)、開始されていない場合は(S41でNO)、省エネ駆動が実行されていないため、S41の処理を繰り返し実行する。
 経過時間の計時が開始された場合(S41でYES)、省エネ駆動が実行されたため、制御部10は、電源30の電圧値Vを検出する(S42)。
 S42の処理完了後、制御部10は、下記の式(4)~(6)を用いて負荷消費電力Pを算出し(S43)、次いで、下記の式(7)~(9)を用いて推定消費電力Pを算出する(S44)。
  P21=d×V×I21   (4)
  P22=d×V×I22   (5)
  P=P21+P22   (6)
 ただし、P21,P22は、省エネ駆動をしている場合の負荷21,22夫々の負荷消費電力であり、I21,I22は半導体リレー11,12が検出した電流値、即ち負荷21,22夫々を流れる電流の電流値である。
  PE21 =V×I21   (7)
  PE22 =V×I22   (8)
  P=PE21 +PE22    (9)
 ただし、PE21 ,PE22 は、通常駆動を実行したと仮定した場合の負荷21,22夫々の推定消費電力である。
 ところで、負荷消費電力P21,P22及び推定消費電力PE21 ,PE22 を正確に算出するためには、S42で制御部10が検出した電圧値Vではなく、負荷21,22夫々に印加される電圧の電圧値を用いるべきである。しかしながら、負荷21,22夫々に印加される電圧の電圧値を直接的に検出することは困難であり、また、電圧値Vは、負荷21,22夫々に印加される電圧の電圧値に略等しいと看做すことができる。従って、本実施の形態の負荷駆動装置1は、電圧値Vを用いて負荷消費電力P21,P22及び推定消費電力PE21 ,PE22 を算出する式(4),(5),(7),(8)を用いる。
 S44の処理完了後、制御部10は、下記の式(10)を用いて電力差ΔPを算出し(S45)、下記の式(11)を用いて電力量差ΔWを算出する(S46)。電力差ΔP及び電力量差ΔWは夫々正の値であり、操作部15が「弱」から「中」、「中」から「強」へ切り替えられることによって、電力差ΔPは増大する。式(11)は、電力差ΔPを時間積算するための式である。
  ΔP=P-P   (10)
  ΔW=ΔW+ΔP   (11)
 S46の処理完了後、制御部10は、所定時間(例えば10分)が経過したか否かを判定し(S47)、経過した場合(S47でYES)、経過時間の計時結果を“0”にリセットし(S48)、S46で算出した電力量差ΔWを表示部16に表示させ(S49)、電力量差ΔWを“0”にリセットする(S50)。
 この結果、所定時間毎(例えば10分毎)に、表示部16に、省エネ駆動を実行したことによる省エネ効果を示す値として、電力量差ΔWが表示される。運転者は、表示部16に表示された電力量差ΔWを視認することによって、省エネを実行した実感を得る。
 つまり、S46における制御部10は、算出手段として機能し、S49における制御部10及び表示部16は、報知手段として機能する。
 S50の処理完了後、又は、所定時間が経過していない場合(S47でNO)、制御部10は、負荷駆動処理のS29の処理で経過時間の計時が終了したか否かを判定し(S51)、終了していない場合は(S51でNO)、省エネ駆動の実行が継続されているため、処理をS42へ戻す。経過時間の計時が終了した場合(S51でYES)、省エネ駆動の実行が終了したため、制御部10は、処理をS41へ戻す。
 なお、負荷駆動装置1は、S45の処理で算出した電力差ΔPを表示部16に表示させてもよい。また、負荷駆動装置1は、電力量差ΔW又は電力差ΔPを表示する場合に、電力量差ΔW又は電力差ΔPの数値を算数字で表示するのみならず、例えば折れ線グラフ、棒グラフ等を用いて表示してもよい。この場合、運転者は、電力量差ΔW又は電力差ΔPの大小や時間的な変化等を感覚的に把握することができる。
 また、負荷駆動装置1は、電力量差ΔW又は電力差ΔPを表示部16に表示させる代わりに、電力差ΔP分の電力又は電力量差ΔW分の電力量を、車載発電機で発電すると仮定した場合に必要となる燃料の量、この燃料の代金、又はこの燃料を用いて車両3が走行することができる距離等に換算して、表示部16に表示させてもよい。この場合、運転者は、省エネ駆動によってどの程度節約することができたかを、更に容易に把握することができる。ただし、電力量差ΔW又は電力差ΔPを燃料の量、代金等に換算するためには、電力量差ΔW又は電力差ΔPに乗算すべき係数を必要とする。この係数としては、例えば実験によって求められた値が、工場出荷時にROM17に記憶される。
