WO2009147746A1 - 有機トランジスタ及びその製造方法 - Google Patents

有機トランジスタ及びその製造方法 Download PDF

Info

Publication number
WO2009147746A1
WO2009147746A1 PCT/JP2008/060456 JP2008060456W WO2009147746A1 WO 2009147746 A1 WO2009147746 A1 WO 2009147746A1 JP 2008060456 W JP2008060456 W JP 2008060456W WO 2009147746 A1 WO2009147746 A1 WO 2009147746A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic semiconductor
layer
contact layer
organic
Prior art date
Application number
PCT/JP2008/060456
Other languages
English (en)
French (fr)
Inventor
隆 中馬
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/060456 priority Critical patent/WO2009147746A1/ja
Publication of WO2009147746A1 publication Critical patent/WO2009147746A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the present invention relates to an organic transistor and a method for manufacturing the same.
  • a source electrode 11s and a drain electrode 11d are provided on a substrate 10 apart from each other, and then a source electrode 11s and a drain electrode are provided.
  • an organic semiconductor portion 12F is stacked on 11d, a gate insulating film 13 is formed thereon, and a gate electrode 11g is provided on the gate insulating film 13 between the electrodes.
  • the source electrode and the drain electrode of such an organic transistor be formed using an electroless plating technique instead of vacuum film formation (see Patent Document 1).
  • the amount of charge at the interface between the organic semiconductor layer and the gate insulating film changes according to the change in the voltage applied to the gate electrode.
  • a channel is generated in the vicinity of the interface of the organic semiconductor layer therebetween, and a source-drain current flows.
  • a noble metal such as Au used as a gate-source-drain electrode of an organic transistor has low adhesion strength with a base layer such as an insulating film, and an adhesive layer such as Cr or Ti is provided between the base layer ( Non-patent document 1).
  • a source electrode 11s and a drain electrode 11d are provided apart from each other on a gate insulating film 13 covering a gate electrode 11g provided on a substrate 10, and an organic semiconductor portion 12F is formed thereon.
  • a laminated MIS structure organic transistor is also known in which an adhesive layer AD such as Ti is laminated between a gate-source-drain electrode and a base layer.
  • the adhesive layer of the source electrode is also in contact with the organic semiconductor, which is a barrier to charge injection due to the difference in work function and ionization potential.
  • the Ni plating film when, for example, a Ni plating film is subjected to substitution reduction Au plating as an electrode, it is difficult to control the plating region for forming a minute channel width (interval between the source electrode and the drain electrode).
  • the Ni film in the Ni and Au plating films, the Ni film generally contains P (phosphorus) or B (boron), and this plating film is formed on the substrate in a solid state, and then the photolithography technology. In the case of patterning using Pb, a thick Ni film containing P or B comes into contact with the organic semiconductor, which becomes a large barrier against charge injection.
  • an example of the present invention is to provide a MIS structure capable of efficiently injecting charges from a source electrode to an organic semiconductor in an organic transistor using an organic semiconductor as an active layer.
  • the organic transistor of the present invention includes a source electrode and a drain electrode arranged separately from each other, an organic semiconductor layer interposed between the source electrode and the drain electrode, and the organic semiconductor layer between the source electrode and the drain electrode.
  • An organic transistor having a gate electrode disposed opposite to the gate insulating film and defining a channel portion of the organic semiconductor layer,
  • the source electrode comprises at least two electrode layers stacked on each other; and
  • the electrode layer includes a contact layer in contact with the organic semiconductor layer and a non-contact layer not in contact with the organic semiconductor layer.
  • the organic transistor manufacturing method of the present invention includes a source electrode and a drain electrode arranged separately from each other, an organic semiconductor layer interposed between the source electrode and the drain electrode, and the gap between the source electrode and the drain electrode.
  • a method of manufacturing an organic transistor having a gate electrode disposed opposite to an organic semiconductor layer via a gate insulating film and defining a channel portion of the organic semiconductor layer, Laminating at least two electrode layers in sequence on the surface of the predetermined site; Etching the electrode layers in order by wet etching using the electrode mask to define the source and drain electrodes and over-etching the electrode layer on the surface of the predetermined part;
  • the organic semiconductor layer is formed on the surface of the source electrode and the drain electrode and the predetermined portion therebetween, and in the electrode layer, the contact layer in contact with the organic semiconductor layer and the predetermined layer not in contact with the organic semiconductor layer Forming a non-contact layer on the surface side of the part, and forming opposing end portions of the source electrode and the drain electrode with the contact layer.
  • FIG. 3 shows an example of the structure of a bottom contact type organic transistor.
  • a gate electrode 11g drawn from a gate wiring (not shown) is provided on a substrate 10, and a gate insulating film 13 is provided so as to cover the gate electrode 11g. From the substrate 10 to the gate insulating film 13, the source electrode 11s and the drain electrode 11d are provided so as to face each other.
  • An organic semiconductor portion 12 made of an organic semiconductor is stacked and provided so that a channel can be formed between the opposing source electrode and drain electrode.
  • the gate electrode 11g applies an electric field to the organic semiconductor portion 12 between the source electrode 11s and the drain electrode 11d.
  • the gate electrode 11g is insulated from the source electrode 11s and the drain electrode 11d.
  • a passivation film covering the organic transistor composed of the source electrode 11s, the drain electrode 11d, the gate electrode 11g, and the like may be provided. That is, film sealing with a nitride or inorganic system of nitride such as silicon nitride is performed so as to cover the formed circuit and organic transistor. Sealing with an inorganic sealing film made of a nitrided oxide such as silicon nitride oxide, an oxide such as silicon oxide or aluminum oxide, or a carbide such as silicon carbide, or multilayer sealing of a polymer and an inorganic film may also be used.
  • an adhesive layer of titanium, molybdenum or the like is interposed as a non-contact layer 11non as a base of the metal electrode, and the source electrode 11s and the drain electrode 11d have a two-layer structure of non-contact layer / contact layer 11.
  • the source electrode 11 s includes a contact layer 11 cont that contacts the organic semiconductor part 12 and a non-contact layer 11 non that does not contact the organic semiconductor part 12, and the drain electrode 11 d does not contact the contact layer 11 cont that contacts the organic semiconductor part 12 and the organic semiconductor part 12.
  • the non-contact layer 11non is included.
  • the opposing end portions of the contact layer 11cont of the source electrode 11s and the contact layer 11cont of the drain electrode 11d facing each other are closest to the gate electrode 11g, and the organic semiconductor layer therebetween serves as a channel portion.
  • the two layers of the non-contact layer and the contact layer have been described.
  • the present invention is not limited to this, and the source electrode 11s can be composed of two or more electrode layers stacked together.
  • the material constituting the contact layer is preferably a material having a work function larger than that of the material constituting the non-contact layer.
  • the material constituting the organic semiconductor layer is preferably a material that forms a p-type channel.
  • the source electrode is preferably formed by a vacuum film formation method or a plating method.
