WO2009146984A1 - Verfahren zur abtrennung von 1-buten aus c4-haltigen kohlenwasserstoffströmen durch hydroformylierung - Google Patents
Verfahren zur abtrennung von 1-buten aus c4-haltigen kohlenwasserstoffströmen durch hydroformylierung Download PDFInfo
- Publication number
- WO2009146984A1 WO2009146984A1 PCT/EP2009/055121 EP2009055121W WO2009146984A1 WO 2009146984 A1 WO2009146984 A1 WO 2009146984A1 EP 2009055121 W EP2009055121 W EP 2009055121W WO 2009146984 A1 WO2009146984 A1 WO 2009146984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- butene
- hydroformylation
- isobutene
- unsubstituted
- substituted
- Prior art date
Links
- 0 c1ccc(C2(c3ccccc3)O*(Oc(ccc3c4cccc3)c4-c(c3ccccc3cc3)c3O*(OC3(c4ccccc4)c4ccccc4)OC3(c3ccccc3)c3ccccc3)OC2(c2ccccc2)c2ccccc2)cc1 Chemical compound c1ccc(C2(c3ccccc3)O*(Oc(ccc3c4cccc3)c4-c(c3ccccc3cc3)c3O*(OC3(c4ccccc4)c4ccccc4)OC3(c3ccccc3)c3ccccc3)OC2(c2ccccc2)c2ccccc2)cc1 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/148—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
- C07C7/173—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with the aid of organo-metallic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/148—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/08—Alkenes with four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
Definitions
- the present invention relates to the selective hydroformylation of 1-butene to valeraldehyde from C 4 -containing hydrocarbon streams containing both 1-butene and isobutene.
- isobutene In technical streams, isobutene is often present together with saturated and unsaturated C 4 hydrocarbons. From these mixtures isobutene can not be separated economically by distillation because of the low boiling point difference or the very low separation factor between isobutene and 1-butene by distillation. Therefore, isobutene is generally recovered from technical hydrocarbon mixtures by reacting isobutene to give a derivative which is easily separated from the remaining hydrocarbon mixture and to cleave the isolated derivative back to isobutene and dehalating agent.
- Isobutene is the starting material for the production of a variety of products, eg. B. for the preparation of butyl rubber, polyisobutylene, isobutene oligomers, branched C 5 aldehydes, C 5 carboxylic acids, C 5 alcohols and C 5 olefins. Furthermore, it is used as alkylating agent, in particular for the synthesis of tert-butyl aromatics, and as an intermediate for the production of peroxides. In addition, isobutene can be used as a precursor for the preparation of methacrylic acid and its esters.
- isobutene is separated from C 4 cuts, for example the C 4 fraction of a steam cracker, as follows:
- isobutene may be separated from a C 4 hydrocarbon stream, which typically contains less than 1 mass% of butadiene (C 4 stream from fluid catalytic cracking processes, raffinate I or selectively hydrogenated crack C 4 ), in the following manner:
- the starting mixture is hydrogenated and isomerized, ie, butadiene is (still) present selectively hydrogenated to a residual content of less than 5 ppm by mass, and isomerized 1-butene to form 2-butenes at the same time.
- the equilibrium position between 1-butene and the isomeric 2-butenes is z. B. at 80 0 C at a ratio of 1: 17.
- 1-butene with an n / iso selectivity of at least 97% at the terminal carbon atom to n-valeraldehyde hydroformylated is intended to operate with significantly lower ligand excesses than EP 0 016 286.
- This object has been achieved by a process for the separation of 1-butene from C 4 -containing hydrocarbon mixtures containing isobutene and 1-butene by hydroformylation, where the catalyst system used consists of one of the transition metals of groups 8 to 10, preferably rhodium, and a bisphosphite ligand the following formula I
- R 1 R 2 , R 3 , R 4 are the same or different, substituted or unsubstituted, linked, unlinked or fused aryl or heteroaryl radicals, and R 9 is hydrogen or substituted or unsubstituted alkyl or aryl radical containing one or more heteroatom (s) , wherein the bisphosphite ligand of the above formula I is used in an excess of a molar ratio of 100: 1 to 1: 1 to the transition metal, and that at a 1-butene conversion of over 95% less than 5% of the present isobutene are reacted ,
- the hydroformylation mixture is preferably separated into a C 5 aldehyde fraction, pure isobutene, a catalyst fraction and a fraction with the remaining hydrocarbons, the C 5 aldehyde fraction having an n / iso selectivity of more than 97% consisting of valeraldehyde.
