WO2009145167A1 - 光学的立体造形用樹脂組成物 - Google Patents

光学的立体造形用樹脂組成物 Download PDF

Info

Publication number
WO2009145167A1
WO2009145167A1 PCT/JP2009/059572 JP2009059572W WO2009145167A1 WO 2009145167 A1 WO2009145167 A1 WO 2009145167A1 JP 2009059572 W JP2009059572 W JP 2009059572W WO 2009145167 A1 WO2009145167 A1 WO 2009145167A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin composition
optical
meth
polymerizable organic
Prior art date
Application number
PCT/JP2009/059572
Other languages
English (en)
French (fr)
Inventor
勇哉 大長
裕貴 新井
栄治 中本
信夫 大金
恒夫 萩原
Original Assignee
シーメット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーメット株式会社 filed Critical シーメット株式会社
Priority to JP2010514479A priority Critical patent/JPWO2009145167A1/ja
Publication of WO2009145167A1 publication Critical patent/WO2009145167A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/105Onium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention relates to a resin composition for optical three-dimensional modeling and a method for producing an optical three-dimensional model using the composition. More specifically, the present invention relates to an optical three-dimensional modeling composition using a non-antimony polymerization initiator that is excellent in safety and free from environmental pollution.
  • the resin composition for optical three-dimensional modeling of the present invention various desired physical properties can be obtained depending on the type of the cationic polymerizable organic compound to be used while preventing contamination of the global environment with high photocuring sensitivity.
  • the optical three-dimensional structure to have can be manufactured safely and with high productivity at a high modeling speed.
  • a method for three-dimensional optical modeling of a liquid photocurable resin composition based on data input to a three-dimensional CAD has achieved good dimensional accuracy without producing a mold or the like.
  • a predetermined thickness is obtained by selectively irradiating a computer-controlled ultraviolet ray so that a desired pattern is obtained on the liquid surface of the liquid photocurable resin placed in a container.
  • a one-layer liquid resin is supplied onto the cured layer, and similarly cured by irradiation with ultraviolet rays in the same manner as described above, and finally a three-dimensional structure is obtained by repeating a lamination operation to obtain a continuous cured layer.
  • the method of obtaining can be mentioned.
  • This optical three-dimensional modeling method can easily obtain a modeled object having a complicated shape in a relatively short time.
  • resin or resin composition used for optical three-dimensional modeling it is indispensable that it has low viscosity and excellent handling at the time of modeling, and has high curing sensitivity with active energy rays and can produce three-dimensional models with high productivity in a short modeling time. Furthermore, it is desirable that the model has a high resolution and excellent modeling accuracy, and that the volumetric shrinkage during curing is small, and mechanical properties, durability, and flexibility depending on the application of the three-dimensional model. In addition, it is required to have excellent water resistance, moisture resistance, heat resistance, and the like.
  • a photocurable resin composition for optical modeling a photocurable resin composition containing a radical polymerizable organic compound, a photocurable resin composition containing a cationic polymerizable organic compound such as an epoxy compound, and radical polymerizable
  • a photocurable resin composition containing both an organic compound and a cationically polymerizable organic compound have been proposed and used.
  • the radical polymerizable organic compound include (meth) acrylate compounds, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, polyether (meth) acrylate compounds, and epoxy (meth) acrylates.
  • System compounds are used.
  • the cationically polymerizable organic compound for example, various epoxy compounds, cyclic acetal compounds, vinyl ether compounds, lactones and the like are used.
  • a photocationic polymerization initiator present in the system generates a cationic species (H + ) by light irradiation, It is related to the cationically polymerizable organic compound in a chain, the cationically polymerizable organic compound is opened and the reaction proceeds.
  • a photocurable resin composition based on a cationically polymerizable organic compound such as an epoxy compound it is generally obtained as compared with a case where a photocurable resin composition based on a radical polymerizable organic compound is used.
  • a molded article having a small shrinkage ratio of the photocured product and excellent in dimensional stability and dimensional accuracy can be obtained.
  • Photocationic polymerization initiators for photopolymerizing cationically polymerizable organic compounds include aromatic sulfonium salts of Group 16 elements, aromatic onium salts of Group 15 elements, aromatic onium salts of Group 17 elements, etc.
  • a photocationic polymerization initiator is known (see Patent Documents 1 to 4, etc.). Among them, from the viewpoint of photocuring sensitivity and the like, a sulfonium salt containing antimony is widely used as a photocationic polymerization initiator in a photocurable resin composition containing a cationically polymerizable organic compound.
  • antimony compounds are generally toxic and exhibit toxic effects similar to arsenic and mercury, it is necessary to pay close attention to handling, and there is a concern about contamination of the work environment and the global environment.
  • it has a photopolymerization initiating ability comparable to or surpassing that of conventionally used antimony photocationic polymerization initiators, has low toxicity, is excellent in safety and handleability, and has a work environment and earth environment.
  • an optical three-dimensional modeling resin composition containing a photocationic polymerization initiator that does not cause environmental pollution.
  • an optical three-dimensional object is formed in order to reduce the cost of mold production for producing the erasure model.
  • Casting is performed using as a disappearance model.
  • the conventional optical three-dimensional model obtained using the resin composition for optical three-dimensional modeling containing the antimony cationic polymerization initiator is an antimony contained in the three-dimensional model when used as a disappearance model.
  • the residue resulting from the compound remains after the disappearance, resulting in rough casting surface and deterioration of the casting performance, and high quality casting cannot be obtained.
  • photocationic polymerization initiators including antimony-based photocationic polymerization initiators do not necessarily exhibit high catalytic activity in common with various cationically polymerizable organic compounds, and have high photocuring sensitivity.
  • photocationic polymerization initiators including antimony-based photocationic polymerization initiators do not necessarily exhibit high catalytic activity in common with various cationically polymerizable organic compounds, and have high photocuring sensitivity.
  • Japanese Examined Patent Publication No. 7-103218 Japanese Patent Publication No.52-14277 Japanese Patent Publication No.52-14278 Japanese Patent Publication No.52-14279 JP 2002-241363 A JP 2001-81096 A JP 2007-262401 A Japanese Patent Laid-Open No. 2007-238828
  • An object of the present invention is to provide a resin composition for optical three-dimensional modeling that does not contain a toxic component such as an antimony compound, thereby being excellent in safety and handling, and causing no contamination of the work environment or the global environment. Is to provide. Furthermore, the object of the present invention is excellent in safety, has high curing sensitivity by active energy rays, can produce a molded article with high productivity in a reduced active energy ray irradiation time, and is also dimensional stability. It is an object to provide a resin composition for optical three-dimensional modeling that is excellent and can obtain a three-dimensional molded product with high dimensional accuracy.
  • the object of the present invention is to use an inexpensive cationically polymerizable organic compound, particularly an epoxy compound, which is widely used, to provide a resin composition for optical three-dimensional modeling that is excellent in safety and has high curing sensitivity by active energy rays. It is to provide at a low cost. Furthermore, an object of the present invention is to provide an antimony compound that does not cause problems such as rough casting surface and deterioration of casting performance due to antimony remaining after disappearance when casting using an optical three-dimensional model as a disappearance model. It is to provide an antimony-free resin composition for optical three-dimensional modeling which can form an optical three-dimensional modeled product that does not contain.
  • active energy ray sensitive cationic polymerization As an initiator, a non-antimony aromatic sulfonium compound with fluorophosphoric acid as a counter ion is used in place of the conventionally used sulfonium salt containing antimony.
  • a resin composition for optical three-dimensional modeling that does not cause pollution of the global environment, and a non-antimony aromatic sulfonium compound having a fluorophosphate as a counter ion as a cationic polymerization initiator. Further studies have been continued on optical three-dimensional resin compositions. As a result, in the resin composition for optical three-dimensional modeling using the cationic polymerization initiator, a cycloalkene oxide structure (for example, cyclohexene oxide structure) that has been conventionally used in the resin composition for optical three-dimensional modeling is included in the molecule.
  • a cycloalkene oxide structure for example, cyclohexene oxide structure
  • the function of the cation polymerization initiator as a cation polymerization initiator is suppressed, or the photocuring sensitivity of the resin composition for optical three-dimensional modeling decreases, It turns out that the speed is extremely slow.
  • the present inventors have made various studies based on the above findings, and as a result, the optical optical system described above containing a non-antimony aromatic sulfonium compound having a fluorophosphoric acid as a counter ion as a cationic polymerization initiator.
  • the composition does not contain a cation polymerizable organic compound having a cycloalkene oxide structure in the molecule, and has two or more glycidyloxy groups as the cation polymerizable organic compound.
  • the photocuring sensitivity is high and the photocuring takes place in a short time.
  • security was obtained.
  • the present inventors include a non-antimony aromatic sulfonium compound having a fluorophosphoric acid as a counter ion as a cationic polymerization initiator, while having a cycloalkene oxide structure in the molecule.
  • the above-described resin composition for optical three-dimensional modeling which is a cationically polymerizable organic compound having two or more glycidyloxy groups, has been conventionally used in a resin composition for optical three-dimensional modeling because of low photocuring sensitivity.
  • General-purpose various polyglycidyloxy compounds especially polyglycidyl ethers of aromatic polyols, polyglycidyl ethers of acyclic aliphatic polyols, polyglycidyl esters of polycarboxylic acids, and the like can also be used.
  • Resin composition for optical three-dimensional modeling with high photocuring sensitivity It was found to be obtained.
  • the inventors of the present invention provide a cationic polymerization initiator composed of a non-antimony aromatic sulfonium compound having fluorophosphoric acid as a counter ion, a cationic polymerizable organic compound having two or more glycidyloxy groups, and poly (meth)
  • a resin composition for optical three-dimensional modeling which contains a radically polymerizable organic compound comprising an acrylate compound, but does not contain a cationically polymerizable organic compound having a cycloalkene oxide structure in the molecule, the cationically polymerizable organic compound
  • an oxetane compound is further contained as a part of the oxetane compound, the photocuring sensitivity is further improved, and a three-dimensional modeled product having excellent dimensional accuracy, mechanical properties, heat resistance, and the like can be obtained.
  • polyoxetane compounds can be used, of which Monookisetan compounds, especially heading and more preferable to use
  • the present invention (1) (i) containing a cationically polymerizable organic compound (A), a radically polymerizable organic compound (B), an active energy ray-sensitive cationic polymerization initiator (C) and an active energy ray-sensitive radical polymerization initiator (D) A resin composition for optical three-dimensional modeling; (Ii) As the cationically polymerizable organic compound (A), the following general formula (I);
  • R 1 represents an organic residue, and k represents an integer of 2 or more.
  • a compound (I) having two or more glycidyloxy groups represented by: (Iii)
  • the radical polymerizable organic compound (B) contains a (meth) acrylate compound (B-1) having two or more (meth) acryloyloxy groups;
  • the active energy ray-sensitive cationic polymerization initiator (C) is represented by the following general formula (II):
  • R 2 and R 3 are each independently the following formulas (i) to (iv);
  • X represents a chlorine atom or a fluorine atom ⁇
  • R 4 is represented by the following formula (v):
  • Rf is a fluoroalkyl group having 1 to 8 carbon atoms, a is an integer of 0 to 3, b is an integer of 0 to 3, and c is 0 or 1, and a and b And c is 3, m is the same number as 1 + c, and n is an integer from 0 to 5.
  • a phosphorus-based aromatic sulfonium compound (II) represented by: (V) does not contain a cationically polymerizable organic compound having a cycloalkene oxide structure in the molecule; It is the resin composition for optical three-dimensional modeling characterized by the above-mentioned.
  • an oxetane compound (OXT) is further contained, and the oxetane compound (OXT) has two or more monooxetane compounds (OXTm) and one oxetane group.
  • the resin composition for optical three-dimensional modeling according to (1) which is any one or both of the polyoxetane compound (OXTp) having; (3)
  • the monooxetane compound (OXTm) is a monooxetane compound (III-1a) represented by the following general formula (III-1a) and a monooxetane compound represented by the following general formula (III-1b)
  • the above-mentioned (2), which is at least one monooxetane compound selected from III-1b) and the polyoxetane compound (OXTp) is a dioxetane compound (III-2) represented by the following general formula (III-2): ) Resin composition for optical three-dimensional modeling;
  • R 5 and R 6 are alkyl groups having 1 to 5 carbon atoms
  • R 7 is an alkylene group having 2 to 10 carbon atoms which may have an ether bond
  • two R 8 are the same or A different alkyl group having 1 to 5 carbon atoms
  • R 9 is a divalent organic group having or not having an aromatic ring
  • p is an integer of 1 to 6
  • q is 0 or 1. It is.
  • the present invention provides: (4)
  • the content ratio of the cationic polymerizable organic compound (A): radical polymerizable organic compound (B) is 40:60 to 90:10, and the phosphorus aromatic sulfonium compound (II) is cationically polymerizable.
  • the active energy ray-sensitive radical polymerization initiator (D) is contained in a proportion of 0.1 to 10% by mass based on the mass of the organic compound (A), and the active energy ray-sensitive radical polymerization initiator (D) is added in an amount of 0.
  • the resin composition for optical three-dimensional modeling according to any one of (1) to (3), which is contained at a ratio of 1 to 20% by mass; (5) The above-mentioned (1) to (4), wherein the content ratio of the compound (I) having two or more glycidyloxy groups is 50 to 95% by mass based on the total mass of the cationically polymerizable organic compound (A). Any one of the resin compositions for optical three-dimensional modeling; (6) The content of the oxetane compound (OXT) [the total content of both when the monooxetane compound (OXTm) and the polyoxetane compound (OXT) are contained] is the total content of the cationically polymerizable organic compound (A).
  • the content ratio of the monooxetane compound (OXTm) is 30 to 100% by mass based on the total mass of the oxetane compound (OXT) Resin composition; It is.
  • the present invention also provides: (8) The total content of the compound (I) having two or more glycidyloxy groups and the oxetane compound (OXT) is 50 to 100% by mass based on the total mass of the cationically polymerizable organic compound (A). (1) to (7) a resin composition for optical three-dimensional modeling; (9) The content of the (meth) acrylate compound (B-1) having two or more (meth) acryloyloxy groups is 70 to 100% by mass based on the mass of the radical polymerizable organic compound (B).
  • the resin composition for optical three-dimensional modeling of the present invention (hereinafter referred to as “resin composition for optical modeling”) is toxic as an active energy ray-sensitive cationic polymerization initiator (hereinafter sometimes simply referred to as “cationic polymerization initiator”).
  • cationic polymerization initiator Low non-antimony phosphorus aromatic sulfonium compound (II) is used, so it is excellent in safety and handling, and does not cause pollution or deterioration of the work environment or the global environment.
  • the resin composition for optical modeling according to the present invention has high curing sensitivity due to active energy rays and has been shortened despite using a non-antimony phosphorus-based aromatic sulfonium compound (II) as a cationic polymerization initiator.
  • the target three-dimensional model can be manufactured with high productivity in modeling time.
  • various cationically polymerizable organic compounds that have been widely used in the past and that have two or more glycidyloxy groups can be used as the cationically polymerizable organic compound. Since the photocuring sensitivity of the modeling resin composition is maintained high, it is possible to supply a photomolding resin composition having excellent safety and high photocuring sensitivity at a low cost.
  • the resin composition for optical modeling of the present invention further containing an oxetane compound as a part of the cationically polymerizable organic compound has a higher photocuring sensitivity, and also by optical modeling using the resin composition for optical modeling, It is possible to obtain a three-dimensional structure that is excellent in dimensional accuracy, mechanical properties, heat resistance, and the like.
  • the blending ratio, etc. it is possible to obtain a resin composition for stereolithography and a three-dimensional modeled object having various excellent properties depending on the application, for example, when left under high humidity
  • the dimensional change is extremely small, the dimensional stability over time is good, and the three-dimensional optical modeling is excellent in impact resistance, toughness, other mechanical properties, water resistance, moisture resistance, flexibility, heat resistance, etc. You can get things.
  • the antimony compound is not contained in the optical modeling object obtained using the resin composition for optical modeling of the present invention. Therefore, when casting is performed using the stereolithography obtained using the resin composition for stereolithography of the present invention as a disappearance model, the antimony compound does not remain as a residue after the disappearance of the model, resulting in rough skin and reduced performance of the casting. Therefore, a high-quality casting can be obtained.
  • the resin composition for optical modeling of the present invention contains a cationic polymerizable organic compound (A) and a radical polymerizable organic compound (B) as an active energy ray polymerizable compound that is polymerized by irradiation with active energy rays.
  • active energy rays refers to energy rays that can cure a resin composition for optical modeling such as ultraviolet rays, electron beams, X-rays, radiation, and high frequencies.
  • the resin composition for optical modeling according to the present invention includes the following general formula (I) as the cationically polymerizable organic compound (A):
  • R 1 represents an organic residue, and k represents an integer of 2 or more.
  • a compound (I) having two or more glycidyloxy groups hereinafter referred to as “polyglycidyloxy compound (I)”].
  • Any polyglycidyloxy compound (I) may be used as long as it is a compound having two or more glycidyloxy groups, and is not particularly limited.
  • Typical examples of the polyglycidyloxy compound (I) used in the present invention include polyglycidyl ether, polyglycidyl ester, polyglycidyl ether ester, polyglycidyl isocyanurate, polyglycidyl imide, etc. Can also be used.
  • the polyglycidyloxy compound (I) used in the present invention is any of an aromatic compound, an aliphatic compound, an alicyclic compound, a heterocyclic compound, a silicone compound, a compound in which two or more of them are combined, and the like.
  • the organic residue R 1 in the above general formula (I) is derived from an aromatic, aliphatic, alicyclic, heterocyclic organic residue, silicon-containing organic compound, or 2
  • An organic residue is a combination of two or more.
  • the number k of glycidyloxy groups may be any as long as it is 2 or more, generally 2 to 10, particularly 2 Is preferably from 4 to 4 in view of availability, viscosity, reaction rate, and the like of the polyglycidyl compound (I).
  • the polyglycidyloxy compound (I) only one type of polyglycidyloxy compound may be used, or two or more types of polyglycidyloxy compounds may be used in combination.
  • Cisyl ether ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, tri Diglycidyl ether of methylolpropane, triglycidyl ether of trimethylolpropane, tetraglycidyl ether of sorbitol, diglycidyl ether of pentaerythritol, triglycidyl ether of pentaerythritol, tetraglycidyl ether of pentaerythritol, di-, tripentaerythritol -, Tetra-, penta- or hexa-glycidyl ether, diglycidyl ether of diethylene
  • Polyglycidyl esters of aromatic polycarboxylic acids such as sidyl esters; polyglycidyl esters of alicyclic polycarboxylic acids such as diglycidyl esters of cyclohexanedicarboxylic acid; polyglycidyl esters of aliphatic long-chain polybasic acids; glycidyl acrylate or Homopolymer synthesized by vinyl polymerization of glycidyl methacrylate; copolymer synthesized by vinyl polymerization of glycidyl acrylate and / or glycidyl methacrylate and other vinyl monomers; phenol novolac Li glycidyl ether, polyglycidyl ether of cresol novolac and the like.
  • one or more of the above-mentioned polyglycidyloxy compounds (I) can be used.
  • the physical properties of the three-dimensional structure obtained from the resin composition for optical modeling may be suitable for each situation and application. it can.
  • polyglycidyloxy compound (I) is diglycidyl ether of cyclohexanedimethanol, diglycidyl ether of tricyclodecane dimethanol, diglycidyl ether of alkylene oxide-added bisphenol A, etc.
  • flexibility, elasticity, A three-dimensional molded article rich in impact resistance can be obtained, and when bisphenol A diglycidyl ether, resorcinol diglycidyl ether or the like is used as the polyglycidyloxy compound (I), the heat distortion temperature is high and the solid A model is obtained.
  • the resin composition for optical modeling of the present invention preferably contains the polyglycidyloxy compound (I) in a proportion of 50 to 95% by mass based on the total mass of the cationically polymerizable organic compound (A), 55 More preferably, it is contained in a proportion of ⁇ 90% by mass, and still more preferably in a proportion of 60-90% by mass.
  • the content ratio of the polyglycidyloxy compound (I) is too small, the photocuring speed is decreased and the strength of the cured product is easily decreased. On the other hand, if the content ratio is too large, the photocuring speed is easily decreased.
  • the resin composition for optical modeling of the present invention further contains an oxetane compound (OXT) together with the polyglycidyloxy compound (I) as the cationically polymerizable organic compound (A).
  • OXT oxetane compound
  • the photocuring sensitivity of the resin composition for optical modeling is further improved, and the dimensional accuracy, the toughness of the resulting optical modeling object, impact resistance, breakage resistance, durability, etc. Mechanical properties, heat resistance, etc. are improved.
  • any of a monooxetane compound (OXTm) having one oxetane group and a polyoxetane compound (OXTp) having two or more oxetane groups in the molecule can be used.
  • the resin composition for optical modeling of the present invention may contain only a monooxetane compound (OXTm) as an oxetane compound (OXT), or may contain only a polyoxetane compound (OXTp), Alternatively, both a monooxetane compound (OXTm) and a polyoxetane compound (OXTp) may be contained.
  • the oxetane compound (OXT) contains at least the monooxetane compound (OXTm), that is, contains only the monooxetane compound (OXTm), or contains the monooxetane compound (OXTm) and the polyoxetane compound (OXTp). Therefore, even when the photo-setting resin composition is further stored for a long time in a high humidity state, the absorption of moisture and moisture is suppressed, and the initial high photo-curing sensitivity can be maintained over a long period of time. The effect that it can maintain can be show
  • any compound having one oxetane group in one molecule can be used.
  • a monooxetane compound having one oxetane group and one alcoholic hydroxyl group in one molecule can be used.
  • Oxetane monoalcohol is preferably used in terms of reactivity, viscosity of the composition, and the like.
  • the monooxetane compound (III-1a) represented by the following general formula (III-1a) and the monooxetane compound represented by the following general formula (III-1b) At least one monooxetane compound selected from III-1b is preferably used from the viewpoints of availability, reactivity and the like.
  • the monooxetane compound (III-1b) represented by the following general formula (III-1b) is used as the monooxetane compound (OXTm)
  • the water resistance of the resin composition for optical modeling and the three-dimensional modeled product obtained therefrom The property becomes better.
  • R 5 and R 6 are alkyl groups having 1 to 5 carbon atoms
  • R 7 is an alkylene group having 2 to 10 carbon atoms which may have an ether bond
  • p is an integer of 1 to 6.
  • examples of R 5 include methyl, ethyl, propyl, butyl and pentyl.
  • p may be any one of 1 to 6, but 1 is preferable from the viewpoints of availability and reactivity.
  • Specific examples of the monooxetane compound (III-1a) include 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, and 3-hydroxymethyl-3.
  • 3-hydroxymethyl-3-methyloxetane and 3-hydroxymethyl-3-ethyloxetane are more preferably used from the viewpoint of availability and reactivity.
  • examples of R 6 include methyl, ethyl, propyl, butyl and pentyl.
  • R 7 may be either a chain alkylene group or a branched alkylene group as long as it is an alkylene group having 2 to 10 carbon atoms, or an alkylene group ( It may be a C2-C10 chain or branched alkylene group having an ether bond (ether oxygen atom) in the middle of the (alkylene chain).
  • R 7 examples include ethylene group, trimethylene group, tetramethylene group, ethoxyethylene group, pentamethylene group, hexamethylene group, heptamethylene group, 3-oxypentylene group and the like.
  • R 7 is preferably a trimethylene group, a tetramethylene group, a pentamethylene group, a heptamethylene group or an ethoxyethylene group from the viewpoints of ease of synthesis, ease of handling since the compound is liquid at room temperature.
  • any of a monooxetane compound having one oxetane group in one molecule and a polyoxetane compound having two or more oxetane groups in one molecule can be used.
  • a compound having two or more oxetane groups for example, a compound having two, three, or four oxetane groups can be used, and of these, two oxetane groups are included.
  • Dioxetane compounds are preferably used.
  • the dioxetane compound the following general formula (III-2):
  • R 8 are the same or different alkyl groups having 1 to 5 carbon atoms
  • R 9 is a divalent organic group having or not having an aromatic ring
  • q is 0 or 1 Is shown.
  • the dioxetane compound (III-2) represented by the formula is preferably used from the viewpoints of availability, reactivity, low hygroscopicity, and mechanical properties of the resulting cured product.
  • examples of R 8 include methyl, ethyl, propyl, butyl and pentyl.