  • FIG. 4 shows an example of the structure of a top gate type organic transistor.
  • Such an organic transistor includes an organic semiconductor portion made of organic semiconductors stacked so that a channel can be formed on the substrate 10 between the source electrode 11s and the drain electrode 11d that are formed on the substrate 10 so as to be separated from each other. 12 and a gate electrode 11g that covers the organic semiconductor part 12 and applies an electric field to the organic semiconductor part 12 between the source electrode 11s and the drain electrode 11d, and covers the gate electrode 11g from the source electrode 11s and the drain electrode 11d. It has a gate insulating film 13 for insulation.
  • the source electrode 11s includes a contact layer 11cont in contact with the organic semiconductor portion 12 and a non-contact layer 11non not in contact with the organic semiconductor portion 12.
  • the drain electrode 11 d includes a contact layer 11 cont that is in contact with the organic semiconductor part 12 and a non-contact layer 11 non that is not in contact with the organic semiconductor part 12.
  • the present embodiment is a source electrode structure in which a contact layer is formed so as to largely cover an adhesive layer (non-contact layer) of the source electrode.
  • a conductive film is formed on the cleaned substrate 10 and patterned to form a gate electrode 11g as shown in FIG.
  • a gate insulating film 13 is formed on the gate electrode 11g so as to cover it.
  • an oxide thin film obtained by oxidizing the surface of the gate electrode 11g by an anodic oxidation method that is, the gate insulating film 13 is formed.
  • the gate insulating film 13 can be formed on the gate electrode 11g by patterning using a predetermined photomask.
  • a source electrode 11s and a drain electrode 11d each having a two-layer structure of a non-contact layer and a contact layer are formed on the gate insulating film 13 (and the substrate 10) using a photolithography technique.
  • the materials of the non-contact layer 11non such as Cr and the contact layer 11cont such as Au covering the gate insulating film 13 are sequentially formed on the entire surface of the substrate by a vacuum film forming method or a plating method.
  • a predetermined pattern PH electrode mask made of resist is formed on the contact layer 11cont by patterning the positions to be the source electrode and the drain electrode.
  • the contact layer 11cont and the non-contact layer 11non are sequentially etched by wet etching using the electrode mask PH to define the source electrode and the drain electrode, and as shown in FIG. Then, over-etching is performed on the non-contact layer 11non on the surface side of the substrate 10. That is, the material constituting the contact layer 11cont is selected from materials having an etching rate smaller than the etching rate for the same etchant of the material constituting the non-contact layer 11non.
  • the etching rate is a rate per unit for etching a film to be etched.
  • the etchant for etching the non-contact layer may be over-etched using a material that does not etch the contact layer.
  • the contact layer 11cont and the pattern PH protrude from the non-contact layer 11non to form a ridge structure. That is, when a so-called bimorph structure combining the two materials (thin film and thick film) of the contact layer 11cont and the photomask PH has different internal stresses, it is deformed by receiving stress and bending moment in the direction of the thin film surface. Therefore, as shown in FIG. 11, the contact layer 11cont bends and contacts the gate insulating film 13 and the substrate 10. That is, in the organic transistor, the source electrode has a two-layer structure, and the contact layer of the upper electrode hangs down in the channel portion, thereby covering the non-contact layer of the lower electrode and contacting the gate insulating film.
  • the source electrode 11s and the drain electrode 11d separated from each other are maintained by the internal stress and the own weight of the contact layer 11cont as shown in FIG. It is formed.
  • the source electrode and the drain electrode are demarcated by wet etching and collectively patterning using the electrode mask.
  • the organic semiconductor layer 12 is formed on the vicinity thereof.
  • the organic semiconductor layer 12 can also be formed by a self-organization method.
  • Source electrode and drain electrode Although the sputtering method and the electroless plating method are used as the method for forming the source electrode and the drain electrode, the present invention is not limited to this, and any film forming method may be used.
  • the electrode material is not limited to Cr and Au, Ni and Au. In particular, if the ionization potential of the organic semiconductor material and the work function of the contact layer (source electrode) are a combination that realizes good charge injection. Good.
  • the organic semiconductor of the organic semiconductor portion may be an organic material that exhibits semiconductor characteristics such as tetrabenzoporphyrin, and further, a combination that realizes good charge injection by the ionization potential of the organic semiconductor material and the work function of the upper electrode. If it is.
  • phthalocyanine derivatives for example, in low molecular weight materials, phthalocyanine derivatives, naphthalocyanine derivatives, azo compound derivatives, perylene derivatives, indigo derivatives, quinacridone derivatives, polycyclic quinone derivatives such as anthraquinones, cyanine derivatives, fullerene derivatives, Or nitrogen-containing cyclic compound derivatives such as indole, carbazole, oxazole, inoxazole, thiazole, imidazole, pyrazole, oxadiazole, pyrazoline, thiathiazole, triazole, hydrazine derivative, triphenylamine derivative, triphenylmethane derivative, stilbene Quinone compound derivatives such as anthraquinone diphenoquinone, and polycyclic aromatic compound derivatives such as pentacene, anthracene, bilene, phenanthrene, and coronene.
  • the structure of the low molecular compound described above is pendant as a material used in the main chain of a polymer such as polyethylene chain, polysiloxane chain, polyether chain, polyester chain, polyamide chain, polyimide chain, or side chain.
  • Aromatic conjugated polymers such as polyparaphenylene, aliphatic conjugated polymers such as polyacetylene, heterocyclic conjugated polymers with polypinol and polythiophene ratios, polyanilines and polyphenylene sulfide, etc.
  • Hetero-atom conjugated polymers of this type complex type conjugated systems having a structure in which structural units of conjugated polymers such as poly (phenylene vinylene), poly (annelen vinylene) and poly (chenylene vinylene) are alternately bonded Carbon-based conjugated polymers such as molecules are used.
  • polymers such as polysilanes, disilanylene allylene polymers, and disilanylene carbon-based conjugated polymer structures such as (disilanylene) ethynylene polymers that are alternately linked with oligosilanes and carbon-based conjugated structures Used.
  • polymer chains composed of inorganic elements such as phosphorus and nitrogen may be used, and polymers having aromatic chain ligands such as phthalocyanate polysiloxane coordinated, perylenetetracarboxylic Polymers in which perylenes such as acids have been heat-treated and condensed, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylonitrile, and organic compounds intercalated in perovskites
  • the composite material may be used.
  • the surface of the gate insulating film between the source electrode and the drain electrode can be covered with a self-assembled monomolecular film.
  • HMDS hexmethyldisilazane, (CH 3 ) 3 SiNHSi (CH 3 ) 3
  • OTS octadecyltrichlorosilane CH 3 (CH 2 ) 17 SiCl 3
  • Either an inorganic material such as SiO 2 can be used as the gate insulating film material, and any insulator of an organic material can be used as the gate insulating film.
  • any insulator of an organic material can be used as the gate insulating film.
  • inorganic materials LiO x, LiN x, NaO x, KO x, RbO x, CsO x, BeO x, MgO x, MgN x, CaO x, CaN x, SrO x, BaO x, ScO x, YO x, YN x, LaO x , LaN x, CeO x, PrO x, NdO x, SmO x, EuO x, GdO x, TbO x, DyO x, HoO x, ErO x, TmO x, YbO x, LuO x , TiO x , TiN x ,
  • the gate insulating film organic material polymer materials such as polyimide, polyamide, polyester, polyacrylate, epoxy resin phenol resin, and polyvinyl alcohol are also effective. Further, the surface of the gate insulating film may be subjected to water repellent treatment using OTS, HMDS, or the like.