 更に、負荷駆動装置1は、運転者が車両3の運転を終了する場合に、省エネ効果を示す値を表示部16に表示させてもよい。
 以上のような負荷駆動装置1は、電力量差ΔWを、省エネ効果を示す値として運転者に報知することができる。電力量差ΔWは、推定消費電力Pと負荷消費電力Pとの差である電力差ΔPを時間積算してなるため、例えば負荷消費電力P、又は負荷消費電力Pを時間積算してなる負荷消費電力量、或いは負荷21,22を駆動するために消費した燃料の量、この燃料の代金、又はこの燃料を用いて車両3が走行することができる距離等を表示する場合よりも、省エネ効果が把握し易い。
 省エネ駆動が実行された場合、与えられる電力が低減する分、負荷21,22の消費電力が低減するため、省エネ効果は向上するが、負荷21,22の能力(ランプの明るさ、モータの回転速度等)が犠牲になる。一方、通常駆動が実行された場合、与えられる電力が増大する分、負荷21,22の消費電力が増大するため、負荷21,22の能力を十分に活かすことができるが、省エネを図ることができない。そこで、運転者は、報知された電力量差ΔWを参考に、操作部15を手動で操作することによって、省エネ効果と負荷21,22の能力とを適度なバランスで両立させることができる。
 更に、半導体リレー11,12を備える負荷駆動装置1は、部分点数が抑制されているため、製造コストを抑制することができる。
 なお、負荷駆動装置1の構成は、本実施の形態の構成に限定されるものではない。例えば、負荷駆動装置1は、車両3に搭載されるものに限定されない。ただし、負荷駆動装置1の作用・効果は、車両3に備えられる場合に特に有効である。
 また、例えば1個の半導体リレー11に対し、複数個の負荷21,21,…が直列に接続される構成でもよい。又は、3個以上の負荷21,22,…が負荷駆動装置1に接続されていてもよく、この場合、負荷21,22,…の個数の増加に応じて、半導体リレー11,12,…及び駆動回路13,14,…の個数も増加する。逆に、負荷駆動装置1に1個の負荷21が接続されていてもよい。この場合、負荷22に接続されていない半導体リレー12及び駆動回路14は不要である。
 更に、半導体リレー11,12の代わりに、駆動回路13によって駆動されるFETと、負荷21,22に流れる電流の電流値を検出して制御部10へ出力する電流センサとを備えていてもよい。この場合、部品点数は増加するが、その他の効果は本実施の形態の負荷駆動装置1と遜色がない。
 また、制御部10及び駆動回路13,14の代わりに、駆動回路の機能を有する制御部を備え、この制御部が直接的に半導体リレー11,12を駆動する構成でもよい。この場合、部分点数は更に減少する。
 更にまた、表示部16による報知に限定されず、図示しない音声出力部からのメッセージ、メロディ等の出力による報知を行なう構成であってもよい。
 更に、表示部16は、負荷駆動装置1とカーナビゲーション装置、又は車載テレビジョン装置等とが共用する構成であってもよい。更にまた、表示部16を制御する表示用制御部を制御部10とは別個に設け、制御部10は電力差ΔPを算出して、算出結果を表示用制御部へ出力し、表示用制御部が、例えば電力量差ΔWを算出して表示部16に表示させてもよい。この場合、複数個の部品が算出手段として機能するため、演算負荷を分散させることができる。
 また、制限受付部及び比率受付部の機能を有する操作部15の代わりに、制限受付部の機能を有する操作部と、比率受付部の機能を有する操作部とを備えてもよい。又は、半導体リレー11,12個々に省エネ駆動のオン/オフ及びデューティ比の変更を受け付けるべく、操作部15を2個備えてもよい。或いは、スライドスイッチを用いて操作部15を構成してもよく、タッチパネルを用いて操作部15を構成してもよい。
 ところで、通常駆動を実行している場合に、実際の負荷消費電力と、省エネ駆動を実行していると仮定した場合の推定消費電力との差に基づいて予想省エネ効果を示す値を表示し、もしも省エネ駆動を実行していたらどの程度の省エネになったかということを報知することが考えられる。しかしながら、予想省エネ効果を報知することによって、運転者が、予想省エネ効果を示す値の分だけ損をしたような気分になるかもしれないため、本実施の形態では予想省エネ効果の報知は行なっていない。
実施の形態 2.
 本実施の形態においては、省エネ効果を示す値として、電力量差ΔW以外の値を報知する負荷駆動装置1について説明する。