- the inventive method has the following advantages: With only one chemical reaction and a workup by distillation two wished intermediates, namely isobutene and a C 5 aldehyde mixture are obtained with a high proportion of valeraldehyde from a C 4 hydrocarbon mixture with isobutene and 1-butene. In addition, a possibly incurred
- Hydrocarbon mixture with the isomeric 2-butenes for further reactions for example for the preparation of oligomers or C 5 -aldehydes, are used.
- Feedstocks for the process according to the invention are, for example, light petroleum fractions from refineries, C 4 fractions from cracking plants (for example steam crackers, hydrocrackers, crackers), mixtures of Fischer-Tropsch syntheses, mixtures obtained by metathesis of olefins, mixtures obtained by dehydrogenation of saturated hydrocarbons and mixtures formed from methanol (or other oxygenates) to olefin (MTO) processes.
- C 4 fractions from cracking plants for example steam crackers, hydrocrackers, crackers
- Fischer-Tropsch syntheses mixtures obtained by metathesis of olefins
- mixtures obtained by dehydrogenation of saturated hydrocarbons mixtures formed from methanol (or other oxygenates) to olefin (MTO) processes.
- polyunsaturated hydrocarbons such as 1,3-butadiene
- This can be done by known methods, for example by extraction, extractive distillation or complex formation (see H. J. Arpe, Industrial Organic Chemistry, Wiley-VCH, 6th edition, 2007, pages 118-119).
- 1,3-butadiene can be selectively hydrogenated to linear butenes, such as e.g. As described in EP 0 523 482.
- 1, 3-butadiene for example dimerization to cyclooctadiene, trimehyde to cyclododecatriene, polymerization or telomehsation reactions, the 1, 3-butadiene can be at least partially removed.
- a hydrocarbon mixture (eg raffinate I or hydrogenated crack C 4 (HCC 4 )) remains behind in all cases, which mainly contains the saturated hydrocarbons, n-butane and isobutane, and the olefins, isobutene, 1-butene and 2-butenes.
- HCC 4 typical of a C 4 mixture obtained from the crack C 4 of a
- HCC 4 / SHP Composition HCC 4 in which residues of 1, 3-butadiene in one
- Raff. I / SHP Composition Raff. I, in which residues of 1,3-butadiene in an SHP were further reduced.
- CC 4 typical composition of a Crack-C 4 obtained from a Katcracker.
- CC 4 / SHP Composition CC 4 , in which residues of 1, 3-butadiene were further reduced in a SHP.
- the hydroformylation of the feed hydrocarbon mixture containing isobutene and 1-butene is carried out under conditions in which the 1-butene present in the feed mixture is converted to more than 95% and the isobutene present in the feed mixture to less than 5%.
- the 1-butene present in the feed mixture is converted to more than 99% and the isobutene present in the feed mixture is converted to less than 5%.
- 1-butene is hydroformylated with an n / iso selectivity of greater than 97%.
- X is a divalent substituted or unsubstituted bisalkylene or bisarylene radical which may contain one or more heteroatom (s),
- Y is a divalent substituted or unsubstituted bisarylene or bisalkylene radical which may contain one or more heteroatom (s),
- Z oxygen or NR 9 ,
- R 1 , R 2 , R 3 , R 4 are identical or different, substituted or unsubstituted, linked, unlinked, fused or uncondensed aryl or
- Heteroaryl radicals, and R 9 hydrogen or substituted or unsubstituted alkyl or aryl radical, which may contain one or more heteroatom (s). Substituted, the radicals R 1 , R 2 , R 3 , R 4 , R 9 , X or Y z. B.
- radicals X and Y are tert-butyl and methoxy groups.
- the radicals R 1 , R 2 , R 3 , R 4 are preferably unsubstituted phenyl radicals. Such radicals may, for. For example, such as those in the formulas 1-1, I-2 or I-3 are present.
- Q z. B. may be the same or different CH 2 , CR 9 R 10 , CHR 9 , O, NH or NR 9 , where R 9 and R 10 may be the same or different and may have the meaning given above for R 9 .
- the radical X can also be a radical Xa,
- the radicals R 5 to R 8 are preferably hydrogen, alkoxy groups, in particular methoxy groups or tert-butyl groups.