  • An oxide of a gate electrode material can be used as the gate insulating film.
  • Ta can be used as the gate electrode
  • Ta 2 O 5 can be used as the gate insulating film 13 by anodic oxidation.
  • the gate electrode material may be any metal as long as it can be anodized, and a single element such as Al, Mg, Ti, Nb, Zr or an alloy thereof may be anodized to form a gate insulating film.
  • an inorganic material can be used as the gate insulating film 13 without using anodic oxidation.
  • the material is not particularly limited as long as it has sufficient conductivity. That is, Pt, Au, W, Ru, Ir, Al, Sc, Ti, V, Mn, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Ta, Re, Os, Tl, Pb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.
  • the compound may be used.
  • organic conductive material containing a conjugated polymer compound such as metal oxides such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), polyanilines, polythiophenes, and polypyrroles.
  • metal oxides such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide)
  • polyanilines such as polythiophenes, and polypyrroles.
  • the substrate 10 may be a plastic substrate such as PES or PC, or a bonded substrate of glass and plastic, and the substrate surface may be coated with an alkali barrier film or a gas barrier film.
  • a plastic substrate for example, a film of polyethylene terephthalate, polyethylene-2,6-naphthalate, polysulfone, polyether sulfone, polyether ether ketone, polyphenoxy ether, polyarylate, fluororesin, polypropylene, or the like can be applied.
  • a comparative example organic transistor and an example organic transistor as shown in FIGS. 3 and 4 were produced.
  • Example 1 Process using sputtering method (bottom contact structure)- After forming SiO 2 as a gate insulating film on the gate electrode made of Cr, sputtering is performed using Cr as the first non-contact layer and Au film as the second contact layer on the gate insulating film. Was used to form a film. The film thicknesses of Cr and Au were 50 nm and 100 nm, respectively. Next, the resist was patterned using a general photolithography technique, and etching was performed in the order of the Au film and the Cr film by wet etching through the resist non-existing portion.
  • the Au film was formed in the same pattern as the resist mask, and the next Cr film was over-etched through the resist non-existing portion and the contact layer opening.
  • the Au film in the channel portion protrudes and hangs down from the lower film, and comes into contact with the gate insulating film to form a source electrode having a shape as shown in FIG.
  • tetrabenzoporphyrin was formed as an organic semiconductor layer thereon to form an organic transistor.
  • Example 2 Process using electroless plating (bottom contact structure)- After forming SiO 2 as a gate insulating film on the gate electrode made of Cr, a Ni film is formed on the gate insulating film as a first non-contact layer using a general electroless plating technique, As a contact layer of the first layer, an Au plating film was formed as a solid on one side. The Au film was formed by displacement reduction plating from Ni. The plating conditions were set so that the film thicknesses of Ni and Au were 100 nm and 100 nm, respectively. Next, the resist was patterned using a general photolithography technique, and etching was performed in the order of the Au film and the Ni film by wet etching through the resist non-existing portion.
  • the Au film was formed in the same pattern as the resist mask, and the next Ni film was over-etched through the resist non-existing portion and the contact layer opening.
  • the Au film in the channel portion protrudes and hangs down from the lower film, and comes into contact with the gate insulating film to form a source electrode having a shape as shown in FIG.
  • tetrabenzoporphyrin was formed as an organic semiconductor layer thereon to form an organic transistor.
  • Example 3 Process using sputtering method (top gate structure)- On the glass substrate, Cr was formed as a first non-contact layer and an Au film was formed as a second contact layer by a sputtering method. The film thicknesses of Cr and Au were 50 nm and 100 nm, respectively. Next, the resist was patterned using a general photolithography technique, and etching was performed in the order of the Au film and the Cr film by wet etching through the resist non-existing portion. At this time, the Au film was formed in the same pattern as the resist mask, and the next Cr film was over-etched through the resist non-existing portion and the contact layer opening.
  • the Au film in the channel portion protrudes and hangs down from the lower film, and comes into contact with the glass substrate to form a source electrode having a shape as shown in FIG.
  • tetrabenzoporphyrin was formed as an organic semiconductor layer, and then SiO 2 was formed as a gate insulating film so as to cover the organic semiconductor.
  • a Cr gate electrode was provided on the gate insulating film to form an organic transistor.
  • Example 4 Process using electroless plating (top gate structure)- A general electroless plating technique was used on a glass substrate to form a Ni film as a first non-contact layer and an Au film plating film as a second contact layer on one side.
  • the Au film was formed by displacement reduction plating from Ni.
  • the plating conditions were set so that the film thicknesses of Ni and Au were 100 nm and 100 nm, respectively.
  • the resist was patterned using a general photolithography technique, and etching was performed in the order of the Au film and the Ni film by wet etching through the resist non-existing portion.
  • the Au film was formed in the same pattern as the resist mask, and the next Ni film was over-etched through the resist non-existing portion and the contact layer opening.
  • the Au film in the channel portion protrudes and hangs down from the lower film, and comes into contact with the glass substrate to form a source electrode having a shape as shown in FIG.
  • tetrabenzoporphyrin was formed as an organic semiconductor layer, and then SiO 2 was formed as a gate insulating film so as to cover the organic semiconductor.
  • a Cr gate electrode was provided on the gate insulating film to form an organic transistor.
  • the thickness of each electrode is not limited to this example, and any thickness may be used as long as it functions as an electrode. However, since it exists as a film, a thickness of 10 nm or more is preferable.
  • FIG. 13 shows the output characteristics of the comparative organic transistor
  • FIG. 14 shows the output characteristics of the source electrode structure of Example 1.
  • the organic transistor of the comparative example is the same as that of Example 1 except that the Au contact layer is laminated by exposing and contacting the Cr non-contact layer to the tetrabenzoporphyrin organic semiconductor layer.
  • the drain current Id of the comparative example of FIG. 13 has a contact resistance component between the electrode and the organic semiconductor, and the drain current does not rise linearly even when an electric field is applied.
  • 1 shows that there is no contact resistance component and the drain current rises linearly with respect to the drain voltage. From this, it can be seen that the source electrode configuration of the present invention is effective.
  • the output characteristics of the organic transistor were evaluated, good characteristics with low contact resistance between the source electrode and the organic semiconductor could be confirmed.
  • the wiring resistance can be reduced while maintaining the width between the counter electrodes in the channel portion, and an organic transistor can be fabricated without requiring highly accurate alignment of the source and drain electrodes.
  • the first non-contact layer of the source electrode is over-etched, the second contact layer is brought into contact with the gate insulating film, and charge injection into the organic semiconductor is performed in the second layer.
  • the contact layer is the main feature. According to this embodiment, the alignment accuracy of the source and drain electrodes is relaxed. Therefore, the organic transistor of this embodiment is suitable for an active matrix driving element.
  • the present invention can be used for active matrix drive displays (LCD, organic EL, electronic paper, etc.), sensors, and RF-ID tags.