  • R 9 include linear or branched alkylene groups having 1 to 12 carbon atoms (for example, ethylene group, propylene group, butylene group, neopentylene group, n-pentamethylene group, n-hexamethylene group, etc.
  • a divalent group represented by the formula: —CH 2 —Ph—CH 2 — or —CH 2 —Ph—Ph—CH 2 —, hydrogenated bisphenol A residue, hydrogenated bisphenol F residue, hydrogenated A bisphenol Z residue, a cyclohexane dimethanol residue, a tricyclodecane dimethanol residue, a resorcinol residue, etc. can be mentioned.
  • Specific examples of the dioxetane compound (III-2) represented by the above general formula (III-2) include a dioxetane compound represented by the following formula (III-2a) or formula (III-2b): Can do.
  • R 8 are the same or different alkyl groups having 1 to 5 carbon atoms, and R 9 is a divalent organic group having or not having an aromatic ring.
  • dioxetane compound represented by the above formula (III-2a) include bis (3-methyl-3-oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) ether, bis (3- And propyl-3-oxetanylmethyl) ether and bis (3-butyl-3-oxetanylmethyl) ether.
  • dioxetane compound represented by the above formula (III-2b) include, in the above formula (III-1b), two R 5 s are both methyl, ethyl, propyl, butyl or pentyl groups, R 6 is ethylene group, propylene group, butylene group, neopentylene group, n-pentamethylene group, n-hexamethylene group, etc.), formula: —CH 2 —Ph—CH 2 — or —CH 2 —Ph—Ph—CH 2-a divalent group represented by-, hydrogenated bisphenol A residue, hydrogenated bisphenol F residue, hydrogenated bisphenol Z residue, cyclohexanedimethanol residue, tricyclodecanedimethanol residue, resorcinol residue A certain dioxetane compound can be mentioned.
  • the resin composition for optical modeling of the present invention can contain one or more of the dioxetane compounds described above.
  • polyoxetane compound (OXTp) in the above formula (III-1a), bis (3-methyl-3-oxetanylmethyl) ether or bis (2) in which two R 8 s are both methyl groups or ethyl groups are used.
  • One or more of 3-ethyl-3-oxetanylmethyl) ether and 4,4-bis (3-ethyl-3-oxetanylmethoxymethyl) benzene are easily available, low hygroscopicity, and dynamics of the cured product From the viewpoint of physical properties, etc., and bis (3-ethyl-3-oxetanylmethyl) ether is particularly preferably used.
  • the resin composition for optical modeling of the present invention is a resin composition for optical modeling from the viewpoint of improvement in toughness of an optical modeling object obtained from the resin composition for optical modeling, mechanical properties, heat resistance, moisture resistance, etc. of the modeling object.
  • oxetane compound (OXT) [the sum of both in the case of containing both monooxetane compound (OXTm) and polyoxetane compound (OXTp)] is 5 It is preferably contained in a proportion of ⁇ 30% by mass, more preferably contained in a proportion of 10-30% by mass, and still more preferably contained in a proportion of 20-25% by mass.
  • the resin composition for optical modeling of the present invention contains the monooxetane compound (OXTm) in a proportion of 30 to 100% by mass based on the total mass of the oxetane compound (OXT).
  • the content is preferably 50 to 100% by mass.
  • the content ratio (mass) of the monooxetane compound (OXTm): polyoxetane compound (OXTp) Ratio) is 30:70 to 100: 0, of which 50:50 to 100: 0, in addition to the effect of improving the toughness of the stereolithography by the inclusion of the oxetane compound, Moisture and moisture absorption rate of the resin composition is extremely low, and absorption of moisture and moisture is reduced when the resin composition for photofabrication is stored for a long time in a high humidity state. Can be maintained over a long period of time, and the water absorption of the molded article is low, and the effect of excellent dimensional stability can be achieved.
  • the total content of the polyglycidyloxy compound (I) and the oxetane compound (OXT) is 50 to 100% by mass based on the total mass of the cationically polymerizable organic compound (A). It is preferably 75 to 100% by mass, more preferably 85 to 100% by mass, whereby the photosensitivity resin composition curing sensitivity, thick film curability, resolution, Ultraviolet light transmittance and the like are further improved, the viscosity of the resin composition for optical modeling is lowered and modeling is performed smoothly, and the volumetric shrinkage of the optical modeled object obtained by modeling is further reduced.
  • the resin composition for optical modeling according to the present invention maintains the catalytic activity of the cationic polymerization initiator (II) composed of a non-antimony phosphorus aromatic sulfonium compound at a high level, and also increases the photocuring sensitivity of the resin composition for optical modeling.
  • the cationic polymerization initiator (II) composed of a non-antimony phosphorus aromatic sulfonium compound at a high level
  • the photocuring sensitivity of the resin composition for optical modeling In order to maintain high, toughness, heat resistance, surface smoothness, surface hardness, wear resistance, etc. of the three-dimensional structure obtained by further photocuring, “cycloalkene oxide structure in the molecule It is necessary not to contain the cation-polymerizable organic compound ”.
  • cycloalkene oxide structure referred to in the present specification has “a structure in which an unsaturated double bond portion in the cycloalkene ring is oxidized (epoxidized)”, and the light of the present invention.
  • the modeling resin composition does not include any organic compound having one “cycloalkene oxide structure” in the molecule and two or more organic compounds in the molecule.
  • cycloalkene oxide structure-containing cationic polymerizable organic compound include a cyclobutene oxide structure and a cyclopentene oxide structure.
  • cycloalkene oxide structures having 4 to 12 carbon atoms such as cyclohexene oxide structure, cycloheptene oxide structure, cyclooctene oxide structure, cyclodecene oxide structure, cyclododecene oxide structure, etc.
  • numerator can be mentioned.
  • the carbon atom forming the cycloalkane ring in the cycloalkene oxide structure may not be substituted, or one or more of the carbon atoms forming the cycloalkane ring are substituted.
  • the bond of the carbon atom forming the cycloalkane ring may be bonded to another group in the organic compound or may be bonded to another structural part to form a condensed ring. May be.
  • the location (bonding position) and the number (number of bonds) of the “cycloalkene oxide structure” are not particularly limited.
  • the cycloalkene oxide structure-containing cationic polymerizable organic compound that is not required to be contained in the resin composition for optical modeling of the present invention includes, for example, the following.
  • R represents a hydrogen atom or a methyl group having 1 to 3 carbon atoms, an ethyl group, an n-propyl group, or an isopropyl group.
  • the resin composition for optical modeling of the present invention contains a polyglycidyloxy compound (I), or a polyglycidyloxy compound (I) and an oxetane compound (OXT) as a cationically polymerizable organic compound (A).
  • a polyglycidyloxy compound (I) or a polyglycidyloxy compound (I) and an oxetane compound (OXT)
  • Other cationic polymerizable organic compounds other than the cationic polymerizable organic compound can be contained as required.
  • a compound having two or more cationically polymerizable groups in the molecule is preferably used as another cationically polymerizable organic compound.
  • the content ratio thereof is the cationic polymerizable organic compound (A ) Is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the resin composition for optical shaping according to the present invention includes an active energy ray-sensitive radical polymerization initiator (D) [hereinafter simply referred to as “radical polymerization initiator (D)” or “radical polymerization initiator” as the radical polymerizable organic compound (B).
  • the resin composition for optical modeling of the present invention has two or more (meth) acryloyloxy groups based on the total mass of the radical polymerizable organic compound (B) from the viewpoints of photocuring sensitivity and ease of handling.
  • the (meth) acrylate compound (B-1) is preferably contained in a proportion of 70 to 100% by mass, and more preferably in a proportion of 80 to 100% by mass.
  • the resin composition for optical modeling according to the present invention includes a di (meth) acrylate compound having two (meth) acryloyloxy groups as the (meth) acrylate compound (B-1) having two or more (meth) acryloyloxy groups.
  • (B-1a) may be contained alone, or a poly (meth) acrylate compound (B-1b) having three or more (meth) acryloyloxy groups may be contained alone, or Both the di (meth) acrylate compound (B-1a) and the poly (meth) acrylate compound (B-1b) may be contained.
  • di (meth) acrylate compound (B-1a) and poly (meth) acrylate are obtained from the viewpoint that the photocuring sensitivity of the resin composition for optical modeling is higher and a three-dimensional molded article having excellent mechanical properties can be obtained. It preferably contains both of the compound (B-1b).
  • the content ratio of di (meth) acrylate compound (B-1a): poly (meth) acrylate compound (B-1b) is preferably 90:10 to 20:80 in terms of mass ratio, : 15 to 40:60 is more preferable, and 85:15 to 50:50 is still more preferable.
  • the photocuring performance of the resin composition for optical modeling is further improved.
  • the obtained three-dimensional molded article has excellent mechanical properties, particularly toughness.
  • di (meth) acrylate compound (B-1a) any di (meth) acrylate compound having two (meth) acryloyloxy groups in the molecule can be used, and an epoxy compound and (meth) acrylic acid can be used.
  • di (meth) acrylate obtained by reaction of the above-mentioned epoxy compound and (meth) acrylic acid aromatic epoxy compound, alicyclic epoxy compound and / or aliphatic epoxy compound, and (meth) acrylic acid Mention may be made of di (meth) acrylate-based reaction products obtained by the reaction.
  • di (meth) acrylate reaction products described above di (meth) acrylate reaction products obtained by reaction of an aromatic epoxy compound and (meth) acrylic acid are preferably used.
  • Epoxy di (meth) acrylates obtained by reacting diglycidyl ether obtained by reaction of bisphenol compounds such as bisphenol A and bisphenol S or their alkylene oxide adducts with epoxidizing agents such as epichlorohydrin with (meth) acrylic acid, etc. Can be mentioned.
  • the di (meth) acrylic acid esters of dihydric alcohols described above include aromatic alcohols, aliphatic alcohols, alicyclic alcohols and / or their alkylene oxide adducts having two hydroxyl groups in the molecule. , Di (meth) acrylate obtained by reaction with (meth) acrylic acid.
  • di (meth) acrylate compounds include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, neopentyl glycol di ( And (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and di (meth) acrylate of an alkylene oxide adduct of the diol described above.
  • di (meth) acrylate compounds described above diacrylate compounds are preferably used from the viewpoint of polymerization rate rather than dimethacrylate compounds.
  • examples of the di (meth) acrylates of the above-described polyester diols include polyester (meth) acrylates obtained by a reaction between a hydroxyl group-containing polyester and (meth) acrylic acid.
  • examples of the polyether (meth) acrylate the polyether acrylate obtained by reaction of a hydroxyl-containing polyether and acrylic acid can be mentioned.
  • di (meth) acrylate of ethylene oxide-modified bisphenol A and / or di (meth) acrylate of bis (hydroxymethyl) tricyclodecane is preferably used as the di (meth) acrylate compound (B-1a). It is done.
  • poly (meth) acrylate compound (B-1b) a reaction product having three or more (meth) acryloyloxy groups obtained by reacting an epoxy compound with (meth) acrylic acid, a trivalent or more Poly (meth) acrylic acid ester of polyhydric alcohol or its alkylene oxide adduct, having 3 or more (meth) acryloyloxy groups obtained by reacting polyester having 3 or more hydroxyl groups and (meth) acrylate
  • Examples include polyethylene poly (meth) acrylate.
  • reaction product having three or more (meth) acryloyloxy groups obtained by reacting the epoxy compound with (meth) acrylic acid an epoxy novolac resin and (meth) acrylic acid are reacted.
  • examples thereof include an epoxy (meth) acrylate reaction product having three or more (meth) acryloyloxy groups to be obtained.
  • examples of the poly (meth) acrylate obtained by the reaction of a trihydric or higher polyhydric alcohol or its alkylene oxide adduct and (meth) acrylic acid include trimethylolpropane tri (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
  • Pentaerythritol tetra (meth) acrylate Pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, polyols such as triols, tetraols, hexaols, etc.
  • Preferred examples include (meth) acrylates of alkylene oxide adducts and poly (meth) acrylates of hyperbranched polyesters having dimethylolpropionic acid as a structural unit. Rukoto can.
  • the poly (meth) acrylate compound (B-1b) dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate or alkylene oxide thereof.
  • a modified product is preferably used.
  • the resin composition for optical modeling according to the present invention is necessary together with the di (meth) acrylate compound (B-1a) and / or the poly (meth) acrylate compound (B-1b) as the radical polymerizable organic compound (B). Accordingly, other radically polymerizable organic compounds can be contained.
  • the content ratio is preferably 30% by mass or less, and 20% by mass or less based on the total mass of the radical polymerizable organic compound (B). Is more preferable.
  • the kind of the other radical polymerizable organic compound that the resin composition for optical modeling of the present invention can contain as necessary is not particularly limited.
  • mono (meth) having one (meth) acryloyloxy group for example, mono (meth) having one (meth) acryloyloxy group.
  • An acrylate compound, an unsaturated polyester compound, a polythiol compound, etc. can be mentioned, These other radically polymerizable organic compounds may be used individually, or may use 2 or more types together.
  • the mono (meth) acrylate compound described above examples include 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) Examples include acrylate, isooctyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, and benzyl (meth) acrylate.
  • the resin composition for optical modeling according to the present invention has the following general formula (II) as a cationic polymerization initiator (C) for polymerizing and / or crosslinking the cationically polymerizable organic compound (A);
  • the phosphorus-type aromatic sulfonium compound (II) represented by these is contained.
  • the phosphorus-based aromatic sulfonium compound (II) includes a cation represented by the formula: [S + (R 2 ) a (R 3 ) b (R 4 ) c ] and a formula: [P ⁇ F 6-n (Rf ) An anion represented by n ] is an ion-bonded salt.
  • R 2 and R 3 are each independently a phenyl group represented by the following formula (i), a phenyl chloride group or a fluorophenyl group represented by the formula (ii)
  • X represents a chlorine atom or a fluorine atom].
  • R 2 and R 3 may be the same or different.
  • R 4 is a 4′-diphenylsulfonio-4-phenylthiophenyl group represented by the following formula (v).
  • a and b are both integers of 0 to 3, c is 0 or 1, and the sum of a, b and c is 3. Therefore, in the phosphorus-based aromatic sulfonium compound (II), the sum of a and b is 3 or 2, and c is 0 or 1.
  • Rf is a fluoroalkyl group having 1 to 8 carbon atoms.
  • Rf is a fluoroalkyl group in which some of the hydrogen atoms in the alkyl group having 1 to 8 carbon atoms are substituted with fluorine atoms, or all the hydrogen atoms in the alkyl group having 1 to 8 carbon atoms are substituted with fluorine atoms. Any of perfluoroalkyl groups may be used.
  • Rf is preferably a perfluoroalkyl group in which all of the hydrogen atoms in the alkyl group having 1 to 8 carbon atoms are substituted with fluorine atoms, from the viewpoint of reactivity, and preferable specific examples of Rf are as follows.
  • n is an integer of 0 to 5
  • n is preferably an integer of 0 to 4, particularly 0 to 3.
  • two or more fluoroalkyl groups Rf may be the same or different.
  • m is the same number as 1 + c.
  • R 4 group represented by the above formula (v)]
  • phosphorus-based aromatic sulfonium compound (II) preferably used in the present invention include any of the compounds represented by the following formulas (II-1) to (II-12), or Examples thereof include a mixture of the compound represented by (II-3) and the compound represented by formula (II-10).
  • the production method of the phosphorus-based aromatic sulfonium compound (II) is not particularly limited, and can be produced, for example, by the methods described in Patent Document 7 and Patent Document 8.
  • the sulfonium chloride represented by the general formula (II-A) which is a raw material to be used, can be produced, for example, by the method described in Patent Document 5, and the general formula (II-B)
  • the represented lithium fluorophosphate can be produced by the method described in Patent Document 6.
  • an active energy ray-sensitive radical polymerization initiator (D) for polymerizing and / or crosslinking the radical polymerizable organic compound (B).
  • radical polymerization initiator any polymerization initiator capable of initiating radical polymerization of a radical polymerizable organic compound when irradiated with active energy rays can be used, for example, benzyl or a dialkyl acetal compound thereof. Benzoyl compounds, acetophenone compounds, benzoin or alkyl ether compounds thereof, benzophenone compounds, thioxanthone compounds, and the like.
  • examples of benzyl or a dialkyl acetal compound thereof include benzyl dimethyl ketal and benzyl- ⁇ -methoxyethyl acetal.
  • examples of the benzoyl compound include 1-hydroxycyclohexyl phenyl ketone.
  • acetophenone compounds include diethoxyacetophenone, 2-hydroxymethyl-1-phenylpropan-1-one, 4′-isopropyl-2-hydroxy-2-methyl-propiophenone, 2-hydroxy-2 -Methyl-propiophenone, p-dimethylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-azidobenzalacetophenone and the like.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin normal butyl ether, and benzoin isobutyl ether.
  • benzophenone compounds include benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4′-bisdiethylaminobenzophenone, 4,4′-dichlorobenzophenone, and the like.
  • thioxanthone compound examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, and 2-isopropylthioxanthone.
  • 1 type, or 2 or more types of radical polymerization initiator (D) can be mix
  • the content ratio of the cationic polymerizable organic compound (A): radical polymerizable organic compound (B) is 40:60 to 90:10 from the viewpoint of modeling speed, modeling accuracy, and the like. (Mass ratio) is preferable, and 50:50 to 75:25 (mass ratio) is more preferable.
  • the resin composition for optical modeling according to the present invention comprises the phosphorous aromatic sulfonium compound (II) in an amount of 0.1 to 10% by mass, particularly 1 to 5% by mass, based on the mass of the cationically polymerizable organic compound (A).
  • the radical polymerization initiator (D) is contained in an amount of 0.1 to 20% by mass, particularly 1 to 10% by mass, based on the mass of the radical polymerizable organic compound (B). preferable.
  • the resin composition for optical modeling according to the present invention may further contain a photosensitizer, for example, dialkoxyanthracene such as dibutoxyanthracene, thioxanthone, or the like, if necessary, for the purpose of improving the reaction rate.
  • a photosensitizer for example, dialkoxyanthracene such as dibutoxyanthracene, thioxanthone, or the like, if necessary, for the purpose of improving the reaction rate.
  • the resin composition for optical modeling of the present invention can optionally contain a polyalkylene ether compound, and if it contains a polyalkylene ether compound, the impact resistance of the resulting three-dimensional modeled object, etc. Physical properties are improved.
  • polyalkylene ether compounds the following general formula (V): AO— (R 10 —O—) r — (R 11 —O—) s —A ′ (V) [Wherein, R 10 and R 11 are linear or branched alkylene groups having 2 to 5 carbon atoms different from each other, A and A ′ each independently represent a hydrogen atom, an alkyl group or a phenyl group; Each s independently represents 0 or an integer of 1 or more (provided that both r and s are not 0 at the same time). ]
  • a polyalkylene ether compound represented by the formula is preferably used.
  • polyalkylene ether compound (V) represented by the above general formula (V) [hereinafter sometimes referred to as “polyalkylene ether compound (V)”]
  • r and s are integers of 1 or more
  • r and s In the case where the sum of the above is 3 or more, the oxyalkylene unit (alkylene ether unit): —R 10 —O— and the oxyalkyne unit (alkylene ether unit): —R 11 —O— are bonded in a random manner. Alternatively, they may be combined in a block shape, or random bonds and block bonds may be mixed.
  • R 10 and R 11 include ethylene group, n-propylene group, isopropylene group, n-butylene group (tetramethylene group), isobutylene group, tert- A butylene group, a linear or branched pentylene group [for example, —CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH (CH 3 ) CH 2 — etc.], etc.] .
  • R 10 and R 11 are ethylene group, n-propylene group, isopropylene group, n-butylene group (tetramethylene group), n-pentylene group, formula: —CH 2 CH 2 CH (CH 3 ) CH It is preferably any one of branched pentylene groups represented by 2- .
  • a and A ′ include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group. It is preferable that at least one of A and A ′, particularly both are hydrogen atoms.
  • a and A ′ is a hydrogen atom
  • both ends of the polyalkylene ether compound are obtained when the resin composition for optical modeling containing the polyalkylene ether compound is cured by irradiation with active energy rays.
  • These hydroxyl groups react with an epoxy compound, a radical polymerization initiator, and the like, and the polyalkylene ether compound is bonded in the cured resin, and properties such as impact resistance are further improved.
  • polyalkylene ether compound (V) which indicate the number of repeating oxyalkylene units, have a number average molecular weight of the polyalkylene ether compound in the range of 500 to 10,000, particularly 500 to 5,000.
  • the number is preferably such that
  • Suitable examples of the polyalkylene ether compound (V) include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene oxide-polypropylene oxide block copolymer, random copolymer of ethylene oxide and propylene oxide,
  • Oxytetramethylene with an alkyl substituent there may be mentioned polyether bonded randomly.
  • the island portion can be composed of one or more of the polyalkylene ether compounds described above.
  • a polytetramethylene glycol and / or tetramethylene ether unit having a number average molecular weight in the range of 500 to 10,000 described above and a formula: —CH 2 CH 2 CH (R 12 ) CH 2 O— (wherein R 12 is a polyether in which tetramethylene ether units having an alkyl substituent represented by a lower alkyl group are randomly bonded.
  • R 12 is a polyether in which tetramethylene ether units having an alkyl substituent represented by a lower alkyl group are randomly bonded.
  • the hygroscopic property is low, and the dimensional stability and physical property stability are reduced. An excellent stereolithography can be obtained.
  • the content of the polyalkylene ether compound (V) is 1 with respect to the total mass of the resin composition for optical modeling. It is preferably ⁇ 30% by mass, more preferably 2 to 20% by mass. Moreover, you may contain the 2 or more types of polyalkylene ether type compound simultaneously in the range which does not exceed the said content.
  • the resin composition for optical modeling of the present invention may have the following general formula (VI), if necessary: HO—R 13 —OH (VI) (In the formula, R 13 represents a linear or branched alkylene group having 5 to 8 carbon atoms.) It may contain at least one of the bifunctional hydroxy compound (VI) represented by: Incorporation of the bifunctional hydroxy compound (VI) in the resin composition for optical modeling according to the present invention results in an extremely low moisture content even when stored for a long period of time in a low humidity state, such as during drying in winter. In addition, moisture necessary for photocuring (generally 0.3 to 1% by mass, preferably 0.4 to 0.8% by mass) is stably retained in the composition, so that it can be dried during winter.
  • the content thereof is 1 to 10% by mass based on the mass of the resin composition for optical modeling, further 1 to 7% by mass, particularly 1 to 5% by mass. Preferably there is.
  • bifunctional hydroxy compound (VI) include bifunctional hydroxy compounds in which R 13 is an alkylene group having 5 carbon atoms [for example, HO—CH 2 CH 2 CH 2 CH 2 CH 2 —OH, HO—CH. (CH 3 ) CH 2 CH 2 —OH, HO—CH 2 CH (CH 3 ) CH 2 CH 2 —OH, HO—CH (CH 3 ) CH (CH 3 ) CH 2 —OH, HO—C ( CH 3 ) 2 CH 2 CH 2 —OH, HO—CH 2 C (CH 3 ) 2 CH 2 —OH]; a bifunctional hydroxy compound in which R 2 is a C 6 alkylene group [eg HO—CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —OH, HO—CH (CH 3 ) CH 2 CH 2 CH 2 —OH, HO—CH 2 CH (CH 3 ) CH 2 CH 2 CH 2 —OH, HO— CH 2 CH 2 CH (CH 3 ) CH 2 CH 2 —OH, HO— CH 2
  • neopentyl glycol 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1,8-octanediol are available.
  • neopentyl glycol and 1,6-hexanediol are particularly preferred.
  • the resin composition for optical modeling of the present invention is a colorant such as a pigment or a dye, an antifoaming agent, a leveling agent, a thickener, a flame retardant, or an antioxidant, as necessary, unless the effects of the present invention are impaired. Further, it may contain an appropriate amount of one kind or two or more kinds of fillers (crosslinked polymer particles, silica, glass powder, ceramic powder, metal powder, etc.) and a modifying resin.
  • a colorant such as a pigment or a dye, an antifoaming agent, a leveling agent, a thickener, a flame retardant, or an antioxidant, as necessary, unless the effects of the present invention are impaired. Further, it may contain an appropriate amount of one kind or two or more kinds of fillers (crosslinked polymer particles, silica, glass powder, ceramic powder, metal powder, etc.) and a modifying resin.
  • any conventionally known optical three-dimensional modeling method and apparatus can be used.
  • the active energy ray is selectively irradiated so that a cured layer having a desired pattern is obtained in the liquid resin composition for optical modeling of the present invention.
  • a cured layer is formed, and then an uncured liquid optical modeling resin composition is supplied to the cured layer, and similarly, a cured layer continuous with the cured layer is formed by irradiating active energy rays.
  • the method of finally obtaining the target three-dimensional molded item can be mentioned by repeating lamination
  • Examples of the active energy rays at that time include ultraviolet rays, electron beams, X-rays, radiation, and high frequencies as described above.
  • ultraviolet rays having a wavelength of 300 to 400 nm are preferably used from an economical viewpoint, and as a light source at that time, an ultraviolet laser (for example, a semiconductor-excited solid laser, an Ar laser, a He—Cd laser), a high-pressure mercury lamp is used.
  • an ultraviolet laser for example, a semiconductor-excited solid laser, an Ar laser, a He—Cd laser
  • a high-pressure mercury lamp is used as a light source at that time.
  • Ultra high pressure mercury lamps, low pressure mercury lamps, xenon lamps, halogen lamps, metal halide lamps, ultraviolet LEDs (light emitting diodes), ultraviolet fluorescent lamps, and the like can be used.
  • each cured resin layer having a predetermined shape pattern by irradiating active energy rays onto a modeling surface made of a resin composition for optical modeling active energy rays narrowed to a point like a laser beam are used. It may be used to form a cured resin layer by dot or line drawing, or through a planar drawing mask formed by arranging multiple micro light shutters such as liquid crystal shutters or digital micromirror shutters (DMD). You may employ
  • the resin composition for optical modeling of the present invention can be widely used in the field of optical three-dimensional modeling and is not limited at all, but as a typical application field, in order to verify the appearance design in the middle of the design Shape verification models, functional test models for checking the functionality of parts, master models for producing molds, master models for producing molds, direct molds for prototype molds, and the like.