- the radicals R 5 and R 6 and R 7 and R 8 are each equal in pairs.
- the radicals R 5 and R 6 are particularly preferably methoxy groups and / or the radicals R 7 and R 8 are tert-butyl groups.
- the X is preferably an ethylene radical substituted by radicals R 1 , R 2 , R 3 and R 4 , where the radicals R 1 , R 2 , R 3 and R 4 are identical or different, substituted or unsubstituted, linked, unlinked or fused Aryl or heteroaryl may be.
- Possible substituents for the radicals R 1 to R 4 are the substituents mentioned for the radicals R 1 to R 4.
- Especially preferred Bisphosphites are those which are symmetrical, ie those in which X is an ethylene radical substituted by the radicals R 1 , R 2 , R 3 and R 4 , where the radicals R 1 and R 1 , R 2 and R 2 ' , R 3 and R 3 ' and R 4 and R 4' are the same.
- the divalent radical Y in the bisphosphite according to the invention may preferably be a substituted or unsubstituted bisphenyl radical or bisnaphthyl radical. Possible substituents may be the abovementioned substituents.
- the radical Y is selected from the bisphenoxy radicals of the formulas IIa to Md
- Particularly preferred bisphosphites according to the invention are the bisphosphites of the following formulas Ia to Ic, where Ic can be prepared and used as racemate or in atropisomerically enriched or atropisomerically pure form.
- the bisphosphite to rhodium molar ratio ranges from less than 100: 1 to 1: 1, more preferably from 90: 1 to 2: 1, most preferably from 10: 1 to 2: 1.
- the rhodium can be used in the form of salts or complexes, for.
- the active catalyst species for homogeneous catalysis.
- a carbonyl hydride phosphite complex is believed to be formed as an active catalyst species.
- the bisphosphites and optionally other ligands may be added to the reaction mixture in free form together with the catalyst metal (as a salt or complex) to generate the active catalyst species in situ.
- phosphite metal complex which contains the abovementioned bisphosphite ligands and the rhodium metal as precursor for the actual catalytically active complex.
- phosphite metal complexes are prepared by reacting the rhodium in the form of a chemical compound or in the oxidation state 0 with the bisphosphite ligand according to the invention. Fresh bisphosphite can be added to the reaction at any time, e.g. B. to keep the concentration of free ligand constant.
- the concentration of rhodium in the hydroformylation mixture is preferably from 1 ppm by mass to 1000 ppm by mass, and preferably from 5 ppm by mass to 300 ppm by mass, based on the total weight of the reaction mixture.
- the C 5 aldehyde fraction contains a proportion of greater than 90% by mass, in particular greater than 93% by mass of n-valeraldehyde, particularly preferably greater than 95% by mass and very particularly preferably greater than 98% by mass of n-valeraldehyde. valeraldehyde.
- the hydroformylation is carried out at temperatures of 40 to 120 ° C., preferably at 40 to 110 ° C., more preferably at 60 to 95 ° C., very particularly preferably at 70 to 95 ° C.
- the pressure is 0.1 to 30 MPa, in particular 1 MPa to 6.4 MPa.
- the molar ratio between hydrogen and carbon monoxide (H 2 / CO) in the synthesis gas is preferably 10/1 to 1/10, and more preferably 1/1 to 2/1.
- the catalyst system is preferably dissolved homogeneously in the liquid hydroformylation mixture consisting of educts (olefins and dissolved synthesis gas) and products (aldehydes, alcohols, by-products formed in the process, in particular high boilers).
- educts olefins and dissolved synthesis gas
- products aldehydes, alcohols, by-products formed in the process, in particular high boilers.
- Solvents and / or stabilizer compounds such as hindered secondary amines or promoters can be used.
- the process can be carried out batchwise or, preferably, continuously.
- a continuous process to achieve nearly complete 1-butene conversion, it is convenient to carry out the reaction in several reactors.
- a plurality of stirred reactors and / or bubble column reactors can be connected in series.
- the liquid and / or gaseous discharge of a reactor can be conducted in the next.
- the reaction can also be carried out in a tube coil with gas intermediate feed.
- the reaction can be carried out in a combination of the mentioned reactor types.
- the hydroformylation can be operated at least partially at temperatures above 100 0 C. At these temperatures, partial isomerization of 1-butene to the 2-butenes occurs during hydroformylation.