 この負荷駆動装置1の構成は、実施の形態1の図1に示す負荷駆動装置1の構成と同様である。以下では、実施の形態1との差異について説明し、その他、実施の形態1に対応する部分には同一符号を付してそれらの説明を省略する。
 省エネ効果を示す値の具体例として、本実施の形態では、省エネ駆動を実行したことによって節約された燃料の量(以下、燃料節約量という)ΔF、削減されたCOの量(以下、CO削減量という)ΔG、及び節約された燃料費(以下、燃料費節約金額という)ΔMを挙げる。
 電力量を燃料消費量に換算する換算係数をA[L/Wh]とする。このとき、燃料節約量ΔFは、下記の式(12)を用いて算出される。ただし、換算係数Aは、車両3が備えるエンジン及び車載発電機のエネルギー変換効率等に依存する定数であり、実験又は理論に基づいて求められた値が、例えばROM17に予め記憶されている。
  ΔF=ΔW×A   (12)
 ここで、燃料節約量ΔFが式(12)を用いて算出される理由を述べる。省エネ駆動をしている場合の負荷21,22全体の負荷消費電力量W及び負荷の燃料消費量(以下、負荷燃料消費量という)Fは、式(6)及び下記の式(13),(14)を用いて算出され、通常駆動を実行したと仮定した場合の負荷21,22全体の推定消費電力量W及び推定燃料消費量Fは、式(9)及び下記の式(15),(16)を用いて算出されるからである。ただし、式(13)及び式(15)は、負荷消費電力P及び推定消費電力Pを時間積算するための式である。
 従って、燃料節約量ΔFを算出する式は下記の式(17)となる。{W-W}=ΔWであるため、式(17)を変形することによって、式(12)が得られる。
  W=W+P   (13)
  F=W×A   (14)
  W=W+P   (15)
  F=W×A   (16)
  ΔF=F-F=W×A-W×A   (17)
 燃料消費量をCO排出量に換算する換算係数をB[kg/L]とする。このとき、CO削減量ΔGは、下記の式(18)を用いて算出される。ただし、換算係数Bは、燃料の種類に依存する定数であり、例えば、予めROM17に記憶されている。具体的には、ガソリンの場合B=2.3であり、軽油の場合、B=2.6である。
  ΔG=F×B-F×B=ΔF×B   (18)
 燃料消費量を燃料費に換算する換算係数をC[円/L]とする。このとき、燃料費節約金額ΔMは、下記の式(19)を用いて算出される。ただし、換算係数Cは、燃料の種類に依存し、また、市場価格に応じて変動する。従って、換算係数Cは、例えば、負荷駆動装置1が備える図示しないテンキーを用いてユーザが入力する必要がある。なお、車両3が、通信機能を有するカーナビゲーション装置を備えている場合、換算係数Cは、カーナビゲーション装置を介して外部から受信される構成であってもよい。
  ΔM=F×C-F×C=ΔF×C   (19)
 制御部10は、実施の形態1の図2及び図3に示す負荷駆動処理と同様の負荷駆動処理を実行し、また、図4に示す省エネ効果報知処理と略同様の省エネ効果報知処理を実行する。
 省エネ効果報知処理を実行している場合、S48の処理が終了したときに、制御部10は、S46で算出した電力量差ΔWと、式(12),(18),(19)とを用いて、燃料節約量ΔF、CO削減量ΔG、及び燃料費節約金額ΔMを夫々算出する。
 次いで、制御部10は、S49の処理で、燃料節約量ΔF、CO削減量ΔG、及び燃料費節約金額ΔMを表示部16に表示させる。このとき、制御部10は、電力量差ΔWも表示部16に表示させる構成でもよい。
 以上のような負荷駆動装置1は、実施の形態1の負荷駆動装置1と同様の効果を奏する。また、省エネ効果の指標として複数種類の値が表示されるため、運転者は、自身にとって省エネの度合いが最も把握し易い値を参考にすることができる。
実施の形態 3.
 本実施の形態における負荷駆動装置1の構成は、実施の形態1の図1に示す負荷駆動装置1の構成と略同様である。以下では、実施の形態1との差異について説明し、その他、実施の形態1に対応する部分には同一符号を付してそれらの説明を省略する。
 実施の形態1における負荷駆動装置1は、省エネ効果を示す値としての電力量差ΔWを運転者に報知する。しかしながら、電力量差ΔWが報知されただけでは、運転者には、負荷消費電力量Wが具体的にどの程度の値であったかを把握することはできない。