  • the resin composition for optical modeling according to the present invention is very effective for producing a shape confirmation model or a function test model of a precise part. More specifically, for example, it can be effectively used for applications such as precision parts, electrical / electronic parts, furniture, building structures, automotive parts, various containers, castings, models, mother dies, processing, etc. .
  • Viscosity of resin composition for optical modeling The resin composition for stereolithography is put in a thermostatic bath at 25 ° C., and the temperature of the photocurable resin composition is adjusted to 25 ° C. Measured at 20 rpm.
  • Curing depth (Dp), critical curing energy (Ec) and work curing energy (E 10 ) of the resin composition for stereolithography It was measured according to the theory described in Non-Patent Document 1. Specifically, a laser beam (ultraviolet light with a wavelength of 355 nm, a liquid surface laser intensity of 100 mW) of a semiconductor-excited solid laser is applied to a modeling surface (liquid surface) made of a resin composition for optical modeling, and the irradiation speed is changed in six steps ( The photocured film was formed by irradiating with the irradiation energy amount changed by 6 levels.
  • a laser beam ultraviolet light with a wavelength of 355 nm, a liquid surface laser intensity of 100 mW
  • the produced photocured film was taken out from the resin composition liquid for photofabrication, the uncured resin was removed, and the thickness of the cured film corresponding to six levels of energy was measured with a vernier caliper. Plotting the photocured film thickness as the Y-axis and the irradiation energy amount as the X-axis (logarithmic axis), obtaining the cure depth [Dp (mm)] from the slope of the straight line obtained by plotting, and intercepting the X-axis was the critical curing energy [Ec (mJ / cm 2 )], and the exposure energy required to cure to a thickness of 0.25 mm was the work curing energy [(E 10 / (mJ / cm 2 )].
  • Tensile properties of the optically shaped article (tensile breaking strength, tensile breaking elongation, tensile elastic modulus): Using the optically shaped article (dumbbell-shaped test piece conforming to JIS K-7113) produced in the following examples or comparative examples, the tensile breaking strength (tensile strength) and tensile strength of the test piece according to JIS K-7113 The breaking elongation (tensile elongation) and tensile modulus were measured.
  • yield strength of stereolithography In the tensile property test of (3) above, the yield strength was defined as the strength at which the optically shaped article moves from elasticity to plasticity.
  • Flexural properties (bending strength, flexural modulus) of stereolithography The bending strength and the flexural modulus of the test piece were measured according to JIS K-7171 using the optically shaped article (bar-shaped test piece conforming to JIS K-7171) produced in the following examples or comparative examples. .
  • Hardness of stereolithography (Shore D hardness): Using an optically shaped article (dumbbell-shaped test piece conforming to JIS K-7113) produced in the following examples and comparative examples, an “Asker D-type hardness meter” manufactured by Kobunshi Keiki Co., Ltd. was used. In accordance with K-6253, the hardness (Shore D hardness) of the test piece was measured by the durometer method.
  • Example 1 53 parts of bisphenol A diglycidyl ether (“EP-4100E” manufactured by ADEKA), 15 parts of 3-hydroxymethyl-3-ethyloxetane (“OXT-101” manufactured by Toagosei Co., Ltd.), tricyclodecane dimethanol di 20 parts of acrylate (“A-DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.), 5 parts of dipentaerythritol hexaacrylate (“NK Ester A-9530” manufactured by Shin-Nakamura Chemical Co., Ltd.), phosphorus-based aromatic sulfonium compound (II-1) ) And a phosphorus-based aromatic sulfonium compound (II-12) (“Chivacure 1190” manufactured by Double Bond Chemical Co., Ltd.) and 1-hydroxy-cyclohexyl phenyl ketone (“Irgacure-184” manufactured by Ciba Specialty Chemicals, 2 parts of radical polymerization initiator) at room temperature (25
  • a semiconductor laser (rated output 1000 mW; wavelength 355 nm) using an ultra-high-speed optical modeling system (“SOLIFORM 500B” manufactured by Nabtesco Corporation); Spectra Physics "semiconductor-excited solid laser BL6 type", with a liquid surface of 100 mW and a liquid surface irradiation energy of 80 mJ / cm 2 , a slice pitch (lamination thickness) of 0.10 mm and an average modeling time of 2 minutes per layer 3D is subjected to optical three-dimensional modeling, and the resulting molded article is irradiated with ultraviolet rays (high pressure mercury lamp, wavelength 365 nm, intensity 3.0 mw / cm 2 ) for 20 minutes to be post-cured to JIS K-7113 for measuring physical properties.
  • ultraviolet rays high pressure mercury lamp, wavelength 365 nm, intensity 3.0 mw / cm 2
  • Test piece and to produce a rectangular string-like shaped article was measured its properties in the manner described above. The results are shown in Table 1 below.
  • Example 2 (1) In the same manner as (1) of Example 1 except that 53 parts of tricyclodecane dimethanol diglycidyl ether (ADEKA “EP-4088S”) was used instead of 53 parts of bisphenol A diglycidyl ether. Then, a resin composition for optical modeling was prepared, and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1, and the results were as shown in Table 1 below. (2) Using the resin composition for optical modeling obtained in (1) above, optical three-dimensional modeling and post-curing with ultraviolet rays are performed in the same manner as in (3) of Example 1, and the three-dimensional model obtained The physical properties of (Test piece) were measured and as shown in Table 1 below.
  • Example 3 (1) In the same manner as (1) of Example 1 except that 53 parts of trimethylolpropane triglycidyl ether (“EX-321” manufactured by Nagase ChemteX Corporation) was used instead of 53 parts of bisphenol A diglycidyl ether. Then, a resin composition for optical modeling was prepared, and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1, and the results were as shown in Table 1 below. (2) Using the resin composition for optical modeling obtained in (1) above, optical three-dimensional modeling and post-curing with ultraviolet rays are carried out in the same manner as in (3) of Example 1, and the resulting three-dimensional model is obtained. The physical properties of (Test piece) were measured and as shown in Table 1 below.
  • Example 4 (1) In the same manner as in (1) of Example 1, except that 53 parts of resorcinol diglycidyl ether (“EX-201” manufactured by Nagase ChemteX Corporation) was used instead of 53 parts of bisphenol A diglycidyl ether.
  • EX-201 resorcinol diglycidyl ether
  • the results were as shown in Table 1 below.
  • Example 1 instead of 53 parts of bisphenol A diglycidyl ether, 48 parts of bisphenol A diglycidyl ether and 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate A resin composition for optical modeling was prepared in the same manner as (1) of Example 1 except that 5 parts ("DVR Chemical”"UVR-6105") was used, and the physical properties of this resin composition for optical modeling were carried out. The measurement was conducted in the same manner as in Example 1 (2), and the results were as shown in Table 1 below.
  • the resin compositions for optical modeling of Examples 1 to 4 are (meth) acrylate compounds (B) having at least two polyglycidyloxy compounds (I) and (meth) acryloyloxy. -1), a cationic polymerization initiator composed of a phosphorus aromatic sulfonium compound (I), and a radical polymerization initiator, while containing no cycloalkene oxide structure-containing cationic polymerizable organic compound.
  • the curing sensitivity is high, the optical modeling can be performed smoothly, and the obtained optical modeling object has excellent characteristics depending on the type of the raw material compound used.
  • the resin compositions for stereolithography of Comparative Examples 1 and 2 are polyglycidyloxy compound (I), (meth) acrylate compound (B-1) having two or more (meth) acryloyloxy, phosphorus-based aromatic
  • a cationic polymerization initiator comprising a group sulfonium compound (I) and a photopolymerization resin composition containing a radical polymerization initiator, but having a cycloalkene oxide structure-containing cationic polymerizable organic compound as part of the cationic polymerizable organic compound
  • the resin composition for optical modeling is inferior in photocurability, is poorly modeled, the modeled product has no shape retention, and is immediately damaged, so that optical modeling cannot be performed smoothly. .
  • Example 5 (1) In place of 53 parts of bisphenol A diglycidyl ether, except that 53 parts of 1,4-cyclohexanedimethanol diglycidyl ether (“DME-100” manufactured by Shin Nippon Rika Kogyo Co., Ltd.) was used, A resin composition for optical modeling was prepared in the same manner as in 1), and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1. The results were as shown in Table 2 below. It was. (2) Using the resin composition for optical modeling obtained in (1) above, optical three-dimensional modeling and post-curing with ultraviolet rays are carried out in the same manner as in (3) of Example 1, and the resulting three-dimensional model is obtained. The physical properties of (Test piece) were measured and as shown in Table 2 below.
  • DME-100 1,4-cyclohexanedimethanol diglycidyl ether
  • Example 6 (1) Instead of 53 parts of bisphenol A diglycidyl ether, diglycidyl ether of ethylene oxide-added bisphenol A (one mole of ethylene oxide added to each of the two hydroxyl groups of bisphenol A) (“BPO” manufactured by Shin Nippon Rika Kogyo Co., Ltd.) ⁇ 20E ”) Except for using 53 parts, a resin composition for optical modeling was prepared in the same manner as (1) of Example 1, and the physical properties of this resin composition for optical modeling were changed to (2) of Example 1. Was measured in the same manner as in Table 2 below.
  • Example 7 (1) In place of 53 parts of bisphenol A diglycidyl ether, the epichlorohydrin multiple adduct of pentaerythritol polyglycidyl ether ("EX-411" manufactured by Nagase ChemteX Corporation) was used except that 53 parts of Example 1
  • the resin composition for stereolithography was prepared in the same manner as in Example 1, and the physical properties of this resin composition for stereolithography were measured in the same manner as in (2) of Example 1. The results were as shown in Table 2 below. .
  • the resin compositions for optical modeling of Examples 5 to 7 are (meth) acrylate compounds (B) having two or more polyglycidyloxy compounds (I) and (meth) acryloyloxy. -1), a cationic polymerization initiator composed of a phosphorus-based aromatic sulfonium compound (I), and a radical polymerization initiator, while containing no cycloalkene oxide structure-containing cationic polymerizable organic compound. Also in the physical properties of the three-dimensional structure obtained by photocuring with high curing sensitivity, it is inferior to the optical structure obtained from the resin composition for optical modeling in Reference Example 1 using an antimony cationic polymerization initiator. In some cases, it is superior to the optically shaped article obtained from the resin composition for optical shaping of Reference Example 1.
  • Example 8 (1) Instead of 53 parts of bisphenol A diglycidyl ether, the same procedure as in (1) of Example 1 was performed except that 53 parts of hydrogenated diglycidyl phthalate ("jER191P" manufactured by Japan Epoxy Resin Co., Ltd.) was used.
  • the resin composition for optical modeling was prepared and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1, it was as shown in Table 3 below.
  • Example 9 (1) In the same manner as (1) of Example 1 except that 53 parts of bisphenol A diglycidyl ether was used instead of 53 parts of diglycidyl phthalate (“EX-721” manufactured by Nagase ChemteX Corporation).
  • EX-721 diglycidyl phthalate
  • the resin composition for optical modeling was prepared and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1, it was as shown in Table 3 below.
  • the physical properties of (Test specimen) were measured and as shown in Table 3 below.
  • Example 8 instead of 53 parts of hydrogenated phthalic acid diglycidyl ester, 48 parts of hydrogenated phthalic acid diglycidyl ester and 3,4-epoxycyclohexylmethyl-3 ′, 4′- A resin composition for optical modeling was prepared in the same manner as (1) of Example 9 except that 5 parts of epoxycyclohexanecarboxylate (“UVR-6105” manufactured by Dow Chemical Co., Ltd.) was used. The physical properties of were measured in the same manner as (2) of Example 1 and were as shown in Table 3 below. (2) When the optical three-dimensional modeling was performed in the same manner as (3) of Example 1 using the resin composition for optical modeling obtained in (1) above, the resin for optical modeling of Comparative Example 3 was used.
  • UVR-6105 epoxycyclohexanecarboxylate
  • composition contains 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, it is inferior in photocurability, poorly shaped, and the shaped product has no shape retention and is immediately damaged. As a result, a three-dimensional structure (test piece) could not be manufactured.
  • the resin compositions for optical modeling of Examples 8 and 9 are P-based because the photopolymerization sensitivity to the P-based cationic polymerization initiator is low as the cationic polymerizable organic compound.
  • hydrogenated phthalic acid diglycidyl ester or phthalic acid diglycidyl ester which has been rarely used in the past in resin compositions for optical modeling using a cationic polymerization initiator, it contains a cycloalkene oxide structure. Since it did not contain a cationically polymerizable organic compound, the photocuring sensitivity was high and the optical modeling could be performed smoothly.
  • the resin composition for stereolithography of Comparative Example 3 contains a cation polymerizable organic compound containing a cycloalkene oxide structure together with a hydrogenated phthalic acid diglycidyl ester as a cation polymerizable organic compound.
  • the photocuring sensitivity with respect to the photopolymerization initiator is low, the photocuring property is inferior, the modeling is poor, the modeled product has no shape retaining property, and is immediately damaged, and the optical modeling cannot be performed smoothly.
  • Example 10 (1) In place of 53 parts of bisphenol A diglycidyl ether, (1) of Example 1 except that 53 parts of hydrogenated bisphenol A diglycidyl ether (“HBE-100” manufactured by Shin Nippon Rika Kogyo Co., Ltd.) was used. Similarly, a resin composition for optical modeling was prepared, and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1. The results were as shown in Table 4 below. (2) Using the resin composition for optical modeling obtained in (1) above, optical three-dimensional modeling and post-curing with ultraviolet rays are carried out in the same manner as in (3) of Example 1, and the resulting three-dimensional model is obtained. The physical properties of (Test piece) were measured and as shown in Table 4 below.
  • Example 11 In Example 10 (1), as a cationic polymerization initiator made of a phosphorus-based aromatic sulfonium compound, instead of “Chibacycle 1190”, a phosphorus-based aromatic represented by the above formula (II-1) A resin composition for stereolithography was prepared in the same manner as (1) of Example 10 except that 5 parts of a catalyst composed of a sulfonium compound (II-1) alone (“CPI-100P” manufactured by Sun Apro) was used. The physical properties of this resin composition for optical modeling were measured in the same manner as in Example 1 (2), and as shown in Table 4 below.
  • a resin composition for stereolithography was prepared in the same manner as (1) of Example 10 except that 5 parts of a catalyst composed of a group III sulfonium compound (II-1) alone (“CPI-100P” manufactured by Sun Apro) was used.
  • Example 13 (1) In Example 1 (1), instead of 5 parts of dipentaerythritol hexaacrylate, tetraacrylate of ethylene oxide-added pentaerythritol (one mole of ethylene oxide added to four hydroxyl groups of pentaerythritol) As a cationic polymerization initiator composed of a phosphorus-based aromatic sulfonium compound, 5 parts of “ATM-4E” manufactured by Shin-Nakamura Chemical Co., Ltd. Resin composition for stereolithography in the same manner as (1) of Example 10 except that 5 parts of a catalyst comprising a phosphorous aromatic sulfonium compound (II-1) alone (“CPI-100P” manufactured by San Apro) was used.
  • a catalyst comprising a phosphorous aromatic sulfonium compound (II-1) alone (“CPI-100P” manufactured by San Apro) was used.
  • Example 10 instead of 5 parts of a cationic polymerization initiator made of a phosphorus aromatic sulfonium compound, an antimony cationic polymerization initiator [in the catalyst of the above formula (II-1),
  • the resin composition for stereolithography was prepared in the same manner as in Example 10 (1) except that 5 parts of “CPI-101A” manufactured by San Apro Co., Ltd. was used instead of “PF 6 ⁇ ” in place of “SbF 6 ⁇ ”. It was as shown in Table 4 below when it prepared and measured the physical property of this resin composition for optical modeling similarly to (2) of Example 1.
  • Example 10 instead of 53 parts of hydrogenated bisphenol A diglycidyl ether, 48 parts of hydrogenated bisphenol A diglycidyl ether and 3,4-epoxycyclohexylmethyl-3 ′, 4′- A resin composition for stereolithography was prepared in the same manner as (1) of Example 10 except that 5 parts of epoxycyclohexanecarboxylate ("UVR-6105" manufactured by Dow Chemical Co., Ltd.) was used. The physical properties of were measured in the same manner as (2) of Example 1, and were as shown in Table 5 below. (2) When the optical three-dimensional modeling was performed in the same manner as (3) of Example 1 using the resin composition for optical modeling obtained in (1) above, the resin for optical modeling of Comparative Example 4 was used.
  • UVR-6105 epoxycyclohexanecarboxylate
  • composition contains 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, it is inferior in photocurability, poorly shaped, and the shaped product has no shape retention and is immediately damaged. As a result, a three-dimensional structure (test piece) could not be manufactured.
  • Example 10 instead of 53 parts of hydrogenated bisphenol A diglycidyl ether, 48 parts of hydrogenated bisphenol A diglycidyl ether and bis (3,4-epoxycyclohexylmethyl) adipate (Dow Chemical) A resin composition for optical modeling was prepared in the same manner as in (1) of Example 10 except that 5 parts of “UVR-6128” manufactured by the company was used. When measured in the same manner as in (2), it was as shown in Table 5 below. (2) When the optical three-dimensional modeling was performed in the same manner as (3) of Example 1 using the resin composition for optical modeling obtained in (1) above, the resin for optical modeling of Comparative Example 4 was used.
  • composition contains 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, it is inferior in photocurability, poorly shaped, and the shaped product has no shape retention and is immediately damaged. As a result, a three-dimensional structure (test piece) could not be manufactured.
  • Example 10 instead of 53 parts of hydrogenated bisphenol A diglycidyl ether, 48 parts of hydrogenated bisphenol A diglycidyl ether and 5 parts of vinylcyclohexene dioxide (Fluka) were used. Except that the resin composition for optical modeling was prepared in the same manner as in (1) of Example 10, and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1. Table 5 shows the results. (2) When the optical three-dimensional modeling was performed in the same manner as (3) of Example 1 using the resin composition for optical modeling obtained in (1) above, the resin for optical modeling of Comparative Example 4 was used.
  • Fluka vinylcyclohexene dioxide
  • composition contains 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, it is inferior in photocurability, poorly shaped, and the shaped product has no shape retention and is immediately damaged. As a result, a three-dimensional structure (test piece) could not be manufactured.
  • Example 10 instead of 53 parts of hydrogenated bisphenol A diglycidyl ether, 48 parts of hydrogenated bisphenol A diglycidyl ether and 5 parts of limonene dioxide ("Celoxide 3000" manufactured by Daicel Chemical Industries, Ltd.)
  • the resin composition for optical modeling was prepared in the same manner as in Example 10 (1) except that the physical properties of the resin composition for optical modeling were measured in the same manner as in (2) of Example 1. However, it was as shown in Table 5 below.
  • the optical three-dimensional modeling was performed in the same manner as (3) of Example 1 using the resin composition for optical modeling obtained in (1) above, the resin for optical modeling of Comparative Example 4 was used.
  • composition contains 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, it is inferior in photocurability, poorly shaped, and the shaped product has no shape retention and is immediately damaged. As a result, a three-dimensional structure (test piece) could not be manufactured.
  • the resin compositions for stereolithography of Examples 10 to 13 are (meth) acrylate compounds (B) having two or more polyglycidyloxy compounds (I) and (meth) acryloyloxy. -1), a cationic polymerization initiator composed of a phosphorus-based aromatic sulfonium compound (I), and a radical polymerization initiator, while containing no cycloalkene oxide structure-containing cationic polymerizable organic compound. Also in the physical property of the three-dimensional molded article obtained by photocuring with high curing sensitivity, it is inferior to the optical molded article obtained from the resin composition for optical molding in Reference Example 2 using an antimony cationic polymerization initiator. There is no.
  • the resin composition for stereolithography was prepared in the same manner as (1) of Example 10 except that 5 parts
  • a resin composition for optical modeling was prepared in the same manner as in Example 10 (1), and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1. It was as shown in. (2) Using the resin composition for optical modeling obtained in (1) above, optical three-dimensional modeling and post-curing with ultraviolet rays are carried out in the same manner as in (3) of Example 1, and the resulting three-dimensional model is obtained. The physical properties of (Test piece) were measured and as shown in Table 6 below.
  • acrylate functional group number 16, “CN2302” manufactured by Sartomer
  • Example 17 (1) In Example 10 (1), instead of 5 parts of dipentaerythritol hexaacrylate, tetraacrylate of ethylene oxide-added pentaerythritol (one mole of ethylene oxide added to four hydroxyl groups of pentaerythritol) (Shin Nakamura) A resin composition for optical modeling was prepared in the same manner as (1) of Example 10 except that 5 parts of “ATM-4E” manufactured by Kagaku Kogyo Co., Ltd. were used. Measurements were carried out in the same manner as in Example 1 (2), and the results were as shown in Table 6 below.
  • Example 18 In Example 10 (1), instead of 5 parts of dipentaerythritol hexaacrylate, propylene oxide-added pentaerythritol (one mole of propylene oxide added to four hydroxyl groups of pentaerythritol) tetraacrylate (Shin Nakamura)
  • a resin composition for optical modeling was prepared in the same manner as (1) of Example 10 except that 5 parts of “ATM-4P” manufactured by Kagaku Kogyo Co., Ltd. were used, and the physical properties of this resin composition for optical modeling were carried out. Measurements were carried out in the same manner as in Example 1, (2), and as shown in Table 6 below.
  • Example 19 (1) In Example 10 (1), as a cationic polymerization initiator made of a phosphorus-based aromatic sulfonium compound, instead of “Chibacycle 1190”, a phosphorus-based aromatic represented by the above formula (II-1) A resin composition for stereolithography was prepared in the same manner as in (1) of Example 10 except that 5 parts of sulfonium compound (II-4) (“CPI-200K” manufactured by San Apro Co., Ltd.) was used. The physical properties of the resin composition were measured in the same manner as in Example 1 (2), and as shown in Table 6 below.
  • Example 20 (1) In Example 10 (1), as a cationic polymerization initiator made of a phosphorus-based aromatic sulfonium compound, instead of 5 parts of “Chivacure 1190”, a phosphorus-based compound represented by the above formula (II-1) 3.5 parts of an aromatic sulfonium compound (“CPI-100P” manufactured by Sun Apro) and 1 phosphorus-based aromatic sulfonium compound (“CPI-200K” manufactured by Sun Apro) represented by the above formula (II-4)
  • the resin composition for optical modeling was prepared in the same manner as (1) of Example 10 except that .5 parts were used, and the physical properties of this resin composition for optical modeling were the same as (2) of Example 1. When measured, it was as shown in Table 7 below.
  • Example 21 As a cationic polymerization initiator made of a phosphorus-based aromatic sulfonium compound, instead of 5 parts of “Chivacure 1190”, a phosphorus-based compound represented by the above formula (II-1) Except for using 5 parts of aromatic sulfonium compound (“CPI-100P” manufactured by Sun Apro) and further adding 10 parts of polyalkylene ether (polytetramethylene glycol having a number average molecular weight of 2000) (“PTG2000SN” manufactured by Hodogaya Chemical Co., Ltd.) was prepared in the same manner as in Example 10 (1), and the physical properties of this optical modeling resin composition were measured in the same manner as in Example 1 (2).
  • CPI-100P aromatic sulfonium compound
  • PSG2000SN polyalkylene ether
  • Example 22 >> (1)
  • 10 parts of polyalkylene ether (polytetramethylene glycol having a number average molecular weight of 2000) ("PTG2000SN" manufactured by Hodogaya Chemical Co., Ltd.) was further added.
  • the resin composition for optical modeling was prepared in the same manner as in (1), and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1, as shown in Table 7 below. there were.
  • the physical properties of (Test piece) were measured and as shown in Table 7 below.
  • Example 23 >> (1) In Example 1 except that 10 parts of polyalkylene ether (diglycidyl ether of polytetramethylene glycol, number average molecular weight 780) (“Grilonit F713” manufactured by Ems Chemie) was added.
  • the resin composition for optical modeling was prepared in the same manner as in (1) of No. 10, and the physical properties of this resin composition for optical modeling were measured in the same manner as in (2) of Example 1, and the results are shown in Table 7 below. It was as follows. (2) Using the resin composition for optical modeling obtained in (1) above, optical three-dimensional modeling and post-curing with ultraviolet rays are carried out in the same manner as in (3) of Example 1, and the resulting three-dimensional model is obtained. The physical properties of (Test piece) were measured and as shown in Table 7 below.
  • Example 24 (1) 54 parts of hydrogenated bisphenol A diglycidyl ether (“HBE-100” manufactured by Shin Nippon Rika Kogyo Co., Ltd.), 15 parts of bis (3-ethyl-3-oxetanyl) ether (“OXT-221” manufactured by Toagosei Co., Ltd.) , 15 parts of tricyclodecane dimethanol diacrylate (“A-DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.), 9 parts of dipentaerythritol hexaacrylate (“NK ester A-9530” manufactured by Shin-Nakamura Chemical Co., Ltd.), the above formula 5 parts of a phosphorus-based aromatic sulfonium compound (II-1) represented by (II-1) (“CPI-100P” manufactured by San Apro) and 1-hydroxy-cyclohexyl phenyl ketone (“Irgacure” manufactured by Ciba Specialty Chemicals) -184 ", 2 parts of a
  • Example 25 Instead of 15 parts of bis (3-ethyl-3-oxetanyl) ether (“OXT-221” manufactured by Toagosei Co., Ltd.) in Example 24 (1), bis (3-ethyl-3-oxetanyl) Example 24 (1) except that 10 parts of ether (“OXT-221” manufactured by Toagosei Co., Ltd.) and 5 parts of 3-hydroxymethyl-3-ethyloxetane (“OXT-101” manufactured by Toagosei Co., Ltd.) were used.
  • a resin composition for optical modeling was prepared in the same manner as described above. The physical properties of this resin composition for optical modeling were measured in the same manner as in Example 1 (2), and as shown in Table 7 below.
  • the resin composition for optical modeling according to the present invention contains a non-antimony, low-toxicity phosphorus-based aromatic sulfonium compound (II) as a photocationic polymerization initiator.
  • a non-antimony, low-toxicity phosphorus-based aromatic sulfonium compound (II) as a photocationic polymerization initiator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Polyethers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】 高光硬化感度を示し、低毒性で安全性に優れ、短い造形時間で、寸法安定性等に優れる立体造形物を生産性良く製造できる光造形用樹脂組成物の提供。 【解決手段】 カチオン重合性有機化合物として、下記一般式(I); (式中、R1は有機残基、kは2以上の整数を示す。) で表される、ポリグリシジルオキシ化合物を含有し、ラジカル重合性有機化合物として(メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート系化合物を含有し、式:[S+(R2)a(R3)b(R4)c][P-6-n(Rf)n]mで表されるリン系芳香族スルホニウム化合物をカチオン重合開始剤として含有する、シクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物を含有しない光造形用樹脂組成物。