- the first reactor or reactors could be operated at temperatures above 100 ° C. and the subsequent reactor (s) at temperatures below 100 ° C., for example 90 ° C.
- the hydroformylation product can be separated by distillation into at least three fractions, namely the isobutene fraction, product fraction (mainly C 5 aldehydes) and a high boiler fraction with the dissolved catalyst system and one or two further fraction (s) containing other unreacted materials from the reactant /contain.
- the reaction mixture of the last reactor after separation of the excess synthesis gas which can be returned to the reactor or after removal of substances present therein completely or partially discharged, by a first distillation in a C 4 hydrocarbon mixture and a mixture of C 5 products, High boilers and catalyst system is separated.
- the two mixtures are separated in further distillation steps.
- Another possibility is to separate one fraction after the other from the reaction mixture, starting with the lowest boiling substance or mixture of substances, until only the high boilers with the dissolved catalyst system remain.
- part of the catalyst can be separated by nanofiltration before the workup by distillation, as described, for example, in DE 10 2005 046250.
- the isobutene separated by the process according to the invention has a purity of more than 99%. Its content of linear butenes is accordingly less than 1%. It can be used for the purposes mentioned in the introduction.
- the C 5 aldehyde fraction contains small amounts of alcohols which are formed by hydrogenation of the aldehydes. The content of valeraldehyde in this fraction is more than 95% by mass. Pure valeraldehyde can be separated from this mixture.
- Valeraldehyde is inter alia an intermediate for n-pentanol. N-pentanoic acid, n-pentylamine or n-pentyl chloride.
- a decanol mixture with more than 90% by mass of 2-propylheptanol is obtained, which is a sought-after intermediate for the preparation of plasticizers, detergents and lubricants.
- aldol condensation of the C 5 aldehyde fraction hydrogenation of the olefinic double bond of the aldol condensate and subsequent oxidation of the aldehyde group a Decanklagemisch can be obtained with a high proportion of 2-propylheptanoic, which can be used for example for the preparation of lubricants or detergents.
- the fraction with the 2-butenes can be utilized differently.
- One possibility is the preparation of oligomers, of which in particular the dimers and trimers are valuable intermediates for the preparation of plasticizers and alcohols.
- the oligomerization can be carried out using acidic or nickel-containing catalysts. When low branched products are desired, oligomerization with a nickel containing heterogeneous catalyst system is advantageous.
- a process of this kind is, for example, the OCTOL process of Evonik Oxeno GmbH.
- Another use of the 2-butenes is to hydroformylate them to C 5 -aldehydes.
- the hydroformylation can be carried out with different catalysts, wherein usually a mixture of 2-methylbutanal and n-valeraldehyde is formed. If a high proportion of valeraldehyde in the C 5 aldehyde mixture is desired, the use of other catalysts is appropriate.
- a catalyst consisting of rhodium and a diphosphine ligand having a xanthene scaffold used.
- the ratio of valeraldehyde to 2-methylbutanal is greater than 85:15.
- High selectivities of valeraldehyde (greater than 95%) can be obtained using a catalyst consisting of rhodium and sterically demanding aromatic bisphosphites, as described for example in EP 0 213 639.
- the C 5 aldehyde mixture thus obtained can be converted into a decanol mixture, for example, by aldol condensation and subsequent hydrogenation of the aldol condensate.
- a decanol mixture for example, by aldol condensation and subsequent hydrogenation of the aldol condensate.
- the proportion of n-valeraldehyde is below 95%, it is advisable to separate off part of the 2-methylbutanal by distillation in order to obtain a high-quality decanol mixture having a content of 2-propylheptanol of more than 90%.
- the separated 2-methylbutanal can be used for various purposes, for example for the preparation of isoprene.
- the hydroformylation test was carried out in a Parr 100 ml autoclave with pressure maintenance, gas flow measurement and paddle stirrer.
- the autoclave was filled under argon atmosphere with all the compounds mentioned below, but not yet with the olefin mixture to be hydroformylated.
- synthesis gas CO / H 2 1: 1
- the reaction mixture was stirred (1000 U / min) and under synthesis gas pressure the respective temperature is heated and then set the exact target pressure of 2 MPa.
- the olefin mixture to be hydroformylated was added.
- the synthesis gas pressure was kept constant over the entire reaction time via a pressure regulator.