Landscapes

  • Thin Film Transistor (AREA)

Abstract

 有機トランジスタは、互いに分離して配置されたソース電極及びドレイン電極と、ソース電極及びドレイン電極の間に介在する有機半導体層と、ソース電極及びドレイン電極の間の有機半導体層に対向してゲート絶縁膜を介して配置されかつ有機半導体層のチャネル部を規定するゲート電極を有する有機トランジスタであって、ソース電極は互いに積層された少なくとも2層の電極層からなり、かつ、電極層は有機半導体層に接するコンタクト層と有機半導体層に接しないノンコンタクト層とを含む。

Description

有機トランジスタ及びその製造方法
 本発明は、有機トランジスタ及びその製造方法に関する。
 薄型ディスプレイなどの軽く、薄く、曲げられる電子デバイスへの応用目的として、有機半導体を用いたトランジスタすなわち、有機トランジスタの研究が盛んに行われている。
 有機トランジスタのMIS(metal-insulator-semiconductor)構造の1つには、図1に示すように、基板10上にソース電極11sとドレイン電極11dを互いに離して設け、その後、ソース電極11s及びドレイン電極11d上に有機半導体部12Fを積層し、その上にゲート絶縁膜13を形成し、その上に電極間上のゲート絶縁膜13上にゲート電極11gを設けて構成されたものが知られている。このような有機トランジスタのソース電極及びドレイン電極を真空成膜ではなく、無電解メッキ技術を用いて形成することが提案されている(特許文献1参照)。
 このMIS構造の有機トランジスタのソース電極及びドレイン電極間への電圧印加時に、ゲート電極に印加電圧の変化に応じて有機半導体層及びゲート絶縁膜の界面における電荷量が変化し、ソース電極及びドレイン電極間の有機半導体層の界面近傍部分にチャネルが生成され、ソース-ドレイン電流が流れる。
 一般的に有機トランジスタのゲート-ソース-ドレイン電極として用いられるAu等の貴金属は絶縁膜などの下地層との密着強度が弱く、CrやTi等の接着層を下地層と間に設けている(非特許文献1参照)。例えば、図2に示すように、基板10上に設けたゲート電極11gを覆おうゲート絶縁膜13上に、ソース電極11sとドレイン電極11dを互いに離して設け、それらの上に有機半導体部12Fを積層したMIS構造の有機トランジスタにおいて、ゲート-ソース-ドレイン電極と下地層と間にTi等の接着層ADを積層し構成されたものも知られている。
特開2005-150640公報 The Japan Society of Applied Physics. Vol. 42 (2003) pp. L 523 - 525 Part 2, No. 5B, 15 May 2003
 しかしながら、このような構造ではソース電極の接着層も有機半導体と接触しており、仕事関数とイオン化ポテンシャルの違いから電荷注入の障壁となっている。また、電極として例えばNiメッキ膜を置換還元Auメッキする場合、微小なチャネル幅(ソース電極及びドレイン電極間隔)を形成するためのメッキ領域の制御が難しい。また、Ni及びAuメッキ膜において、Ni膜中には一般的にはP(リン)もしくはB(ホウ素)が含有されており、このメッキ膜を基板上にベタで形成し、その後でフォトリソグラフィ技術を用いてパターニングする場合はPもしくはBを含んだ厚いNi膜が有機半導体と接触することとなり、大きな電荷注入の障壁となる。
 そこで本発明は、有機半導体を活性層に使用した有機トランジスタにおいて、ソース電極から有機半導体へ効率良く電荷注入可能なMIS構造を提供することが一例として挙げられる。
 本発明の有機トランジスタは、互いに分離して配置されたソース電極及びドレイン電極と、前記ソース電極及びドレイン電極の間に介在する有機半導体層と、前記ソース電極及びドレイン電極の間の前記有機半導体層に対向してゲート絶縁膜を介して配置されかつ前記有機半導体層のチャネル部を規定するゲート電極を有する有機トランジスタであって、
 前記ソース電極は互いに積層された少なくとも2層の電極層からなること、及び、
 前記電極層は前記有機半導体層に接するコンタクト層と前記有機半導体層に接しないノンコンタクト層とを含むことを特徴とする。
 本発明の有機トランジスタの製造方法は、互いに分離して配置されたソース電極及びドレイン電極と、前記ソース電極及びドレイン電極の間に介在する有機半導体層と、前記ソース電極及びドレイン電極の間の前記有機半導体層に対向してゲート絶縁膜を介して配置されかつ前記有機半導体層のチャネル部を規定するゲート電極を有する有機トランジスタの製造方法であって、
 少なくとも2層の電極層を順に所定部位表面上に積層する工程と、
 前記電極用マスクを用いてウェットエッチングにて前記電極層を順に食刻して前記ソース電極及びドレイン電極を画定するとともに前記所定部位表面側の前記電極層にオーバーエッチングを施す工程と、
 前記ソース電極及びドレイン電極並びにそれらの間の前記所定部位表面上に前記有機半導体層を成膜して、前記電極層において、前記有機半導体層に接するコンタクト層と前記有機半導体層に接しない前記所定部位表面側のノンコンタクト層とを形成し、前記ソース電極及びドレイン電極の対向端部を前記コンタクト層で構成する工程と、を含むことを特徴とする。
有機トランジスタの概略断面図である。 有機トランジスタの概略断面図である。 本発明による実施形態の有機トランジスタの概略断面図である。 本発明による他の実施形態の有機トランジスタの概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 本発明による実施形態の有機トランジスタの製造方法を説明するための工程における基板の概略断面図である。 比較例有機トランジスタのドレイン電圧Vd-ドレイン電流Id出力特性を示すグラフ図である。 本発明による実施形1の有機トランジスタのドレイン電圧Vd-ドレイン電流Id出力特性を示すグラフ図である。
符号の説明
 10 基板
 11cont コンタクト層
 11non  ノンコンタクト層
 11s ソース電極
 11d ドレイン電極
 11g ゲート電極
 12 有機半導体層
 13 ゲート絶縁膜
発明を実施するための形態
 以下に本発明の実施形態の有機トランジスタ及びその製造方法を図面を参照しつつ説明する。
 図3はボトムコンタクト型の有機トランジスタの構造一例を示す。
 かかる有機トランジスタは、図に示すように、基板10上にゲート配線(図示せず)から引き出されたゲート電極11gが設けられ、ゲート電極11gを覆うようにゲート絶縁膜13が設けられている。基板10上からゲート絶縁膜13上において、ソース電極11s及びドレイン電極11dが対向するように離間して設けられている。対向するソース電極及びドレイン電極の間にチャネルを形成できるように有機半導体からなる有機半導体部12が積層されて設けられている。ゲート電極11gは、ソース電極11s及びドレイン電極11dの間の有機半導体部12に電界を印加せしめる。ゲート電極11gはソース電極11s及びドレイン電極11dから絶縁されている。
 なお、これらソース電極11s、ドレイン電極11d、ゲート電極11g等で構成される有機トランジスタを覆うパッシベーション膜(図示せず)が設けられてもよい。すなわち、形成された回路及び有機トランジスタを覆うように、窒化シリコン等の窒化物の無機系、ポリマー系等による膜封止がなされる。窒化酸化シリコン等の窒化酸化物、酸化シリコンや酸化アルミニウム等の酸化物、炭化シリコン等の炭化物からなる無機物封止膜による封止や、その他に、高分子及び無機膜の多層封止でもよい。
 ところで、ソース電極11s、ドレイン電極11dなどの電極に金等の金属を用いる場合、基板やゲート絶縁膜の材料と金属とを直接接触させると、それらの密着性の低さに起因する金属電極の膜剥がれによる有機トランジスタの特性劣化等の問題が生じてしまう可能性がある。そこで、金属電極の下地としてチタン、モリブデン等の接着層をノンコンタクト層11nonとして介在させ、ソース電極11sおよびドレイン電極11dをノンコンタクト層/コンタクト層11の2層構造としている。ソース電極11sは、有機半導体部12に接するコンタクト層11contと有機半導体部12に接しないノンコンタクト層11nonを含み、ドレイン電極11dは有機半導体部12に接するコンタクト層11contと有機半導体部12に接しないノンコンタクト層11nonを含む。互いに対向しているソース電極11sのコンタクト層11contとドレイン電極11dのコンタクト層11contの対向端部が最もゲート電極11gに近接し、その間の有機半導体層をチャネル部となる。
 本発明の実施形態の有機トランジスタにおいて、ノンコンタクト層とコンタクト層の2層を説明したが、これに限らず、ソース電極11sは、これらを含む互いに積層された2層以上の電極層から構成できる。コンタクト層を構成する材料は、ノンコンタクト層を構成する材料の仕事関数よりも大きい仕事関数を有する材料であることが好ましい。有機半導体層を構成する材料は、p型チャネルを形成する材料であることが好ましい。ソース電極は真空成膜法又はメッキ法によって形成されることが好ましい。
 図4はトップゲート型の有機トランジスタの構造の一例を示す。
 かかる有機トランジスタは、基板10上に離間して形成された対向するソース電極11s及びドレイン電極11dと、これらの間の基板10上にチャネルを形成できるように積層された有機半導体からなる有機半導体部12と、有機半導体部12を覆うとともにソース電極11s及びドレイン電極11dの間の有機半導体部12に電界を印加せしめるゲート電極11gと、を含み、ゲート電極11gを覆いソース電極11s及びドレイン電極11dから絶縁するゲート絶縁膜13を有している。
 ソース電極11sは、有機半導体部12に接するコンタクト層11contと有機半導体部12に接しないノンコンタクト層11nonを含む。ドレイン電極11dは、有機半導体部12に接するコンタクト層11contと有機半導体部12に接しないノンコンタクト層11nonを含む。
 本実施形態は、図3及び図4に示すように、ソース電極の接着層(ノンコンタクト層)を大きく覆うようにコンタクト層が形成されていることを特徴とするソース電極構造である。
 本実施形態のボトムコンタクト型の有機トランジスタの製造方法の一例を説明する。
 先ず、洗浄した基板10上に導電膜を成膜し、これをパターニングして、図5に示すようにゲート電極11gを形成する。
 次に、図6に示すように、ゲート電極11g上にこれを覆うようゲート絶縁膜13を形成する。例えば、ゲート電極11gの表面を陽極酸化法によって酸化して得られた酸化物薄膜すなわちゲート絶縁膜13を形成する。あるいは、ゲート電極11gを覆うゲート絶縁膜材料を基板全面に形成した後、所定のフォトマスクを用いて一括してパターニングすることによりゲート電極11g上にゲート絶縁膜13を形成することができる。
 次に、ゲート絶縁膜13(及び基板10)上に、それぞれノンコンタクト層及びコンタクト層の2層構造からなるソース電極11s及びドレイン電極11dをフォトリソグラフィ技術を用いて形成する。図7に示すように、ゲート絶縁膜13を覆うCr等のノンコンタクト層11non及びAu等のコンタクト層11contの材料を基板全面に順に真空成膜法又はメッキ法によって成膜する。第1層のノンコンタクト層の膜厚を比較的厚くすることにより、後の工程でサイドエッチングがしやすいようにできる。
 その後、図8に示すように、コンタクト層11cont上において、レジストからなる所定のパターンPH(電極用マスク)をソース電極及びドレイン電極となるべき位置にをパターニングして形成する。
 その後、図9に示すように、電極用マスクPHを用いてウェットエッチングにてコンタクト層11cont及びノンコンタクト層11nonを順に食刻して、ソース電極及びドレイン電極を画定するとともに、図10に示すように、基板10表面側のノンコンタクト層11nonにオーバーエッチングを施す。すなわち、コンタクト層11contを構成する材料は、ノンコンタクト層11nonを構成する材料の同一エッチチャントに対するエッチングレートよりも小さいエッチングレートを有する材料から選択する。ここで、エッチングレートとは、エッチングすべき膜をエッチングする単位当たりの速度のことである。またそれとは別に、ノンコンタクト層をエッチングする為のエッチャントに、コンタクト層をエッチングすることがない材料を用いてオーバーエッチングさせても良い。これによりコンタクト層11contとパターンPHがノンコンタクト層11nonから突出して庇構造となる。すなわち、コンタクト層11contとフォトマスクPHの二つの材料(薄膜、厚膜)を組み合わせたいわゆるバイモルフ構造が互いに異なった内部応力が存在するとき、薄膜表面内の方向への応力と曲げモーメントを受け変形するので、図11に示すように、コンタクト層11contがゲート絶縁膜13及び基板10へ曲がり、接触する。すなわち、有機トランジスタにおいてソース電極が2層構造であり、チャネル部において上部電極のコンタクト層が垂れ下がることで下部電極のノンコンタクト層を覆い、ゲート絶縁膜と接触する構造となる。
 次に、レジストを除去すると、図12に示すように、コンタクト層11contの内部応力および自重により、それぞれがノンコンタクト層11nonをすべて覆う形状を維持し、互いに分離したソース電極11s及びドレイン電極11dが形成される。
 このようにして、ウェットエッチングにより、電極用マスクを用いて一括してパターニングすることにより、ソース電極及びドレイン電極を画定される。
 その後、液状化された有機半導体層材料の液滴をソース電極及びドレイン電極間の凹部に供給して、これを乾燥して、図3に示すように、ソース電極及びドレイン電極の対向端部及びその近傍上に有機半導体層12を形成する。また、自己組織化方法により有機半導体層12を形成することもできる。
 以下に有機トランジスタの構成材料の例を示す。
 (ソース電極及びドレイン電極)
 ソース電極及びドレイン電極の形成方法としてスパッタリング法および無電解メッキ法を用いたがこれに限定されることは無く、いかなる成膜方法を用いてもよい。電極材料としてCr及びAu、Ni及びAuに限定されることはなく、特に、有機半導体材料のイオン化ポテンシャルとコンタクト層(ソース電極)の仕事関数とが、良好な電荷注入を実現する組み合わせであればよい。すなわち、Pt、Au、W、Ru、Ir、Al、Sc、Ti、V、Mn、Fe、Co、Ni、Zn、Ga、Y、Zr、Nb、Mo、Tc、Rh、Pd、Ag、Cd、Ln、Sn、Ta、Re、Os、Tl、Pb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属もしくはその化合物の組み合わせにおいて、前述の条件を満たせばよい。また、ITO、IZOのような金属酸化物類、ポリアニリン類、ポリチオフェン類、ポリピロール類等の共役性高分子化合物を含む有機導電材料を使用してもよい。
 (有機半導体)