Description

光学的立体造形用樹脂組成物
 本発明は光学的立体造形用樹脂組成物および当該組成物を用いて光学的立体造形物を製造する方法に関する。より詳細には、本発明は、安全性に優れ且つ環境汚染のない非アンチモン系の重合開始剤を用いた光学的立体造形組成物に関するものである。本発明の光学的立体造形用樹脂組成物を用いることにより、高い光硬化感度で、地球環境の汚染を防ぎながら、使用するカチオン重合性有機化合物の種類などに応じて、所望の種々の物性を有する光学的立体造形物を、安全に、速い造形速度で生産性良く製造することができる。
 近年、三次元CADに入力されたデータに基づいて液状の光硬化性樹脂組成物を立体的に光学造形する方法が、金型などを作製することなく目的とする立体造形物を良好な寸法精度で製造し得ることから、広く採用されるようになっている。
 光学的立体造形法の代表的な例としては、容器に入れた液状光硬化性樹脂の液面に所望のパターンが得られるようにコンピューターで制御された紫外線を選択的に照射して所定厚みを硬化させ、ついで該硬化層の上に1層分の液状樹脂を供給し、同様に紫外線で前記と同様に照射硬化させ、連続した硬化層を得る積層操作を繰り返すことによって最終的に立体造形物を得る方法を挙げることができる。この光学的立体造形方法は、形状の複雑な造形物をも容易に且つ比較的短時間に得ることが出来る。
 光学的立体造形に用いる樹脂または樹脂組成物では、低粘度で造形時の取り扱い性に優れること、および活性エネルギー線による硬化感度が高くて短い造形時間で立体造形物を生産性よく製造できることが不可欠であり、さらに造形物の解像度が高く造形精度に優れていること、硬化時の体積収縮率が小さいことが望ましく、また立体造形物の用途などに応じて、力学的特性、耐久性、柔軟性、耐水性や耐湿性、耐熱性などに優れていることなどが求められている。
 光造形用の光硬化性樹脂組成物としては、従来、ラジカル重合性有機化合物を含む光硬化性樹脂組成物、エポキシ化合物などのカチオン重合性有機化合物を含む光硬化性樹脂組成物、ラジカル重合性有機化合物とカチオン重合性有機化合物の両方を含む光硬化性樹脂組成物などの種々の光硬化性樹脂組成物が提案されて用いられている。その際に、ラジカル重合性有機化合物としては、例えば(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、ポリエステル(メタ)アクリレート系化合物、ポリエーテル(メタ)アクリレート系化合物、エポキシ(メタ)アクリレート系化合物などが用いられている。また、カチオン重合性有機化合物としては、例えば、各種エポキシ化合物、環状アセタール系化合物、ビニルエーテル系化合物、ラクトン類などが用いられている。
 上記したうちで、エポキシ化合物などのカチオン重合性有機化合物を含む光硬化性樹脂組成物では、系内に存在する光カチオン重合開始剤が光照射によりカチオン種(H+)を生成し、それが連鎖的にカチオン重合性有機化合物に関与し、カチオン重合性有機化合物が開環して反応が進む。エポキシ化合物などのカチオン重合性有機化合物をベースとする光硬化性樹脂組成物を用いると、一般に、ラジカル重合性有機化合物をベースとする光硬化性樹脂組成物を用いた場合に比べて、得られる光硬化物の収縮率が小さく、寸法安定性、寸法精度に優れる造形物が得られる。
 カチオン重合性有機化合物を光重合させるための光カチオン重合開始剤としては、第16族元素の芳香族スルホニウム塩、第15族元素の芳香族オニウム塩、第17族元素の芳香族オニウム塩などからなる光カチオン重合開始剤が知られている(特許文献1~4などを参照)。そのうちでも、光硬化感度などの観点から、カチオン重合性有機化合物を含む光硬化性樹脂組成物では、光カチオン重合開始剤として、アンチモンを含むスルホニウム塩が汎用されている。
 しかし、アンチモン化合物は、一般に有毒で、ヒ素や水銀と似た毒作用を示すことから、取り扱いに細心の注意を払う必要があり、しかも作業環境や地球環境の汚染などの心配がある。かかる点から、従来汎用されていたアンチモン系の光カチオン重合開始剤と同程度またはそれを凌駕する光重合開始能を有し、しかも毒性が少なく、安全性、取り扱い性に優れ、作業環境や地球環境の汚染を生ずることのない光カチオン重合開始剤を含む光学的立体造形用樹脂組成物が求められている。
 また、樹脂製の模型を消失モデルとして用いて鋳造を行なうロストワックス鋳造法やインベストモデル鋳造法において、消失モデルを作製するための金型製作にかかるコストを削減するために、光学的立体造形物を消失モデルとして用いて鋳造することが行なわれている。しかしながら、アンチモン系のカチオン重合開始剤を含む光学的立体造形用樹脂組成物を用いて得られる従来の光学的立体造形物は、消失モデルとして用いた際に、立体造形物に含まれていたアンチモン化合物に起因する残渣が消失後に残留して、鋳肌の荒れや鋳物の性能の低下が生じ、高品質の鋳物が得られないという問題があり、かかる点からも、アンチモン化合物を含まない光学的立体造形用樹脂組成物が求められている。
 また、アンチモン系の光カチオン重合開始剤を含めて、光カチオン重合開始剤は、必ずしも種々のカチオン重合性有機化合物に対して共通して高い触媒活性を示すとは限らず、光硬化感度の高い光学的立体造形用樹脂組成物を得るために、特定の高価なカチオン重合性有機化合物を選択して使用することが必要であった。
特公平7-103218号公報 特公昭52-14277号公報 特公昭52-14278号公報 特公昭52-14279号公報 特開2002-241363号公報 特開2001-81096号公報 特開2007-262401号公報 特開平2007-238828号公報
ポール・エフ・ヤコブ(Paul F. Jacobs)著、「Rapid Prototyping & Manufacturing, Fundamentals of Stereo-Lithography」,"Society of Manufacturing Engineers",1992年,p28-39
 本発明の目的は、アンチモン化合物などの有毒な成分を含まず、それによって安全性、取り扱い性に優れていて、作業環境や地球環境の汚染を生ずることのない光学的立体造形用樹脂組成物を提供することである。
 さらに、本発明の目的は、安全性に優れると共に、活性エネルギー線による硬化感度が高くて、短縮された活性エネルギー線照射時間で造形物を生産性良く製造することができ、しかも寸法安定性に優れていて寸法精度の高い立体造形物を得ることのできる光学的立体造形用樹脂組成物を提供することである。
 そして、本発明の目的は、汎用されている安価なカチオン重合性有機化合物、特にエポキシ化合物を使用して、安全性に優れ且つ活性エネルギー線による硬化感度の高い光学的立体造形用樹脂組成物を、低コストで提供することである。
 さらに、本発明の目的は、光学的立体造形物を消失モデルとして鋳造を行なう際に、消失後に残留するアンチモンに起因する鋳肌の荒れや鋳物の性能低下などの問題が生じない、アンチモン化合物を含まない光学的立体造形物を形成することのできる、アンチモン不含有の光学的立体造形用樹脂組成物を提供することである。
 上記の課題を解決すべく本発明者らは鋭意研究を行なってきた。そして、カチオン重合性有機化合物、ラジカル重合性有機化合物、活性エネルギー線感受性カチオン重合開始剤および活性エネルギー線感受性ラジカル重合開始剤を含有する光学的立体造形用樹脂組成物において、活性エネルギー線感受性カチオン重合開始剤として、従来汎用されていたアンチモンを含むスルホニウム塩の代わりに、フルオロリン酸を対イオンとする非アンチモン系の芳香族スルホニウム化合物を用いると、安全性、取り扱い性に優れていて、作業環境や地球環境の汚染を生ずることのない光学的立体造形用樹脂組成物が得られることに想到し、フルオロリン酸を対イオンとする非アンチモン系の芳香族スルホニウム化合物をカチオン重合開始剤として含む当該光学的立体造形用樹脂組成物について更に検討を続けてきた。その結果、当該カチオン重合開始剤を用いた光学的立体造形用樹脂組成物中に、光学的立体造形用樹脂組成物で従来汎用されてきたシクロアルケンオキシド構造(例えばシクロヘキセンオキシド構造)を分子中に有するカチオン重合性有機化合物が含まれると、当該カチオン重合開始剤のカチオン重合開始剤としての機能が抑制されるためか、光学的立体造形用樹脂組成物の光硬化感度が低下して、光造形速度が極端に遅くなることが判明した。
 そこで、本発明者らは、上記の知見を踏まえて更に種々検討を重ねたところ、フルオロリン酸を対イオンとする非アンチモン系の芳香族スルホニウム化合物をカチオン重合開始剤として含有する前記した光学的立体造形用樹脂組成物において、当該組成物中にシクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物が含まれないようにすると共に、カチオン重合性有機化合物としてグリシジルオキシ基を2個以上有する化合物をカチオン重合性有機化合物として用い、更にラジカル重合性有機化合物として(メタ)アクリロイルオキシ基を2個以上有するポリ(メタ)アクリレート化合物を用いると、光硬化感度が高くて短い時間で光硬化し、且つ安全性に優れる光学的立体造形用樹脂組成物が得られることを見出した。
 さらに、本発明者らは、フルオロリン酸を対イオンとする非アンチモン系の芳香族スルホニウム化合物をカチオン重合開始剤として含有し、その一方でシクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物を含まない前記した光学的立体造形用樹脂組成物では、グリシジルオキシ基を2個以上有するカチオン重合性有機化合物として、光硬化感度が低いために光学的立体造形用樹脂組成物では従来実用されてこなかった、汎用の種々のポリグリシジルオキシ化合物、特に芳香族ポリオールのポリグリシジルエーテル、非環式脂肪族ポリオールのポリグリシジルエーテル、ポリカルボン酸のポリグリシジルエステルなどのポリグリシジルオキシ化合物も使用でき、その場合にも光硬化感度の高い光学的立体造形用樹脂組成物が得られることを見出した。
 また、本発明者らは、フルオロリン酸を対イオンとする非アンチモン系の芳香族スルホニウム化合物からなるカチオン重合開始剤、グリシジルオキシ基を2個以上有するカチオン重合性有機化合物、およびポリ(メタ)アクリレート化合物からなるラジカル重合性有機化合物を含有し、その一方でシクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物を含有しない前記した光学的立体造形用樹脂組成物において、カチオン重合性有機化合物の一部としてオキセタン化合物を更に含有させると、光硬化感度がより向上すると共に、寸法精度、機械物性、耐熱性などに優れる立体造形物が得られること、その際にオキセタン化合物としてはモノオキセタン化合物およびポリオキセタン化合物のいずれもが使用でき、そのうちでもモノオキセタン化合物、とりわけモノオキセタンアルコールを用いるのがより好ましいことなどを見出し、それらの種々の知見に基づいて本発明を完成した。
 すなわち、本発明は、
(1)(i) カチオン重合性有機化合物(A)、ラジカル重合性有機化合物(B)、活性エネルギー線感受性カチオン重合開始剤(C)および活性エネルギー線感受性ラジカル重合開始剤(D)を含有する光学的立体造形用樹脂組成物であって;
(ii) カチオン重合性有機化合物(A)として、下記の一般式(I);
Figure JPOXMLDOC01-appb-C000006