 そこで、本実施の形態における負荷駆動装置1は、省エネ効果を示す値(即ち、負荷消費電力と推定消費電力との差に関する値)のみならず、負荷消費電力に関する値も同時的に報知する。具体的には、負荷駆動装置1は、省エネ効果を示す値である電力量差ΔW、燃料節約量ΔF、CO削減量ΔG、及び燃料費節約金額ΔMと、負荷消費電力に関する値である負荷消費電力量W、負荷燃料消費量F、CO排出量G、及び燃料費Mとを全て表示部16に表示させる。
 また、実施の形態1における負荷駆動装置1は、所定時間毎に、この所定時間の間の電力量差ΔWを報知する。
 一方、本実施の形態における負荷駆動装置1は、所定時間毎に、省エネ駆動が開始されてからの省エネ効果を示す値と負荷消費電力に関する値とを報知する。
 更に、実施の形態1における負荷駆動装置1は、運転者が所望した任意のタイミングで、省エネ効果を示す値と負荷消費電力に関する値とを報知する。このために、負荷駆動装置1は、図示しない報知スイッチを更に備える。
 制御部10は、実施の形態1の図2及び図3に示す負荷駆動処理と略同様の負荷駆動処理を実行する。ただし、制御部10は、S18の処理で、電力量差ΔWを“0”にリセットすると共に、負荷消費電力量Wも“0”にリセットする。
 図5は、本発明の実施の形態3に係る負荷駆動装置1で実行される省エネ効果報知処理の手順を示すフローチャートである。図中のS41、S42、S45、S47、S48、及びS51の処理は、実施の形態1の図4に示す同一の符号の処理と同様であるため、説明を省略する。
 S41及びS42の処理終了後、制御部10は、実施の形態1のS43及びS44の処理と同様にして、負荷消費電力P及び推定消費電力Pを算出する(S61)。次に、制御部10は、S45の処理を実行してから、式(11),(13)を用いて、電力量差ΔW及び負荷消費電力量Wを算出する(S62)。
 次いで、制御部10は、報知スイッチがオンになったか否かを判定し(S63)、オフのままである場合は(S63でNO)、処理をS47へ移す。
 報知スイッチがオンになった場合(S11でYES)、制御部10は、後述するS64へ処理を移す。また、S48の処理終了後、制御部10は、S64へ処理を移す。
 制御部10は、S62で算出した負荷消費電力量Wと、下記の式(20),(21),(22)とを用いて、負荷燃料消費量F、CO排出量G、及び燃料費Mを夫々算出する(S64)。
  F=W×A   (20)
  G=F×B   (21)
  M=F×C   (22)
 更に、制御部10は、S62で算出した電力量差ΔWと、式(12),(18),(19)とを用いて、燃料節約量ΔF、CO削減量ΔG、及び燃料費節約金額ΔMを夫々算出する(S65)。
 そして、制御部10は、S62、S64及びS65で算出した各値を一覧表にまとめてなる報知テーブル(後述する図6参照)を表示部16に表示させ(S66)、処理をS51へ移す。
 なお、報知テーブルは、S47で所定時間が経過した場合にのみ表示される構成でもよく、S63で報知スイッチがオンになった場合にのみ表示される構成でもよい。
 図6は、表示部16に表示される報知テーブルの一例を示す模式図である。
 図中「消費電力量」の欄には、「今回の運転中の消費/排出」の指標としての負荷消費電力量W(図中「200Wh」)と、「省エネ効果」の指標としての電力量差ΔW(図中「40Wh」)とが並置表示される。
 同様に、「燃料消費」の欄には、負荷燃料消費量F(図中「10L」)と燃料節約量ΔF(図中「2L」)とが表示され、「燃料代」の欄には、燃料費M(図中「1000円」)と燃料費節約金額ΔM(図中「200円」)とが表示され、「CO排出量」の欄には、CO排出量G(図中「23kg」)とCO削減量ΔG(図中「4.6kg」)とが表示される。
 従って、報知テーブルを視認した運転者は、「省エネ効果」の指標となる値のみならず、「今回の運転中の消費/排出」の指標となる値も容易に把握することができる。
 以上のような負荷駆動装置1を用いる場合、例えば電力量差ΔWが十分に大きくとも、負荷消費電力量Wが過剰に多いのであれば、運転者は、省エネの度合いが不十分であると判断することができる。このような場合、運転者は、例えば不要な負荷21,22をオフにすることによって、更なる省エネを図ることができる。
 なお、ここに開示された実施の形態1~3は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲と均等の意味及び請求の範囲内での全ての変更が含まれることが意図される。
 また、本発明の効果がある限りにおいて、負荷駆動装置1に、本実施の形態1~3に開示されていない構成要素が含まれていてもよい。

Claims (5)

  1.  負荷を駆動するための負荷駆動装置であって、
     前記負荷に与える電力をスイッチングするスイッチング部と、
     前記負荷に与える電力を制限するために、前記負荷に対応するスイッチング部を制御して断続的にオンにする断続制御手段と、
     該断続制御手段が前記スイッチング部を制御している場合に、該スイッチング部に対応する負荷の負荷消費電力と、前記スイッチング部を連続的にオンにしている場合の前記負荷の推定消費電力との差に関する値を算出する算出手段と、
     該算出手段が算出した値を報知する報知手段と
     を備えることを特徴とする負荷駆動装置。
  2.  前記負荷に流れる電流の電流値を検出する電流検出部を更に備え、
     前記算出手段は、少なくとも前記負荷消費電力を、前記電流検出部の検出結果に基づいて算出するようにしてあることを特徴とする請求項1に記載の負荷駆動装置。
  3.  前記スイッチング部と前記電流検出部とを、自身に流れる電流の電流値を検出する機能を有する半導体リレーで兼用してなることを特徴とする請求項2に記載の負荷駆動装置。
  4.  負荷に与える電力の制限/無制限を受け付ける制限受付部と、
     該制限受付部が無制限を受け付けた場合に、前記負荷に対応するスイッチング部を制御して連続的にオンにする連続制御手段と
     を更に備え、
     前記断続制御手段は、前記制限受付部が制限を受け付けた場合に、前記負荷に対応するスイッチング部を制御して断続的にオンにするようにしてあることを特徴とする請求項1乃至3の何れか一項に記載の負荷駆動装置。
  5.  PWM制御を行なう際のデューティ比を受け付ける比率受付部を更に備え、
     前記断続制御手段は、前記比率受付部が受け付けたデューティ比を用いて、前記スイッチング部をPWM制御するようにしてあることを特徴とする請求項1乃至4の何れか一項に記載の負荷駆動装置。
PCT/JP2009/060258 2008-06-04 2009-06-04 負荷駆動装置 WO2009148122A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010515913A JP5143899B2 (ja) 2008-06-04 2009-06-04 負荷駆動装置
DE112009001395T DE112009001395T5 (de) 2008-06-04 2009-06-04 Lasttreibervorrichtung
US12/990,695 US8264271B2 (en) 2008-06-04 2009-06-04 Load driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-146893 2008-06-04
JP2008146893 2008-06-04