 有機半導体部の有機半導体としては、テトラベンゾポルフィリンなどの半導体特性を示す有機材料であれば良く、さらには有機半導体材料のイオン化ポテンシャルと上部電極の仕事関数とが、良好な電荷注入を実現する組み合わせであればよい。例えば低分子系材料ではフタロシアニン系誘導体、ナフタロシアニン系誘導体、アゾ化合物系誘導体、ペリレン系誘導体、インジゴ系誘導体、キナクリドン系誘導体、アントラキノン類等の多環キノン系誘導体、シアニン系誘導体、フラーレン類誘導体、あるいはインドール、カルバゾール、オキサゾール、インオキサゾール、チアゾール、イミダゾール、ピラゾール、オキサアジアゾール、ピラゾリン、チアチアゾール、トリアゾール等の含窒素環式化合物誘導体、ヒドラジン誘導体、トリフェニルアミン誘導体、トリフェニルメタン誘導体、スチルベン類、アントラキノンジフェノキノン等のキノン化合物誘導体、ペンタセン、アントラセン、ビレン、フェナントレン、コロネン等の多環芳香族化合物誘導体等である。高分子材料では、上述した低分子化合物の構造がポリエチレン鎖、ポリシロキサン鎖、ポリエーテル鎖、ポリエステル鎖、ポリアミド鎖、ポリイミド鎖等の高分子の主鎖中に用いられた物あるいは側鎖としてペンダント状に結合したもの、もしくはポリパラフェニレン等の芳香族系共役性高分子、ポリアセチレン等の脂肪族系共役性高分子、ポリピノールやポリチオフェン率の複素環式共役性高分子、ポリアニリン類やポリフェニレンサルファイド等の含ヘテロ原子共役性高分子、ポリ(フェニレンビニレン)やポリ(アニーレンビニレン)やポリ(チェニレンビニレン)等の共役性高分子の構成単位が交互に結合した構造を有する複合型共役系高分子等の炭素系共役高分子が用いられる。また、ポリシラン類やジシラニレンアリレンポリマー類、(ジシラニレン)エチニレンポリマー類のようなジシラニレン炭素系共役性ポリマー構造等のオリゴシラン類と炭素系共役性構造が交互に連鎖した高分子類等が用いられる。他にもリン系、窒素系等の無機元素からなる高分子鎖でも良く、さらにフタロシアナートポリシロキサンのような高分子鎖の芳香族系配位子が配位した高分子類、ペリレンテトラカルボン酸のようなペリレン類を熱処理して縮環させた高分子類、ポリアクリロニトリル等のシアノ基を有するポリエチレン誘導体を熱処理して得られるラダー型高分子類、さらにペロブスカイト類に有機化合物がインターカレートした複合材料を用いてもよい。
 さらに、有機半導体部として、ソース電極及びドレイン電極間のゲート絶縁膜表面を自己組織化単分子膜で被覆することもできる。例えば、HMDS(:ヘキメチルジシラサン、(CH33SiNHSi(CH33)で処理し、それらの単分子膜を成膜することが好ましい。そのほかに、ソース電極及びドレイン電極間のゲート絶縁膜表面以外を、OTS(:オクタデシルトリクロロシランCH3(CH217SiCl3)膜処理によって、疎水膜を設けた構成でも有効である。
 (ゲート絶縁膜)
 ゲート絶縁膜材料としてSiO2など無機材料でも、有機材料のいずれの絶縁物もゲート絶縁膜として使用できる。例えばゲート絶縁膜無機材料では、LiOx、LiNx、NaOx、KOx、RbOx、CsOx、BeOx、MgOx、MgNx、CaOx、CaNx、SrOx、BaOx、ScOx、YOx、YNx、LaOx、LaNx、CeOx、PrOx、NdOx、SmOx、EuOx、GdOx、TbOx、DyOx、HoOx、ErOx、TmOx、YbOx、LuOx、TiOx、TiNx,ZrOx、ZrNx、HfOx、HfNx、ThOx、VOx、VNx、NbOx、TaOx、TaNx、CrOx、CrNx、MoOx、MoNx、WOx、WNx、MnOx、ReOx、FeOx、FeNx、RuOx、OsOx、CoOx、RhOx、IrOx、NiOx、PdOx、PtOx、CuOx、CuNx、AgOx、AuOx、ZnOx、CdOx、HgOx、BOx、BNx、AlOx、AlNx、GaOx、GaNx、InOx、TiOx、TiNx、SiNx、GeOx、SnOx、PbOx、POx、PNx、AsOx、SbOx、SeOx、TeOx等の金属酸化物(ただし、上記物質表記のNx、Oxにおけるxは原子比を示す)でも、LiAlO2、Li2SiO3、Li2TiO3、Na2Al2234、NaFeO2、Na4SiO4、K2SiO3、K2TiO3、K2WO4、Rb2CrO4、Cs2CrO4、MgAl24、MgFe24、MgTiO3、CaTiO3、CaWO4、CaZrO3、SrFe1219、SrTiO3、SrZrO3、BaAl24、BaFe1219、BaTiO3、Y31512、Y3Fe512、LaFeO3、La3Fe512、La2Ti27、CeSnO4、CeTiO4、Sm3Fe512、EuFeO3、Eu3Fe512、GdFeO3、Gd3Fe512、DyFeO3、Dy3Fe512、HoFeO3、Ho3Fe512、ErFeO3、Er3Fe512、Tm3Fe512、LuFeO3、Lu3Fe512、NiTiO3、Al2TiO3、FeTiO3、BaZrO3、LiZrO3、MgZrO3、HfTiO4、NH4VO3、AgVO3、LiVo3、BaNb26、NaNbO3、SrNb26、KTaO3、NaTaO3、SrTa26、CuCr24、Ag2CrO4、BaCrO4、K2MoO4、Na2MoO4、NiMoO4、BaWO4、Na2WO4、SrWO4、MnCr24、MnFe24、MnTiO3、MnWO4、CoFe24、ZnFe24、FeWO4、CoMoO4、CuTiO3、CuWO4、Ag2MoO4、Ag2WO4、ZnAl24、ZnMoO4、ZnWO4、CdSnO3、CdTiO3、CdMoO4、CdWO4、NaAlO2、MgAl24、SrAl24、Gd3Ga512、InFeO3、MgIn24、Al2TiO5、FeTiO3、MgTiO3、Na2SiO3、CaSiO3、ZrSiO4、K2GeO3、Li2GeO3、Na2GeO3、Bi2Sn39、MgSnO3、SrSnO3、PbSiO3、PbMoO4、PbTiO3、SnO2-Sb23、CuSeO4、Na2SeO3、ZnSeO3、K2TeO3、K2TeO4、Na2TeO3、Na2TeO4等の金属複合酸化物でも、FeS、Al23、MgS、ZnS等の硫化物、LiF、MgF2、SmF3等のフッ化物、HgCl、FeCl2、CrCl3等の塩化物、AgBr、CuBr、MnBr2等の臭化物、PbI2、CuI、FeI2等のヨウ化物、またはSiAlON等の金属酸化窒化物でも有効である。また、ゲート絶縁膜有機材料では、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、エポキシ樹脂フェノール樹脂、ポリビニルアルコール等ポリマー系材料でも有効である。また、ゲート絶縁膜表面をOTS、HMDS等で撥水処理を行ってもよい。
 また、ゲート絶縁膜としてゲート電極材料の酸化物が使用できる。例えば、ゲート電極をTaとし、その陽極酸化処理によりTa25をゲート絶縁膜13とすることができる。
 ゲート電極材料としては陽極酸化可能な金属であれば何でもよく、Al、Mg、Ti、Nb、Zr等の単体もしくはそれらの合金を陽極酸化してゲート絶縁膜としてもよい。その他、陽極酸化を用いずとも無機材料もゲート絶縁膜13としてとして使用できる。
 (ゲート電極)
 ゲート電極材料としてCrを用いたが、その材料は特に限定されることはなく、十分な導電性があればよい。すなわち、Pt、Au、W、Ru、Ir、Al、Sc、Ti、V、Mn、Fe、Co、Ni、Zn、Ga、Y、Zr、Nb、Mo、Tc、Rh、Pd、Ag、Cd、Ln、Sn、Ta、Re、Os、Tl、Pb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属単体もしくは積層もしくはその化合物でもよい。また、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)のような金属酸化物類、ポリアニリン類、ポリチオフェン類、ポリピロール類等の共役性高分子化合物を含む有機導電材料でもよい。基板にフィルム材料を用いることによりフレキシブルなデバイス、例えばプレキシブルディスプレイ等への応用が期待される。