- the reaction time of the Hydroformyltechniks was 720 min, with meanwhile samples were taken from the autoclave for GC analysis.
- the reaction mixture was then cooled to room temperature, the autoclave was decompressed and purged with argon.
- Tests were carried out at 90 ° C., 100 ° C., 110 ° C. and 120 ° C.
- the ratio of ligand la to rhodium was in all cases 5: 1, the rhodium concentration 40 ppm and the synthesis gas pressure 2 MPa.
- the analysis was carried out by gas chromatography.
- the raffinate I had in each case the starting composition given in Table 1 (all values in% by mass):
- the hydrogenation to saturated species also played only a minor role and was less than one percentage point or at temperatures from 110 0 C at less than one and a half percentage points.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/992,032 US8404902B2 (en) | 2008-06-03 | 2009-04-28 | Method for separating 1-butene from C4-containing hydrocarbon streams by hydroformylation |
CN200980120571.6A CN102056872B (zh) | 2008-06-03 | 2009-04-28 | 通过加氢甲酰化从含c4的烃流分离1-丁烯的方法 |
EP09757367.9A EP2288584B1 (de) | 2008-06-03 | 2009-04-28 | Verfahren zur abtrennung von 1-buten aus c4-haltigen kohlenwasserstoffströmen durch hydroformylierung |
JP2011512051A JP5496188B2 (ja) | 2008-06-03 | 2009-04-28 | ヒドロホルミル化によりc4−含有炭化水素流から1−ブテンを分離する方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008002188.1 | 2008-06-03 | ||
DE102008002188A DE102008002188A1 (de) | 2008-06-03 | 2008-06-03 | Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009146984A1 true WO2009146984A1 (de) | 2009-12-10 |
Family
ID=41181115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/055121 WO2009146984A1 (de) | 2008-06-03 | 2009-04-28 | Verfahren zur abtrennung von 1-buten aus c4-haltigen kohlenwasserstoffströmen durch hydroformylierung |
Country Status (9)
Country | Link |
---|---|
US (1) | US8404902B2 (de) |
EP (2) | EP2567949B1 (de) |
JP (1) | JP5496188B2 (de) |
KR (1) | KR101587302B1 (de) |
CN (1) | CN102056872B (de) |
DE (1) | DE102008002188A1 (de) |
SA (1) | SA109300352B1 (de) |
TW (1) | TWI447107B (de) |
WO (1) | WO2009146984A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3029013A1 (de) | 2014-12-04 | 2016-06-08 | Evonik Degussa GmbH | Monophosphite mit Struktureinheit 4,4,5,5-Tetraphenyl-1,3,2-dioxaphospholan als Liganden für Hydroformylierungskatalysatoren |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2769033C (en) | 2009-07-23 | 2019-09-03 | Evonik Fibres Gmbh | Polyimide membranes made of polymerization solutions |
DE102009047351A1 (de) | 2009-12-01 | 2011-06-09 | Evonik Goldschmidt Gmbh | Komposit-Siliconmembranen mit hoher Trennwirkung |
DE102012202779A1 (de) | 2012-02-23 | 2013-08-29 | Evonik Oxeno Gmbh | Verfahren und Vorrichtung zur technischen Hydroformylierung von Isobuten und zum Auftrennen des Produktgemisches |
ES2603929T3 (es) | 2012-10-12 | 2017-03-02 | Evonik Degussa Gmbh | Bisfosfito asimétrico |
DE102013219512A1 (de) | 2012-10-12 | 2014-04-17 | Evonik Degussa Gmbh | Gemisch aus verschiedenen unsymmetrischen Bisphosphiten und dessen Verwendung als Katalysatorgemisch in der Hydroformylierung |
DE102013219508A1 (de) | 2012-10-12 | 2014-04-17 | Evonik Degussa Gmbh | Gemische konstitutionsisomerer Bisphosphite |
DE102013219506A1 (de) | 2012-10-12 | 2014-04-17 | Evonik Degussa Gmbh | Unsymmetrisches Bisphosphit |
DE102013219510A1 (de) | 2012-10-12 | 2014-04-17 | Evonik Degussa Gmbh | Gemisch von Bisphosphiten und dessen Verwendung als Katalysatorgemisch in der Hydroformylierung |
DE102012223572A1 (de) | 2012-12-18 | 2014-06-18 | Evonik Industries Ag | Steuerung der Viskosität von Reaktionslösungen in Hydroformylierungverfahren |