Publications (1)

Publication Number Publication Date
WO2009148122A1 true WO2009148122A1 (ja) 2009-12-10

Family

ID=41398195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060258 WO2009148122A1 (ja) 2008-06-04 2009-06-04 負荷駆動装置

Country Status (4)

Country Link
US (1) US8264271B2 (ja)
JP (1) JP5143899B2 (ja)
DE (1) DE112009001395T5 (ja)
WO (1) WO2009148122A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226643A (ja) * 2011-04-21 2012-11-15 Panasonic Corp エネルギー管理装置、およびエネルギー管理システム
JP2013255403A (ja) * 2012-06-08 2013-12-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源制御装置
JP2013255402A (ja) * 2012-06-08 2013-12-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源制御装置
DE102018214062A1 (de) 2017-08-24 2019-02-28 Yazaki Corporation Laststeuerung und Laststeuerverfahren

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075408B2 (en) * 2009-11-16 2015-07-07 Applied Materials, Inc. Energy savings and global gas emissions monitoring and display
US9207270B2 (en) * 2012-08-31 2015-12-08 Elwha Llc Method and apparatus for measuring negawatt usage of an appliance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244195A (ja) * 2001-03-07 2007-09-20 Matsushita Ecology Systems Co Ltd 節電装置およびその運転方法
JP2007289553A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd 電気湯沸かし器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584832B2 (ja) 2000-01-25 2004-11-04 オムロン株式会社 電動パワーステアリング装置
DE10138750B4 (de) 2001-07-30 2004-02-05 Caa Ag Fahrzeugrechner-System und Verfahren zur Ermittlung und Darstellung des Energieverbrauchs eines Verbrauchers in einem Fahrzeug
JP3932098B2 (ja) * 2002-01-31 2007-06-20 株式会社デンソー 車両用配電装置およびユーザー後付け負荷接続用の補助端子
US7667447B2 (en) * 2005-12-28 2010-02-23 Intel Corporation Load adaptive power delivery
JP2007272798A (ja) 2006-03-31 2007-10-18 Fujitsu Ltd 給油参考情報提供方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244195A (ja) * 2001-03-07 2007-09-20 Matsushita Ecology Systems Co Ltd 節電装置およびその運転方法
JP2007289553A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd 電気湯沸かし器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226643A (ja) * 2011-04-21 2012-11-15 Panasonic Corp エネルギー管理装置、およびエネルギー管理システム
CN103477360A (zh) * 2011-04-21 2013-12-25 松下电器产业株式会社 能量管理装置以及能量管理系统
US9612586B2 (en) 2011-04-21 2017-04-04 Panasonic Intellectual Property Management Co., Ltd. Energy management apparatus and energy management system
JP2013255403A (ja) * 2012-06-08 2013-12-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源制御装置
JP2013255402A (ja) * 2012-06-08 2013-12-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源制御装置
DE102018214062A1 (de) 2017-08-24 2019-02-28 Yazaki Corporation Laststeuerung und Laststeuerverfahren
US10916396B2 (en) 2017-08-24 2021-02-09 Yazaki Corporation Load controller and load control method

Also Published As

Publication number Publication date
US20110128065A1 (en) 2011-06-02
JPWO2009148122A1 (ja) 2011-11-04
US8264271B2 (en) 2012-09-11
DE112009001395T5 (de) 2011-05-05
JP5143899B2 (ja) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5143899B2 (ja) 負荷駆動装置
JP3932098B2 (ja) 車両用配電装置およびユーザー後付け負荷接続用の補助端子
JP5418785B2 (ja) ハイブリッド車両の蓄電制御装置
JP5372561B2 (ja) 電気自動車の制御装置
EP1020319B1 (en) Assist device for use in electric vehicle
US20120143410A1 (en) Interactive driver system for an electric vehicle
JP3876817B2 (ja) 車両用電源制御装置
JP5776909B2 (ja) 電動車両の充電制御装置
JP5580506B2 (ja) 車両用燃料消費通知装置
US9126620B2 (en) Electric power steering system
JP2015042049A (ja) 車載用表示装置
KR20080077199A (ko) 전동 어시스트 자전거
JP2008005622A (ja) 車両電源装置
JP2012046171A (ja) 車両用電力管理システム、車両用電力情報管理装置、及び車両用電気負荷
EP2700563B1 (en) Electric power steering device
JP2012067702A (ja) アイドルストップ車両のエンジン制御装置及びエンジン制御方法
JP5477162B2 (ja) 車両用電源制御装置
JP2011098693A (ja) 情報表示装置
JP6040643B2 (ja) 電池状態表示装置
JP2013043486A (ja) 電動補助自転車
JP5633691B2 (ja) 電動車両の充電表示装置
JP2008275564A (ja) 車両用情報表示装置
JPH0966884A (ja) 補助動力自転車の電源制御装置
JP4494545B2 (ja) 自動車用電動コンプレッサの駆動装置
JP2010006093A (ja) 電動車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515913

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12990695

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001395

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09758389

Country of ref document: EP

Kind code of ref document: A1