 (基板)
 基板10はガラスの他、PES、PC等のプラスティック基板や、ガラスとプラスティックの貼り合わせ基板でもよく、また基板表面にアルカリバリア膜や、ガスバリア膜がコートされてもよい。プラスティック基板としては、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリフェノキシエーテル、ポリアリレート、フッ素樹脂、ポリプロピレン等のフィルムが適用できる。
 有機トランジスタでアクティブ駆動する有機ELパネルを作製し、その特性を評価した。
 図3及び図4に示すような比較例有機トランジスタと実施例有機トランジスタとを作製した。
 --実施例1:スパッタリング法を用いたプロセス(ボトムコンタクト構造)--
 Crで作製したゲート電極上にゲート絶縁膜としてSiO2を成膜した後に、そのゲート絶縁膜上に第1層のノンコンタクト層としてCrを、第2層のコンタクト層としてAu膜を、スパッタリング法を用いて成膜した。Cr及びAuのそれぞれの膜厚は50nm及び100nmとした。次に一般的なフォトリソグラフィ技術を用いてレジストをパターニングし、レジスト非存在部を通してウェットエッチングにてAu膜、Cr膜の順にエッチングを行った。この時、Au膜はレジストマスクと同じパターンで形成されるようにし、次のCr膜はレジスト非存在部及びコンタクト層開口を通してオーバーエッチングさせた。これにより、チャネル部のAu膜が下部膜から突出して垂れ下がり、ゲート絶縁膜と接触して図3に示すような形状のソース電極が形成された。最後に、その上に有機半導体層としてテトラベンゾポルフィリンを成膜することで有機トランジスタとした。
 --実施例2:無電解メッキを用いたプロセス(ボトムコンタクト構造)--
 Crで作製したゲート電極上にゲート絶縁膜としてSiO2を成膜した後に、そのゲート絶縁膜上に一般的な無電解メッキ技術を用いて第1層のノンコンタクト層としてNi膜を、第2層目のコンタクト層としてAuメッキ膜を一面にベタで形成した。Au膜はNiからの置換還元メッキにて形成した。Ni及びAuのそれぞれの膜厚は100nm及び100nmとなるようにメッキ条件を設定した。次に一般的なフォトリソグラフィ技術を用いてレジストをパターニングし、レジスト非存在部を通してウェットエッチングにてAu膜、Ni膜の順にエッチングを行った。この時、Au膜はレジストマスクと同じパターンで形成されるようにし、次のNi膜はレジスト非存在部及びコンタクト層開口を通してオーバーエッチングさせた。これによりチャネル部のAu膜が下部膜から突出して垂れ下がり、ゲート絶縁膜と接触して図3に示すような形状のソース電極が形成された。最後に、その上に有機半導体層としてテトラベンゾポルフィリンを成膜することで有機トランジスタとした。
 --実施例3:スパッタリング法を用いたプロセス(トップゲート構造)--
 ガラス基板上に第1層のノンコンタクト層としてCrを、第2層のコンタクト層としてAu膜を、スパッタリング法を用いて成膜した。Cr及びAuのそれぞれの膜厚は50nm及び100nmとした。次に一般的なフォトリソグラフィ技術を用いてレジストをパターニングし、レジスト非存在部を通してウェットエッチングにてAu膜、Cr膜の順にエッチングを行った。この時、Au膜はレジストマスクと同じパターンで形成されるようにし、次のCr膜はレジスト非存在部及びコンタクト層開口を通してオーバーエッチングさせた。これにより、チャネル部のAu膜が下部膜から突出して垂れ下がり、ガラス基板と接触して図4に示すような形状のソース電極が形成された。次に有機半導体層としてテトラベンゾポルフィリンを成膜した後に、ゲート絶縁膜としてSiO2を、有機半導体を覆うように成膜した。最後にCrのゲート電極をゲート絶縁膜上に設け、有機トランジスタとした。
 --実施例4:無電解メッキを用いたプロセス(トップゲート構造)--
 ガラス基板上に一般的な無電解メッキ技術を用いて第1層のノンコンタクト層としてNi膜を、第2層目のコンタクト層としてAu膜のメッキ膜を一面にベタで形成した。Au膜はNiからの置換還元メッキにて形成した。Ni及びAuのそれぞれの膜厚は100nm及び100nmとなるようにメッキ条件を設定した。次に一般的なフォトリソグラフィ技術を用いてレジストをパターニングし、レジスト非存在部を通してウェットエッチングにてAu膜、Ni膜の順にエッチングを行った。この時、Au膜はレジストマスクと同じパターンで形成されるようにし、次のNi膜はレジスト非存在部及びコンタクト層開口を通してオーバーエッチングさせた。これにより、チャネル部のAu膜が下部膜から突出して垂れ下がり、ガラス基板と接触して図4に示すような形状のソース電極が形成された。次に有機半導体層としてテトラベンゾポルフィリンを成膜した後に、ゲート絶縁膜としてSiO2を、有機半導体を覆うように成膜した。最後にCrのゲート電極をゲート絶縁膜上に設け、有機トランジスタとした。なお、各電極の厚さは本実施例に限定するものではなく、電極として作用するのであればいかなる厚さでもよいが、膜として存在するために10nm以上の膜厚が好ましい。
 --評価--
 このような形状を示す電極上に有機半導体部を形成すると、有機半導体とはAu電極のみが接触することになり、電荷の移動がスムーズに行われる。これは有機半導体のイオン化ポテンシャルと電極の仕事関数との関係に起因しており、一般にp型有機半導体のイオン化ポテンシャルは約5eVと高い値を示す。従って、第2層のコンタクト層の仕事関数は第1層のノンコンタクト層の仕事関数よりも高いことが望まれる。以下に有機トランジスタの出力特性を示し、本構造のソース電極の効果を説明する。実施例に記した電極構成にて有機トランジスタを作製し、有機トランジスタ特性を評価した。
 図13は比較例有機トランジスタの出力特性を示し、図14は実施例1のソース電極構造の出力特性を示す。比較例有機トランジスタは、Crノンコンタクト層をテトラベンゾポルフィリン有機半導体層に露出、接触させてAuコンタクト層を積層した以外、実施例1のものと同一である。ドレイン電圧Vdが低い時、図13の比較例のドレイン電流Idは電極と有機半導体との接触抵抗成分を持っており、電界をかけてもドレイン電流がリニアに上昇しないが、図14の実施例1は接触抵抗成分が無く、ドレイン電圧に対してリニアにドレイン電流が上昇していることが分かる。このことから、本発明のソース電極構成が有効であることが分かる。なお、いずれの実施例においても、有機トランジスタの出力特性を評価するとソース電極と有機半導体との接触抵抗が少ない良好な特性を確認することができた。
 ウェットエッチングにより、チャネル部の対向電極間の幅を維持しつつ、配線抵抗を低下でき、ソース及びドレイン電極の高精度な位置合せを必要とせずに有機トランジスタを作製することができた。
 以上のように、実施例の構成はソース電極の第1層のノンコンタクト層をオーバーエッチングし、第2層のコンタクト層をゲート絶縁膜と接触させ、有機半導体への電荷注入は第2層のコンタクト層が主体となって行うことを特徴としたものである。本実施形態によれば、ソース及びドレイン電極の位置合せ精度を緩和する。よって、本実施形態の有機トランジスタはアクティブマトリクス駆動素子に好適である。この発明はアクティブマトリクス駆動ディスプレイ(LCD、有機EL、電子ペーパー等)、センサー、RF-IDタグへ利用することができる。

Claims (12)

  1.  互いに分離して配置されたソース電極及びドレイン電極と、前記ソース電極及びドレイン電極の間に介在する有機半導体層と、前記ソース電極及びドレイン電極の間の前記有機半導体層に対向してゲート絶縁膜を介して配置されかつ前記有機半導体層のチャネル部を規定するゲート電極を有する有機トランジスタであって、
     前記ソース電極は互いに積層された少なくとも2層の電極層からなること、及び、
     前記電極層は前記有機半導体層に接するコンタクト層と前記有機半導体層に接しないノンコンタクト層とを含むことを特徴とする有機トランジスタ。
  2.  前記コンタクト層を構成する材料は、前記ノンコンタクト層を構成する材料の仕事関数よりも大きい仕事関数を有する材料であることを特徴とする請求項1記載の有機トランジスタ。
  3.  前記有機半導体層を構成する材料は、p型チャネルを形成する材料であることを特徴とする請求項1又は2記載の有機トランジスタ。
  4.  前記ソース電極は真空成膜法によって形成されたことを特徴とする請求項1~3のいずれか1に記載の有機トランジスタ。
  5.  前記ソース電極はメッキ法によって形成されたことを特徴とする請求項1~3のいずれか1に記載の有機トランジスタ。
  6.  互いに分離して配置されたソース電極及びドレイン電極と、前記ソース電極及びドレイン電極の間に介在する有機半導体層と、前記ソース電極及びドレイン電極の間の前記有機半導体層に対向してゲート絶縁膜を介して配置されかつ前記有機半導体層のチャネル部を規定するゲート電極を有する有機トランジスタの製造方法であって、
     少なくとも2層の電極層を順に所定部位表面上に積層する工程と、
     前記電極用マスクを用いてウェットエッチングにて前記電極層を順に食刻して前記ソース電極及びドレイン電極を画定するとともに前記所定部位表面側の前記電極層にオーバーエッチングを施す工程と、
     前記ソース電極及びドレイン電極並びにそれらの間の前記所定部位表面上に前記有機半導体層を成膜して、前記電極層において、前記有機半導体層に接するコンタクト層と前記有機半導体層に接しない前記所定部位表面側のノンコンタクト層とを形成し、前記ソース電極及びドレイン電極の対向端部を前記コンタクト層で構成する工程と、を含むことを特徴とする有機トランジスタの製造方法。
  7.  前記コンタクト層を構成する材料は、前記ノンコンタクト層を構成する材料のエッチチャントに対するエッチングレートよりも小さいエッチングレートを有する材料であることを特徴とする請求項6記載の有機トランジスタの製造方法。
  8.  前記コンタクト層を構成する材料は、前記ノンコンタクト層を構成する材料のエッチャントによってエッチングされることがない材料であることを特徴とする請求項6記載の有機トランジスタ製造方法。
  9.  前記コンタクト層を構成する材料は、前記ノンコンタクト層を構成する材料の仕事関数よりも大きい仕事関数を有する材料であることを特徴とする請求項6~8記載の有機トランジスタの製造方法。
  10.  前記有機半導体層を構成する材料は、p型チャネルを形成する材料であることを特徴とする請求項6~9のいずれか1に記載の有機トランジスタの製造方法。
  11.  前記ソース電極は真空成膜法によって形成されたことを特徴とする請求項6~9のいずれか1に記載の有機トランジスタの製造方法。
  12.  前記ソース電極はメッキ法によって形成されたことを特徴とする請求項6~9のいずれか1に記載の有機トランジスタの製造方法。
PCT/JP2008/060456 2008-06-06 2008-06-06 有機トランジスタ及びその製造方法 WO2009147746A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060456 WO2009147746A1 (ja) 2008-06-06 2008-06-06 有機トランジスタ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060456 WO2009147746A1 (ja) 2008-06-06 2008-06-06 有機トランジスタ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2009147746A1 true WO2009147746A1 (ja) 2009-12-10

Family

ID=41397838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060456 WO2009147746A1 (ja) 2008-06-06 2008-06-06 有機トランジスタ及びその製造方法

Country Status (1)

Country Link
WO (1) WO2009147746A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534726A (ja) * 2010-06-24 2013-09-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機電子装置における電極を改質する方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196092A (ja) * 1998-12-25 2000-07-14 Fujitsu Ltd 積層金属配線及び薄膜トランジスタ基板、並びにそれらの製造方法
JP2005150640A (ja) * 2003-11-19 2005-06-09 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ回路、電子デバイスおよび電子機器
JP2006013433A (ja) * 2004-05-24 2006-01-12 Toppan Printing Co Ltd 薄膜トランジスタ
JP2006147613A (ja) * 2004-11-16 2006-06-08 Sony Corp 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196092A (ja) * 1998-12-25 2000-07-14 Fujitsu Ltd 積層金属配線及び薄膜トランジスタ基板、並びにそれらの製造方法
JP2005150640A (ja) * 2003-11-19 2005-06-09 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ回路、電子デバイスおよび電子機器
JP2006013433A (ja) * 2004-05-24 2006-01-12 Toppan Printing Co Ltd 薄膜トランジスタ
JP2006147613A (ja) * 2004-11-16 2006-06-08 Sony Corp 半導体装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534726A (ja) * 2010-06-24 2013-09-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機電子装置における電極を改質する方法

Similar Documents

Publication Publication Date Title
JPWO2006098416A1 (ja) 有機薄膜トランジスタ及びその製造方法
JP5039126B2 (ja) 有機半導体素子及びその製造方法
JP4511595B2 (ja) 有機el表示装置、有機トランジスタ、これらの製造方法
JP4531850B2 (ja) 有機トランジスタ及びその製造方法
JP5141325B2 (ja) 有機elディスプレイパネルの製造方法
US10689808B2 (en) Process for using and producing paper based on natural cellulose fibers, synthetic fibers or mixed fibers as physical support and storing medium for electrical charges in self-sustaining field-effect transistors with memory using active semiconductor oxides
US20070194312A1 (en) Subpixel
EP2003935B1 (en) Organic electroluminescent display panel and method for fabricating the same
TW201312760A (zh) 薄膜電晶體及電子單元
JP4408903B2 (ja) トランジスタ、トランジスタ回路、電気光学装置および電子機器
JP5486033B2 (ja) 有機薄膜トランジスタ装置及びその製造方法
JP5477750B2 (ja) 有機電界効果型トランジスタ
JP4567092B2 (ja) 有機el表示装置及びその製造方法
JP4529571B2 (ja) 電界効果トランジスタ
WO2006106826A1 (ja) 有機el表示装置、有機トランジスタ、これらの製造方法
JP2007273874A (ja) 有機半導体装置及びその製造方法
WO2009147746A1 (ja) 有機トランジスタ及びその製造方法
WO2010146645A1 (ja) 半導体装置および半導体装置の製造方法
WO2006101017A1 (ja) 有機薄膜トランジスタ及びその製造方法
JP2005109337A (ja) 電界効果トランジスタ
JP2008227419A (ja) 半導体装置、半導体回路、電気光学装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08765269

Country of ref document: EP

Kind code of ref document: A1