DE102013214378A1 (de) | 2013-07-23 | 2015-01-29 | Evonik Industries Ag | Phosphoramiditderivate in der Hydroformylierung von olefinhaltigen Gemischen |
DE102013217174A1 (de) | 2013-08-28 | 2015-03-05 | Evonik Industries Ag | Zusammensetzung und deren Verwendung in Verfahren zur Hydroformylierung von ungesättigten Verbindungen |
DE102013113719A1 (de) * | 2013-12-09 | 2015-06-11 | Oxea Gmbh | Verfahren zur Herstellung von Pentanderivaten und Derivaten α,β-ungesättigter Decenale |
EP3031816B1 (de) * | 2014-12-04 | 2019-02-27 | Evonik Degussa GmbH | Terphenyl-2-oxy-phosphite als liganden in hydroformylierungs-katalysatoren |
RU2018131105A (ru) | 2016-03-01 | 2020-04-01 | Курарей Ко., Лтд. | Способ получения диальдегидного соединения |
EP3246303B8 (de) * | 2016-05-19 | 2020-01-01 | Evonik Operations GmbH | Herstellung von n-pentanal aus butenarmen einsatzstoffgemischen |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0016286A2 (de) | 1979-03-21 | 1980-10-01 | DAVY McKEE (LONDON) LIMITED | Hydroformylierungsverfahren |
EP0213639A2 (de) | 1985-09-05 | 1987-03-11 | Union Carbide Corporation | Bis-phosphit-Verbindungen |
US4668651A (en) * | 1985-09-05 | 1987-05-26 | Union Carbide Corporation | Transition metal complex catalyzed processes |
EP0523482A2 (de) | 1991-07-13 | 1993-01-20 | BASF Aktiengesellschaft | Verfahren zur selektiven Hydrierung von butadienreichen Roh-C4-Schnitten |
US20020111487A1 (en) * | 2000-10-27 | 2002-08-15 | Dirk Roettger | Novel bisphosphite compounds and their metal complexes |
DE10108474A1 (de) | 2001-02-22 | 2002-09-12 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
DE10108476A1 (de) | 2001-02-22 | 2002-09-12 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
DE10108475A1 (de) | 2001-02-22 | 2002-09-12 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
EP1312598A1 (de) * | 1998-12-10 | 2003-05-21 | Mitsubishi Chemical Corporation | Verfahren zur Herstellung von Aldehyden |
DE10225282A1 (de) | 2002-06-07 | 2003-12-18 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
US20040138508A1 (en) * | 2001-04-13 | 2004-07-15 | Tinge Johan Thomas | Continuous hydroformylation process |
WO2005028404A1 (en) | 2003-09-23 | 2005-03-31 | Exxonmobil Chemical Patents Inc. | Improvements in or relating to isobutylene |
DE102005046250A1 (de) | 2005-09-27 | 2007-03-29 | Oxeno Olefinchemie Gmbh | Verfahren zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren |
DE102006058682A1 (de) | 2006-12-13 | 2008-06-19 | Evonik Oxeno Gmbh | Bisphosphitliganden für die übergangsmetallkatalysierte Hydroformylierung |
WO2008124468A1 (en) * | 2007-04-05 | 2008-10-16 | Dow Global Technologies Inc. | A calixarene bisphosphite ligand for use in hydroformylation processes |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4668851A (en) * | 1985-09-06 | 1987-05-26 | Minnesota Mining And Manufacturing Company | Circuitry for control of the temperature of a heating element adapted to be contacted by a material to be heated |
DE4026406A1 (de) * | 1990-08-21 | 1992-02-27 | Basf Ag | Rhodiumhydroformylierungskatalysatoren mit bis-phosphit-liganden |
JP3846020B2 (ja) * | 1998-04-07 | 2006-11-15 | 三菱化学株式会社 | ビスホスファイト化合物及び該化合物を用いたアルデヒド類の製造方法 |
DE19842368A1 (de) * | 1998-09-16 | 2000-03-23 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von höheren Oxoalkoholen aus Olefingemischen durch zweistufige Hydroformylierung |
DE19954721A1 (de) * | 1999-11-12 | 2001-05-17 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von Aldehyden aus Olefinen durch Hydroformylierung |
DE19954510A1 (de) * | 1999-11-12 | 2001-05-17 | Oxeno Olefinchemie Gmbh | Verfahren zur katalytischen Herstellung von Aldehyden aus Olefinen unter Einsatz von Ligandenmischungen |