(式中、R1は有機残基、kは2以上の整数を示す。)
で表される、グリシジルオキシ基を2個以上有する化合物(I)を含有し;
(iii) ラジカル重合性有機化合物(B)として、(メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)を含有し;
(iv) 活性エネルギー線感受性カチオン重合開始剤(C)が、下記の一般式(II);
Figure JPOXMLDOC01-appb-C000007

[上記の式(II)中、R2およびR3はそれぞれ独立して下記の式(i)~(iv);
Figure JPOXMLDOC01-appb-C000008

{式(ii)および式(iv)中、Xは塩素原子またはフッ素原子を示す}
で表される基のいずれかであり、R4は下記の式(v);
Figure JPOXMLDOC01-appb-C000009

で表される基であり、Rfは炭素数1~8のフルオロアルキル基であり、aは0~3の整数、bは0~3の整数およびcは0または1であって、aとbとcの合計が3であり、mは1+cと同じ数であり、nは0~5の整数である。]
で表されるリン系芳香族スルホニウム化合物(II)であり;且つ、
(v) シクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物を含有しない;
ことを特徴とする光学的立体造形用樹脂組成物である。
 そして、本発明は、
(2) カチオン重合性有機化合物(A)として、オキセタン化合物(OXT)を更に含有し、当該オキセタン化合物(OXT)が、オキセタン基を1個有するモノオキセタン化合物(OXTm)およびオキセタン基を2個以上有するポリオキセタン化合物(OXTp)のいずれか一方または両方である前記(1)の光学的立体造形用樹脂組成物;および、
(3) モノオキセタン化合物(OXTm)が、下記の一般式(III-1a)で表されるモノオキセタン化合物(III-1a)および下記の一般式(III-1b)で表されるモノオキセタン化合物(III-1b)から選ばれる少なくとも1種のモノオキセタン化合物であり、ポリオキセタン化合物(OXTp)が、下記の一般式(III-2)で表されるジオキセタン化合物(III-2)である前記(2)の光学的立体造形用樹脂組成物;
Figure JPOXMLDOC01-appb-C000010

(式中、R5およびR6は炭素数1~5のアルキル基、R7はエーテル結合を有していてもよい炭素数2~10のアルキレン基、2個のR8は互いに同じかまたは異なる炭素数1~5のアルキル基、R9は芳香環を有しているかまたは有していない2価の有機基、pは1~6の整数、qは0または1を示す。)
である。
 さらに、本発明は、
(4) カチオン重合性有機化合物(A):ラジカル重合性有機化合物(B)の含有割合が40:60~90:10の質量比であり、リン系芳香族スルホニウム化合物(II)をカチオン重合性有機化合物(A)の質量に基づいて0.1~10質量%の割合で含有し、活性エネルギー線感受性ラジカル重合開始剤(D)をラジカル重合性有機化合物(B)の質量に基づいて0.1~20質量%の割合で含有する前記(1)~(3)のいずれかの光学的立体造形用樹脂組成物;
(5) グリシジルオキシ基を2個以上有する化合物(I)の含有割合が、カチオン重合性有機化合物(A)の全質量に基づいて、50~95質量%である前記(1)~(4)のいずれかの光学的立体造形用樹脂組成物;
(6) オキセタン化合物(OXT)の含有割合[モノオキセタン化合物(OXTm)とポリオキセタン化合物(OXT)の両方を含有する場合は両方の合計含有割合]が、カチオン重合性有機化合物(A)の全質量に基づいて、5~30質量%である前記(2)~(5)のいずれかの光学的立体造形用樹脂組成物;および、
(7) モノオキセタン化合物(OXTm)の含有割合が、オキセタン化合物(OXT)の全質量に基づいて、30~100質量%である前記(2)~(6)のいずれかの光学的立体造形用樹脂組成物;
である。
 また、本発明は、
(8) グリシジルオキシ基を2個以上有する化合物(I)およびオキセタン化合物(OXT)の合計含有割合が、カチオン重合性有機化合物(A)の全質量に基づいて、50~100質量%である前記(1)~(7)のいずれかの光学的立体造形用樹脂組成物;
(9) (メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)の含有量が、ラジカル重合性有機化合物(B)の質量に基づいて、70~100質量%である前記(1)~(8)のいずれかの光学的立体造形用樹脂組成物;および、
(10) (メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)として、(メタ)アクリロイルオキシ基を2個有するジ(メタ)アクリレート化合物(B-1a)および(メタ)アクリロイルオキシ基を3個以上有するポリ(メタ)アクリレート化合物(B-1b)を含有し、ジ(メタ)アクリレート化合物(B-1a):ポリ(メタ)アクリレート化合物(B-1b)の含有割合が90:10~20:80の質量比である前記(1)~(9)のいずれかの光学的立体造形用樹脂組成物;
である。
 そして、本発明は、
(11) 前記(1)~(10)のいずれかの光学的立体造形用樹脂組成物を用いて光学的立体造形物を製造する方法である。
 本発明の光学的立体造形用樹脂組成物(以下「光造形用樹脂組成物」という)は、活性エネルギー線感受性カチオン重合開始剤(以下単に「カチオン重合開始剤」ということがある)として、毒性の低い、非アンチモン系のリン系芳香族スルホニウム化合物(II)を用いているため、安全性、取り扱い性に優れ、作業環境や地球環境の汚染や悪化を生じない。
 本発明の光造形用樹脂組成物は、カチオン重合開始剤として非アンチモン系のリン系芳香族スルホニウム化合物(II)を用いているにも拘わらず、活性エネルギー線による硬化感度が高く、短縮された造形時間で目的とする立体造形物を生産性よく製造することができる。
 本発明の光造形用樹脂組成物では、カチオン重合性有機化合物として、グリシジルオキシ基を2個以上有する従来から汎用されている種々のカチオン重合性有機化合物を用いることができ、その場合にも光造形用樹脂組成物の光硬化感度が高く維持されるので、安全性に優れ且つ光硬化感度の高い光造形用樹脂組成物を低コストで供給することができる。
 カチオン重合性有機化合物の一部としてオキセタン化合物を更に含有する本発明の光造形用樹脂組成物は、光硬化感度がより高く、しかも当該光造形用樹脂組成物を用いて光造形することによって、寸法精度、機械物性、耐熱性などに優れる立体造形物を得ることができる。
 本発明の光造形用樹脂組成物では、グリシジルオキシ基を2個以上有するカチオン重合性有機化合物の種類、オキセタン化合物の種類、ポリ(メタ)アクリレート化合物からなるラジカル重合性有機化合物の種類、それらの配合割合などを選択、調整することによって、用途などに応じて、種々の優れた特性を備える光造形用樹脂組成物および立体造形物を得ることができ、例えば、高湿度下に放置した場合にも寸法変化が極めて小さくなって経時の寸法安定性が良好で、しかも耐衝撃性、靭性、その他の力学的特性、耐水性、耐湿性、柔軟性、耐熱性などの特性に優れる光学的立体造形物を得ることができる。
 本発明の光造形用樹脂組成物は、アンチモン化合物を含まないので、本発明の光造形用樹脂組成物を用いて得られる光造形物中にはアンチモン化合物が含まれていない。そのため、本発明の光造形用樹脂組成物を用いて得られる光造形物を消失モデルとして用いて鋳造を行なうと、モデルの消失後にアンチモン化合物が残渣として残留しないことにより、鋳物の肌荒れや性能低下がなく、高品質の鋳物を得ることができる。
 以下に本発明について詳細に説明する。
 本発明の光造形用樹脂組成物は、活性エネルギー線の照射によって重合する活性エネルギー線重合性化合物として、カチオン重合性有機化合物(A)およびラジカル重合性有機化合物(B)を含有する。
 なお、本明細書でいう「活性エネルギー線」とは、紫外線、電子線、X線、放射線、高周波などのような光造形用樹脂組成物を硬化させ得るエネルギー線をいう。
 本発明の光造形用樹脂組成物は、カチオン重合性有機化合物(A)として、下記の一般式(I);
Figure JPOXMLDOC01-appb-C000011

(式中、R1は有機残基、kは2以上の整数を示す。)
で表される、グリシジルオキシ基を2個以上有する化合物(I)[以下、「ポリグリシジルオキシ化合物(I)」という]を含有する。
 ポリグリシジルオキシ化合物(I)としては、グリシジルオキシ基を2個以上有する化合物であればいずれも使用することができ、特に制限されない。本発明で用いられるポリグリシジルオキシ化合物(I)の代表的なものとしては、ポリグリシジルエーテル、ポリグリシジルエステル、ポリグリシジルエーテルエステル、ポリグリシジルイソシアヌレート、ポリグリシジルイミドなどを挙げることができ、そのいずれもが使用できる。
 本発明で用いるポリグリシジルオキシ化合物(I)は、芳香族化合物、脂肪族化合物、脂環式化合物、複素環式化合物、シリコーン化合物、それらの2つ以上が組み合わさった化合物などのいずれであってもよく、したがって上記の一般式(I)における有機残基R1は、芳香族、脂肪族、脂環式、複素環式の有機残基、ケイ素含有有機化合物に由来する由来、或いはそれらの2つ以上が組み合わさった有機残基である。
 また、上記の一般式(I)で表されるポリグリシジルオキシ化合物(I)において、グリシジルオキシ基の数kは、2以上であればいずれでもよく、一般的には、2~10、特に2~4であることが、ポリグリシジル化合物(I)の入手性、粘度、反応速度などの点から好ましい。
 本発明では、ポリグリシジルオキシ化合物(I)として、1種類のポリグリシジルオキシ化合物のみを用いてもよいし、または2種以上のポリグリシジルオキシ化合物を併用してもよい。
 限定されるものではないが、本発明で用い得るポリグリシジルオキシ化合物(I)の具体例としては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールZジグリシジルエーテル、ビスフェノール類のアルキレンオキサイド付加物のジグリシジルエーテル(例えばビスフェノールA、ビスフェノールF、ビスフェノールSまたはビスフェノールZのエチレンオキサイドおよび/またはプロピレンオキサイド付加物のジグリシジルエーテルなど)、レゾルシノールのジグリシジルエーテル、ヒドロキノンのジグリシジルエーテル、カテコールのジグリシジルエーテル、ピロガロールのトリグリシジルエーテル、フロログルシノールのジグリシジルエーテルなどの芳香族ポリグリシジルエーテル(芳香族ジグリシジルエーテル、芳香族トリグリシジルエーテル、その他など);水素化ビスフェノールAジグリシジルエーテル、水素化ビスフェノールFジグリシジルエーテル、水素化ビスフェノールSジグリシジルエーテル、水素化ビスフェノールZジグリシジルエーテル、水素化ビスフェノール類のアルキレンオキサイド付加物のジグリシジルエーテル(例えば、水素化ビスフェノールA、水素化ビスフェノールF、水素ビスフェノールSまたは水素化ビスフェノールZのエチレンオキサイドおよび/またはプロピレンオキサイド付加物のジグリシジルエーテル)、シクロヘキサンジメタノールジグリシジルエーテル、トリシクロデカンジメタノールジグリシジルエーテルなどの脂環式ポリグリシジルエーテル;エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、グリセリンのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ソルビトールのテトラグリシジルエーテル、ペンタエリスリトールのジグリシジルエーテル、ペンタエリスリトールのトリグリシジルエーテル、ペンタエリスリトールのテトラグリシジルエーテル、ジペンタエリスリトールのジ-、トリ-、テトラ-、ペンタ-またはヘキサ-グリシジルエーテル、ジエチレングリコールのジグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテルなどの脂肪族多価アルコールのポリグリシジルエーテル;トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトールなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテルなどを挙げることができる。
 さらに、本発明で用い得るポリグリシジルオキシ化合物(I)の他の具体例としては、フタル酸のジグリシジルエステル、テレフタル酸のジグリシジルエステル、イソフタル酸のジグリシジルエステルなどの芳香族ジカルボン酸のジクリシジルエステルなどのような芳香族ポリカルボン酸のポリグリシジルエステル;シクロヘキサンジカルボン酸のジグリシジルエステルなどの脂環式ポリカルボン酸のポリグリシジルエステル;脂肪族長鎖多塩基酸のポリグリシジルエステル;グリシジルアクリレートまたはグリシジルメタクリレートのビニル重合により合成したホモポリマー;グリシジルアクリレートおよび/またはグリシジルメタクリレートとその他のビニルモノマーとのビニル重合により合成したコポリマー;フェノールノボラックのポリグリシジルエーテル、クレゾールノボラックのポリグリシジルエーテルなどを挙げることができる。
 本発明では、上記したポリグリシジルオキシ化合物(I)の1種または2種以上を用いることができる。
 本発明では、使用するポリグリシジルオキシ化合物(I)の種類を選択することによって、光造形用樹脂組成物から得られる立体造形物の物性を、各々の状況や用途に適したものとすることができる。
 例えば、ポリグリシジルオキシ化合物(I)としてシクロヘキサンジメタノールのジグリシジルエーテル、トリシクロデカンジメタノールのジグリシジルエーテル、アルキレンオキサイド付加ビスフェノールAのジグリシジルエーテルなどを用いた場合には、柔軟性、弾性、耐衝撃性などに富んだ立体造形物が得られ、またポリグリシジルオキシ化合物(I)としてビスフェノールAジグリシジルエーテル、レゾルシノールジグリシジルエーテルなどを用いた場合には、熱変形温度が高く、硬質の立体造形物が得られる。
 本発明の光造形用樹脂組成物は、ポリグリシジルオキシ化合物(I)を、カチオン重合性有機化合物(A)の全質量に基づいて、50~95質量%の割合で含有することが好ましく、55~90質量%の割合で含有することがより好ましく、60~90質量%の割合で含有することが更に好ましい。ポリグリシジルオキシ化合物(I)の含有割合が少なすぎると、光硬化速度の低下や硬化物の強度の低下が生じ易くなり、一方含有割合が多すぎても光硬化速度が低下し易くなる。
 本発明の光造形用樹脂組成物は、カチオン重合性有機化合物(A)として、ポリグリシジルオキシ化合物(I)と共に、オキセタン化合物(OXT)を更に含有することが好ましい。オキセタン化合物(OXT)を更に含有することにより、光造形用樹脂組成物の光硬化感度がより向上し、しかも寸法精度、得られる光造形物の靭性、耐衝撃性、耐破損性、耐久性などの機械物性、耐熱性などが向上する。
 オキセタン化合物(OXT)としては、分子中に、オキセタン基を1個有するモノオキセタン化合物(OXTm)およびオキセタン基を2個以上上記したポリオキセタン化合物(OXTp)のいずれもが使用できる。本発明の光造形用樹脂組成物は、オキセタン化合物(OXT)として、モノオキセタン化合物(OXTm)のみを含有していてもよいし、ポリオキセタン化合物(OXTp)のみを含有していてもよいし、またはモノオキセタン化合物(OXTm)とポリオキセタン化合物(OXTp)の両方を含有していてもよい。そのうちでも、オキセタン化合物(OXT)として、モノオキセタン化合物(OXTm)を少なくとも含有する、すなわちモノオキセタン化合物(OXTm)のみを含有するか、またはモノオキセタン化合物(OXTm)とポリオキセタン化合物(OXTp)を含有することが、光硬化感度がより高くなり、更に光造形用樹脂組成物を湿度の高い状態で長期間保存した場合にも水分および湿気の吸収を抑えて、当初の高い光硬化感度を長期にわたって維持できるという効果を奏することができ、しかも得られる立体造形物の靭性がより向上する点から好ましい。
 モノオキセタン化合物(OXTm)としては、1分子中にオキセタン基を1個有する化合物であればいずれも使用でき、そのうちでも1分子中にオキセタン基を1個有し且つアルコール性水酸基を1個有するモノオキセタンモノアルコールが反応性、組成物の粘度などの点から好ましく用いられる。
 特に、モノオキセタンモノアルコール化合物のうちでも、下記の一般式(III-1a)で表されるモノオキセタン化合物(III-1a)および下記の一般式(III-1b)で表されるモノオキセタン化合物(III-1b)から選ばれる少なくとも1種のモノオキセタン化合物が、入手容易性、反応性などの点から好ましく用いられる。特に、モノオキセタン化合物(OXTm)として、下記の一般式(III-1b)で表されるモノオキセタン化合物(III-1b)を用いると、光造形用樹脂組成物およびそれから得られる立体造形物の耐水性がより良好になる。
Figure JPOXMLDOC01-appb-C000012

(式中、R5およびR6は炭素数1~5のアルキル基、R7はエーテル結合を有していてもよい炭素数2~10のアルキレン基、pは1~6の整数を示す。)
 上記の一般式(III-1a)において、R5の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。また、上記の一般式(III-1a)において、pは1~6のうちのいずれでもよいが、1であることが、入手性、反応性の点から好ましい。
 モノオキセタン化合物(III-1a)の具体例としては、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタン、3-ヒドロキシメチル-3-ノルマルブチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタンなどを挙げることができ、これらの1種または2種以上を用いることができる。そのうちでも、入手の容易性、反応性などの点から、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタンがより好ましく用いられる。
 上記の一般式(III-1b)において、R6の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。
 また、上記の一般式(III-1b)において、R7は炭素数2~10のアルキレン基であれば、鎖状のアルキレン基または分岐したアルキレン基のいずれであってもよく、或いはアルキレン基(アルキレン鎖)の途中にエーテル結合(エーテル系酸素原子)を有する炭素数2~10の鎖状または分岐状のアルキレン基であってもよい。R7の具体例としては、エチレン基、トリメチレン基、テトラメチレン基、エトキシエチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、3-オキシペンチレン基などを挙げることができる。そのうちでも、R7はトリメチレン基、テトラメチレン基、ペンタメチレン基、ヘプタメチレン基またはエトキシエチレン基であることが、合成の容易性、化合物が常温で液体であり、取り扱い易いなどの点から好ましい。
 ポリオキセタン化合物(OXTp)としては、1分子中にオキセタン基を1個有するモノオキセタン化合物および1分子中にオキセタン基を2個以上有するポリオキセタン化合物のいずれもが使用できる。
 ポリオキセタン化合物(OXTp)としては、オキセタン基を2個以上有する化合物、例えばオキセタン基を2個、3個または4個以上有する化合物のうちのいずれもが使用でき、そのうちでもオキセタン基を2個有するジオキセタン化合物が好ましく用いられる。
 特に、ジオキセタン化合物としては、下記の一般式(III-2);
Figure JPOXMLDOC01-appb-C000013

(式中、2個のR8は互いに同じかまたは異なる炭素数1~5のアルキル基、R9は芳香環を有しているかまたは有していない2価の有機基、qは0または1を示す。)
で表されるジオキセタン化合物(III-2)が、入手の容易性、反応性、低吸湿性、得られる硬化物の力学的特性などの点から好ましく用いられる。
 上記の一般式(III-2)において、R8の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。また、R9の例としては、炭素数1~12の直鎖状または分岐状のアルキレン基(例えばエチレン基、プロピレン基、ブチレン基、ネオペンチレン基、n-ペンタメチレン基、n-ヘキサメチレン基など)、式:-CH2-Ph-CH2-または-CH2-Ph-Ph-CH2-で表される2価の基、水素添加ビスフェノールA残基、水素添加ビスフェノールF残基、水素添加ビスフェノールZ残基、シクロヘキサンジメタノール残基、トリシクロデカンジメタノール残基、レゾルシノール残基などを挙げることができる。
 上記の一般式(III-2)で表されるジオキセタン化合物(III-2)の具体例としては、下記の式(III-2a)または式(III-2b)で表されるジオキセタン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000014

(式中、2個のR8は互いに同じか又は異なる炭素数1~5のアルキル基、R9は芳香環を有しているかまたは有していない2価の有機基を示す。)
 上記の式(III-2a)で表されるジオキセタン化合物の具体例としては、ビス(3-メチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-プロピル-3-オキセタニルメチル)エーテル、ビス(3-ブチル-3-オキセタニルメチル)エーテルなどを挙げることができる。
 また、上記の式(III-2b)で表されるジオキセタン化合物の具体例としては、上記の式(III-1b)において2個のR5が共にメチル、エチル、プロピル、ブチルまたはペンチル基で、R6がエチレン基、プロピレン基、ブチレン基、ネオペンチレン基、n-ペンタメチレン基、n-ヘキサメチレン基など)、式:-CH2-Ph-CH2-または-CH2-Ph-Ph-CH2-で表される2価の基、水素添加ビスフェノールA残基、水素添加ビスフェノールF残基、水素添加ビスフェノールZ残基、シクロヘキサンジメタノール残基、トリシクロデカンジメタノール残基、レゾルシノール残基であるジオキセタン化合物を挙げることができる。
 本発明の光造形用樹脂組成物は、前記したジオキセタン化合物のうちの1種または2種以上を含有することができる。
 そのうちでも、ポリオキセタン化合物(OXTp)として、上記の式(III-1a)において、2個のR8が共にメチル基またはエチル基であるビス(3-メチル-3-オキセタニルメチル)エーテルやビス(3-エチル-3-オキセタニルメチル)エーテル、4,4-ビス(3-エチル-3-オキセタニルメトキシメチル)ベンゼンの1種または2種以上が、入手の容易性、低吸湿性、硬化物の力学的特性などの点から好ましく用いられ、特にビス(3-エチル-3-オキセタニルメチル)エーテルがより好ましく用いられる。
 本発明の光造形用樹脂組成物は、光造形用樹脂組成物から得られる光造形物の靭性の向上、造形物の機械的物性、耐熱性、耐湿性などの点から、光造形用樹脂組成物中のカチオン重合性有機化合物(A)の全質量に基づいて、オキセタン化合物(OXT)[モノオキセタン化合物(OXTm)とポリオキセタン化合物(OXTp)の両方を含有する場合は両方の合計]を5~30質量%の割合で含有していることが好ましく、10~30質量%の割合で含有していることがより好ましく、20~25質量%の割合で含有していることが更に好ましい。
 また、その際に、本発明の光造形用樹脂組成物は、モノオキセタン化合物(OXTm)を、オキセタン化合物(OXT)の全質量に基づいて、30~100質量%の割合で含有していることが好ましく、50~100質量%の割合で含有していることがより好ましい。
 本発明の光造形用樹脂組成物が、モノオキセタン化合物(OXTm)とポリオキセタン化合物(OXTp)の両方を含有する場合は、モノオキセタン化合物(OXTm):ポリオキセタン化合物(OXTp)の含有比率(質量比)が、30:70~100:0、そのうちでも50:50~100:0であることが、オキセタン化合物を含有していることによる光造形物の靭性の向上効果に加えて、光造形用樹脂組成物の水分および湿気の吸収率が極めて低くなって、光造形用樹脂組成物を湿度の高い状態で長期間保存した場合に水分および湿気の吸収が少なくなって、当初の高い光硬化感度を長期にわたって維持できるという効果および造形物の水分吸収性が低くて、寸法安定性に優れるという効果を奏することができる。
 本発明の光造形用樹脂組成物では、ポリグリシジルオキシ化合物(I)およびオキセタン化合物(OXT)の合計含有割合が、カチオン重合性有機化合物(A)の合計質量に基づいて、50~100質量%であることが好ましく、75~100質量%であることがより好ましく、85~100質量%であることがさらに好ましく、それによって、光造形用樹脂組成物の硬化感度、厚膜硬化性、解像度、紫外線透過性などが一層良好になり、光造形用樹脂組成物の粘度が低くなって造形が円滑に行われるようになり、造形により得られる光学的造形物の体積収縮率が一層低減される。
 本発明の光造形用樹脂組成物は、非アンチモン系のリン系芳香族スルホニウム化合物からなるカチオン重合開始剤(II)の触媒活性を高く維持すると共に、光造形用樹脂組成物の光硬化感度を高く維持するために、更に光硬化して得られる立体造形物の靭性、耐熱性、表面平滑性、表面硬度、耐摩耗性などを良好なものにするために、「シクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物」を含有しないことが必要である。
 ここで、本明細書でいう、「シクロアルケンオキシド構造」とは、「シクロアルケン環中の不飽和2重結合部分がオキシド化(エポキシ化)している構造」を有し、本発明の光造形用樹脂組成物は、当該「シクロアルケンオキシド構造」を分子中に1個有する有機化合物および2個以上有する有機化合物をいずれをも含まない。
 当該「シクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物」(以下「シクロアルケンオキシド構造含有カチオン重合性有機化合物」ということがある)の代表例としては、シクロブテンオキシド構造、シクロペンテンオキシド構造、シクロヘキセンオキシド構造、シクロヘプテンオキシド構造、シクロオクテンオキシド構造、シクロデセンオキシド構造、シクロドデセンオキシド構造などのような炭素数4~12のシクロアルケンオキシド構造のうちの1つまたは2つ以上を分子中に有する化合物を挙げることができる。その際に、シクロアルケンオキシド構造におけるシクロアルカン環を形成している炭素原子は置換されていなくてもよいし、シクロアルカン環を形成している炭素原子のうちの1個または2個以上が置換されていてもよいし、またシクロアルカン環を形成している炭素原子が有する結合手が、有機化合物中の他の基に結合したり、他の構造部分と結合して縮合環を形成していてもよい。
 さらに、シクロアルケンオキシド構造含有カチオン重合性有機化合物では、「シクロアルケンオキシド構造」の存在箇所(結合位置)、存在個数(結合数)は特に制限されない。
 限定されるものではないが、本発明の光造形用樹脂組成物が含有しないことを要件とするシクロアルケンオキシド構造含有カチオン重合性有機化合物としては、例えば、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 [上記の式(IVk)中、Rは、水素原子または炭素数1~3のメチル基、エチル基、n-プロピル基またはイソプロピル基を示す。]
 本発明の光造形用樹脂組成物は、カチオン重合性有機化合物(A)として、ポリグリシジルオキシ化合物(I)、またはポリグリシジルオキシ化合物(I)およびオキセタン化合物(OXT)と共に、シクロアルケンオキシド構造含有カチオン重合性有機化合物以外の、他のカチオン重合性有機化合物を必要に応じて含有することができる。
 本発明の光造形用樹脂組成物が必要に応じて含有することのできる他のカチオン重合性有機化合物としては、カチオン重合性の基を分子中に2個以上有する化合物が好ましく用いられる。
 本発明の光造形用樹脂組成物が必要に応じて含有することのできる前記した他のカチオン重合性有機化合物の具体例としては、1,3,5-トリオキサン、1,3-ジオキソラン、1,3,6-トリオキソカンのような環状エーテルまたは環状アセタール化合物;β-プロピオラクトン、ε-カプロラクトンなどの環状ラクトン化合物;エチレンスルフィド、チオエピクロロヒドリンなどのチイラン化合物;1,3-プロピレンスルフィド、3,3-ジメチルチエタンなどのチエタン化合物;エチレングリコールジビニルエーテル、アルキルビニルエーテル、3,4-ジヒドロピラン-2-メチル(3,4-ジヒドロピラン-2-カルボキシレート)、トリエチレングリコールジビニルエーテルなどのビニルエーテル化合物;エポキシ化合物とラクトンとの反応によって得られるスピロオルソエステル化合物などを挙げることができ、これらの1種または2種以上を用いることができる。
 本発明の光造形用樹脂組成物において、カチオン重合性有機化合物(A)の一部として、上記した他のカチオン重合性有機化合物を用いる場合は、その含有割合は、カチオン重合性有機化合物(A)の全質量に基づいて、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 本発明の光造形用樹脂組成物は、ラジカル重合性有機化合物(B)として、活性エネルギー線感受性ラジカル重合開始剤(D)[以下単に「ラジカル重合開始剤(D)」または「ラジカル重合開始剤」という]の存在下に、紫外線やその他の活性エネルギー線を照射したときにラジカル重合および/または架橋する、(メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)を含有する。
 本発明の光造形用樹脂組成物は、光硬化感度、取り扱いの容易さなどの点から、ラジカル重合性有機化合物(B)の全質量に基づいて、(メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)を、70~100質量%の割合で含有していることが好ましく、80~100質量%の割合で含有していることがより好ましい。
 本発明の光造形用樹脂組成物は、(メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)として、(メタ)アクリロイルオキシ基を2個有するジ(メタ)アクリレート化合物(B-1a)を単独で含有していてもよいし、(メタ)アクリロイルオキシ基を3個以上有するポリ(メタ)アクリレート化合物(B-1b)を単独で含有していてもよいし、またはジ(メタ)アクリレート化合物(B-1a)とポリ(メタ)アクリレート化合物(B-1b)の両方を含有していてもよい。そのうちでも、光造形用樹脂組成物の光硬化感度がより高くなり、しかも機械的特性に優れる立体造形物が得られる点から、ジ(メタ)アクリレート化合物(B-1a)とポリ(メタ)アクリレート化合物(B-1b)の両方を含有していることが好ましい。その際に、ジ(メタ)アクリレート化合物(B-1a):ポリ(メタ)アクリレート化合物(B-1b)の含有割合は、質量比で、90:10~20:80であることが好ましく、85:15~40:60であることがより好ましく、85:15~50:50であることが更に好ましい。
 ジ(メタ)アクリレート化合物(B-1a)とポリ(メタ)アクリレート化合物(B-1b)を前記した割合で含有していることによって、光造形用樹脂組成物の光硬化性能が一層良好になり、得られる立体造形物の機械的特性、特に靭性に優れたものとなる。
 ジ(メタ)アクリレート化合物(B-1a)としては、分子中に(メタ)アクリロイルオキシ基を2個有するジ(メタ)アクリレート化合物であればいずれもが使用でき、エポキシ化合物と(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリレート、2価アルコール類のジ(メタ)アクリル酸エステル、ポリエステルジオール類のジ(メタ)アクリレート、ポリエーテルジオール類のジ(メタ)アクリレートなどを挙げることができる。
 上記したエポキシ化合物と(メタ)アクリル酸との反応により得られるジ(メタ)アクリレートとしては、芳香族エポキシ化合物、脂環族エポキシ化合物および/または脂肪族エポキシ化合物と、(メタ)アクリル酸との反応により得られるジ(メタ)アクリレート系反応生成物を挙げることができる。前記したジ(メタ)アクリレート系反応生成物のうちでも、芳香族エポキシ化合物と(メタ)アクリル酸との反応により得られるジ(メタ)アクリレート系反応生成物が好ましく用いられ、具体例としては、ビスフェノールAやビスフェノールSなどのビスフェノール化合物またはそのアルキレンオキサイド付加物とエピクロルヒドリンなどのエポキシ化剤との反応によって得られるジグリシジルエーテルを、(メタ)アクリル酸と反応させて得られるエポキシジ(メタ)アクリレートなどを挙げることができる。
 また、上記した2価アルコール類のジ(メタ)アクリル酸エステルとしては、分子中に2個の水酸基をもつ芳香族アルコール、脂肪族アルコール、脂環族アルコールおよび/またはそれらのアルキレンオキサイド付加体と、(メタ)アクリル酸との反応により得られるジ(メタ)アクリレートを挙げることができる。具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、前記したジオールのアルキレンオキシド付加物のジ(メタ)アクリレートなどを挙げることができる。
 前記したジ(メタ)アクリレート化合物のうちで、ジメタクリレート化合物よりも、ジアクリレート化合物が重合速度の点から好ましく用いられる。
 さらに、上記したポリエステルジオール類のジ(メタ)アクリレートとしては、水酸基含有ポリエステルと(メタ)アクリル酸との反応により得られるポリエステル(メタ)アクリレートを挙げることができる。また、上記したポリエーテル(メタ)アクリレートとしては、水酸基含有ポリエーテルとアクリル酸との反応により得られるポリエーテルアクリレートを挙げることができる。
 そのうちでも、本発明では、ジ(メタ)アクリレート化合物(B-1a)として、エチレンオキシド変性ビスフェノールAのジ(メタ)アクリレートおよび/またはビス(ヒドロキシメチル)トリシクロデカンのジ(メタ)アクリレートが好ましく用いられる。
 また、ポリ(メタ)アクリレート化合物(B-1b)としては、エポキシ化合物と(メタ)アクリル酸を反応させて得られる3個以上の(メタ)アクリロイルオキシ基を有する反応生成物、3価以上の多価アルコール類またはそのアルキレンオキサイド付加体のポリ(メタ)アクリル酸エステル、3個以上の水酸基を有するポリエステルと(メタ)アクリレートを反応させて得られる3個以上の(メタ)アクリロイルオキシ基を有するポリエチレンポリ(メタ)アクリレートなどを挙げることができる。
 前記したエポキシ化合物と(メタ)アクリル酸を反応させて得られる3個以上の(メタ)アクリロイルオキシ基を有する反応生成物の具体例としては、エポキシノボラック樹脂と(メタ)アクリル酸を反応させて得られる3個以上の(メタ)アクリロイルオキシ基を有するエポキシ(メタ)アクリレート系反応生成物などを挙げることができる。
 3価以上の多価アルコールまたはそのアルキレンオキサイド付加体と(メタ)アクリル酸との反応により得られるポリ(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、前記したトリオール、テトラオール、ヘキサオールなどの多価アルコールのアルキレンオキシド付加物の(メタ)アクリレート、ジメチロールプロピオン酸を構成単位とするハイパーブランチドポリエステルのポリ(メタ)アクリレートなどを好適なものとして挙げることができる。
 そのうちでも、本発明では、ポリ(メタ)アクリレート化合物(B-1b)として、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートまたはこれらのアルキレンオキシド変性体が好ましく用いられる。
 本発明の光造形用樹脂組成物は、ラジカル重合性有機化合物(B)として、ジ(メタ)アクリレート化合物(B-1a)および/またはポリ(メタ)アクリレート化合物(B-1b)と共に、必要に応じて、他のラジカル重合性有機化合物を含有することができる。他のラジカル重合性有機化合物を含有する場合は、その含有割合は、ラジカル重合性有機化合物(B)の全質量に基づいて、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
 本発明の光造形用樹脂組成物が必要に応じて含有することのできる他のラジカル重合性有機化合物の種類は特に限定されず、例えば、(メタ)アクリロイルオキシ基を1個有するモノ(メタ)アクリレート化合物、不飽和ポリエステル化合物、ポリチオール化合物などを挙げることができ、これらの他のラジカル重合性有機化合物は単独で使用しても、または2種以上を併用してもよい。
 前記したモノ(メタ)アクリレート化合物の具体例としては、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレートなどを挙げることができる。
 本発明の光造形用樹脂組成物は、カチオン重合性有機化合物(A)を重合および/または架橋させるためのカチオン重合開始剤(C)として、下記の一般式(II);
Figure JPOXMLDOC01-appb-C000016

で表されるリン系芳香族スルホニウム化合物(II)を含有する。
 リン系芳香族スルホニウム化合物(II)は、式:[S+(R2a(R3b(R4c]で表されるカチオンと、式:[P-6-n(Rf)n]で表されるアニオンが、イオン結合した塩である。
 リン系芳香族スルホニウム化合物(II)において、R2およびR3は、それぞれ独立して下記の式(i)で表されるフェニル基、式(ii)で表される塩化フェニル基またはフルオロフェニル基、式(iii)で表される4-フェニルチオフェニル基或いは式(iv)で表される基である[式(ii)および(iv)において、Xは塩素原子またはフッ素原子を示す]。
Figure JPOXMLDOC01-appb-C000017

 リン系芳香族スルホニウム化合物(II)では、R2とR3は同じであっても、または異なっていてもよい。
 また、リン系芳香族スルホニウム化合物(II)において、R4は、下記の式(v)で表される4’-ジフェニルスルホニオ-4-フェニルチオフェニル基である。
Figure JPOXMLDOC01-appb-C000018
 リン系芳香族スルホニウム化合物(II)において、aおよびbはいずれも0~3の整数、cは0または1であり、aとbとcの合計は3である。そのため、リン系芳香族スルホニウム化合物(II)では、aとbの合計が3または2、cが0または1である。
 リン系芳香族スルホニウム化合物(II)において、Rfは炭素数1~8のフルオロアルキル基である。Rfは、炭素数1~8のアルキル基中の水素原子の一部がフッ素原子で置換されたフルオロアルキル基または炭素数1~8のアルキル基中の水素原子のすべてがフッ素原子で置換されたパーフルオロアルキル基のいずれであってもよい。そのうちでも、Rfは、炭素数1~8のアルキル基中の水素原子のすべてがフッ素原子で置換されたパーフルオロアルキル基であることが、反応性の点から好ましく、好ましいRfの具体例としては、CF3-,C25-,CF3CF2CF2-,(CF32CF-,C49-,C511-,C613-,C715-,C817-などを挙げることができ、特にCF3-,C25-,CF3CF2CF2-,(CF32CF-,C49-が好ましい。
 リン系芳香族スルホニウム化合物(II)において、nは0~5の整数であり、nは0~4の整数、特に0~3の整数であることが好ましい。nが2以上の整数である場合は、2個以上のフルオロアルキル基Rfは同じであってもまたは異なっていてもよい。
 一般式(II)において、mは、1+cと同じ数である。
 一般式(II)において、cが0であって、リン系芳香族スルホニウム化合物(II)のカチオンがR4[上記の式(v)で表される基]を持たない場合は、mは1である。
 また、一般式(II)においてcが1であってリン系芳香族スルホニウム化合物(II)のカチオンがR4[上記の式(v)で表される基]を1個有する場合は、式:[S+(R2a(R3b(R4c]で表されるカチオンは2価のカチオンであり、当該2価のカチオンに、2個のアニオン:[P-6-n(Rf)n]がイオン結合している(m=2)。
 限定されるものではないが、リン系芳香族スルホニウム化合物(II)における式:[S+(R2)a(R3b(R4c]で表されるカチオンの具体例としては、下記のカチオン(IIa1)~(IIa5)を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 また、リン系芳香族スルホニウム化合物(II)における式:[P-6-n(Rf)n]で表されるアニオンの具体例としては、下記の(IIb1)~(IIb12)で表されるアニオンを挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 そして、本発明で好ましく用いられるリン系芳香族スルホニウム化合物(II)の具体例としては、下記の式(II-1)~(II-12)で表される化合物のいずれか、または下記の式(II-3)で表される化合物と式(II-10)で表される化合物の混合物などを挙げることができる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 リン系芳香族スルホニウム化合物(II)の製法は特に限定されず、例えば、特許文献7および特許文献8に記載されている方法で製造することができる。その際に、用いる原料である一般式(II-A)で表されるスルホニウムクロリドは、例えば、特許文献5に記載されている方法で製造することができ、また一般式(II-B)で表されるフルオロリン酸リチウムは特許文献6に記載されている方法で製造することができる。
 本発明の光造形用樹脂組成物では、ラジカル重合性有機化合物(B)を重合および/または架橋させるための活性エネルギー線感受性ラジカル重合開始剤(D)[以下「ラジカル重合開始剤(D)」または「ラジカル重合開始剤」という]として、活性エネルギー線を照射したときにラジカル重合性有機化合物のラジカル重合を開始させ得る重合開始剤のいずれもが使用でき、例えば、ベンジルまたはそのジアルキルアセタール系化合物、ベンゾイル化合物、アセトフェノン系化合物、ベンゾインまたはそのアルキルエーテル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物などを挙げることができる。
 具体的には、ベンジルまたはそのジアルキルアセタール系化合物としては、例えば、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタールなどを挙げることができる。ベンゾイル化合物としては、例えば1-ヒドロキシシクロヘキシルフェニルケトンなどを挙げることができる。
 また、アセトフェノン系化合物としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシメチル-1-フェニルプロパン-1-オン、4’-イソプロピル-2-ヒドロキシ-2-メチル-プロピオフェノン、2-ヒドロキシ-2-メチル-プロピオフェノン、p-ジメチルアミノアセトフェノン、p-tert-ブチルジクロロアセトフェノン、p-tert-ブチルトリクロロアセトフェノン、p-アジドベンザルアセトフェノンなどを挙げることができる。
 また、ベンゾイン系化合物としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインノルマルブチルエーテル、ベンゾインイソブチルエーテルなどを挙げることができる。
 また、ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、ミヒラースケトン、4,4’-ビスジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノンなどを挙げることができる。
 そして、チオキサントン系化合物としては、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントンなどを挙げることができる。
 本発明では、1種または2種以上のラジカル重合開始剤(D)を所望の性能に応じて配合して使用することができる。
 本発明の光造形用樹脂組成物においては、造形速度、造形精度などの点から、カチオン重合性有機化合物(A):ラジカル重合性有機化合物(B)の含有割合が40:60~90:10(質量比)であることが好ましく、50:50~75:25(質量比)であることがより好ましい。また、本発明の光造形用樹脂組成物は、リン系芳香族スルホニウム化合物(II)をカチオン重合性有機化合物(A)の質量に基づいて0.1~10質量%、特に1~5質量%の割合で含有し、ラジカル重合開始剤(D)をラジカル重合性有機化合物(B)の質量に基づいて0.1~20質量%、特に1~10質量%の割合で含有していることが好ましい。
 本発明の光造形用樹脂組成物は、反応速度を向上させる目的で、必要に応じて光増感剤、例えばジブトキシアントラセンなどのジアルコキシアントラセン、チオキサントンなどをさらに含有していてもよい。
 また、本発明の光造形用樹脂組成物は、場合によりポリアルキレンエーテル系化合物を含有することができ、ポリアルキレンエーテル系化合物を含有していると、得られる立体造形物の耐衝撃性などの物性がより向上する。
 ポリアルキレンエーテル系化合物としては、特に下記の一般式(V);

   A-O-(R10-O-)r-(R11-O-)s-A’  (V)

 [式中、R10およびR11は互いに異なる直鎖状または分岐状の炭素数2~5のアルキレン基、AおよびA’はそれぞれ独立して水素原子、アルキル基またはフェニル基を示し、rおよびsはそれぞれ独立して0または1以上の整数(但しrとsの両方が同時に0にはならない)を示す。]
で表されるポリアルキレンエーテル系化合物が好ましく用いられる。
 上記の一般式(V)で表されるポリアルキレンエーテル系化合物[以下「ポリアルキレンエーテル系化合物(V)」ということがある]において、rおよびsの両方が1以上の整数で且つrとsの合計が3以上である場合には、オキシアルキレン単位(アルキレンエーテル単位):-R10-O-とオキシアルキン単位(アルキレンエーテル単位):-R11-O-はランダム状に結合していてもよいし、ブロック状に結合してもよいし、またはランダム結合とブロック状結合が混在していてもよい。
 上記のポリアルキレンエーテル系化合物(V)において、R10およびR11の具体例としては、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基(テトラメチレン基)、イソブチレン基、tert-ブチレン基、直鎖状または分岐状のペンチレン基[例えば-CH2CH2CH2CH2CH2-,-CH2CH2CH(CH3)CH2-など]など]などを挙げることができる。そのうちでも、R10およびR11は、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基(テトラメチレン基)、n-ペンチレン基、式:-CH2CH2CH(CH3)CH2-で表される分岐状のペンチレン基のいずれかであることが好ましい。
 また、上記のポリアルキレンエーテル系化合物(V)において、AおよびA’の具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、フェニル基などを挙げることができ、そのうちでもAおよびA’の少なくとも一方、特に両方が水素原子であることが好ましい。AおよびA’の少なくとも一方が水素原子であると、該ポリアルキレンエーテル系化合物を含有する光造形用樹脂組成物に活性エネルギー線を照射して硬化した際に、該ポリアルキレンエーテル系化合物の両端の水酸基がエポキシ化合物やラジカル重合開始剤などと反応して、ポリアルキレンエーテル系化合物が硬化した樹脂中で結合した状態になり、耐衝撃性などの特性がより向上する。
 上記のポリアルキレンエーテル系化合物(V)において、オキシアルキレン単位の繰り返し数を示すr及びsは、ポリアルキレンエーテル系化合物の数平均分子量が500~10,000、特に500~5,000の範囲内になるような数であることが好ましい。
 上記のポリアルキレンエーテル系化合物(V)の好適な例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレンオキサイド-ポリプロピレンオキサイドブロック共重合体、エチレンオキサイドとプロピレンオキサイドのランダム共重合体、式:-CH2CH2CH(R12)CH2O-(式中R12は低級アルキル基であり、好ましくはメチルまたはエチル基)で表されるアルキル置換基を有するオキシテトラメチレン単位(アルキル置換基を有するテトラメチレンエーテル単位)が結合したポリエーテル、前記オキシテトラメチレン単位と前記した式:-CH2CH2CH(R12)CH2O-(式中R12は低級アルキル基)で表されるアルキル置換基を有するオキシテトラメチレン単位がランダムに結合したポリエーテルなどを挙げることができる。島部は前記したポリアルキレンエーテル系化合物の1種または2種以上からなっていることができる。そのうちでも、数平均分子量が上記した500~10,000の範囲にあるポリテトラメチレングリコールおよび/またはテトラメチレンエーテル単位と式:-CH2CH2CH(R12)CH2O-(式中R12は低級アルキル基)で表されるアルキル置換基を有するテトラメチレンエーテル単位がランダムに結合したポリエーテルが好ましく用いられ、その場合には、吸湿性が低くて寸法安定性や物性の安定性に優れる光造形物を得ることができる。
 本発明の光造形用樹脂組成物がポリアルキレンエーテル系化合物(V)を含有する場合は、ポリアルキレンエーテル系化合物(V)の含有量は、光造形用樹脂組成物の全質量に対して1~30質量%であることが好ましく、2~20質量%であることがより好ましい。また、前記含有量を超えない範囲で、同時に2種類以上のポリアルキレンエーテル系化合物を含有していてもよい。
 また、本発明の光造形用樹脂組成物は、必要に応じて、下記の一般式(VI);

   HO-R13-OH      (VI)

(式中、R13は、炭素数5~8の直鎖状または分岐状アルキレン基を示す。)
で表される2官能性ヒドロキシ化合物(VI)のうちの少なくとも1種を含有していてもよい。
 本発明の光造形用樹脂組成物中に2官能性ヒドロキシ化合物(VI)を含有させると、冬季などの乾燥時などに湿度の低い状態で長期間保存しても、水分含量が極端に低下せずに、光硬化に必要な水分(一般に0.3~1質量%、好ましくは0.4~0.8質量%)を安定して組成物中に保持するため、冬季などの乾燥時であっても、光造形用樹脂組成物の硬化感度を向上させるために外部から水分をわざわざ添加しなくても、高い硬化感度を維持することができる。
 2官能性ヒドロキシ化合物(VI)を含有する場合は、その含有量は光造形用樹脂組成物の質量に基づいて1~10質量%、更には1~7質量%、特に1~5質量%であることが好ましい。
 2官能性ヒドロキシ化合物(VI)の具体例としては、R13が炭素数5のアルキレン基である2官能性ヒドロキシ化合物[例えばHO-CH2CH2CH2CH2CH2-OH、HO-CH(CH3)CH2CH2CH2-OH、HO-CH2CH(CH3)CH2CH2-OH、HO-CH(CH3)CH(CH3)CH2-OH、HO-C(CH32CH2CH2-OH、HO-CH2C(CH32CH2-OH];R2が炭素数6のアルキレン基である2官能性ヒドロキシ化合物[例えばHO-CH2CH2CH2CH2CH2CH2-OH、HO-CH(CH3)CH2CH2CH2CH2-OH、HO-CH2CH(CH3)CH2CH2CH2-OH、HO-CH2CH2CH(CH3)CH2CH2-OH、HO-CH(CH3)CH(CH3)CH2CH2-OH、HO-CH2CH(CH3)CH(CH3)CH2-OH、HO-CH(CH3)CH2CH(CH32CH2-OH、HO-CH(CH3)CH2CH2CH(CH3)-OH、HO-CH(CH3)CH(CH3)CH(CH3)-OH、HO-C(CH32CH(CH3)CH2-OH、HO-C(CH32CH2CH(CH3)-OH、HO-CH2CH(CH32CH(CH3)-OH、HO-CH2CH2CH(C25)CH2-OHなど];R13が炭素数7のアルキレン基である2官能性ヒドロキシ化合物[例えばHO-CH2CH2CH2CH2CH2CH2CH2-OH、HO-CH(CH3)CH2CH2CH2CH2CH2-OH、HO-CH2CH(CH3)CH2CH2CH2CH2-OH、HO-CH2CH2CH(CH3)CH2CH2CH2-OH、HO-CH(CH3)CH(CH3)CH2CH2CH2-OH、HO-CH2CH(CH3)CH(CH3)CH2CH2-OH、HO-CH(CH3)CH2CH(CH32CH2CH2-OH、HO-CH(CH3)CH2CH2CH2CH(CH3)-OH、HO-CH(CH3)CH(CH3)CH(CH3)CH2-OH、HO-C(CH32CH(CH3)CH2CH2-OH、HO-C(CH32CH2CH(CH3)CH2-OH、HO-CH2CH(CH32CH(CH3)CH2-OH、HO-CH2CH2CH(C25)CH2CH2-OHなど];R13素数8のアルキレン基である2官能性ヒドロキシ化合物[例えばHO-CH2CH2CH2CH2CH2CH2CH2CH2-OH、HO-CH(CH3)CH2CH2CH2CH2CH2CH2-OH、HO-CH2CH(CH3)CH2CH2CH2CH2CH2-OH、HO-CH2CH2CH(CH3)CH2CH2CH2CH2-OH、HO-CH(CH3)CH(CH3)CH2CH2CH2CH2-OH、HO-CH2CH(CH3)CH(CH3)CH2CH2CH2-OH、HO-CH(CH3)CH2CH(CH32CH2CH2CH2-OH、HO-CH(CH3)CH2CH2CH(CH3)CH2CH2-OH、HO-C(CH32CH(CH3)CH2CH2CH2-OH、HO-C(CH32CH2CH(CH3)CH2CH2-OH、HO-CH2CH2CH(C25)CH2CH2CH2-OHなど]、CH3(CH25CH(OH)CH2OHなどを挙げることができ、これらの1種または2種以上を用いることができる。
 そのうちでも、2官能性ヒドロキシ化合物(VI)としては、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオールが、入手性の点から好ましく用いられ、特にネオペンチルグリコールおよび1,6-ヘキサンジオールが、吸湿性、保湿性、反応性の点から好ましく用いられる。
 本発明の光造形用樹脂組成物は、本発明の効果を損なわない限り、必要に応じて、顔料や染料等の着色剤、消泡剤、レベリング剤、増粘剤、難燃剤、酸化防止剤、充填剤(架橋ポリマー粒子、シリカ、ガラス粉、セラミックス粉、金属粉等)、改質用樹脂などの1種または2種以上を適量含有していてもよい。
 本発明の光造形用樹脂組成物を用いて光学的に立体造形を行うに当たっては、従来既知の光学的立体造形方法および装置のいずれもが使用できる。好ましく採用され得る光学的立体造形法の代表例としては、液状をなす本発明の光学的造形用樹脂組成物に所望のパターンを有する硬化層が得られるように活性エネルギー線を選択的に照射して硬化層を形成し、次いでこの硬化層に未硬化の液状光学的造形用樹脂組成物を供給し、同様に活性エネルギー光線を照射して前記の硬化層と連続した硬化層を新たに形成する積層操作を繰り返すことによって最終的に目的とする立体的造形物を得る方法を挙げることができる。
 その際の活性エネルギー線としては、上述のように、紫外線、電子線、X線、放射線、高周波などを挙げることができる。そのうちでも、300~400nmの波長を有する紫外線が経済的な観点から好ましく用いられ、その際の光源としては、紫外線レーザー(例えば半導体励起固体レーザー、Arレーザー、He-Cdレーザーなど)、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線LED(発光ダイオード)、紫外線蛍光灯などを使用することができる。
 光造形用樹脂組成物よりなる造形面に活性エネルギー線を照射して所定の形状パターンを有する各硬化樹脂層を形成するに当たっては、レーザー光などのような点状に絞られた活性エネルギー線を使用して点描または線描方式で硬化樹脂層を形成してもよいし、または液晶シャッターまたはデジタルマイクロミラーシャッター(DMD)などのような微小光シャッターを複数配列して形成した面状描画マスクを通して造形面に活性エネルギー線を面状に照射して硬化樹脂層を形成させる造形方式を採用してもよい。
 本発明の光造形用樹脂組成物は、光学的立体造形分野に幅広く用いることができ、何ら限定されるものではないが、代表的な応用分野としては、設計の途中で外観デザインを検証するための形状確認モデル、部品の機能性をチェックするための機能試験モデル、鋳型を制作するためのマスターモデル、金型を制作するためのマスターモデル、試作金型用の直接型などを挙げることできる。特に、本発明の光造形用樹脂組成物は、精密な部品などの形状確認モデルや機能試験モデルの作製に威力を発揮する。より具体的には、例えば、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物などのモデル、母型、加工用などの用途に有効に用いることができる。
 以下に本発明を実施例によって具体的に説明するが、本発明は実施例に何ら限定されるものではない。以下の例中、「部」は質量部を意味する。
 また、以下の例中、光造形用樹脂組成物の粘度、吸湿率、硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)の測定、並びに光造形して得られた光造形物の力学的特性[引張り特性(引張破断強度、引張破断伸度、引張弾性率)、曲げ特性(曲げ強度、曲げ弾性率)]、収縮率、硬さ、熱変形温度および湿度80%下での伸び率の測定または算出は、次のようにして行なった。
(1)光造形用樹脂組成物の粘度:
 光造形用樹脂組成物を25℃の恒温槽に入れて、光硬化性樹脂組成物の温度を25℃に調節した後、B型粘度計(株式会社東機産業製)を使用して回転速度20rpmで測定した。
(2)光造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)及び作業硬化エネルギー(E10):
 非特許文献1に記載されている理論にしたがって測定した。具体的には、光造形用樹脂組成物よりなる造形面(液面)に、半導体励起固体レーザのレーザ光(波長355nmの紫外光、液面レーザ強度100mW)を、照射スピードを6段階変化(照射エネルギー量を6段階変化)させて照射して光硬化膜を形成させた。生成した光硬化膜を光造形用樹脂組成物液から取り出して、未硬化樹脂を取り除き、6段階のエネルギーに対応する部分の硬化膜の厚さを定圧のノギスで測定した。光硬化膜の厚さをY軸、照射エネルギー量をX軸(対数軸)としてプロットし、プロットして得られた直線の傾きから硬化深度[Dp(mm)]を求めると共に、X軸の切片を臨界硬化エネルギー[Ec(mJ/cm2)]とし、0.25mmの厚さに硬化させるのに必要な露光エネルギー量を作業硬化エネルギー[(E10/(mJ/cm2)]とした。
(3)光造形物の引張り特性(引張破断強度、引張破断伸度、引張弾性率):
 以下の実施例または比較例で作製した光造形物(JIS K-7113に準拠したダンベル形状の試験片)を用いて、JIS K-7113にしたがって、試験片の引張破断強度(引張強度)、引張破断伸度(引張伸度)および引張弾性率を測定した。
(4)光造形物の降伏強度:
 上記(3)の引張り特性の試験において、光造形物が弾性から塑性に移る点における強度を降伏強度とした。
(5)光造形物の曲げ特性(曲げ強度、曲げ弾性率):
 以下の実施例または比較例で作製した光造形物(JIS K-7171に準拠したバー形状の試験片)を用いて、JIS K-7171にしたがって、試験片の曲げ強度および曲げ弾性率を測定した。
(6)光造形物の衝撃強度:
 以下の実施例または比較例で作製した光造形物(JIS K-7110に準拠した直方体形状の試験片)を用いて、JIS K-7110にしたがって、試験片のノッチ付きアイゾット衝撃強度を測定した。
(7)収縮率:
 光硬化させる前の光造形用樹脂組成物(液体)の比重(d0)と、光硬化して得られた光硬化物の比重(d1)から、下記の数式により収縮率を求めた。
 
  収縮率(%)={(d1-d0)/d1}×100
(8)光造形物の硬さ(ショアD硬度):
 以下の実施例および比較例で作製した光造形物(JIS K-7113に準拠したダンベル形状の試験片)を用いて、高分子計器社製の「アスカーD型硬度計」を使用して、JIS K-6253に準拠して、デュロメーター法により試験片の硬さ(ショアD硬度)を測定した。
(9)光造形物の熱変形温度:
 以下の実施例または比較例で作製した光造形物(JIS K-7171に準拠したバー形状の試験片)を使用し、東洋精機社製「HDTテスタ6M-2」を使用して、試験片に1.81MPaの荷重を加えて、JIS K-7207(A法)に準拠して、試験片の熱変形温度を測定した。
(10)光造形物の湿度80%下での伸び率:
 以下の実施例または比較例で作製した長方形状の紐状光造形物(長さ×幅×厚さ=200mm×10mm×1mm)を、湿度80%に調湿したデシケーターに入れ、温度25℃でそのまま14日間放置した後、デシケーターから取り出して長さを測定して、デシケーターに入れる前の長さ(200mm)に対する伸び率(%)を求めた。
《実施例1》
(1) ビスフェノールAジグリシジルエーテル(ADEKA社製「EP-4100E」)53部、3-ヒドロキシメチル-3-エチルオキセタン(東亞合成社製「OXT-101」)15部、トリシクロデカンジメタノールジアクリレート(新中村化学工業製「A-DCP」)20部、ジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製「NKエステルA-9530」)5部、リン系芳香族スルホニウム化合物(II-1)とリン系芳香族スルホニウム化合物(II-12)の混合物(ダブルボンドケミカル社製「Chivacure 1190」)5部および1-ヒドロキシ-シクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ社製「イルガキュア-184」、ラジカル重合開始剤)2部を室温下(25℃)に良く混合して、光造形用樹脂組成物を調製した。この光造形用樹脂組成物の粘度を上記した方法で測定したところ374mPa・s(25℃)であった。
(2) 上記(1)で得られた光造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(1)で得られた光造形用樹脂組成物を用いて、超高速光造形システム(ナブテスコ株式会社製「SOLIFORM500B」)を使用して、半導体レーザー(定格出力1000mW;波長355nm;スペクトラフィジックス社製「半導体励起固体レーザーBL6型)で、液面100mW、液面照射エネルギー80mJ/cm2の条件下に、スライスピッチ(積層厚み)0.10mm、1層当たりの平均造形時間2分で光学的立体造形を行い、得られた造形物に紫外線(高圧水銀灯、波長365nm、強度3.0mw/cm2)を20分間照射して後硬化して、物性測定用のJIS K-7113に準拠したダンベル形状の試験片、JIS K-7171に準拠したバー形状の試験片、JIS K-7110に準拠した直方体形状の試験片および長方形の紐状造形物を作製し、その物性を上記した方法で測定した。その結果を下記の表1に示す。
《実施例2》
(1) ビスフェノールAジグリシジルエーテル53部の代わりに、トリシクロデカンジメタノールジグリシジルエーテル(ADEKA社製「EP-4088S」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行い、得られた立体造形物(試験片)の物性を測定したところ、下記の表1に示すとおりであった。
《実施例3》
(1) ビスフェノールAジグリシジルエーテル53部の代わりに、トリメチロールプロパントリグリシジルエーテル(ナガセケムテックス社製「EX-321」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表1に示すとおりであった。
《実施例4》
(1) ビスフェノールAジグリシジルエーテル53部の代わりに、レゾルシノールジグリシジルエーテル(ナガセケムテックス社製「EX-201」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表1に示すとおりであった。
《比較例1》
(1) 実施例1の(1)において、ビスフェノールAジグリシジルエーテル53部の代りに、ビスフェノールAジグリシジルエーテルを48部および3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート(ダウケミカル社製「UVR-6105)5部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形を行なったところ、この比較例1の光造形用樹脂組成物は、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートを含有しているため、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、立体造形物(試験片)を製造することができなかった。
《比較例2》
(1) 実施例3の(1)において、トリメチロールプロパントリグリシジルエーテル(ナガセケムテックス社製「EX-321」)53部の代りに、トリメチロールプロパントリグリシジルエーテルを48部および3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート(ダウケミカル社製「UVR-6105)5部を用いた以外は、実施例3の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形を行なったところ、この比較例2の光造形用樹脂組成物は、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートを含有しているため、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、立体造形物(試験片)を製造することができなかった。
Figure JPOXMLDOC01-appb-T000023
 上記の表1の結果にみるように、実施例1~4の光造形用樹脂組成物は、ポリグリシジルオキシ化合物(I)、(メタ)アクリロイルオキシを2個以上有する(メタ)アクリレート化合物(B-1)、リン系芳香族スルホニウム化合物(I)よりなるカチオン重合開始剤、およびラジカル重合開始剤を含有し、その一方でシクロアルケンオキシド構造含有カチオン重合性有機化合物を含有していないため、光硬化感度が高く、光造形を円滑に行なうことができ、しかも得られた光造形物は、使用した原料化合物の種類に応じて、それぞれ優れた特性を備えている。
 それに対して、比較例1および2の光造形用樹脂組成物は、ポリグリシジルオキシ化合物(I)、(メタ)アクリロイルオキシを2個以上有する(メタ)アクリレート化合物(B-1)、リン系芳香族スルホニウム化合物(I)よりなるカチオン重合開始剤、およびラジカル重合開始剤を含有する光造形用樹脂組成物であるものの、カチオン重合性有機化合物の一部としてシクロアルケンオキシド構造含有カチオン重合性有機化合物を更に含有していることにより、光造形用樹脂組成物は光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、光造形を円滑に行なうことができない。
《実施例5》
(1) ビスフェノールAジグリシジルエーテル53部の代わりに、1,4-シクロヘキサンジメタノールジグリシジルエーテル(新日本理化工業社製「DME-100」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表2に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表2に示すとおりであった。
《実施例6》
(1) ビスフェノールAジグリシジルエーテル53部の代りに、エチレンオキサイド付加ビスフェノールA(ビスフェノールAの2個の水酸基にエチレンオキサイドがそれぞれ1モルずつ付加)のジグリシジルエーテル(新日本理化工業社製「BPO-20E」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表2に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表2に示すとおりであった。
《実施例7》
(1) ビスフェノールAジグリシジルエーテル53部の代りに、ペンタエリスリトールポリグリシジルエーテルのエピクロルヒドリン多重付加物(ナガセケムテックス社製「EX-411」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表2に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表2に示すとおりであった。
《参考例1》
(1) 1,4-シクロヘキサンジメタノールジグリシジルエーテル(新日本理化工業社製「DME-100」)54部、3-ヒドロキシメチル-3-エチルオキセタン(東亞合成社製「OXT-101」)5部、ビス(3-エチル-3-オキセタニル)エーテル(東亞合成社製「OXT-221」)10部、トリシクロデカンジメタノールジアクリレート(新中村化学工業製「A-DCP」)15部、ジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製「NKエステルA-9530」)9部、アンチモン系カチオン重合開始剤[上記の式(II-1)の触媒において、「PF6 -」が「SbF6 -」に置き換わったもの、サンアプロ社製「CPI-101A」]3.5部、1-ヒドロキシ-シクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ社製「イルガキュア-184」、ラジカル重合開始剤)2部および紫外線吸収剤(チバ・スペシャリティ・ケミカルズ社製「Tinuvin-384-2」)0.03部を室温下(25℃)に良く混合して、光造形用樹脂組成物を調製した。この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表2に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000024
 上記の表2の結果にみるように、実施例5~7の光造形用樹脂組成物は、ポリグリシジルオキシ化合物(I)、(メタ)アクリロイルオキシを2個以上有する(メタ)アクリレート化合物(B-1)、リン系芳香族スルホニウム化合物(I)よりなるカチオン重合開始剤、およびラジカル重合開始剤を含有し、その一方でシクロアルケンオキシド構造含有カチオン重合性有機化合物を含有していないため、光硬化感度が高く、しかも光硬化して得られる立体造形物の物性においても、アンチモン系のカチオン重合開始剤を用いた参考例1の光造形用樹脂組成物から得られる光造形物に比べて遜色がなく、ものによっては参考例1の光造形用樹脂組成物から得られた光造形物に比べて優れている。
《実施例8》
(1) ビスフェノールAジグリシジルエーテル53部の代わりに、水素化フタル酸ジグリシジルエスエル(ジャパンエポキシレジン社製「jER191P」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表3に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして、光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表3に示すとおりであった。
《実施例9》
(1) ビスフェノールAジグリシジルエーテル53部の代わりに、フタル酸ジグリシジルエステル(ナガセケムテックス社製「EX-721」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表3に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表3に示すとおりであった。
《比較例3》
(1) 実施例8の(1)において、水素化フタル酸ジグシジルエステル53部の代りに、水素化フタル酸ジグリシジルエステルを48部および3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート(ダウケミカル社製「UVR-6105)5部を用いた以外は、実施例9の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表3に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形を行なったところ、この比較例3の光造形用樹脂組成物は、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートを含有しているため、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、立体造形物(試験片)を製造することができなかった。
Figure JPOXMLDOC01-appb-T000025
 上記の表3の結果にみるように、実施例8および9の光造形用樹脂組成物は、カチオン重合性有機化合物として、P系カチオン重合開始剤に対する光硬化感度が低いという理由で、P系カチオン重合開始剤を用いた光造形用樹脂組成物では実際には従来殆ど使用されてこなかった水素化フタル酸ジグリシジルエステルまたはフタル酸ジグリシジルエステルを用いたにも拘わらず、シクロアルケンオキシド構造含有カチオン重合性有機化合物を含有していないため、光硬化感度が高く、光造形を円滑に行なうことができた。
 それに対して、比較例3の光造形用樹脂組成物は、カチオン重合性有機化合物として、水素化フタル酸ジグリシジルエステルと共にシクロアルケンオキシド構造含有カチオン重合性有機化合物を含有しているために、リン系光重合開始剤に対する光硬化感度が低く、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、光造形を円滑に行なうことができない。
《実施例10》
(1) ビスフェノールAジグリシジルエーテル53部の代わりに、水素化ビスフェノールAジグリシジルエーテル(新日本理化工業社製「HBE-100」)53部を用いた以外は、実施例1の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表4に示すとおりであった。
《実施例11》
(1) 実施例10の(1)において、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤として、「Chivacure 1190」の代りに、上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(II-1)単独からなる触媒(サンアプロ社製「CPI-100P」)を5部用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表4に示すとおりであった。
《実施例12》
(1) 実施例10の(1)において、トリシクロデカンジメタノールジアクリレート20部の代りに、エチレンオキサイド付加ビスフェノールA(エチレンオキサイドの合計付加モル数=4)のジアクリレート(新中村化学工業社製「A-BPE-4」)20部を用い、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤として、「Chivacure 1190」の代りに上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(II-1)単独からなる触媒(サンアプロ社製「CPI-100P」)を5部用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表4に示すとおりであった。
《実施例13》
(1) 実施例10の(1)において、ジペンタエリスリトールヘキサアクリレート5部の代りに、エチレンオキサイド付加ペンタエリスリトール(ペンタエリスリトールの4つの水酸基にエチレンオキサイドが1モルずつ付加したもの)のテトラアクリレート(新中村化学工業社製「ATM-4E」)5部を用い、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤として、「Chivacure 1190」の代りに、上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(II-1)単独からなる触媒(サンアプロ社製「CPI-100P」)を5部用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表4に示すとおりであった。
《参考例2》
(1) 実施例10の(1)において、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤5部の代りに、アンチモン系カチオン重合開始剤[上記の式(II-1)の触媒において、「PF6 -」が「SbF6 -」に置き換わったもの、サンアプロ社製「CPI-101A」]を5部用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表4に示すとおりであった。
《比較例4》
(1) 実施例10の(1)において、水素化ビスフェノールAジグリシジルエーテル53部の代りに、水素化ビスフェノールAジグリシジルエーテルを48部および3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート(ダウケミカル社製「UVR-6105)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表5に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形を行なったところ、この比較例4の光造形用樹脂組成物は、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートを含有しているため、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、立体造形物(試験片)を製造することができなかった。
《比較例5》
(1) 実施例10の(1)において、水素化ビスフェノールAジグリシジルエーテル53部の代りに、水素化ビスフェノールAジグリシジルエーテルを48部およびビス(3,4-エポキシシクロヘキシルメチル)アジペート(ダウケミカル社製「UVR-6128」)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表5に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形を行なったところ、この比較例4の光造形用樹脂組成物は、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートを含有しているため、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、立体造形物(試験片)を製造することができなかった。
《比較例6》
(1) 実施例10の(1)において、水素化ビスフェノールAジグリシジルエーテル53部の代りに、水素化ビスフェノールAジグリシジルエーテルを48部およびビニルシクロヘキセンジオキシド(フルカ社製)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表5に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形を行なったところ、この比較例4の光造形用樹脂組成物は、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートを含有しているため、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、立体造形物(試験片)を製造することができなかった。
《比較例7》
(1) 実施例10の(1)において、水素化ビスフェノールAジグリシジルエーテル53部の代りに、水素化ビスフェノールAジグリシジルエーテルを48部およびリモネンジオキシド(ダイセル化学社製「セロキサイド3000)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表5に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形を行なったところ、この比較例4の光造形用樹脂組成物は、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートを含有しているため、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、立体造形物(試験片)を製造することができなかった。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 上記の表4の結果にみるように、実施例10~13の光造形用樹脂組成物は、ポリグリシジルオキシ化合物(I)、(メタ)アクリロイルオキシを2個以上有する(メタ)アクリレート化合物(B-1)、リン系芳香族スルホニウム化合物(I)よりなるカチオン重合開始剤、およびラジカル重合開始剤を含有し、その一方でシクロアルケンオキシド構造含有カチオン重合性有機化合物を含有していないため、光硬化感度が高く、しかも光硬化して得られる立体造形物の物性においても、アンチモン系のカチオン重合開始剤を用いた参考例2の光造形用樹脂組成物から得られる光造形物に比べて遜色がない。
 それに対して、表5の結果にみるように、比較例4~7の光造形用樹脂組成物は、カチオン重合性有機化合物として、水素化ビスフェノールAジグリシジルエーテルと共に、シクロアルケンオキシド構造含有カチオン重合性有機化合物を含有しているために、リン系光重合開始剤に対する光硬化感度が低く、光硬化性に劣り、造形不良で、造形物は形状保持性がなく、すぐ破損してしまい、光造形を円滑に行なうことができない。
《実施例14》
(1) 実施例10の(1)において、トリシクロデカンジメタノールジアクリレート20部の代りに、エチレンオキサイド付加ビスフェノールA(エチレンオキサイドの合計付加モル数=4)のジアクリレート(新中村化学工業社製「A-BPE-4」)15部、ジペンタエリスリトールヘキサアクリレート5部の代りに、エチレンオキサイド付加ペンタエリスリトール(ペンタエリスリトールの4つの水酸基にエチレンオキサイドが1モルずつ付加したもの)のテトラアクリレート(新中村化学工業社製「ATM-4E」)10部を用い、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤として、「Chivacure 1190」の代りに、上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(II-1)単独からなる触媒(サンアプロ社製「CPI-100P」)を5部用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表6に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表6に示すとおりであった。
《実施例15》
(1) 実施例10の(1)において、ジペンタエリスリトールヘキサアクリレート5部の代りに、多分岐ポリエステル・オリゴマー(アクリレート官能基数=9、サートマー社製「CN2301」)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表6に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表6に示すとおりであった。
《実施例16》
(1) 実施例10の(1)において、ジペンタエリスリトールヘキサアクリレート5部の代りに、多分岐ポリエステル・オリゴマー(アクリレート官能基数=16、サートマー社製「CN2302」)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表6に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表6に示すとおりであった。
《実施例17》
(1) 実施例10の(1)において、ジペンタエリスリトールヘキサアクリレート5部の代りに、エチレンオキサイド付加ペンタエリスリトール(ペンタエリスリトールの4つの水酸基にエチレンオキサイドが1モルずつ付加)のテトラアクリレート(新中村化学工業社製「ATM-4E」)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表6に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表6に示すとおりであった。
《実施例18》
(1) 実施例10の(1)において、ジペンタエリスリトールヘキサアクリレート5部の代りに、プロピレンオキサイド付加ペンタエリスリトール(ペンタエリスリトールの4つの水酸基にプロピレンオキサイドが1モルずつ付加)のテトラアクリレート(新中村化学工業社製「ATM-4P」)5部を用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表6に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表6に示すとおりであった。
《実施例19》
(1) 実施例10の(1)において、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤として、「Chivacure 1190」の代りに、上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(II-4)(サンアプロ社製「CPI-200K」)を5部用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表6に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表6に示すとおりであった。
Figure JPOXMLDOC01-appb-T000028
《実施例20》
(1) 実施例10の(1)において、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤として、「Chivacure 1190」5部の代りに、上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(サンアプロ社製「CPI-100P」)を3.5部および上記の式(II-4)で表されるリン系芳香族スルホニウム化合物(サンアプロ社製「CPI-200K」)を1.5部用いた以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表7に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表7に示すとおりであった。
《実施例21》
(1) 実施例10の(1)において、リン系芳香族スルホニウム化合物よりなるカチオン重合開始剤として、「Chivacure 1190」5部の代りに、上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(サンアプロ社製「CPI-100P」)5部用い、更にポリアルキレンエーテル(数平均分子量2000のポリテトラメチレングリコール)(保土谷化学工業社製「PTG2000SN」)を10部添加した以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表7に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表7に示すとおりであった。
《実施例22》
(1) 実施例10の(1)において、更にポリアルキレンエーテル(数平均分子量2000のポリテトラメチレングリコール)(保土谷化学工業社製「PTG2000SN」)を10部添加した以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表7に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表7に示すとおりであった。
《実施例23》
(1) 実施例10の(1)において、更にポリアルキレンエーテル(ポリテトラメチレングリコールのジグリシジルエーテル、数平均分子量780)(エムスケミー社製「Grilonit F713」)を10部添加した以外は、実施例10の(1)と同様にして光造形用樹脂組成物を調製し、この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表7に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表7に示すとおりであった。
《実施例24》
(1) 水素化ビスフェノールAジグリシジルエーテル(新日本理化工業社製「HBE-100」)54部、ビス(3-エチル-3-オキセタニル)エーテル(東亞合成社製「OXT-221」)15部、トリシクロデカンジメタノールジアクリレート(新中村化学工業製「A-DCP」)15部、ジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製「NKエステルA-9530」)9部、上記の式(II-1)で表されるリン系芳香族スルホニウム化合物(II-1)(サンアプロ社製「CPI-100P」)5部及び1-ヒドロキシ-シクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ社製「イルガキュア-184」、ラジカル重合開始剤)2部を室温下(25℃)に良く混合して光造形用樹脂組成物を調製した。この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表7に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表7に示すとおりであった。
《実施例25》
(1) 実施例24の(1)において、ビス(3-エチル-3-オキセタニル)エーテル(東亞合成社製「OXT-221」)15部の代わりに、ビス(3-エチル-3-オキセタニル)エーテル(東亞合成社製「OXT-221」)10部および3-ヒドロキシメチル-3-エチルオキセタン(東亞合成株社製「OXT-101」)5部を用いた以外は実施例24の(1)と同様にして光造形用樹脂組成物を調製した。この光造形用樹脂組成物の物性を実施例1の(2)と同様にして測定したところ、下記の表7に示すとおりであった。
(2) 上記(1)で得られた光造形用樹脂組成物を用いて、実施例1の(3)と同様にして光学的立体造形および紫外線による後硬化を行ない、得られた立体造形物(試験片)の物性を測定したところ、下記の表7に示すとおりであった。
Figure JPOXMLDOC01-appb-T000029
 本発明の光造形用樹脂組成物は、非アンチモン系の、毒性の低いリン系芳香族スルホニウム化合物(II)を光カチオン重合開始剤として含有しているため、安全性、取り扱い性に優れ、作業環境や地球環境の汚染や悪化を生じないという長所を有し、しかも活性エネルギー線による硬化感度が高く、短縮された造形時間で目的とする寸法精度などに優れる立体造形物を生産性よく製造することができる。
 そのため、本発明の光造形用樹脂組成物を用いて、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物、金型、母型などのためのモデルや加工用モデル、複雑な熱媒回路の設計用の部品、複雑な構造の熱媒挙動の解析企画用の部品、その他の複雑な形状や構造を有する各種の立体造形物を、高い造形速度および寸法精度で、安全に製造することができる。また、本発明の光造形用樹脂組成物から得られる立体造形物を鋳型の消失モデルとして用いた際に、消失後にアンチモン化合物が残留しないため、高品質の鋳物を得ることができる。

Claims (11)

  1. (i) カチオン重合性有機化合物(A)、ラジカル重合性有機化合物(B)、活性エネルギー線感受性カチオン重合開始剤(C)および活性エネルギー線感受性ラジカル重合開始剤(D)を含有する光学的立体造形用樹脂組成物であって;
    (ii) カチオン重合性有機化合物(A)として、下記の一般式(I);
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1は有機残基、kは2以上の整数を示す。)
    で表される、グリシジルオキシ基を2個以上有する化合物(I)を含有し;
    (iii) ラジカル重合性有機化合物(B)として、(メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)を含有し;
    (iv) 活性エネルギー線感受性カチオン重合開始剤(C)が、下記の一般式(II);
    Figure JPOXMLDOC01-appb-C000002

    [上記の式(II)中、R2およびR3はそれぞれ独立して下記の式(i)~(iv);
    Figure JPOXMLDOC01-appb-C000003

    {式(ii)および式(iv)中、Xは塩素原子またはフッ素原子を示す}
    で表される基のいずれかであり、R4は下記の式(v);
    Figure JPOXMLDOC01-appb-C000004

    で表される基であり、Rfは炭素数1~8のフルオロアルキル基であり、aは0~3の整数、bは0~3の整数およびcは0または1であって、aとbとcの合計が3であり、mは1+cと同じ数であり、nは0~5の整数である。]
    で表されるリン系芳香族スルホニウム化合物(II)であり;且つ、
    (v) シクロアルケンオキシド構造を分子中に有するカチオン重合性有機化合物を含有しない;
    ことを特徴とする光学的立体造形用樹脂組成物。
  2.  カチオン重合性有機化合物(A)として、オキセタン化合物(OXT)を更に含有し、当該オキセタン化合物(OXT)が、オキセタン基を1個有するモノオキセタン化合物(OXTm)およびオキセタン基を2個以上有するポリオキセタン化合物(OXTp)のいずれか一方または両方である請求項1に記載の光学的立体造形用樹脂組成物。
  3.  モノオキセタン化合物(OXTm)が、下記の一般式(III-1a)で表されるモノオキセタン化合物(III-1a)および下記の一般式(III-1b)で表されるモノオキセタン化合物(III-1b)から選ばれる少なくとも1種のモノオキセタン化合物であり、ポリオキセタン化合物(OXTp)が、下記の一般式(III-2)で表されるジオキセタン化合物(III-2)である請求項2に記載の光学的立体造形用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005

    (式中、R5およびR6は炭素数1~5のアルキル基、R7はエーテル結合を有していてもよい炭素数2~10のアルキレン基、2個のR8は互いに同じかまたは異なる炭素数1~5のアルキル基、R9は芳香環を有しているかまたは有していない2価の有機基、pは1~6の整数、qは0または1を示す。)
  4.  カチオン重合性有機化合物(A):ラジカル重合性有機化合物(B)の含有割合が40:60~90:10の質量比であり、リン系芳香族スルホニウム化合物(II)をカチオン重合性有機化合物(A)の質量に基づいて0.1~10質量%の割合で含有し、活性エネルギー線感受性ラジカル重合開始剤(D)をラジカル重合性有機化合物(B)の質量に基づいて0.1~20質量%の割合で含有する請求項1~3のいずれか1項に記載の光学的立体造形用樹脂組成物。
  5.  グリシジルオキシ基を2個以上有する化合物(I)の含有割合が、カチオン重合性有機化合物(A)の全質量に基づいて、50~95質量%である請求項1~4のいずれか1項に記載の光学的立体造形用樹脂組成物。
  6.  オキセタン化合物(OXT)の含有割合[モノオキセタン化合物(OXTm)とポリオキセタン化合物(OXT)の両方を含有する場合は両方の合計含有割合]が、カチオン重合性有機化合物(A)の全質量に基づいて、5~30質量%である請求項2~5のいずれか1項に記載の光学的立体造形用樹脂組成物。
  7.  モノオキセタン化合物(OXTm)の含有割合が、オキセタン化合物(OXT)の全質量に基づいて、30~100質量%である請求項2~6のいずれか1項に記載の光学的立体造形用樹脂組成物。
  8.  グリシジルオキシ基を2個以上有する化合物(I)およびオキセタン化合物(OXT)の合計含有割合が、カチオン重合性有機化合物(A)の全質量に基づいて、50~100質量%である請求項1~7のいずれか1項に記載の光学的立体造形用樹脂組成物。
  9.  (メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)の含有量が、ラジカル重合性有機化合物(B)の質量に基づいて、70~100質量%である請求項1~8のいずれか1項に記載の光学的立体造形用樹脂組成物。
  10.  (メタ)アクリロイルオキシ基を2個以上有する(メタ)アクリレート化合物(B-1)として、(メタ)アクリロイルオキシ基を2個有するジ(メタ)アクリレート化合物(B-1a)および(メタ)アクリロイルオキシ基を3個以上有するポリ(メタ)アクリレート化合物(B-1b)を含有し、ジ(メタ)アクリレート化合物(B-1a):ポリ(メタ)アクリレート化合物(B-1b)の含有割合が90:10~20:80の質量比である請求項1~9のいずれか1項に記載の光学的立体造形用樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の光学的立体造形用樹脂組成物を用いて光学的立体造形物を製造する方法。
PCT/JP2009/059572 2008-05-30 2009-05-26 光学的立体造形用樹脂組成物 WO2009145167A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010514479A JPWO2009145167A1 (ja) 2008-05-30 2009-05-26 光学的立体造形用樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-141922 2008-05-30
JP2008141922 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009145167A1 true WO2009145167A1 (ja) 2009-12-03

Family

ID=41377040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059572 WO2009145167A1 (ja) 2008-05-30 2009-05-26 光学的立体造形用樹脂組成物

Country Status (2)

Country Link
JP (1) JPWO2009145167A1 (ja)
WO (1) WO2009145167A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151157A1 (ja) * 2012-04-07 2013-10-10 シーメット株式会社 熱膨張性マイクロカプセルを含有する光学的立体造形用樹脂組成物
US8753795B2 (en) 2011-03-28 2014-06-17 Sumitomo Chemical Company, Limited Photoresist composition
WO2014196571A1 (ja) * 2013-06-04 2014-12-11 シーメット株式会社 光学的立体造形用樹脂組成物
JP2016153472A (ja) * 2015-02-17 2016-08-25 田岡化学工業株式会社 環状炭化水素骨格を有するエポキシ樹脂
JP2016188308A (ja) * 2015-03-30 2016-11-04 シーメット株式会社 光学的立体造形用樹脂組成物
WO2018230725A1 (ja) * 2017-06-15 2018-12-20 学校法人東京理科大学 硬化性樹脂組成物、硬化物、並びに凹凸構造体及びその製造方法
JP2019532125A (ja) * 2016-11-25 2019-11-07 エルジー・ケム・リミテッド 硬化性組成物
JP7165650B2 (ja) 2016-09-05 2022-11-04 チューハイ セイルナー スリーディー テクノロジー カンパニー リミテッド 3次元印刷用光硬化性エラストマーインク組成物及びその調製方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325252A (ja) * 2004-05-14 2005-11-24 Toagosei Co Ltd 硬化方法及び硬化物の製造方法
WO2007048819A1 (en) * 2005-10-27 2007-05-03 Huntsman Advanced Materials (Switzerland) Gmbh Antimony-free photocurable resin composition and three dimensional article
JP2007169423A (ja) * 2005-12-21 2007-07-05 Jsr Corp 光学的立体造形用放射線硬化性液状樹脂組成物及びそれを光硬化させて得られる光造形物
JP2007277327A (ja) * 2006-04-04 2007-10-25 Cmet Inc 光学的立体造形用樹脂組成物
JP2009173781A (ja) * 2008-01-25 2009-08-06 Cmet Inc 光学的立体造形用樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325252A (ja) * 2004-05-14 2005-11-24 Toagosei Co Ltd 硬化方法及び硬化物の製造方法
WO2007048819A1 (en) * 2005-10-27 2007-05-03 Huntsman Advanced Materials (Switzerland) Gmbh Antimony-free photocurable resin composition and three dimensional article
JP2007169423A (ja) * 2005-12-21 2007-07-05 Jsr Corp 光学的立体造形用放射線硬化性液状樹脂組成物及びそれを光硬化させて得られる光造形物
JP2007277327A (ja) * 2006-04-04 2007-10-25 Cmet Inc 光学的立体造形用樹脂組成物
JP2009173781A (ja) * 2008-01-25 2009-08-06 Cmet Inc 光学的立体造形用樹脂組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753795B2 (en) 2011-03-28 2014-06-17 Sumitomo Chemical Company, Limited Photoresist composition
WO2013151157A1 (ja) * 2012-04-07 2013-10-10 シーメット株式会社 熱膨張性マイクロカプセルを含有する光学的立体造形用樹脂組成物
JPWO2013151157A1 (ja) * 2012-04-07 2015-12-17 シーメット株式会社 熱膨張性マイクロカプセルを含有する光学的立体造形用樹脂組成物
WO2014196571A1 (ja) * 2013-06-04 2014-12-11 シーメット株式会社 光学的立体造形用樹脂組成物
JP2014234473A (ja) * 2013-06-04 2014-12-15 シーメット株式会社 光学的立体造形用樹脂組成物
JP2016153472A (ja) * 2015-02-17 2016-08-25 田岡化学工業株式会社 環状炭化水素骨格を有するエポキシ樹脂
JP2016188308A (ja) * 2015-03-30 2016-11-04 シーメット株式会社 光学的立体造形用樹脂組成物
JP7165650B2 (ja) 2016-09-05 2022-11-04 チューハイ セイルナー スリーディー テクノロジー カンパニー リミテッド 3次元印刷用光硬化性エラストマーインク組成物及びその調製方法
JP2019532125A (ja) * 2016-11-25 2019-11-07 エルジー・ケム・リミテッド 硬化性組成物
US11208526B2 (en) 2016-11-25 2021-12-28 Lg Chem, Ltd. Curable composition
WO2018230725A1 (ja) * 2017-06-15 2018-12-20 学校法人東京理科大学 硬化性樹脂組成物、硬化物、並びに凹凸構造体及びその製造方法
JPWO2018230725A1 (ja) * 2017-06-15 2020-06-25 学校法人東京理科大学 硬化性樹脂組成物、硬化物、並びに凹凸構造体及びその製造方法
JP7406193B2 (ja) 2017-06-15 2023-12-27 学校法人東京理科大学 ナノインプリント用硬化性樹脂組成物、硬化物の製造方法、及び凹凸構造体の製造方法

Also Published As

Publication number Publication date
JPWO2009145167A1 (ja) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5210645B2 (ja) 光学的立体造形用樹脂組成物
JP4969137B2 (ja) 光学的立体造形用樹脂組成物
JP5478016B2 (ja) 光学的立体造形用樹脂組成物
WO2009145167A1 (ja) 光学的立体造形用樹脂組成物
JP5266131B2 (ja) 光学的立体造形用樹脂組成物
JP4925900B2 (ja) 光学的立体造形用樹脂組成物
US8293448B2 (en) Resin composition for stereolithography
JP4516019B2 (ja) 三次元構造体およびその製造方法
JP5111774B2 (ja) 光学的立体造形用樹脂組成物
JP5280610B2 (ja) 安定性の向上した活性エネルギー線硬化性の光学的立体造形用樹脂組成物
WO2013172407A1 (ja) 光学的立体造形用樹脂組成物
JP6457860B2 (ja) 光学的立体造形用樹脂組成物
JP6348702B2 (ja) 光学的立体造形用樹脂組成物
JP3974336B2 (ja) 光学的立体造形用の活性エネルギー線硬化性樹脂組成物
JP2013151703A (ja) 光学的立体造形用樹脂組成物
WO2013172406A1 (ja) 光学的立体造形用樹脂組成物
JP6865460B2 (ja) 光学的立体造形用樹脂組成物
JP5205018B2 (ja) 光学的立体造形用樹脂組成物
JP2009203306A (ja) 光学的立体造形用樹脂組成物
JP5302022B2 (ja) 光学的立体造形用樹脂組成物
JP4795630B2 (ja) 靱性に優れた光学的立体造形用樹脂組成物
JP2007238828A (ja) 光学的立体造形用樹脂組成物
WO2018043512A1 (ja) 光学的立体造形用樹脂組成物
JP6570011B2 (ja) 光学的立体造形用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514479

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754675

Country of ref document: EP

Kind code of ref document: A1