DE10031493A1 (de) * | 2000-06-28 | 2002-01-10 | Oxeno Olefinchemie Gmbh | Neue Bisphosphitverbindungen und deren Metallkomplexe |
DE10058383A1 (de) * | 2000-11-24 | 2002-05-29 | Oxeno Olefinchemie Gmbh | Neue Phosphininverbindungen und deren Metallkomplexe |
DE10140083A1 (de) * | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und deren Metallkomplexe |
DE10140086A1 (de) * | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und neue Phosphitmetallkomplexe |
CA2481037A1 (en) * | 2002-04-04 | 2003-10-16 | Degussa Ag | Bisphosphines as bidentate ligands |
DE102004013514A1 (de) * | 2004-03-19 | 2005-10-06 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydroformylierung von Olefinen in Anwesenheit von neuen phosphororganischen Verbindungen |
-
2008
- 2008-06-03 DE DE102008002188A patent/DE102008002188A1/de not_active Withdrawn
-
2009
- 2009-04-28 KR KR1020107027098A patent/KR101587302B1/ko active IP Right Grant
- 2009-04-28 WO PCT/EP2009/055121 patent/WO2009146984A1/de active Application Filing
- 2009-04-28 JP JP2011512051A patent/JP5496188B2/ja not_active Expired - Fee Related
- 2009-04-28 EP EP12195793.0A patent/EP2567949B1/de not_active Not-in-force
- 2009-04-28 EP EP09757367.9A patent/EP2288584B1/de not_active Not-in-force
- 2009-04-28 US US12/992,032 patent/US8404902B2/en not_active Expired - Fee Related
- 2009-04-28 CN CN200980120571.6A patent/CN102056872B/zh not_active Expired - Fee Related
- 2009-05-27 TW TW098117773A patent/TWI447107B/zh not_active IP Right Cessation
- 2009-06-02 SA SA109300352A patent/SA109300352B1/ar unknown
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0016286A2 (de) | 1979-03-21 | 1980-10-01 | DAVY McKEE (LONDON) LIMITED | Hydroformylierungsverfahren |
EP0213639A2 (de) | 1985-09-05 | 1987-03-11 | Union Carbide Corporation | Bis-phosphit-Verbindungen |
US4668651A (en) * | 1985-09-05 | 1987-05-26 | Union Carbide Corporation | Transition metal complex catalyzed processes |
EP0523482A2 (de) | 1991-07-13 | 1993-01-20 | BASF Aktiengesellschaft | Verfahren zur selektiven Hydrierung von butadienreichen Roh-C4-Schnitten |
EP1312598A1 (de) * | 1998-12-10 | 2003-05-21 | Mitsubishi Chemical Corporation | Verfahren zur Herstellung von Aldehyden |
US20020111487A1 (en) * | 2000-10-27 | 2002-08-15 | Dirk Roettger | Novel bisphosphite compounds and their metal complexes |
DE10108476A1 (de) | 2001-02-22 | 2002-09-12 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
DE10108475A1 (de) | 2001-02-22 | 2002-09-12 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
DE10108474A1 (de) | 2001-02-22 | 2002-09-12 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
US20040138508A1 (en) * | 2001-04-13 | 2004-07-15 | Tinge Johan Thomas | Continuous hydroformylation process |
DE10225282A1 (de) | 2002-06-07 | 2003-12-18 | Celanese Chem Europe Gmbh | Verfahren zur Herstellung von Aldehyden |
WO2005028404A1 (en) | 2003-09-23 | 2005-03-31 | Exxonmobil Chemical Patents Inc. | Improvements in or relating to isobutylene |
DE102005046250A1 (de) | 2005-09-27 | 2007-03-29 | Oxeno Olefinchemie Gmbh | Verfahren zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren |
DE102006058682A1 (de) | 2006-12-13 | 2008-06-19 | Evonik Oxeno Gmbh | Bisphosphitliganden für die übergangsmetallkatalysierte Hydroformylierung |
WO2008124468A1 (en) * | 2007-04-05 | 2008-10-16 | Dow Global Technologies Inc. | A calixarene bisphosphite ligand for use in hydroformylation processes |
Non-Patent Citations (3)
Title |
---|
H. J. ARPE: "Industrielle Organische Chemie", 2007, WILEY-VCH, pages: 118 - 119 |
H. J. ARPE: "Industrielle Organische Chemie", 2007, WILEY-VCH, pages: 9 - 12,23,36 |
J. FALBE: "New Syntheses with Carbon Monoxide", 1980, SPRINGER VERLAG, pages: 95 FF |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3029013A1 (de) | 2014-12-04 | 2016-06-08 | Evonik Degussa GmbH | Monophosphite mit Struktureinheit 4,4,5,5-Tetraphenyl-1,3,2-dioxaphospholan als Liganden für Hydroformylierungskatalysatoren |
EP3029014A1 (de) | 2014-12-04 | 2016-06-08 | Evonik Degussa GmbH | Monophosphite mit struktureinheit 4,4,5,5-tetraphenyl-1,3,2-dioxaphospholan als liganden für hydroformylierungskatalysatoren |
Also Published As
Publication number | Publication date |
---|---|
EP2567949B1 (de) | 2014-05-21 |
CN102056872B (zh) | 2014-09-24 |
US20110071321A1 (en) | 2011-03-24 |
TWI447107B (zh) | 2014-08-01 |
CN102056872A (zh) | 2011-05-11 |
EP2567949A1 (de) | 2013-03-13 |
TW201004923A (en) | 2010-02-01 |
SA109300352B1 (ar) | 2013-06-08 |
JP5496188B2 (ja) | 2014-05-21 |
US8404902B2 (en) | 2013-03-26 |
EP2288584B1 (de) | 2013-06-26 |
JP2011521990A (ja) | 2011-07-28 |
KR101587302B1 (ko) | 2016-01-21 |
EP2288584A1 (de) | 2011-03-02 |
DE102008002188A1 (de) | 2009-12-10 |
KR20110022581A (ko) | 2011-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2567949B1 (de) | Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung | |
EP1674441B1 (de) | Verfahren zur Hydroformylierung von Olefinen | |
EP1515934B1 (de) | Verfahren zur herstellung von c13-alkoholgemischen | |
EP1678113B1 (de) | Verfahren zur kontinuierlichen herstellung von aldehyden | |
DE2922757C2 (de) | Verfahren zur Hydroformylierung von olefinischen Verbindungen | |
EP1713749B1 (de) | Verfahren zur herstellung von olefinen mit 8 bis 12 kohlenstoffatomen | |
WO2004020380A1 (de) | Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester | |
EP1532095A1 (de) | Verfahren zur herstellung von aldehyden durch hydroformylierung von olefinisch ungesättigten verbindungen, katalysiert durch unmodifizierte metallkomplexe in gegenwart von cyclischen kohlensäureestern | |
DE10313319A1 (de) | Verfahren zur Hydroformylierung | |
DE102009027978A1 (de) | Verfahren zur Herstellung von Decancarbonsäuren | |
WO2014008974A1 (de) | Verfahren zur herstellung von isononansäureestern, ausgehend von 2-ethylhexanol | |
DE69627133T2 (de) | Hydroformylierung eines mehrkomponenteneinsatzstromes | |
DE10108475A1 (de) | Verfahren zur Herstellung von Aldehyden | |
EP2217555B1 (de) | Verfahren zur herstellung von aldehyden | |
DE10327435A1 (de) | Verfahren zur Herstellung von Aldehyden durch Hydroformylierung von olefinisch ungesättigten Verbindungen, katalysiert durch unmodifizierte Metallkomplexe von Metallen der 8. bis 10. Gruppe des PSE in Gegenwart von cyclischen Kohlensäureestern | |
DE10149349A1 (de) | Verfahren zur Herstellung von 6-Methylheptan-2-on und dessen Verwendung | |
EP3077357B1 (de) | Verfahren zur herstellung von 2-methylbuttersäure mit einem vermindertem gehalt an 3-methylbuttersäure aus den bei der herstellung von pentansäuren anfallenden nebenströmen | |
EP3077358B1 (de) | Verfahren zur herstellung von 2-methylbutanal aus den bei der herstellung von gemischen isomerer a, -ungesättigter decenale anfallenden nebenströmen | |
DE102013020323B3 (de) | Verfahren zur Herstellung von isomeren Hexansäuren aus den bei der Herstellung von Pentanalen anfallenden Nebenströmen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980120571.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09757367 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009757367 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12992032 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107027098 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011512051 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |