WO2009145027A1 - 動脈硬化度を判定するための指標が得られる、血圧情報測定装置 - Google Patents

動脈硬化度を判定するための指標が得られる、血圧情報測定装置 Download PDF

Info

Publication number
WO2009145027A1
WO2009145027A1 PCT/JP2009/058341 JP2009058341W WO2009145027A1 WO 2009145027 A1 WO2009145027 A1 WO 2009145027A1 JP 2009058341 W JP2009058341 W JP 2009058341W WO 2009145027 A1 WO2009145027 A1 WO 2009145027A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid bag
pulse wave
pressure
blood pressure
measurement
Prior art date
Application number
PCT/JP2009/058341
Other languages
English (en)
French (fr)
Inventor
達矢 小林
敏彦 小椋
博則 佐藤
敏彦 阿部
秀輝 吉田
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to CN200980118776.0A priority Critical patent/CN102036603B/zh
Priority to DE112009001264.7T priority patent/DE112009001264B4/de
Priority to US12/993,699 priority patent/US20110077534A1/en
Priority to RU2010152566/14A priority patent/RU2502463C2/ru
Publication of WO2009145027A1 publication Critical patent/WO2009145027A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance

Definitions

  • the present invention relates to a blood pressure information measurement device and an index acquisition method, and more particularly to a device for measuring blood pressure information using a cuff containing a fluid bag and a method for acquiring an index for determining the degree of arteriosclerosis from the blood pressure information. .
  • Measuring blood pressure information such as blood pressure and pulse wave is useful for determining the degree of arteriosclerosis.
  • an apparatus for determining the degree of arteriosclerosis for example, Japanese Patent Laid-Open No. 2000-316821 (hereinafter referred to as Patent Document 1) determines the speed of propagation of a pulse wave ejected from the heart (hereinafter referred to as PWV)
  • PWV pulse wave ejected from the heart
  • PWV is equipped with cuffs that measure pulse waves at at least two locations such as the upper arm and lower limb, and simultaneously measures pulse waves, and the difference in the appearance time of pulse waves at each location and the cuff that measures pulse waves It is calculated from the length of the artery between the two points wearing the.
  • the value of PWV varies depending on the measurement site. Typical PWV includes baPWV when the measurement site is the upper arm and the ankle, and cfPWV when the measurement site is the carotid artery and the femoral artery.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-44362
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-44362
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-113593
  • Patent Document 3 separates the ejection wave ejected from the heart and the reflected wave from the iliac artery bifurcation and the sclerosing site in the artery, respectively.
  • Patent Document 3 Discloses a technique for determining the degree of arteriosclerosis based on the amplitude difference, amplitude ratio, appearance time difference, and the like.
  • Patent Document 2 discloses a technique for determining the degree of arteriosclerosis from the pulse wave of the upper arm.
  • Patent Document 2 has a device configuration having a dual structure of a blood pressure measurement cuff and a pulse wave measurement cuff.
  • the reflected wave cannot be correctly separated only by the pulse wave measurement cuff because the reflection from the periphery is superimposed. Therefore, there is a problem that it is difficult to accurately determine the degree of arteriosclerosis.
  • the present invention has been made in view of these problems, and provides a blood pressure information measurement device and an index acquisition method capable of obtaining an index for accurately determining the degree of arteriosclerosis from measured blood pressure information. Is one of the purposes.
  • the blood pressure information measurement device includes an internal pressure of each of the first fluid bag and the second fluid bag, and the first fluid bag and the second fluid bag.
  • a first sensor and a second sensor for measuring the pressure
  • a first adjustment unit for adjusting the internal pressure of the second fluid bag
  • an operation for calculating an index for determining the degree of arteriosclerosis and
  • a control unit for controlling adjustment in the first adjustment unit, wherein the control unit is configured such that the first fluid bag is wound around the measurement site, and the second fluid bag is more distal than the first fluid bag.
  • the first fluid in the first state is wound around the peripheral portion of the measurement site around which the second fluid bag is wound with the internal pressure higher than the maximum blood pressure.
  • the calculation for calculating the index is performed using at least one of the first feature point and the second feature point extracted from the second pulse wave.
  • the blood pressure information measuring device includes a first fluid bag and a second fluid bag, and a first fluid pressure measuring device for measuring an internal pressure of each of the first fluid bag and the second fluid bag.
  • the second sensor, the first adjustment unit for adjusting the internal pressure of the second fluid bag, the calculation for calculating the index for determining the degree of arteriosclerosis, and the first adjustment unit A control unit for controlling the adjustment, wherein the control unit is configured such that the first fluid bag is wound around the measurement site, the second fluid bag is wound more distally than the first fluid bag, and the second fluid bag is wound around the measurement site.
  • Calculation for detecting a pulse wave at the measurement site based on a change in internal pressure of the first fluid bag in a state where the fluid bag is compressing the distal side of the measurement site around which the first fluid bag is wound Is detected by comparing the internal pressure of the second fluid bag when the pulse wave is detected and the maximum blood pressure.
  • the first pulse wave detected in the first state in which the internal pressure of the second fluid bag is compressing the distal side of the measurement site with a pressure higher than the maximum blood pressure 2 for calculating whether the internal pressure of the fluid bag 2 is the second pulse wave detected in the second state where the distal side of the measurement site is compressed at a pressure lower than the maximum blood pressure.
  • For calculating an index using at least one of the first feature point extracted from the first pulse wave and the second feature point extracted from the second pulse wave Perform operations.
  • the index acquisition method is a method for acquiring an index for determining the degree of arteriosclerosis from the pulse wave measured by the blood pressure information measurement device, and the blood pressure information measurement device includes: A first fluid bag and a second fluid bag; a first sensor and a second sensor for measuring respective internal pressures of the first fluid bag and the second fluid bag; and an internal pressure of the second fluid bag.
  • a step of detecting a second pulse wave at the measurement site based on a change in the internal pressure of the first fluid bag in a state where the distal side of the measurement site is being pressed at a low pressure, and an index from the second pulse wave Calculating.
  • an index for accurately determining the degree of arteriosclerosis can be obtained from the measured blood pressure information.
  • blood pressure information refers to information related to blood pressure obtained by measurement from a living body, and specifically corresponds to a blood pressure value, a pulse wave waveform, a heart rate, and the like.
  • a blood pressure information measuring device (hereinafter abbreviated as a measuring device) 1A according to a first embodiment is connected to a base 2 and the base 2 and is attached to an upper arm that is a measurement site. These are connected to each other by an air tube 10.
  • a display unit 4 for displaying various information including measurement results and an operation unit 3 operated to give various instructions to the measuring apparatus 1 ⁇ / b> A are arranged.
  • the operation unit 3 includes a switch 31 that is operated to turn on / off the power source and a switch 32 that is operated to instruct the start of measurement.
  • the arm band 9 is wound around the upper arm 100 as the measurement site, as shown in FIG. 2A.
  • blood pressure information is measured.
  • the armband 9 includes an air bag as a fluid bag for compressing the living body.
  • the air bag includes an air bag 13A that is a fluid bag used to measure blood pressure as blood pressure information, and an air bag 13B that is a fluid bag used to measure pulse waves as blood pressure information.
  • the size of the air bag 13B is, for example, about 20 mm ⁇ 200 mm.
  • the air capacity of the air bag 13B is 1/5 or less as compared with the air capacity of the air bag 13A as shown in FIG. 2B.
  • Measurement apparatus 1A obtains an index for determining the degree of arteriosclerosis based on the pulse wave waveform as blood pressure information obtained from one measurement site.
  • indexes for determining the degree of arteriosclerosis include Tpp (also expressed as ⁇ Tp), Tr (Traveling time to reflected wave), and AI (Augmentation Index).
  • Tpp is an index represented by the time interval between the appearance time of the peak (maximum point) of the ejection wave, which is a traveling wave, and the appearance time of the peak (maximum point) of the reflected wave. In the waveform of FIG. 3, it is represented by the time interval between the points A and B.
  • Tr is an index represented by a time interval between the appearance time of the ejection wave and the appearance time of the reflected wave where the traveling wave is reflected back from the bifurcation of the iliac artery. In the waveform of FIG. 3, it is represented by the time interval from the rising point of the ejection wave to the point A. As shown in FIG. 4, the index Tr and PWV have a correlation. When the measurement site is the upper arm and the reflected wave is a reflected wave from the ankle as the periphery, the correlation between the indicator Tr and baPWV, which is the PWV when the measurement site is the upper arm and the ankle, is an individual such as height and gender.
  • AI is an index of a characteristic amount that reflects the reflection intensity of a pulse wave mainly corresponding to arteriosclerosis.
  • the pulse wave reflection intensity is an index of the pulse wave reflection phenomenon, and represents the ease of blood delivery and the acceptability of blood flow.
  • AI is an index represented by the ratio of the amplitude at the maximum point of the reflected wave to the amplitude at the maximum point of the ejection wave that is a traveling wave.
  • the waveform of FIG. 3 is represented by the ratio of the amplitude P2 at point B to the amplitude P1 at point A.
  • the peak of the ejection wave (point A in FIG. 3) and the peak of the reflected wave (point B in FIG. 3) are extracted from the measured pulse wave. Necessary. Point A and point B in FIG. 3 are inflection points of the pulse wave waveform, and these are referred to as “feature points”. The inflection points A and B are obtained by calculating a multi-order derivative (for example, a fourth derivative) of the measured pulse wave waveform.
  • the above-described air bag for compressing a living body has a double structure including two air bags 13A and 13B arranged side by side along the direction of the artery of the measurement site.
  • the air bag 13A is disposed on the distal side of the upper arm 100 (the side far from the heart).
  • the air bladder 13B is disposed on the central side (side closer to the heart). After the upper arm 100 is compressed and fixed, the air bags 13A and 13B expand and contract.
  • the air bag 13A is pressed against the upper arm 100 by inflating.
  • the change in the arterial pressure is detected by being superimposed on the internal pressure of the air bag 13A.
  • the air bag 13A is inflated to bring the peripheral side of the artery into a blood-feeding state.
  • the air bag 13B is inflated to detect an arterial pressure pulse wave generated in the artery in the blood-feeding state. That is, pulse wave measurement is possible while driving the peripheral side. Thereby, it becomes possible to measure a pulse wave with high accuracy. As a result, feature points can be accurately obtained from the measured pulse waveform, and an accurate index can be obtained.
  • the feature point may be difficult to see from the pulse wave detected by driving the peripheral side. That is, when a pulse wave as shown in FIG. 5 is detected, the point A1, which is the peak of the ejection wave, is extracted from “pulse wave 1” measured in the state of being driven. The point B1 that is the peak of the reflected wave is difficult to see and is not extracted. However, since “pulse wave 2” measured in a state where no blood is pumped has more influence than a state where a reflected wave from the peripheral side is driven, the reflected wave is reflected together with the point A2 which is the peak of the ejection wave. B2 point which is a peak is extracted.
  • the generation time at the point A1 and the generation time at the point A2 are considered to be substantially the same.
  • the generation time at point B1 and the generation time at point B2 are considered to be substantially the same.
  • measuring apparatus 1A includes an air system 20A connected to air bag 13A via air tube 10, an air system 20B connected to air bag 13B via air tube 10, and a CPU ( Central Processing Unit) 40.
  • CPU Central Processing Unit
  • the air system 20A includes an air pump 21A, an air valve 22A, and a pressure sensor 23A.
  • the air system 20B includes an air valve 22B and a pressure sensor 23B.
  • the air pump 21A is driven by a drive circuit 26A that has received a command from the CPU 40, and sends compressed gas into the air bag 13A. Thereby, air bag 13A is pressurized.
  • Open / close states of the air valves 22A and 22B are controlled by the drive circuits 27A and 27B that have received a command from the CPU 40.
  • the open / close state of the air valves 22A and 22B the pressure in the air bags 13A and 13B is controlled.
  • the pressure sensors 23A and 23B detect the pressure in the air bags 13A and 13B, respectively, and output signals corresponding to the detected values to the amplifiers 28A and 28B.
  • the amplifiers 28A and 28B amplify the signals output from the pressure sensors 23A and 23B, respectively, and output the amplified signals to the A / D converters 29A and 29B.
  • the A / D converters 29A and 29B digitize the analog signals output from the amplifiers 28A and 28B, respectively, and output them to the CPU 40.
  • the air bag 13A and the air bag 13B are connected by a two-port valve 51.
  • the 2-port valve 51 is connected to the drive circuit 53, and the opening and closing of the valve is controlled.
  • the drive circuit 53 is connected to the CPU 40 and controls the opening and closing of the two valves of the two-port valve 51 in accordance with a control signal from the CPU 40.
  • the CPU 40 controls the air systems 20A and 20B and the drive circuit 53 based on a command input to the operation unit 3 provided on the base 2 of the measuring device. Further, the measurement result is output to the display unit 4 and the memory 41.
  • the memory 41 stores the measurement result. Further, a program executed by the CPU 40 is stored.
  • the first specific example is an example of a measurement operation when an operation with the first operation algorithm is performed.
  • the operation shown in FIG. 7 starts when a subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG. 8A shows the time change of the pressure P1 in the air bag 13B, and FIG. 8B shows the time change of the pressure P2 in the air bag 13A.
  • S3 to S17 attached to the time axis in FIGS. 8A and 8B coincide with the respective operations of the measurement operation in the measurement apparatus 1A.
  • the CPU 40 initializes each unit (step S1).
  • the CPU 40 outputs a control signal to the air system 20A to start pressurization of the air bag 13A, and measures blood pressure in the pressurization process (step S3).
  • a measurement method performed by a normal blood pressure monitor can be employed.
  • the CPU 40 calculates the systolic blood pressure (SYS) and the diastolic blood pressure (DIA) based on the pressure signal obtained from the pressure sensor 23A.
  • SYS systolic blood pressure
  • DIA diastolic blood pressure
  • the pressure P2 in the air bag 13A increases until it exceeds the maximum blood pressure in the section of step S3.
  • the pressure P1 in the air bag 13B is maintained at the initial pressure in the section.
  • step S3 When the blood pressure measurement in step S3 is completed, the CPU 40 outputs a control signal to the drive circuit 53 to open both the air bag 13A side valve and the air bag 13B side valve of the 2-port valve 51 (step S5). ). Thereby, a part of the air in the air bag 13A moves to the air bag 13B, and the air bag 13B is pressurized.
  • the CPU 40 outputs a control signal to the drive circuit 27B to adjust the pressure P1 in the air bladder 13B to a reduced pressure (step S9).
  • the amount of pressure reduction adjustment here is preferably about 5.5 mmHg / sec.
  • the pressure is adjusted so that the pressure P1 is within a range of 50 to 150 mmHg, which is a pressure suitable for pulse wave measurement.
  • the pressure P2 of the air bladder 13A is maintained at a pressure higher than at least the maximum blood pressure, which is the maximum compression pressure.
  • the air bag 13A drives the artery on the distal side of the measurement site. This state is referred to as a blood-feeding state.
  • the blood-feeding state refers to a state where the pressure P2 in the air bag 13A is pressing the peripheral side of the measurement site with a pressure that is at least higher than the systolic blood pressure.
  • the CPU 40 measures the pulse wave by measuring the pressure P1 in the air bag 13B based on the pressure signal from the pressure sensor 23B, and extracts the feature point (step S11).
  • step S ⁇ b> 11 a pulse wave 1 that is a pulse wave during blood driving is measured, and from the pulse wave 1, feature points A ⁇ b> 1 and B ⁇ b> 1 are extracted.
  • the pulse wave measured in step S11 is referred to as pulse wave 1
  • the extracted feature point is referred to as feature point 1.
  • the CPU 40 When the feature point 1 is not extracted from the pulse wave 1 in step S11 (NO in step S13), the CPU 40 performs the following control.
  • the CPU 40 outputs a control signal to the drive circuit 27A to further reduce the pressure P2 in the air bladder 13A (step S15).
  • the air valve 22A may be opened.
  • the CPU 40 adjusts the pressure so as to be, for example, about 55 mmHg so as to be lower than the maximum blood pressure if the pressure P2 is small.
  • the air bag 13A is in a state in which no blood is pumped through the artery, or in a state of blood pumping at a pressure lower than that at the time of step S11.
  • These states are referred to as non-blood-feeding states.
  • the non-blood-feeding state refers to a state in which the pressure P2 in the air bag 13A is pressing the distal side of the measurement site with a pressure lower than at least the maximum blood pressure.
  • the pressure P2 of the air bladder 13A decreases until it becomes lower than the maximum blood pressure in the section of step S15.
  • step S17 the CPU 40 measures the pulse wave by measuring the pressure P1 in the air bag 13B based on the pressure signal from the pressure sensor 23B in the same manner as in step S11. Is extracted (step S17).
  • the pulse wave 2 that is a pulse wave during non-feeding is measured, and feature points A ⁇ b> 2 and B ⁇ b> 2 are extracted from the pulse wave 2.
  • the pulse wave measured in step S17 is referred to as pulse wave 2
  • the extracted feature point is referred to as feature point 2.
  • the CPU 40 may extract only the feature points not extracted in step S11 from the pulse wave 2.
  • step S11 it is conceivable that point B1 is not extracted from pulse wave 1.
  • the CPU 40 may extract only the B2 point as the feature point 2 from the pulse wave 2 in step S17. Steps S15 and S17 are skipped when all feature points 1 are extracted in step S11 (YES in step S13).
  • the CPU 40 extracts the feature point 1 from the feature point 1 when the feature point 1 is extracted at step S11, and the feature point 2 when the feature point 2 is extracted at step S17 without extracting the feature point 1 at the step S11.
  • the above-mentioned index is calculated and the degree of arteriosclerosis is determined (step S19-1).
  • the CPU 40 outputs a control signal to the drive circuits 27A and 27B to open the air valves 22A and 20B, thereby releasing the pressure of the air bags 13A and 13B to atmospheric pressure (step S21).
  • the pressures P1 and P2 in the air bags 13A and 13B are rapidly decreased to the atmospheric pressure in the section of step S21.
  • the CPU 40 displays the measurement result such as the calculated maximum blood pressure (SYS) and minimum blood pressure (DIA), the measured pulse wave, the determination result of the degree of arteriosclerosis, and the like on the display unit 4 provided on the base 2. Is performed, and the measurement result is displayed (step S23).
  • the measurement result such as the calculated maximum blood pressure (SYS) and minimum blood pressure (DIA), the measured pulse wave, the determination result of the degree of arteriosclerosis, and the like.
  • the internal pressure P1 of the air bag 13B may be further reduced. That is, the decompression adjustment may be repeated until all feature points are extracted. Further, at that time, when the internal pressure P1 reaches a predetermined pressure, the measurement operation may be terminated, or the measurement operation may be terminated when the pressure reduction is adjusted a predetermined number of times.
  • the pulse wave pulse wave 2 in the non-blood-feeding state is measured.
  • the feature point (point B1) corresponding to the peak of the reflected wave is not extracted.
  • the pulse wave is measured with the peripheral side in a non-blood-feeding state, so that it is particularly easy to extract feature points (point B2) corresponding to the peak of the reflected wave. Therefore, the index can be calculated with high accuracy, and an index useful for determining the degree of arteriosclerosis can be obtained.
  • FIG. 9 A second specific example of the operation of the measuring apparatus 1A will be described with reference to FIG.
  • the second specific example is an example of a measurement operation when computation is performed using the second computation algorithm.
  • the operation shown in FIG. 9 is also started when a subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG.
  • the same step numbers are assigned to the measurement operations similar to the measurement operations according to the first specific example shown in the flowchart of FIG. Therefore, S3 to S17 attached to the time axis in FIGS. 8A and 8B also correspond to the respective measurement operations shown in FIG.
  • pulse wave 1 is measured in the blood-feeding state in step S ⁇ b> 11, feature point 1 is extracted from pulse wave 1, and then in step S ⁇ b> 15.
  • the operation is performed, and the pressure P1 in the air bag 13B is further reduced.
  • step S17 the pulse wave 2 is measured in the non-blood-feeding state, and the feature point 2 is extracted from the pulse wave 2.
  • the CPU 40 detects the feature point 1 extracted in step S11 and the feature extracted in step S17.
  • An average value with respect to the point 2 is calculated, and the above-described index is calculated from the average value to determine the degree of arteriosclerosis (step S19-2). That is, when calculating Tpp as an index, the CPU 40 calculates the average of the generation time of point A1 extracted from pulse wave 1 in step S11 and the generation time of point A2 extracted from pulse wave 2 in step S17, and step The average of the generation time of the B1 point extracted from the pulse wave 1 in S11 and the generation time of the B2 point extracted from the pulse wave 2 in step S17 is calculated, and Tpp is obtained by the difference between these.
  • the CPU 40 calculates the average of the amplitude of the point A1 extracted from the pulse wave 1 in step S11 and the amplitude of the point A2 extracted from the pulse wave 2 in step S17, and the pulse wave in step S11.
  • the average of the amplitude of the B1 point extracted from 1 and the amplitude of the B2 point extracted from the pulse wave 2 in step S17 is calculated, and AI is obtained by these ratios. Thereafter, the operations of steps S21 and S23 are performed.
  • the feature points (A1 point, B1) extracted from the pulse wave (pulse wave 1) measured in the blood-feeding state The index is calculated using the average of the point) and the feature points (A2 point, B2 point) extracted from the pulse wave (pulse wave 2) measured in the non-feeding state. Therefore, a more accurate index can be calculated, and a useful index can be obtained by determining the degree of arteriosclerosis.
  • FIG. 10 A third specific example of the operation of the measuring apparatus 1A will be described with reference to FIG.
  • the third specific example is an example of a measurement operation when computation is performed using the third computation algorithm.
  • the operation shown in FIG. 10 is also started when the subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG. 10, the same step numbers are used for the measurement operation according to the first specific example shown in the flowchart of FIG. 7 and the measurement operation similar to the measurement operation according to the second specific example shown in the flowchart of FIG. Is attached. Therefore, S3 to S17 attached to the time axis in FIGS. 8A and 8B also correspond to the measurement operations shown in FIG.
  • pulse wave 1 is measured in the blood-feeding state in step S ⁇ b> 11, and feature point 1 is extracted from pulse wave 1, and then in step S ⁇ b> 15.
  • the operation is performed to further reduce the pressure P1 in the air bag 13B.
  • step S17 the pulse wave 2 is measured in the non-blood-feeding state, and the feature point 2 is extracted from the pulse wave 2.
  • the CPU 40 extracts the feature point 1 extracted in step S11 and the step S17.
  • the feature point 2 is compared, and it is determined whether or not these differences are greater than or equal to an allowable value (step S18A).
  • the allowable value here is, for example, about 10 ms, and is stored in the CPU 40 in advance.
  • registration or updating may be performed by a predetermined operation (for example, an operation method known only to a user designated in advance such as a doctor).
  • the generation time at the point A1 and the generation time at the point A2 are considered to be substantially the same.
  • the generation time at point B1 and the generation time at point B2 are considered to be substantially the same. For this reason, when the difference between the generation times is equal to or greater than the allowable value, it is considered that any one of the pulse waves is not correctly measured or the feature point is not correctly extracted.
  • step S18A determines whether feature point 1 and feature point 2 is greater than or equal to the allowable value, or if either feature point 1 or feature point 2 is not extracted (step S18A). NO)
  • the CPU 40 performs an operation for displaying on the display unit 4 a screen for notifying remeasurement. Then, after notifying the remeasurement (step S18B), the CPU 40 returns the measurement operation to step S5 and opens the 2-port valve 51 again.
  • step S11 If feature point 1 is extracted in step S11, feature point 2 is extracted in step S17, and the difference between them is within the above-described allowable value (YES in step S18A), the CPU 40 Similar to the measurement operation according to the specific example, the average value of the feature point 1 extracted in step S11 and the feature point 2 extracted in step S17 is calculated, and the above-described index is calculated from the average value. Then, the degree of arteriosclerosis is determined (step S19-2). Alternatively, the above-described index may be calculated using either one of the feature point 1 extracted in step S11 and the feature point 2 extracted in step S17. The above-described index may be calculated using the feature point 1 extracted from the pulse wave 1 measured in step (1).
  • the measurement operation according to the third specific example shown in FIG. 10 is performed by the measurement apparatus 1A, so that feature points (A1 point, B1 point) extracted from the pulse wave (pulse wave 1) measured in the blood-feeding state ) And the feature points (points A2 and B2) extracted from the pulse wave (pulse wave 2) measured in the non-starvation state are equal to or greater than an allowable value, remeasurement is performed. Therefore, a more accurate index can be calculated, and a useful index can be obtained by determining the degree of arteriosclerosis.
  • the fourth specific example is an example of a measurement operation when an operation is performed using the fourth operation algorithm.
  • the operation shown in FIG. 11 is also started when a subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG. 11, the measurement operation according to the first specific example shown in the flowchart of FIG. 7, the measurement operation according to the second specific example shown in the flowchart of FIG. 9, and the first measurement example shown in the flowchart of FIG.
  • the same step numbers are assigned to the measurement operations similar to the measurement operation according to the third example. For this reason, S3 to S17 attached to the time axis in FIGS. 8A and 8B also correspond to the respective measurement operations shown in FIG.
  • step S18A if it is determined in step S18A that the difference between feature point 1 and feature point 2 is greater than or equal to the allowable value, or feature point 1 and the feature. If neither of the points 2 is extracted (NO in step S18A), the CPU 40 performs a process for displaying on the display unit 4 a screen informing that the reliability of the determination result is low. Then, the CPU 40 notifies the fact (step S18C) and proceeds with the measurement operation. Similar to the measurement operation according to the second specific example and the measurement operation according to the third specific example, the CPU 40 has the feature point 1 extracted in step S11 and the feature point 2 extracted in step S17. Is calculated, and the above-mentioned index is calculated from the average value to determine the degree of arteriosclerosis (step S19-2).
  • the characteristic points (A1 point, B1) extracted from the pulse wave (pulse wave 1) measured in the blood-feeding state Point) and a feature point (point A2, point B2) extracted from a pulse wave (pulse wave 2) measured in a non-starvation state is not less than the allowable value, the reliability is low. Is notified, and an index is calculated using these feature points. Therefore, for example, an index having lower reliability than the index obtained by the measurement operation according to the third specific example is calculated, but the remeasurement is not performed, and the index is calculated by one measurement operation. Therefore, the time required for determining the degree of arteriosclerosis can be shortened.
  • the air bag 13A and the air bag 13B are connected via the two-port valve 51.
  • the air in the air bag 13A is moved to the air bag 13B by opening the 2-port valve 51 in step S5.
  • the 2-port valve 51 is opened, the air in the air bladder 13A rapidly flows into the air bladder 13B in order to eliminate the pressure difference.
  • the time required for air to flow into the air bag 13B by the pump can be greatly shortened, and the entire measurement time can be shortened. Accordingly, the burden on the subject can be reduced.
  • the length of time required for the measurement may cause the artery to be compressed for a long time, which may stimulate the sympathetic nerves and damage the blood vessel characteristics.
  • the time during which the artery is compressed can be shortened. Furthermore, although the time required for measurement becomes longer, the possibility of occurrence of body movement increases, but by reducing the time required for measurement, the possibility of occurrence of body movement can also be suppressed. Thereby, the measurement accuracy of blood pressure information such as a pulse wave can be improved. In addition, the accuracy of the index of arteriosclerosis obtained from the measurement result can be improved.
  • a mechanism for flowing air into the air bag 13B may not be mounted. Thereby, it can contribute also to size reduction, weight reduction, and price reduction of an apparatus.
  • the above-described measurement operation can be performed not only by the measurement apparatus having the configuration as shown in FIG. 6, but also by the measurement apparatus having a normal configuration as shown in FIG. Therefore, as a second embodiment, a measurement operation in the measurement apparatus 1B having the configuration shown in FIG. 12 will be described.
  • measurement apparatus 1B includes an air pump 21B in air system 30B in addition to 2-port valve 51 and drive circuit 53 in the configuration of measurement apparatus 1A shown in FIG. Includes a driving circuit 26B for driving the.
  • the air pump 21B is driven by a drive circuit 26B that has received a command from the CPU 40, and sends compressed gas into the air bag 13B.
  • the first specific example represents a measurement operation when an operation is performed using the first operation algorithm described in the first embodiment.
  • the operation shown in FIG. 13 is started when a subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG. 14A shows the time change of the pressure P1 in the air bag 13B, and FIG. 14B shows the time change of the pressure P2 in the air bag 13A.
  • S103 to S121 attached to the time axis in FIGS. 14A and 14B correspond to the respective measurement operations in the measurement apparatus 1B.
  • step S101 the CPU 40 initializes each unit.
  • step S103 the CPU 40 outputs a control signal to the air system 20B to pressurize the air bladder 13B until a predetermined pressure is reached.
  • the pressure P1 in the air bladder 13B increases in the section of step S103.
  • the pressure P1 is maintained.
  • step S103 the pressure P1 is increased within a range of 50 to 150 mmHg, which is a pressure suitable for pulse wave measurement.
  • step S105 the CPU 40 outputs a control signal to the air system 20A to pressurize the pressure P2 of the air bag 13A until the air pressure reaches the predetermined pressure, and the air bag 13A is used at the distal side of the measurement site. Is pressed (step S105).
  • the pressure P2 in the air bladder 13A increases in the section of step S105.
  • the CPU 40 pressurizes until the pressure P2 becomes higher than a general systolic blood pressure value.
  • pressurization is performed until the pressure reaches the maximum blood pressure value +40 mmHg.
  • the air bag 13A drives the artery.
  • the CPU 40 outputs a control signal to the air system 20A and starts to reduce the pressure P2 in the air bag 13A (step S107).
  • the amount of pressure reduction adjustment here is preferably about 4 mmHg / sec, and the pressure is gradually reduced.
  • the CPU 40 detects the pressure sensor 23B until the pressure P2 in the air bag 13A reaches the maximum blood pressure from the maximum pressure (YES in step S111), that is, in the blood-feeding state.
  • the pulse wave is measured by measuring the pressure P1 in the air bag 13B based on the pressure signal from and the characteristic points are extracted (step S109).
  • step S109 pulse waves are measured and feature points are extracted.
  • a pulse wave 1 that is a pulse wave during blood driving is measured, and a feature point A ⁇ b> 1 and a point B ⁇ b> 1 are extracted from the pulse wave 1.
  • the pulse wave measured in step S109 is referred to as pulse wave 1
  • the extracted feature point is referred to as feature point 1.
  • step S113 When the characteristic point 1 is not extracted from the pulse wave 1 until the pressure P2 in the air bag 13A reaches the maximum blood pressure value in the process of reducing the pressure P2 in the air bag 13A (NO in step S113).
  • the CPU 40 detects the pressure signal from the pressure sensor 23B.
  • the pulse wave is measured by measuring the pressure P1 in the air bag 13B based on the above, and the feature point is extracted (step S115).
  • step S115 pulse waves are measured and feature points are extracted.
  • FIG. 14A and 14B In the example of FIG.
  • step S ⁇ b> 115 the pulse wave 2 that is a pulse wave during non-feeding is measured, and the feature points A ⁇ b> 2 and B ⁇ b> 2 are extracted from the pulse wave 2.
  • the pulse wave measured in step S115 is referred to as pulse wave 2
  • the extracted feature point is referred to as feature point 2.
  • Step S115 is skipped when all feature points 1 are extracted in step S109 (YES in step S113).
  • the CPU 40 measures the blood pressure together with the measurement of the pulse wave in the depressurization process from around the time when the internal pressure of the air bag 13A reaches the maximum blood pressure value after step S109.
  • a measurement method performed by a normal blood pressure monitor can be employed. Specifically, the CPU 40 calculates the systolic blood pressure (SYS) and the diastolic blood pressure (DIA) based on the pressure signal obtained from the pressure sensor 23A.
  • the CPU 40 completes the blood pressure measurement when the maximum blood pressure value and the minimum blood pressure value are calculated, or when the internal pressure of the air bag 13A becomes lower than the minimum blood pressure value (step S117).
  • the CPU 40 extracts the feature point 1 from the feature point 1 when the feature point 1 is extracted at step S109, and the feature point 2 when the feature point 2 is extracted at step S115 without extracting the feature point 1 at the step S109.
  • the above-described index is calculated and the degree of arteriosclerosis is determined (step S119).
  • the CPU 40 outputs a control signal to the drive circuits 27A and 27B to open the air valves 22A and 20B, thereby releasing the pressure of the air bags 13A and 13B to atmospheric pressure (step S121).
  • the pressures P1 and P2 in the air bags 13A and 13B are rapidly decreased to the atmospheric pressure in the section of step S121.
  • the CPU 40 displays the measurement result such as the calculated maximum blood pressure (SYS) and minimum blood pressure (DIA), the measured pulse wave, the determination result of the degree of arteriosclerosis, and the like on the display unit 4 provided on the base 2. Is performed, and the measurement result is displayed (step S123).
  • the measurement result such as the calculated maximum blood pressure (SYS) and minimum blood pressure (DIA), the measured pulse wave, the determination result of the degree of arteriosclerosis, and the like.
  • the measuring apparatus 1B By realizing the measurement operation according to the first specific example shown in FIG. 13 by the measuring apparatus 1B, it is difficult to see the feature points, and the feature points are extracted from the pulse wave 1 of FIG. If not, the pulse wave (pulse wave 2) in the non-blood-feeding state is measured. In particular, in a state where the peripheral side is driven, most of the reflected wave from the periphery is cut off, so there may be a case where the feature point (point B1) corresponding to the peak of the reflected wave is not extracted. However, in the measurement apparatus 1B, in this case, the pulse wave is measured with the peripheral side being in a non-blood-driven state, so that it is particularly easy to extract feature points (B2 points) corresponding to the peak of the reflected wave. Therefore, the index can be calculated with high accuracy, and an index useful for determining the degree of arteriosclerosis can be obtained.
  • FIG. 15 A second specific example of the operation of the measuring apparatus 1B will be described with reference to FIG.
  • the second specific example represents a measurement operation when an operation is performed using the second operation algorithm described in the first embodiment.
  • the operation shown in FIG. 15 is also started when the subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG.
  • the same step numbers are assigned to the measurement operations similar to the measurement operations according to the first specific example shown in the flowchart of FIG. 13.
  • step S107 when the pressure P2 in the air bladder 13A is started to be reduced in step S107, the CPU 40 detects the pressure signal from the pressure sensor 23B in the pressure reduction process.
  • the pulse wave is measured by measuring the pressure P1 in the air bag 13B based on (Step S108).
  • the CPU 40 measures the pressure P2 in the air bladder 13A based on the pressure signal obtained from the pressure sensor 23A, and the measured pulse wave together with the pressure P2 in the air bladder 13A at the time of measurement is stored in a predetermined memory 41. Store in the area.
  • step S108 corresponds to the section of steps S109 and S115.
  • the CPU 40 acquires a systolic blood pressure (SYS).
  • the systolic blood pressure (SYS) may be obtained by calculating based on a pressure signal obtained from the pressure sensor 23A, or obtained by receiving input from a predetermined button or the like provided on the operation unit 3. Alternatively, it may be stored in advance in the memory 41 as a general value and acquired from the memory 41.
  • the CPU 40 compares the pressure P2 in the air bag 13A at the time of measurement stored in association with the measured pulse wave with the acquired systolic blood pressure, so that the measured pulse wave is measured in the state of blood pumping. It is discriminated whether it has been measured or measured in a non-congestive state.
  • the systolic blood pressure is used as a threshold value for determining whether the state is a blood-feeding state or a non-feeding state.
  • a case where the pressure P2 in the air bag 13A is lower than the minimum blood pressure (DIA) lower than the maximum blood pressure may be set as the non-starting state.
  • the minimum blood pressure is also used as a threshold value and compared with the minimum blood pressure, so that it is determined that the measured pulse wave is measured in a non-congested state.
  • the CPU 40 extracts feature points from the measured pulse wave (step S118), calculates the above-described index from the feature points, and determines the degree of arteriosclerosis (step S119).
  • the CPU 40 extracts feature points from the measured pulse wave (step S118), calculates the above-described index from the feature points, and determines the degree of arteriosclerosis (step S119).
  • an index is calculated using them. May be.
  • the index may be calculated using the average of each of the point A2 and the point B2 that are feature points extracted from the wave 2.
  • the characteristic points A1 and B1 extracted from the pulse wave 1 measured in the blood-feeding state and the pulse wave 2 measured in the non-blood-feeding state When the difference between the A2 point and the B2 point that are the feature points extracted from is within an allowable value, the index may be calculated using any one of the feature points or an average value thereof. Thereafter, the operations in steps S121 and S123 are performed.
  • the air bag 13A is set so that the peripheral side of the measurement site is in a blood-feeding state or a non-blood-feeding state.
  • the pressure P2 is reduced by a constant pressure reduction amount of about 4 mmHg / sec, for example, and the pulse wave measured in the process is compared with the pressure P2 at the time of measurement and the blood pressure value, so It is determined whether it is a wave (pulse wave 1) or a pulse wave (pulse wave 2) that is not being driven.
  • a highly accurate index can be calculated without requiring complicated control, and a useful index can be obtained by determining the degree of arteriosclerosis.
  • a useful index can be obtained by determining the degree of arteriosclerosis.
  • the time for adjusting the pressure P2 is not necessary, the time required for the measurement operation can be shortened.
  • the measurement operation as shown in FIG. 16 may be performed by the measurement apparatus 1B.
  • a modification of the second specific example of the measurement operation represents a modification of the measurement operation when an operation is performed using the first calculation algorithm described in the second embodiment.
  • the operation shown in FIG. 16 is also started when a subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG.
  • FIG. 17A shows the time change of the pressure P1 in the air bag 13B
  • FIG. 17B shows the time change of the pressure P2 in the air bag 13A.
  • S103 to S121 attached to the time axis in FIGS. 17A and 17B coincide with the respective operations of the measurement operation in the measurement apparatus 1B.
  • the pressure P1 in the air bladder 13B is in the range of 50 to 150 mmHg, which is a pressure suitable for pulse wave measurement.
  • the pressure signal from the pressure sensor 23B is in a state before the air bag 13A compresses the distal side of the measurement site in step S105, that is, in a non-blood-feeding state.
  • the pulse wave is measured by measuring the pressure P1 in the air bag 13B based on (Step S104).
  • the pulse wave measured in step S105 is a pulse wave during non-feeding as described above. In the description, the measured pulse wave is assumed to be pulse wave 2.
  • the pulse wave 2 is measured in the section of step S104.
  • the pressure P2 in the air bladder 13A is maintained at the initial pressure without being pressurized in the section of step S104.
  • the CPU 40 outputs a control signal to the air system 20A to pressurize the pressure P2 of the air bladder 13A until it reaches a predetermined pressure, and compresses the distal side of the measurement site with the air bladder 13A (step S105).
  • the predetermined pressure is preferably a maximum blood pressure value +40 mmHg.
  • the CPU 40 outputs a control signal to the air system 20A and starts reducing the pressure P2 in the air bag 13A (step S107).
  • the amount of pressure reduction adjustment here is preferably about 4 mmHg / sec.
  • the CPU 40 measures the pulse wave by extracting the characteristic point by measuring the pressure P1 in the air bag 13B based on the pressure signal from the pressure sensor 23B (step S108 ′). ). At that time, the CPU 40 measures the pressure P2 in the air bladder 13A based on the pressure signal obtained from the pressure sensor 23A, and the measured pulse wave together with the pressure P2 in the air bladder 13A at the time of measurement is stored in a predetermined memory 41. Store in the area. Note that the measurement operation in step S108 'has a main purpose of measuring the pulse wave 1 in the blood-feeding state since the pulse wave 2 in the non-blood-driven state is measured in step S104.
  • step S108 ' is performed in a shorter section than in step S108, preferably until the pressure P2 in the air bag 13A reaches the maximum blood pressure from the maximum pressure.
  • the pulse wave is measured in the section of step S108 '.
  • the section of step S108 ' corresponds to the section of step S109 in the examples of FIGS. 14A and 14B.
  • step S108 described above corresponds to the sections of steps S109 and S115 in the examples of FIGS. 14A and 14B. That is, as also shown in FIGS. 14 and 17, the measurement operation in step S108 'is performed in a shorter section than the measurement operation in step S108.
  • the CPU 40 performs only blood pressure measurement. Therefore, in the decompression process after step S108 ', the CPU 40 increases the decompression adjustment amount.
  • the reduced pressure adjustment amount is 4 mmHg / sec or more.
  • step S118 feature points are extracted from the measured pulse wave (step S118), the above-mentioned index is calculated from the feature points, and the degree of arteriosclerosis is determined (step S119).
  • the pulse wave 2 in the non-blood-feeding state is measured in step S104. Therefore, in step S118 ', the CPU 40 may extract the pulse wave 1 measured in the blood-feeding state from the pulse waves measured in step S108'. Thereafter, the measurement operations in steps S119, S121, and S123 are performed.
  • the pulse wave measurement in the air bag 13A is completed after the pulse wave measurement is completed in step S108 ′.
  • the pressure reduction speed of the pressure P2 can be increased. Therefore, the time required for the measurement operation can be further shortened.
  • a third specific example of the operation of the measuring apparatus 1B will be described with reference to FIG.
  • the third specific example represents a measurement operation when calculation is performed using the fourth calculation algorithm described in the first embodiment.
  • the operation shown in FIG. 18 is also started when a subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG. 18, the same step numbers are used for the measurement operation according to the first specific example shown in the flowchart of FIG. 13 and the measurement operation similar to the measurement operation according to the second specific example shown in the flowchart of FIG. Is attached.
  • CPU 40 measures the pulse wave in the process of reducing the pressure P2 in air bag 13A in the same manner as in step S108, and measures the air at the time of measurement. It is stored in a predetermined area of the memory 41 together with the pressure P2 in the bag 13A. Then, the CPU 40 compares the pressure P2 at the time of measurement with the systolic blood pressure (SYS) and the diastolic blood pressure (DIA) in the same manner as in step S109, so that the measured pulse wave is measured in the state of blood transfusion. It is discriminated whether it is measured in a non-congestive state. Then, feature points are extracted from the measured pulse wave (step S118).
  • SYS systolic blood pressure
  • DIA diastolic blood pressure
  • the CPU 40 has the feature point 1 extracted from the pulse wave measured in the blood-feeding state and the pulse wave measured in the non-blood-feeding state. Is compared with the feature point 2 extracted from the above, and it is determined whether or not these differences are equal to or larger than an allowable value (step S118-1). If it is determined in step S118-1 that the difference between feature point 1 and feature point 2 is greater than or equal to the allowable value (NO in step S118-1), CPU 40 determines the result of the determination in the same manner as in step S18C.
  • the display unit 4 performs a process for displaying on the display unit 4 that the reliability is low, and notifies that fact (step S118-2). Then, the measurement operation is advanced, and the measurement according to the second specific example is performed. Similar to the operation, the index described above is calculated from the extracted feature points, and the degree of arteriosclerosis is determined.
  • the feature points (A1 point, B1) extracted from the pulse wave (pulse wave 1) measured in the blood pumping state Point) and a feature point (point A2, point B2) extracted from a pulse wave (pulse wave 2) measured in a non-starvation state is not less than the allowable value, the reliability is low. Is notified, and an index is calculated using these feature points. Therefore, since the remeasurement is not performed and the index is calculated by one measurement operation, the time required for determining the degree of arteriosclerosis can be shortened.
  • the air bag 13A is used both for blood pumping and for blood pressure value calculation.
  • the blood pressure value is calculated based on the change in the internal pressure of the air bag 13A, and the pulse wave is measured based on the change in the internal pressure of the air bag 13B.
  • the air bag 13A may be used only for blood driving, and the blood pressure value may be calculated based on the change in the internal pressure of the air bag 13B.
  • the feature point derived from the reflected wave may be difficult to extract from the pulse wave (pulse wave 1) measured in a state where the peripheral side of the measurement site is driven and the influence of the reflected wave is suppressed.
  • the pulse wave (pulse wave 2) is measured in a non-blood-feeding state where the peripheral side is not driven, and features are obtained from the pulse wave in the non-blood-driven state.
  • a point is to be extracted.
  • a pulse wave waveform in which a reflection wave from the periphery such as the palm is combined with the ejection wave from the heart is measured.
  • the length from the upper arm, which is the measurement site, to the palm varies depending on the subject.
  • the length from the upper arm that is the measurement site to the palm affects the positional relationship between the ejection wave and the reflected wave, that is, the waveform of the measured pulse wave that is a composite wave. Thereby, the accuracy of the obtained index is affected, and it may affect the determination of the degree of arteriosclerosis.
  • One method for suppressing this effect is to input the length from the upper arm, which is the measurement site, to the palm, where the large reflection occurs, by using the operation unit 3 or the like, and the pulse wave measured using the length. There is a method of correcting the above. As another method, there is a method of fixing the length from the measurement site to the reflection position to a predetermined length.
  • the measuring apparatus 1C fixes the length from the measurement site to the reflection position to a predetermined length, and the ejection wave from the periphery that is defined by the measurement site from the measurement site.
  • a cuff attached to the periphery is provided separately from the measurement air bag attached to the measurement site.
  • the measuring apparatus 1C includes an arm band 8 wound around, for example, a wrist on the distal side of the measurement site.
  • the armband 8 includes an air bag 13C as shown in FIG. 19B.
  • the arm band 8 is attached to the wrist having a predetermined length on the distal side from the arm band 9 including the air bag 13A and the air bag 13B.
  • the mounting position may be determined by a measurer.
  • a member that can specify the mounting position of the armband 8 such as a belt having the predetermined length connecting the armband 8 and the armband 9 is included.
  • the air bag 13C presses the wrist by expanding.
  • measuring device 1C includes an air system 20C connected to air bag 13C via an air tube in addition to the configuration of measuring device 1A shown in FIG.
  • the air system 20C includes an air pump 21C, an air valve 22C, and a pressure sensor 23C.
  • the air pump 21C is driven by a drive circuit 26C that has received a command from the CPU 40, and sends compressed gas into the air bag 13C. Thereby, the air bag 13C is pressurized.
  • the open / close state of the air valve 22C is controlled by a drive circuit 27C that receives a command from the CPU 40.
  • a drive circuit 27C that receives a command from the CPU 40.
  • the pressure sensor 23C detects the pressure in the air bladder 13C and outputs a signal corresponding to the detected value to the amplifier 28C.
  • the amplifier 28C amplifies the signal output from the pressure sensor 23C and outputs the amplified signal to the converter 29C.
  • the converter 29C digitizes the analog signal output from the amplifier 28C and outputs it to the CPU 40.
  • the CPU 40 controls the air systems 20A, 20B, 20C and the drive circuit 53 based on a command input to the operation unit 3 provided on the base body 2 of the measuring apparatus.
  • the measuring device 1C preferably includes a device for inputting the length of the artery from the air bag 13B to the air bag 13C.
  • the length of the artery from the air bag 13B to the air bag 13C is simply the length of the arm from the air bag 13B to the air bag 13C, that is, the length of the arm between the arm band 8 and the arm band 9. Can do.
  • the specific configuration of the device for inputting this length is not limited.
  • a switch included in the operation unit 3 for inputting the length may be used. When the measurer inputs using the switch, the length is input.
  • the arm band 8 and the arm band 9 may be connected by a belt and may be a mechanism for detecting a length provided on the belt. After the armband 8 and the armband 9 are mounted, the length of the arm between the armband 8 and the armband 9 is adjusted by the above mechanism by adjusting the length so that the belt does not loosen along the arm. Entered.
  • the first specific example represents a measurement operation when an operation is performed using the first operation algorithm described in the first embodiment.
  • the operation shown in FIG. 21 starts when a subject or the like presses a measurement button provided on the operation unit 3 of the base 2.
  • This operation is realized by the CPU 40 reading a program stored in the memory 41 and controlling each unit shown in FIG. 22A shows the time change of the pressure P3 in the air bag 13C, FIG. 22B shows the time change of the pressure P1 in the air bag 13B, and FIG.
  • the time change of the pressure P2 in the bag 13A is shown.
  • S3 to S21 attached to the time axis in (A), (B), and (C) of FIG. 22 correspond to the respective operations of the measurement operation in the measurement apparatus 1C described later.
  • measurement apparatus 1C operations similar to steps S1 to S13 in the first specific example of the measurement operation in measurement apparatus 1A are performed. Meanwhile, in the measuring apparatus 1C, as shown in FIG. 22A, the initial pressure of the pressure P3 in the air bladder 13C is maintained.
  • the CPU 40 sets the pressure P2 of the air bladder 13A to be lower than the maximum blood pressure in step S15, for example, The pressure is adjusted to about 55 mmHg, and a control signal is output to the air system 20C to increase the pressure P3 in the air bag 13C to a predetermined pressure (step S16).
  • the CPU 40 applies pressure so that the pressure P3 is at least higher than the maximum blood pressure, for example, the maximum blood pressure +40 mmHg.
  • the air bag 13A does not drive the peripheral artery near the measurement site, and the air bag 13C drives the artery at the position of the arm band 8 attached to the position of a predetermined length from the measurement site. It will be in the state. After that, that is, in the state where the blood is not pumped by the predetermined length from the measurement site to the distal side, the CPU 40 measures the pressure P1 in the air bag 13B based on the pressure signal from the pressure sensor 23B in step S17. To measure pulse waves and extract feature points. Thereafter, the same measurement operation as that of the measurement apparatus 1A is performed.
  • the same measurement can be performed for the measurement operation performed by the measurement apparatus 1C when the second calculation algorithm to the fourth calculation algorithm described in the first embodiment are performed.
  • the measurement operations shown in these flowcharts are substantially the same as the measurement operations according to the second specific example to the fourth specific example of the measurement operation in the measurement apparatus 1A shown in FIGS.
  • the pressure P3 in the air bag 13C is pressurized to be higher than at least the maximum blood pressure in step S16, and the air bag 13A is measured.
  • the peripheral artery in the vicinity is not blood-driven, and the air bag 13C is in a state of blood-feeding the artery at the position of the arm band 8 attached to the position of a predetermined length from the measurement site.
  • the measurement operation shown in FIG. 21 and FIG. 23 to FIG. 25 is realized by the measuring apparatus 1C, and the position where the ejection wave is reflected is adjusted when measuring the pulse wave (pulse wave 2) as a non-triggered state can do.
  • the influence derived from the length from the waveform of the pulse wave measured in the non-pigmented state to the position where the ejection wave is reflected from the measurement site, which is different for each subject, can be suppressed. Therefore, the index can be calculated with higher accuracy, and an index useful for determining the degree of arteriosclerosis can be obtained.
  • the upper arm is used as a measurement site, and an arm band including an air bag for blood transfusion is attached only to the wrist corresponding to a position of a predetermined length from the upper arm, but the measurement site is different. Then, a plurality of arm bands each including an air bag for blood transduction may be worn, for example, when a plurality of peripheral reflection positions are assumed. By doing so, the index can be calculated more accurately.
  • the measuring device 1C includes an air bag 13C in addition to the configuration of the measuring device 1A.
  • measuring device 1C may include air bag 13C in addition to the configuration of measuring device 1B.
  • the pressure P2 in the air bag 13A is lower than the maximum blood pressure (NO in step S111), or when the pulse wave is measured in the pressurization process in step S104, the pressure P3 in the air bag 13C is set.
  • the blood pressure is raised to at least higher than the maximum blood pressure, and is driven at a predetermined length from the measurement site.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 血圧情報測定装置には、測定部位の中枢側に巻き付けられ、脈波測定に用いられる空気袋と、末梢側に巻き付けられ、血圧測定に用いられる空気袋とが備えられる。血圧測定用の空気袋が最高血圧よりも高い圧力となるまで加圧され、血圧が測定される(S3)。その後、該空気袋の内圧が維持されて駆血中の脈波が測定され、その脈波から、動脈硬化度を判定するための指標を算出するのに必要な特徴点が抽出される(S11)。脈波から特徴点が抽出されなかった場合、血圧測定用の空気袋内圧が最高血圧よりも低くなるよう減圧され(S15)非駆血中の脈波が測定されて、その脈波から、動脈硬化度を判定するための指標を算出するのに必要な特徴点が抽出される(S17)。

Description

動脈硬化度を判定するための指標が得られる、血圧情報測定装置
 この発明は血圧情報測定装置および指標取得方法に関し、特に、流体袋を内包するカフを利用して血圧情報を測定する装置および該血圧情報から動脈硬化度を判定するための指標を取得する方法に関する。
 血圧や脈波などの血圧情報を測定することは、動脈硬化度を判定に有用である。
 従来、動脈硬化度を判定する装置として、たとえば特開2000-316821号公報(以下、特許文献1)は、心臓から駆出された脈波の伝播する速度(以下、PWV:pulse wave velocity)を調べることによって動脈硬化度を判定する装置を開示している。動脈硬化が進むほどに脈波伝播速度は速くなるので、PWVは動脈硬化度を判定するための指標となる。PWVは、上腕および下肢などの少なくとも2箇所以上に脈波を測定するカフ等を装着して同時に脈波を測定し、それぞれの箇所での脈波の出現時間差と、脈波を測定するカフ等を装着した2点間の動脈の長さとから算出される。PWVは測定部位によって値が異なる。代表的なPWVとしては、測定部位が上腕と足首とである場合のbaPWV、頚動脈と大腿動脈とである場合のcfPWVが挙げられる。
 上腕の脈波から動脈硬化度を判定する技術として、特開2007-44362号公報(以下、特許文献2)は、血圧測定用のカフと脈波測定用のカフとの二重構造を備えた技術を開示している。
 また、特開2004-113593号公報(以下、特許文献3)は、心臓から駆出された駆出波と腸骨動脈分岐部および動脈中の硬化部位からの反射波とを分離して、それぞれの振幅差や振幅比や出現時間差等により動脈硬化度を判定する技術を開示している。
特開2000-316821号公報 特開2007-44362号公報 特開2004-113593号公報
 しかしながら、特許文献1に開示される装置を用いてPWVを測定するためには、先述のように上腕および下肢などの少なくとも2箇所にカフ等を装着する必要がある。そのため、特許文献1に開示されている装置を用いたとしても、家庭で簡便にPWVを測定することは難しいという問題点があった。
 これに対して特許文献2によって上腕の脈波から動脈硬化度を判定する技術が開示されている。特許文献2では血圧測定用のカフと脈波測定用のカフとの二重構造を備えた装置構成となっている。しかしながら、脈波測定カフのみでは、末梢からの反射などが重畳するため、反射波を正しく分離できない可能性がある。したがって、精度のよい動脈硬化度の判定が得難いという問題がある。
 また、被験者によっては、特許文献3に開示された装置で測定される、末梢側を駆血した脈波だけでは、動脈硬化度を判定するための特徴点が見えにくい場合があるという問題がある。
 本発明はこれらの問題に鑑みてなされたものであって、測定された血圧情報から精度よく動脈硬化度を判定するための指標を得ることのできる血圧情報測定装置および指標取得方法を提供することを目的の1つとしている。
 上記目的を達成するために、本発明のある局面に従うと、血圧情報測定装置は、第1の流体袋および第2の流体袋と、第1の流体袋および第2の流体袋のそれぞれの内圧を測定するための第1のセンサおよび第2のセンサと、第2の流体袋の内圧を調整するための第1の調整部と、動脈硬化度を判定するための指標を算出する演算、および第1の調整部での調整を制御するための制御部とを備え、制御部は、第1の流体袋が測定部位に巻き付けられ、第2の流体袋が第1の流体袋よりも末梢側に巻き付けられ、第2の流体袋が最高血圧よりも高い内圧で、第1の流体袋の巻き付けられている測定部位の末梢側を圧迫している、第1の状態での、第1の流体袋の内圧変化に基づいて測定部位の第1の脈波を検出するための演算と、第1の流体袋が測定部位に巻き付けられ、第2の流体袋が第1の流体袋よりも末梢側に巻き付けられ、第2の流体袋が少なくとも最高血圧よりも低い内圧で、第1の流体袋の巻き付けられている測定部位の末梢側を圧迫している、第2の状態での、第1の流体袋の内圧変化に基づいて第2の脈波を検出するための演算と、第1の脈波から抽出される第1の特徴点と、第2の脈波から抽出される第2の特徴点とのうちの少なくとも一方の特徴点を用いて指標を算出するための演算とを行なう。
 本発明の他の局面に従うと、血圧情報測定装置は、第1の流体袋および第2の流体袋と、第1の流体袋および第2の流体袋のそれぞれの内圧を測定するための第1のセンサおよび第2のセンサと、第2の流体袋の内圧を調整するための第1の調整部と、動脈硬化度を判定するための指標を算出する演算、および第1の調整部での調整を制御するための制御部とを備え、制御部は、第1の流体袋が測定部位に巻き付けられ、第2の流体袋が第1の流体袋よりも末梢側に巻き付けられ、第2の流体袋が、第1の流体袋の巻き付けられている測定部位の末梢側を圧迫している状態での、第1の流体袋の内圧変化に基づいて測定部位の脈波を検出するための演算と、脈波が検出された際の第2の流体袋の内圧と最高血圧とを比較することで、検出された脈波が、第2の流体袋の内圧が最高血圧よりも高い圧力で測定部位の末梢側を圧迫している第1の状態のときに検出された第1の脈波であるか、第2の流体袋の内圧が少なくとも最高血圧よりも低い圧力で測定部位の末梢側を圧迫している第2の状態のときに検出された第2の脈波であるか、を判別するための演算と、第1の脈波から抽出される第1の特徴点と、第2の脈波から抽出される第2の特徴点とのうちの少なくとも一方の特徴点を用いて指標を算出するための演算とを行なう。
 本発明のさらに他の局面に従うと、指標取得方法は血圧情報測定装置で測定された脈波より動脈硬化度を判定するための指標を取得する方法であって、前記血圧情報測定装置は、第1の流体袋および第2の流体袋と、第1の流体袋および第2の流体袋のそれぞれの内圧を測定するための第1のセンサおよび第2のセンサと、第2の流体袋の内圧を調整するための第1の調整部とを含み、第2の流体袋の内圧を、最高血圧よりも高い圧力にするよう制御するステップと、第1の流体袋が測定部位に巻き付けられ、第2の流体袋が第1の流体袋よりも末梢側に巻き付けられ、第2の流体袋が最高血圧よりも高い内圧で、第1の流体袋の巻き付けられている測定部位の末梢側を圧迫している第1の状態での、第1の流体袋の内圧変化に基づいて、測定部位の第1の脈波を検出するステップと、第1の脈波より指標を算出するステップと、第1の脈波より指標が算出されなかった場合に、第2の流体袋の内圧を減圧するよう制御するステップと、第1の流体袋が測定部位に巻き付けられ、第2の流体袋が第1の流体袋よりも末梢側に巻き付けられ、第2の流体袋が少なくとも最高血圧よりも低い圧力で測定部位の末梢側を圧迫している状態での、第1の流体袋の内圧変化に基づいて、測定部位の第2の脈波を検出するステップと、第2の脈波より指標を算出するステップとを備える。
 本発明による血圧情報測定装置を用いることで、測定された血圧情報から精度よく動脈硬化度を判定するための指標を得ることができる。
第1の実施の形態にかかる測定装置の外観の具体例を示す斜視図である。 第1の実施の形態にかかる測定装置を用いて血圧情報を測定する際の測定姿勢の具体例を示す図である。 第1の実施の形態にかかる、腕帯の構成の具体例を示す模式断面図である。 動脈硬化度を判定するための指標と脈波波形との関係を説明する図である。 駆出波と反射波との間の時間差TrとPWVとの相関の具体例を示す図である。 末梢側が駆血された状態で測定される脈波と、駆血されていない状態で測定される脈波とを表わす図である。 第1の実施の形態にかかる測定装置の機能ブロックを示す図である。 第1の実施の形態にかかる測定装置での測定動作の第1の具体例を示すフローチャートである。 第1の実施の形態にかかる測定装置での測定動作中の各空気袋内の圧力変化を示す図である。 第1の実施の形態にかかる測定装置での測定動作の第2の具体例を示すフローチャートである。 第1の実施の形態にかかる測定装置での測定動作の第3の具体例を示すフローチャートである。 第1の実施の形態にかかる測定装置での測定動作の第4の具体例を示すフローチャートである。 第2の実施の形態にかかる測定装置の機能ブロックを示す図である。 第2の実施の形態にかかる測定装置での測定動作の第1の具体例を示すフローチャートである。 第2の実施の形態にかかる測定装置での測定動作中の各空気袋内の圧力変化を示す図である。 第2の実施の形態にかかる測定装置での測定動作の第2の具体例を示すフローチャートである。 第2の実施の形態にかかる測定装置での測定動作の第2の具体例の変形例を示すフローチャートである。 第2の実施の形態にかかる測定装置での測定動作中の各空気袋内の圧力変化を示す図である。 第2の実施の形態にかかる測定装置での測定動作の第3の具体例を示すフローチャートである。 第3の実施の形態にかかる測定装置を用いて血圧情報を測定する際の測定姿勢の具体例を示す図である。 第3の実施の形態にかかる、腕帯の構成の具体例を示す模式断面図である。 第3の実施の形態にかかる測定装置の機能ブロックを示す図である。 第3の実施の形態にかかる測定装置での測定動作の第1の具体例を示すフローチャートである。 第3の実施の形態にかかる測定装置での測定動作中の各空気袋内の圧力変化を示す図である。 第3の実施の形態にかかる測定装置での測定動作の第2の具体例を示すフローチャートである。 第3の実施の形態にかかる測定装置での測定動作の第3の具体例を示すフローチャートである。 第3の実施の形態にかかる測定装置での測定動作の第4の具体例を示すフローチャートである。
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。
 ここで「血圧情報」とは、生体から測定して得られる、血圧に関連する情報を指し、具体的には、血圧値、脈波波形、心拍数、などが該当する。
 [第1の実施の形態]
 図1を参照して、第1の実施の形態にかかる血圧情報測定装置(以下、測定装置と略する)1Aは、基体2と、基体2に接続され、測定部位である上腕に装着される腕帯9とを含み、これらがエアチューブ10で接続されている。基体2の正面には、測定結果を含む各種の情報を表示するための表示部4および測定装置1Aに対して各種の指示を与えるために操作される操作部3が配される。操作部3は電源をON/OFFするために操作されるスイッチ31、および測定の開始を指示するために操作されるスイッチ32を含む。
 測定装置1Aを用いて脈波を測定する際には、図2Aに示すように、腕帯9を測定部位である上腕100に巻き回す。その状態でスイッチ32が押下されることで、血圧情報が測定される。
 図2Aを参照して、腕帯9は、生体を圧迫するための流体袋としての空気袋を備える。空気袋は、血圧情報としての血圧を測定するために用いられる流体袋である空気袋13A、および血圧情報としての脈波を測定するために用いられる流体袋である空気袋13Bとを含む。図2Bに示されるように、空気袋13Bのサイズは一例として20mm×200mm程度である。また、好ましくは、空気袋13Bの空気容量は、図2Bにも示されるように、空気袋13Aの空気容量に比べ、1/5以下である。
 測定装置1Aは、1箇所の測定部位から得られた血圧情報としての脈波波形に基づいて、動脈硬化度を判定するための指標を得る。動脈硬化度の判定を行なうための指標としては、Tpp(ΔTpとも表わされる)や、Tr(Traveling time to reflected wave)や、AI(Augmentation Index)が挙げられる。Tppは、進行波である駆出波のピーク(最大点)の出現時間と反射波のピーク(最大点)の出現時間との時間間隔で表わされる指標である。図3の波形では、A点とB点との間の時間間隔で表わされる。Trは、駆出波の出現時間と進行波が腸骨動脈の分岐部から反射して戻ってくる反射波の出現時間との間の時間間隔で表わされる指標である。図3の波形では、駆出波の立ち上がり点からA点までの時間間隔で表わされる。図4に表わされるように、指標TrとPWVとは相関を有している。測定部位を上腕とし、反射波が末梢としての足首からの反射波である場合、指標Trと測定部位が上腕と足首とである場合のPWVであるbaPWVとの相関は、身長や性別などの個人パラメータが得られることが、Londonら著の文献「Hypertension 1992 Jul;20(1):」(1992年7月20日発行)のp10-p19に記載されている。したがって、出現時間差Trを動脈硬化度の判定を行なうための指標とすることができる。Tppについても同様である。AIは、主に動脈硬化に対応する脈波の反射強度を反映する特徴量を指標化したものである。脈波の反射強度は、脈波の反射現象の指標であって、血液の送出しやすさや、血流量の受入れやすさを表わしている。AIは、進行波である駆出波の最大点での振幅に対する反射波の最大点での振幅の割合で表わされる指標である。図3の波形では、A点での振幅P1に対するB点での振幅P2の割合で表わされる。
 測定された脈波からこれら指標を得るには、測定された脈波から、駆出波のピーク(図3のA点)、および反射波のピーク(図3のB点)を抽出することが必要となる。図3のA点およびB点は脈波波形の変局点であり、これらを「特徴点」と称する。変局点であるA点およびB点は、測定された脈波波形の多次微分(たとえば4次微分)を演算するなどによって得られる。
 測定によって得られる脈波波形から変曲点である上述の特徴点を得るためには、精度のよい脈波波形を得る必要がある。そこで、第1の実施の形態で、上述の生体圧迫用の空気袋は、測定部位の動脈の方向に沿って並べて配置された2つの空気袋13A,13Bを含む、二重構造である。腕帯9が上腕100に巻き回された際、空気袋13Aは上腕100の末梢側(心臓に遠い側)に配置される。腕帯9が上腕100に巻き回された際、空気袋13Bは中枢側(心臓に近い側)に配置される。上腕100が圧迫固定された後、これら空気袋13A,13Bが膨張・収縮する。空気袋13Aは、膨張することで上腕100に押付けられる。動脈圧の変化は、空気袋13Aの内圧に重畳して検出される。また、空気袋13Aは、膨張することで動脈の末梢側を駆血状態とする。その状態で空気袋13Bが膨張することで、駆血状態において動脈内に生じる動脈圧脈波が検出される。つまり、末梢側を駆血しながら脈波測定が可能となる。これにより、精度のよい脈波を測定することが可能とする。その結果、測定された脈波波形より特徴点が精度よく得られ、精度のよい指標を得ることができる。
 しかしながら、被験者によっては、末梢側を駆血して検出された脈波から特徴点が見えにくい場合がある。すなわち、図5のような脈波が検出された場合、駆血された状態で測定される「脈波1」からは、駆出波のピークであるA1点は抽出される。反射波のピークであるB1点は見え難く、抽出されない。しかしながら、駆血されない状態で測定される「脈波2」には末梢側からの反射波が駆血されている状態よりも多く影響するため、駆出波のピークであるA2点と共に反射波のピークであるB2点が抽出される。被験者が同一人である場合には、これらの脈波を図5のように重ねた場合には、A1点の発生時間とA2点の発生時間とは、ほぼ同じであると考えられる。同様に、B1点の発生時間とB2点の発生時間とも、ほぼ同じであると考えられる。
 図6を参照して、測定装置1Aは、空気袋13Aにエアチューブ10を介して接続されるエア系20A、および空気袋13Bにエアチューブ10を介して接続されるエア系20Bと、CPU(Central Processing Unit)40とを含む。
 エア系20Aは、エアポンプ21Aと、エアバルブ22Aと、圧力センサ23Aとを含む。エア系20Bは、エアバルブ22Bと、圧力センサ23Bとを含む。
 エアポンプ21Aは、CPU40からの指令を受けた駆動回路26Aによって駆動されて、空気袋13Aに圧縮気体を送り込む。これにより、空気袋13Aが加圧される。
 エアバルブ22A,22Bは、CPU40からの指令を受けた駆動回路27A,27Bによってその開閉状態が制御される。エアバルブ22A,22Bの開閉状態が制御されることで、空気袋13A,13B内の圧力が制御される。
 圧力センサ23A,23Bは、各々、空気袋13A,13B内の圧力を検出し、その検出値に応じた信号を増幅器28A,28Bに対して出力する。増幅器28A,28Bは、各々、圧力センサ23A,23Bから出力される信号を増幅し、A/D変換器29A,29Bに出力する。A/D変換器29A,29Bは、各々、増幅器28A,28Bから出力されたアナログ信号をデジタル化し、CPU40に出力する。
 空気袋13Aと空気袋13Bとは2ポート弁51で接続されている。2ポート弁51は駆動回路53に接続されて、弁の開閉が制御される。駆動回路53はCPU40に接続されて、CPU40からの制御信号に従って、2ポート弁51の上記2つの弁の開閉を制御する。
 CPU40は、測定装置の基体2に設けられた操作部3に入力された指令に基づいてエア系20A,20Bおよび駆動回路53を制御する。また、測定結果を表示部4やメモリ41に出力する。メモリ41は、測定結果を記憶する。また、CPU40で実行されるプログラムを記憶する。
 図7を用いて、測定装置1Aの動作の第1の具体例を説明する。第1の具体例は、第1の演算アルゴリズムでの演算がなされるときの測定動作例である。図7に示される動作は、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図6に示される各部を制御することによって実現される。また、図8の(A)は空気袋13B内の圧力P1の時間変化を示し、図8の(B)は空気袋13A内の圧力P2の時間変化を示している。図8の(A),(B)で時間軸に付してあるS3~S17は、測定装置1Aでの測定動作の各動作と一致している。
 図7を参照して、動作が開始すると、始めに、CPU40において、各部の初期化が行なわれる(ステップS1)。次に、CPU40はエア系20Aに対して制御信号を出力して空気袋13Aの加圧を開始し、加圧過程において血圧を測定する(ステップS3)。ステップS3での血圧の測定は、通常の血圧計で行なわれている測定方法が採用され得る。具体的には、CPU40は、圧力センサ23Aから得られる圧力信号に基づいて、最高血圧(SYS)および最低血圧(DIA)を算出する。図8の(B)の例では、空気袋13A内の圧力P2は、ステップS3の区間で最高血圧を超えるまで増加している。空気袋13B内の圧力P1は、図8の(A)に示されるように、上記区間では初期の圧力が維持されている。
 ステップS3での血圧の測定が完了すると、CPU40は駆動回路53に制御信号を出力して2ポート弁51の空気袋13A側の弁と空気袋13B側の弁との両方を開放させる(ステップS5)。これにより、空気袋13A内の空気の一部が空気袋13Bに移動し、空気袋13Bが加圧される。
 図8の(A)の例では、上記ステップS5で2ポート弁51の上記弁が開放されることで、空気袋13A内の空気の一部が空気袋13Bに移動して、圧力P2が減少している。同時に、図8の(B)に示されるように、空気袋13B内の圧力P1が急激に増加している。そして、圧力P1と圧力P2とが一致した時点で、つまりこれら空気袋13A,13Bの内圧がつりあった時点で、空気袋13Aから空気袋13Bへの空気の移動が終了する。この時点で、CPU40は、駆動回路53に制御信号を出力して、上記ステップS5で開放した2ポート弁51の上記弁を閉塞する(ステップS7)。図8の(A),図8(B)において、ステップS7の時点で圧力P1と圧力P2とが一致していることが示されている。
 その後、CPU40は駆動回路27Bに制御信号を出力して、空気袋13B内の圧力P1を減圧調整する(ステップS9)。ここでの減圧調整量は、好ましくは5.5mmHg/sec程度である。また、好ましくは、圧力P1が脈波測定に適した圧力である50~150mmHg内となるよう減圧調整する。また、このとき、空気袋13Aの圧力P2は、最大圧迫圧である、少なくとも最高血圧よりも高い圧力が維持されている。これにより、空気袋13Aは測定部位の末梢側で動脈を駆血する。この状態を駆血状態と称する。言い換えると、駆血状態とは、空気袋13A内の圧力P2が少なくとも最高血圧よりも高い圧力で測定部位の末梢側を圧迫している状態を指す。その後、つまり、駆血状態で、CPU40は、圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定し特徴点を抽出する(ステップS11)。図5の例では、ステップS11では駆血中の脈波である脈波1が測定され、脈波1より、特徴点であるA1点およびB1点が抽出される。なお、以降の説明では、ステップS11で測定される脈波を脈波1とし、抽出される特徴点を特徴点1とする。
 ステップS11において脈波1から特徴点1が抽出されなかった場合には(ステップS13でNO)、CPU40は、次のような制御を行なう。ここでは、先述のように、特に反射波のピークであるB1点が抽出されないことが考えられる。そこで、CPU40は駆動回路27Aに制御信号を出力して、空気袋13A内の圧力P2をさらに減圧調整する(ステップS15)。または、エアバルブ22Aを開放してもよい。ステップS15でCPU40は、圧力P2が少なくと最高血圧よりも低くなるよう、たとえば55mmHg程度となるよう減圧調整する。これにより、空気袋13Aは動脈を駆血していない状態、または、上記ステップS11の時点よりも弱い圧力での駆血状態となる。これらの状態を非駆血状態と称する。言い換えると、非駆血状態とは、空気袋13A内の圧力P2が少なくとも最高血圧よりも低い圧力で測定部位の末梢側を圧迫している状態を指す。図8の(B)の例では、空気袋13Aの圧力P2は、ステップS15の区間で最高血圧よりも低くなるまで減少している。その後、つまり、非駆血状態で、CPU40は、ステップS11と同様にして、圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定し、特徴点を抽出する(ステップS17)。図5の例では、ステップS17では非駆血中の脈波である脈波2が測定され、脈波2より、特徴点であるA2点およびB2点が抽出される。以降の説明では、ステップS17で測定される脈波を脈波2とし、抽出される特徴点を特徴点2とする。なお、ステップS17でCPU40は、ステップS11で抽出されなかった特徴点のみを脈波2から抽出するようにしてもよい。ステップS11では、脈波1からB1点が抽出されないことが考えられる。その場合、ステップS17でCPU40は、脈波2から特徴点2としてB2点のみを抽出するようにしてもよい。上記ステップS15,S17は、ステップS11において特徴点1がすべて抽出された場合には(ステップS13でYES)スキップされる。
 CPU40は、上記ステップS11で特徴点1が抽出された場合には特徴点1より、上記ステップS11で特徴点1が抽出されずにステップS17で特徴点2が抽出された場合には特徴点2より、先述の指標を算出し、動脈硬化度を判定する(ステップS19-1)。その後、CPU40は駆動回路27A,27Bに制御信号を出力してエアバルブ22A,20Bを開放し、空気袋13A,13Bの圧力を大気圧に解放する(ステップS21)。図8の(A),(B)の例では、空気袋13A,13B内の圧力P1,P2は、ステップS21の区間で、大気圧まで急速に減少している。
 その後、CPU40は、算出された最高血圧(SYS)および最低血圧(DIA)や測定された脈波などの測定結果や動脈硬化度の判定結果などを基体2に設けられた表示部4で表示するための処理を行ない、測定結果を表示する(ステップS23)。
 第1の具体例にかかる測定動作では、上記ステップS17で特徴点2が抽出されなかった場合に、さらに空気袋13Bの内圧P1が減圧調整されてもよい。つまり、すべての特徴点が抽出されるまで減圧調整が繰り返されてもよい。さらにその際、内圧P1が所定圧に達したら測定動作を終了するようにしてもよいし、所定回数減圧調整された時点で測定動作を終了するようにしてもよい。
 測定装置1Aで図7に示される第1の具体例にかかる測定動作が実現されることで、特徴点が見え難く、駆血状態で測定された図5の脈波1から特徴点が抽出されなかった場合に、非駆血状態での脈波(脈波2)が測定される。特に末梢側が駆血された状態では末梢からの反射波の大部分が遮断されてしまうために、反射波のピークに相当する特徴点(B1点)が抽出されない場合が有り得る。しかしながら、測定装置1Aでは、その場合に末梢側を非駆血状態として脈波を測定するため、特に反射波のピークに相当する特徴点(B2点)を抽出しやすくなる。そのため、指標を精度よく算出することができ、動脈硬化度の判定に有用な指標を得ることができる。
 図9を用いて、測定装置1Aの動作の第2の具体例を説明する。第2の具体例は、第2の演算アルゴリズムでの演算がなされるときの測定動作例である。図9に示される動作もまた、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図6に示される各部を制御することによって実現される。図9において、図7のフローチャートに示された第1の具体例にかかる測定動作と同様の測定動作については、同じステップ番号が付されている。そのため、図8の(A),(B)で時間軸に付してあるS3~S17は、図9に示される測定動作の各動作にも一致している。
 図9を参照して、第2の具体例にかかる測定動作では、上記ステップS11で駆血状態において脈波1が測定され、脈波1から特徴点1が抽出された後、上記ステップS15の動作がなされて空気袋13B内の圧力P1がさらに減圧調整される。そして、ステップS17で非駆血状態において脈波2が測定され、脈波2から特徴点2が抽出される。次に、第2の具体例にかかる測定動作では、第1の具体例にかかる測定動作とは異なり、CPU40は、上記ステップS11で抽出された特徴点1と、上記ステップS17で抽出された特徴点2との平均値を算出し、該平均値より、先述の指標を算出して動脈硬化度を判定する(ステップS19-2)。つまり、指標としてTppを算出する場合、CPU40は、ステップS11で脈波1から抽出されたA1点の発生時間とステップS17で脈波2から抽出されたA2点の発生時間との平均、およびステップS11で脈波1から抽出されたB1点の発生時間とステップS17で脈波2から抽出されたB2点の発生時間との平均を算出し、これらの差分でTppを得る。指標としてAIを算出する場合、CPU40は、ステップS11で脈波1から抽出されたA1点の振幅とステップS17で脈波2から抽出されたA2点の振幅との平均、およびステップS11で脈波1から抽出されたB1点の振幅とステップS17で脈波2から抽出されたB2点の振幅との平均を算出し、これらの割合でAIを得る。以降、上記ステップS21,S23の動作が行なわれる。
 測定装置1Aで図9に示される第2の具体例にかかる測定動作が実現されることで、駆血状態で測定された脈波(脈波1)から抽出された特徴点(A1点、B1点)と非駆血状態で測定された脈波(脈波2)から抽出された特徴点(A2点、B2点)との平均を用いて指標が算出される。そのため、より精度の高い指標を算出することができ、動脈硬化度の判定により有用な指標を得ることができる。
 図10を用いて、測定装置1Aの動作の第3の具体例を説明する。第3の具体例は、第3の演算アルゴリズムでの演算がなされるときの測定動作例である。図10に示される動作もまた、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図6に示される各部を制御することによって実現される。図10において、図7のフローチャートに示された第1の具体例にかかる測定動作、図9のフローチャートに示された第2の具体例にかかる測定動作と同様の測定動作については、同じステップ番号が付されている。そのため、図8の(A),(B)で時間軸に付してあるS3~S17は、図10に示される測定動作の各動作にも一致している。
 図10を参照して、第3の具体例にかかる測定動作では、上記ステップS11で駆血状態において脈波1が測定され、脈波1から特徴点1が抽出された後、上記ステップS15の動作がなされて用空気袋13B内の圧力P1がさらに減圧調整される。そして、上記ステップS17で非駆血状態において脈波2が測定され、脈波2から特徴点2が抽出される。次に、第3の具体例にかかる測定動作では、第1,第2の具体例にかかる測定動作とは異なり、CPU40は、上記ステップS11で抽出された特徴点1と上記ステップS17で抽出された特徴点2とを比較して、これらの差分が許容値以上であるか否かを判断する(ステップS18A)。具体的には、ステップS11で脈波1から抽出されたA1点の発生時間とステップS17で脈波2から抽出されたA2点の発生時間との差分、および/またはステップS11で脈波1から抽出されたB1点の発生時間とステップS17で脈波2から抽出されたB2点の発生時間との差分が許容値以上であるか否かを判断する。ここでの許容値としては、たとえば10ms程度が挙げられ、予めCPU40に記憶されているものとする。または、所定の操作(たとえば医師等の予め指定されたユーザにのみ知らされている操作方法)によって、登録や更新がされるものであってもよい。先述のように、被験者が同一人である場合には、A1点の発生時間とA2点の発生時間とは、ほぼ同じであると考えられる。同様に、B1点の発生時間とB2点の発生時間とも、ほぼ同じであると考えられる。そのため、これら発生時間の差分が許容値以上である場合には、いずれかの脈波が正しく測定されていない、または正しく特徴点が抽出されていないことが考えられる。
 そこで、ステップS18Aにおいて、特徴点1と特徴点2との差分が許容値以上であると判断された場合、または特徴点1と特徴点2との一方でも抽出されなかった場合には(ステップS18AでNO)、CPU40は再測定を報知する画面を表示部4で表示するための動作を行なう。そしてCPU40は、再測定を報知した後(ステップS18B)、測定動作をステップS5に戻して、再度、2ポート弁51を開放させる。
 上記ステップS11で特徴点1が抽出され、上記ステップS17で特徴点2が抽出され、かつそれらの差分が上述の許容値以内である場合には(ステップS18AでYES)、CPU40は、第2の具体例にかかる測定動作と同様に、上記ステップS11で抽出された特徴点1と、上記ステップS17で抽出された特徴点2との平均値を算出し、該平均値より、先述の指標を算出して動脈硬化度を判定する(ステップS19-2)。または、上記ステップS11で抽出された特徴点1と、上記ステップS17で抽出された特徴点2とのいずれか一方を用いて先述の指標を算出してもよいし、上記ステップS11で駆血状態で測定された脈波1から抽出された特徴点1を用いて先述の指標を算出してもよい。
 測定装置1Aで図10に示される第3の具体例にかかる測定動作が行なわれることで、駆血状態で測定された脈波(脈波1)から抽出された特徴点(A1点、B1点)と非駆血状態で測定された脈波(脈波2)から抽出された特徴点(A2点、B2点)との差分が許容値以上である場合には、再測定が行なわれる。そのため、より精度の高い指標を算出することができ、動脈硬化度の判定により有用な指標を得ることができる。
 図11を用いて、測定装置1Aの動作の第4の具体例を説明する。第4の具体例は、第4の演算アルゴリズムでの演算がなされるときの測定動作例である。図11に示される動作もまた、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図6に示される各部を制御することによって実現される。図11において、図7のフローチャートに示された第1の具体例にかかる測定動作、図9のフローチャートに示された第2の具体例にかかる測定動作、および図10のフローチャートに示された第3の具体例にかかる測定動作と同様の測定動作については、同じステップ番号が付されている。そのため、図8の(A),(B)で時間軸に付してあるS3~S17は、図11に示される測定動作の各動作にも一致している。
 図11を参照して、第4の具体例にかかる測定動作では、ステップS18Aにおいて、特徴点1と特徴点2との差分が許容値以上であると判断された場合、または特徴点1と特徴点2との一方でも抽出されなかった場合には(ステップS18AでNO)、CPU40は、判定結果の信頼性が低い旨を報知する画面を表示部4で表示するための処理を行なう。そしてCPU40は、その旨を報知した上で(ステップS18C)、測定動作を進める。CPU40は、第2の具体例にかかる測定動作、および第3の具体例にかかる測定動作と同様に、上記ステップS11で抽出された特徴点1と、上記ステップS17で抽出された特徴点2との平均値を算出し、該平均値より、先述の指標を算出して動脈硬化度を判定する(ステップS19-2)。
 測定装置1Aで図11に示される第4の具体例にかかる測定動作が実現されることで、駆血状態で測定された脈波(脈波1)から抽出された特徴点(A1点、B1点)と非駆血状態で測定された脈波(脈波2)から抽出された特徴点(A2点、B2点)との差分が許容値以上であった場合にも、信頼性が低い旨が報知された上でこれら特徴点を用いて指標が算出される。そのため、たとえば第3の具体例にかかる測定動作により得られる指標よりも信頼性は低い指標が算出されることにはなるが、再測定が行なわれず、1回の測定動作で指標が算出されるために、動脈硬化度の判定に要する時間を短縮することができる。
 さらに、上述のように、測定装置1Aでは、空気袋13Aと空気袋13Bとが2ポート弁51を介して接続されている。そして、ステップS3で血圧測定が完了すると、上記ステップS5で2ポート弁51を開放することで、空気袋13A内の空気を空気袋13Bに移動させている。2ポート弁51が開放されることで、空気袋13A内の空気は、圧力差をなくすために空気袋13Bに急速に流入する。これにより、空気袋13Bに空気をポンプによって流入するために要する時間を大幅に短縮することができ、全体の測定時間を短縮することができる。従って、被験者の負担を軽減することができる。また、測定に要する時間が長くなることで長時間動脈が圧迫されることになって交感神経が刺激され、血管の特性が損なわれてしまうおそれがあるものであるが、測定に要する時間を短縮することで動脈が圧迫される時間を短縮することができる。さらに、測定に要する時間が長くなることで体動が発生する可能性が高くなるものであるが、測定に要する時間を短縮することで、体動が発生する可能性も抑えることができる。これにより、脈波等の血圧情報の測定精度を向上させることができる。また、測定結果から得られる動脈硬化の指標の精度も向上させることができる。
 また、図6にも示されるように、空気袋13Bに空気を流入するための機構(エアポンプ、エアポンプ駆動回路)を搭載しなくてもよい。これにより、装置の小型化、軽量化、低価格化にも貢献できる。
 しかしながら、上述の測定動作は、図6に示されたような構成の測定装置のみならず、図12に示されたような、通常の構成の測定装置でも行なうことができる。そこで、第2の実施の形態として、図12に示される構成の測定装置1Bでの測定動作について説明する。
 [第2の実施の形態]
 測定装置1Bの概観は、図1に示された測定装置1Aの概観と同様である。図12を参照して、測定装置1Bは、図6に示された測定装置1Aの構成のうち、2ポート弁51および駆動回路53に加えて、エア系30Bにエアポンプ21Bが含まれ、エアポンプ21Bを駆動するための駆動回路26Bを含む。エアポンプ21Bは、CPU40からの指令を受けた駆動回路26Bによって駆動されて、空気袋13B内に圧縮気体を送り込む。
 図13を用いて、測定装置1Bの動作の第1の具体例を説明する。第1の具体例は、第1の実施の形態で説明された第1の演算アルゴリズムでの演算がなされるときの測定動作を表わしている。図13に示される動作は、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図12に示される各部を制御することによって実現される。また、図14の(A)は空気袋13B内の圧力P1の時間変化を示し、図14の(B)は空気袋13A内の圧力P2の時間変化を示している。図14の(A),(B)で時間軸に付してあるS103~S121は、測定装置1Bでの測定動作の各動作と一致している。
 図13を参照して、動作が開始すると、始めに、CPU40において、各部の初期化が行なわれる(ステップS101)。次に、CPU40はエア系20Bに対して制御信号を出力して空気袋13Bを所定圧となるまで加圧する(ステップS103)。図14の(A)の例では、空気袋13B内の圧力P1はステップS103の区間で増加している。そして、それ以降、圧力P1が維持されている。ステップS103では、圧力P1が脈波測定に適した圧力である50~150mmHgの範囲となるよう加圧される。圧力P1が所定圧に達した時点で、CPU40はエア系20Aに対して制御信号を出力して空気袋13Aの圧力P2を所定圧となるまで加圧して、空気袋13Aで測定部位の末梢側を圧迫する(ステップS105)。図14の(B)の例では、空気袋13A内の圧力P2はステップS105の区間で増加している。ステップS105でCPU40は、圧力P2が一般的な最高血圧値よりも高くなるまで加圧する。好ましくは、最高血圧値+40mmHg程度の圧力に達するまで加圧する。これにより、空気袋13Aは動脈を駆血する。その後、CPU40はエア系20Aに対して制御信号を出力して空気袋13A内の圧力P2の減圧を開始する(ステップS107)。ここでの減圧調整量は、好ましくは4mmHg/sec程度であり、徐々に減圧される。
 空気袋13A内の圧力P2の減圧過程において、空気袋13A内の圧力P2が最大圧から最高血圧に達するまでの間(ステップS111でYES)で、つまり、駆血状態で、CPU40は圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定し特徴点を抽出する(ステップS109)。図14の(A),(B)にステップS109に示される区間において、脈波が測定されて特徴点が抽出される。図5の例では、ステップS109では駆血中の脈波である脈波1が測定され、脈波1より、特徴点であるA1点およびB1点が抽出される。なお、以降の説明のために、ステップS109で測定される脈波を脈波1とし、抽出される特徴点を特徴点1とする。
 空気袋13A内の圧力P2の減圧過程において、空気袋13A内の圧力P2が最高血圧値に達するまでの間に脈波1から特徴点1が抽出されなかった場合には(ステップS113でNO)、空気袋13A内の圧力P2の減圧過程において、空気袋13A内の圧力P2が最高血圧値よりも低くなっている間で、つまり、非駆血状態で、CPU40は圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定し特徴点を抽出する(ステップS115)。図14の(A),(B)にステップS115に示される区間において、脈波が測定されて特徴点が抽出される。図5の例では、ステップS115では非駆血中の脈波である脈波2が測定され、脈波2より、特徴点であるA2点およびB2点が抽出される。以降の説明のために、ステップS115で測定される脈波を脈波2とし、抽出される特徴点を特徴点2とする。上記ステップS115は、上記ステップS109において特徴点1がすべて抽出された場合には(ステップS113でYES)スキップされる。
 CPU40は、上記ステップS109以降の、空気袋13Aの内圧が最高血圧値に達した時点付近から、減圧過程において、上記脈波の測定と共に血圧を測定している。血圧の測定は、通常の血圧計で行なわれている測定方法が採用され得る。具体的には、CPU40は、圧力センサ23Aから得られる圧力信号に基づいて、最高血圧(SYS)および最低血圧(DIA)を算出する。CPU40は、最高血圧値および最低血圧値が算出された時点、または空気袋13Aの内圧が最低血圧値よりも低くなった時点などで、血圧の測定を完了する(ステップS117)。
 CPU40は、上記ステップS109で特徴点1が抽出された場合には特徴点1より、上記ステップS109で特徴点1が抽出されずにステップS115で特徴点2が抽出された場合には特徴点2より、先述の指標を算出し、動脈硬化度を判定する(ステップS119)。その後、CPU40は駆動回路27A,27Bに制御信号を出力してエアバルブ22A,20Bを開放し、空気袋13A,13Bの圧力を大気圧に解放する(ステップS121)。図14の(A),(B)の例では、空気袋13A,13B内の圧力P1,P2は、ステップS121の区間で、大気圧まで急速に減少している。
 その後、CPU40は、算出された最高血圧(SYS)および最低血圧(DIA)や測定された脈波などの測定結果や動脈硬化度の判定結果などを基体2に設けられた表示部4で表示するための処理を行ない、測定結果を表示する(ステップS123)。
 測定装置1Bで図13に示される第1の具体例にかかる測定動作が実現されることで、特徴点が見え難く、駆血状態で測定された図5の脈波1から特徴点が抽出されなかった場合に、非駆血状態での脈波(脈波2)が測定される。特に末梢側が駆血された状態では末梢からの反射波の大部分が遮断されてしまうために、反射波のピークに相当する特徴点(B1点)が抽出されない場合が有り得る。しかしながら、測定装置1Bでは、その場合に末梢側を非駆血状態として脈波を測定するため、特に反射波のピークに相当する特徴点(B2点)を抽出しやすくなる。そのため、指標を精度よく算出することができ、動脈硬化度の判定に有用な指標を得ることができる。
 図15を用いて、測定装置1Bの動作の第2の具体例を説明する。第2の具体例は、第1の実施の形態で説明された第2の演算アルゴリズムでの演算がなされるときの測定動作を表わしている。図15に示される動作もまた、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図12に示される各部を制御することによって実現される。図15において、図13のフローチャートに示された第1の具体例にかかる測定動作と同様の測定動作については、同じステップ番号が付されている。
 図15を参照して、第2の具体例にかかる測定動作では、上記ステップS107で空気袋13A内の圧力P2の減圧が開始されると、CPU40は、減圧過程において圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定する(ステップS108)。その際、CPU40は、圧力センサ23Aから得られる圧力信号に基づいて空気袋13A内の圧力P2を測定し、測定された脈波を、測定時の空気袋13A内の圧力P2と共にメモリ41の所定領域に記憶する。図14の(A),(B)の例では、上記ステップS108はステップS109,S115の区間に相当する。
 上記ステップS108での脈波の測定が終了すると、CPU40は最高血圧(SYS)を取得する。最高血圧(SYS)は、圧力センサ23Aから得られる圧力信号に基づいて算出することで取得されてもよいし、操作部3に設けられた所定のボタン等での入力を受付けることで取得されてもよいし、予め一般的な値としてメモリ41に記憶されていて、メモリ41から取得されてもよい。CPU40は、測定された脈波に関連付けて記憶されている測定時の空気袋13A内の圧力P2と、取得した最高血圧とを比較することで、測定された脈波が、駆血状態で測定されたものであるか、非駆血状態で測定されたものであるかを判別する。つまり、最高血圧は、駆血状態であるか非駆血状態であるかを判別するためのしきい値として用いられる。なお、空気袋13A内の圧力P2が最高血圧よりも低い最低血圧(DIA)よりも低い場合を非駆血状態としてもよい。その場合には、しきい値として最低血圧も用いて、最低血圧とを比較することで、測定された脈波が、非駆血状態で測定されたものであることを判別するものとする。
 そして、CPU40は、測定された脈波から特徴点を抽出し(ステップS118)、その特徴点より、先述の指標を算出し、動脈硬化度を判定する(ステップS119)。ここでは、先述の第1の演算アルゴリズムでの演算と同様に、駆血状態で測定された脈波1から特徴点であるA1点およびB1点が抽出されると、それらを用いて指標を算出してもよい。また、先述の第2の演算アルゴリズムでの演算と同様に、駆血状態で測定された脈波1から抽出された特徴点であるA1点およびB1点と、非駆血状態で測定された脈波2から抽出された特徴点であるA2点およびB2点との、各々の平均を用いて指標を算出してもよい。また、第3の演算アルゴリズムでの演算と同様に、駆血状態で測定された脈波1から抽出された特徴点であるA1点およびB1点と、非駆血状態で測定された脈波2から抽出された特徴点であるA2点およびB2点との、各々の差分が許容値内である場合に、いずれかの特徴点、またはこれらの平均値を用いて指標を算出してもよい。以降、上記ステップS121,S123の動作が行なわれる。
 測定装置1Bで図15に示される第2の具体例にかかる測定動作が実現されることで、測定部位の抹消側が駆血状態となるよう、または非駆血状態となるように、空気袋13A内の圧力P2を所定圧力とするための調整をする必要がない。つまり、たとえば4mmHg/sec程度などの一定の減圧調整量で圧力P2を減圧し、その過程で測定した脈波を、測定時の圧力P2と血圧値とを比較することで、駆血中の脈波(脈波1)であるか非駆血中の脈波(脈波2)であるかが判定される。そのため、煩雑な制御を必要とせずに、精度の高い指標を算出することができ、動脈硬化度の判定により有用な指標を得ることができる。また圧力P2を調整する時間が不要となるために、測定動作に要する時間を短縮することができる。
 なお、上述の第2の具体例にかかる測定動作の変形例として、測定装置1Bで、図16に示されるような測定動作が行なわれてもよい。測定動作の第2の具体例の変形例は、第2の実施の形態で説明された第1の演算アルゴリズムでの演算がなされるときの測定動作の変形例を表わしている。図16に示される動作もまた、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図12に示される各部を制御することによって実現される。また、図17の(A)は空気袋13B内の圧力P1の時間変化を示し、図17の(B)は空気袋13A内の圧力P2の時間変化を示している。図17の(A),(B)で時間軸に付してあるS103~S121は、測定装置1Bでの測定動作の各動作と一致している。
 図16を参照して、第2の具体例の変形例にかかる測定動作では、上記ステップS103で空気袋13B内の圧力P1が、脈波測定に適した圧力である50~150mmHgの範囲となるよう加圧された状態であって、その後のステップS105で空気袋13Aが測定部位の末梢側を圧迫するよりも前の段階で、つまり非駆血状態で、CPU40は圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定する(ステップS104)。ステップS105で測定される脈波は上述のように非駆血中の脈波である。測定される脈波を説明では脈波2とする。図17の(A),(B)の例では、ステップS104の区間において脈波2が測定される。図17の(B)に示されるように、空気袋13A内の圧力P2は、ステップS104の区間では、加圧されずに初期の圧力が維持されている。
 その後、CPU40はエア系20Aに対して制御信号を出力して空気袋13Aの圧力P2を所定圧となるまで加圧して、空気袋13Aで測定部位の末梢側を圧迫する(ステップS105)。上記所定圧は、上述のように、好ましくは最高血圧値+40mmHg程度の圧力である。圧力P2が上記所定圧に達した後、CPU40はエア系20Aに対して制御信号を出力して空気袋13A内の圧力P2の減圧を開始する(ステップS107)。ここでの減圧調整量は、好ましくは4mmHg/sec程度である。
 空気袋13A内の圧力P2の減圧過程において、CPU40は圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定し特徴点を抽出する(ステップS108’)。その際、CPU40は、圧力センサ23Aから得られる圧力信号に基づいて空気袋13A内の圧力P2を測定し、測定された脈波を、測定時の空気袋13A内の圧力P2と共にメモリ41の所定領域に記憶する。なお、ステップS108’での測定動作は、上記ステップS104で非駆血状態での脈波2が測定されているため、駆血状態での脈波1を測定することを主な目的としている。そのため、上記ステップS108’での測定動作は、上述のステップS108に比べて短い区間、好ましくは空気袋13A内の圧力P2が最大圧から最高血圧に達するまでの間に行なわれる。図17の(A),(B)の例ではステップS108’の区間に脈波の測定が行なわれている。ステップS108’の区間は、図14の(A),(B)の例ではステップS109の区間に相当する。一方、先述のように、上述のステップS108は図14の(A),(B)の例ではステップS109,S115の区間に相当する。つまり、図14,図17にも示されているように、ステップS108’の測定動作はステップS108の測定動作よりも短い区間で行なわれる。
 その後の減圧過程においては、つまり、空気袋13A内の圧力P2が最低血圧に達するまでの減圧過程において、CPU40は血圧測定のみを行なう。そのため、上記ステップS108’よりも後の減圧過程において、CPU40は、減圧調整量を増加させる。好ましくは減圧調整量を4mmHg/sec以上とする。血圧測定が完了すると(ステップS117)、CPU40は、上記ステップS108’で測定された脈波に関連付けて記憶されている測定時の空気袋13A内の圧力P2と、取得した最高血圧(SYS)および最低血圧(DIA)とを比較することで、測定された脈波が、駆血状態で測定されたものであるか、非駆血状態で測定されたものであるかを判別する(ステップS118’)。そして、測定された脈波から特徴点を抽出し(ステップS118)、その特徴点より、先述の指標を算出し、動脈硬化度を判定する(ステップS119)。先述のように、上記ステップS104において非駆血状態での脈波2が測定されている。従って、上記ステップS118’でCPU40は、ステップS108’で測定された脈波の中から駆血状態で測定された脈波1を抽出してもよい。以降、上記ステップS119,S121,S123の測定動作が行なわれる。
 測定装置1Bで図16に示される第2の具体例の変形例にかかる測定動作が実現されることで、さらに、上記ステップS108’で脈波の測定が終了した後には、空気袋13A内の圧力P2の減圧速度を速めることができる。そのため、測定動作に要する時間をより短縮することができる。
 図18を用いて、測定装置1Bの動作の第3の具体例を説明する。第3の具体例は、第1の実施の形態で説明された第4の演算アルゴリズムでの演算がなされるときの測定動作を表わしている。図18に示される動作もまた、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図12に示される各部を制御することによって実現されるものである。図18において、図13のフローチャートに示された第1の具体例にかかる測定動作、図15のフローチャートに示された第2の具体例にかかる測定動作と同様の測定動作については、同じステップ番号が付されている。
 図18を参照して、第3の具体例にかかる測定動作では、CPU40は、上記ステップS108と同様にして、空気袋13A内の圧力P2の減圧過程において脈波を測定し、測定時の空気袋13A内の圧力P2と共にメモリ41の所定領域に記憶する。そして、CPU40は、上記ステップS109と同様にして、測定時の圧力P2と最高血圧(SYS)および最低血圧(DIA)とを比較することで、測定された脈波が、駆血状態で測定されたものであるか、非駆血状態で測定されたものであるかを判別する。そして、測定された脈波から特徴点を抽出する(ステップS118)。さらに、第3の具体例にかかる測定動作では、CPU40は、上記ステップS18Aと同様に、駆血状態で測定された脈波から抽出された特徴点1と非駆血状態で測定された脈波から抽出された特徴点2とを比較して、これらの差分が許容値以上であるか否かを判断する(ステップS118-1)。ステップS118-1において、特徴点1と特徴点2との差分が許容値以上であると判断された場合には(ステップS118-1でNO)、CPU40は、上記ステップS18Cと同様に、判定結果の信頼性が低い旨を報知する画面を表示部4で表示するための処理を行ない、その旨を報知した上で(ステップS118-2)、測定動作を進め、第2の具体例にかかる測定動作と同様に、抽出された特徴点より、先述の指標を算出し、動脈硬化度を判定する。
 測定装置1Bで図18に示される第3の具体例にかかる測定動作が実現されることで、駆血状態で測定された脈波(脈波1)から抽出された特徴点(A1点、B1点)と非駆血状態で測定された脈波(脈波2)から抽出された特徴点(A2点、B2点)との差分が許容値以上であった場合にも、信頼性が低い旨が報知された上でこれら特徴点を用いて指標が算出される。そのため、再測定が行なわれず、1回の測定動作で指標が算出されるために、動脈硬化度の判定に要する時間を短縮することができる。
 なお、測定装置1Aおよび測定装置1Bでは、空気袋13Aが駆血用と血圧値算出用とに兼用されている。そして、空気袋13Aの内圧変化に基づいて血圧値が算出され、空気袋13Bの内圧変化に基づいて脈波を測定されている。しかしながら、空気袋13Aは駆血用にのみ用いられて、空気袋13Bの内圧変化に基づいて血圧値が算出されてもよい。
 [第3の実施の形態]
 測定部位の末梢側を駆血して反射波の影響を抑えた状態で測定された脈波(脈波1)からは、特に、反射波に由来する特徴点が抽出されにくい場合があるために、第1の実施の形態、および第2の実施の形態においては、末梢側を駆血しない非駆血状態で脈波(脈波2)を測定し、非駆血状態での脈波から特徴点を抽出するものとしている。その場合、心臓からの駆出波に掌部などの末梢からの反射波が合成された脈波波形が測定される。しかしながら、測定部位である上腕から掌までの長さは被験者によって異なる。測定部位である上腕から掌までの長さは、駆出波と反射波との位置関係、つまり合成波である測定される脈波の波形に影響する。これにより、得られる指標の精度が影響を受け、動脈硬化度の判定にも影響することもある。
 この影響を抑える1つの方法として、操作部3などにより、予め測定部位である上腕から大きな反射が発生する位置である掌までの長さを入力し、該長さを用いて測定された脈波を補正する方法が挙げられる。他の方法として、測定部位から反射位置までの長さを所定の長さに固定する方法が挙げられる。
 そこで、第3の実施の形態にかかる測定装置1Cは、測定部位から反射位置までの長さを所定の長さに固定し、駆出波に測定部位から規定された長さにある末梢からの反射波を合成させるために、測定部位に装着する測定用の空気袋とは別に、末梢に装着するカフを備える。
 図19Aを参照して、測定装置1Cは、測定部位よりも末梢側として、たとえば手首に巻き付ける腕帯8を備える。腕帯8は、図19Bに示されるように空気袋13Cを含む。腕帯8は、先述のように、空気袋13Aおよび空気袋13Bを含む腕帯9から末梢側に所定の長さの位置である手首に装着される。装着位置は、測定者によって判断されるものであってもよい。好ましくは、腕帯8と腕帯9とを接続する上記所定の長さのベルトなど、腕帯8の装着位置を特定し得る部材を含む。空気袋13Cは、膨張することによって手首を圧迫する。
 図20を参照して、測定装置1Cは、図5に示された測定装置1Aの構成に加えて、空気袋13Cにエアチューブを介して接続されるエア系20Cを含む。
 エア系20Cは、エアポンプ21Cと、エアバルブ22Cと、圧力センサ23Cとを含む。エアポンプ21Cは、CPU40からの指令を受けた駆動回路26Cによって駆動されて、空気袋13C内に圧縮気体を送り込む。これにより、空気袋13Cが加圧される。
 エアバルブ22Cは、CPU40からの指令を受けた駆動回路27Cによってその開閉状態が制御される。エアバルブ22Cの開閉状態が制御されることで、空気袋13C内の圧力が制御される。
 圧力センサ23Cは、空気袋13C内の圧力を検出し、その検出値に応じた信号を増幅器28Cに対して出力する。増幅器28Cは、圧力センサ23Cから出力される信号を増幅し、変換器29Cに出力する。変換器29Cは、増幅器28Cから出力されたアナログ信号をデジタル化し、CPU40に出力する。
 CPU40は、測定装置の基体2に設けられた操作部3に入力された指令に基づいてエア系20A,20B,20Cおよび駆動回路53を制御する。
 さらに、測定装置1Cは、好ましくは、空気袋13Bから空気袋13Cまで動脈の長さを入力するための装置を備える。空気袋13Bから空気袋13Cまで動脈の長さは、簡単には、空気袋13Bから空気袋13Cまでの腕の長さ、つまり腕帯8と腕帯9との間の腕の長さとすることができる。この長さを入力する装置の具体的な構成は限定されない。たとえば、操作部3に含まれる、当該長さを入力するためのスイッチであってもよい。測定者が当該スイッチを用いて入力することで、当該長さが入力される。またたとえば、腕帯8と腕帯9とはベルトで接続されて、上記ベルトに設けられる、長さを検出する機構であってもよい。腕帯8と腕帯9とを装着した後に当該ベルトを腕に沿って弛まないように長さを調整することで、上記機構によって腕帯8と腕帯9との間の腕の長さが入力される。
 図21を用いて、測定装置1Cでの測定動作の第1の具体例を説明する。第1の具体例は、第1の実施の形態で説明された第1の演算アルゴリズムでの演算がなされるときの測定動作を表わしている。図21に示される動作は、被験者等が基体2の操作部3に設けられた測定ボタンを押下することにより開始する。この動作は、CPU40がメモリ41に記憶されるプログラムを読み出して図20に示される各部を制御することによって実現されるものである。また、図22の(A)は空気袋13C内の圧力P3の時間変化を示し、図22の(B)は空気袋13B内の圧力P1の時間変化を示し、図22の(C)は空気袋13A内の圧力P2の時間変化を示している。図22の(A),(B),(C)で時間軸に付してあるS3~S21は、後述する測定装置1Cでの測定動作の各動作と一致している。
 図21を参照して、測定装置1Cでは、測定装置1Aでの測定動作の第1の具体例での、ステップS1~S13と同様の動作が行なわれる。その間、測定装置1Cでは、図22の(A)に示されるように、空気袋13C内の圧力P3は初期の圧力が維持されている。
 ステップS11で駆血中の脈波1から特徴点1が抽出されなかった場合(ステップS13でNO)、CPU40はステップS15で空気袋13Aの圧力P2が少なくと最高血圧よりも低くなるよう、たとえば55mmHg程度となるよう減圧調整すると共に、エア系20Cに対して制御信号を出力して、空気袋13C内の圧力P3を所定圧となるよう加圧する(ステップS16)。ステップS16でCPU40は、圧力P3が少なくとも最高血圧よりも高くなるよう、たとえば最高血圧+40mmHg程度の圧力となるよう加圧する。これにより、空気袋13Aは測定部位近傍の末梢側の動脈を駆血しておらず、空気袋13Cは測定部位から所定の長さの位置に装着された腕帯8の位置で動脈を駆血している状態となる。その後、つまり、測定部位から末梢側に上記所定長さの分だけ駆血されていない状態で、ステップS17でCPU40は、圧力センサ23Bからの圧力信号に基づいて空気袋13B内の圧力P1を測定することで脈波を測定し特徴点を抽出する。以降、測定装置1Aと同様の測定動作が行なわれる。
 測定装置1Cでの測定動作の、第1の実施の形態で説明された第2の演算アルゴリズム~第4の演算アルゴリズムがなされるときの測定動作でも同様にすることができる。
 図23~図25をそれぞれ用いて、測定装置1Cでの測定動作の第2~第4の具体例を説明する。これらフローチャートに示された測定動作は、各々、図9~図11に示された測定装置1Aでの測定動作の第2の具体例~第4の具体例にかかる測定動作とほぼ同様である。いずれも、ステップS17で非駆血状態での脈波2を測定する際に、ステップS16で空気袋13C内の圧力P3を少なくとも最高血圧よりも高くなるよう加圧して、空気袋13Aは測定部位近傍の末梢側の動脈を駆血しておらず、空気袋13Cは測定部位から所定の長さの位置に装着された腕帯8の位置で動脈を駆血している状態としている。
 測定装置1Cで図21,図23~図25に示される測定動作が実現されることで、非駆血状態として脈波(脈波2)を測定する際、駆出波が反射する位置を調整することができる。これにより、非駆血状態で測定される脈波の波形から、被験者ごとに異なる、測定部位から駆出波が反射する位置までの長さに由来する影響を抑えることができる。そのため、指標をより精度よく算出することができ、動脈硬化度の判定に有用な指標を得ることができる。
 なお、上の例では、上腕を測定部位として、上腕から所定の長さの位置に該当する手首にのみ駆血用の空気袋を含む腕帯を装着するものとしているが、測定部位が異なるなどして抹消側の反射位置が複数想定される場合等、各々駆血用の空気袋を含む複数の腕帯を装着するようにしてもよい。そのようにすることで、指標をより精度よく算出することができる。
 さらに、上の例では、測定装置1Cは測定装置1Aの構成に加えて空気袋13Cを含んでいる。しかしながら、測定装置1Cは、測定装置1Bの構成に加えて空気袋13Cを含んでもよい。この場合、空気袋13A内の圧力P2が最高血圧よりも低くなった場合(ステップS111でNO)や、ステップS104で加圧過程において脈波を測定する際に、空気袋13C内の圧力P3を少なくとも最高血圧よりも高くし、測定部位から所定の長さの位置で駆血する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1A,1B,1C 測定装置、2 基体、3 操作部、4 表示部、8,9 腕帯、10 エアチューブ、13A,13B,13C 空気袋、20A,20B,20C エア系、21A,21B,21C エアポンプ、22A,22B,22C エアバルブ、23A,23B,23C 圧力センサ、26A,26B,26C,27A,27B,27C,53 駆動回路、28A,28B,28C 増幅器、29A,29B,29C A/D変換器、31,32 スイッチ、40 CPU、41 メモリ、51 2ポート弁、100 上腕。

Claims (8)

  1.  第1の流体袋(13B)および第2の流体袋(13A)と、
     前記第1の流体袋および前記第2の流体袋のそれぞれの内圧を測定するための第1のセンサ(23B)および第2のセンサ(23A)と、
     前記第2の流体袋の内圧を調整するための第1の調整部(21A,22A,26A,27A)と、
     動脈硬化度を判定するための指標を算出する演算、および前記第1の調整部での調整を制御するための制御部(40)とを備え、
     前記制御部は、
     前記第1の流体袋が測定部位に巻き付けられ、前記第2の流体袋が前記第1の流体袋よりも末梢側に巻き付けられ、前記第2の流体袋が最高血圧よりも高い内圧で、前記第1の流体袋の巻き付けられている前記測定部位の末梢側を圧迫している、第1の状態での、前記第1の流体袋の内圧変化に基づいて前記測定部位の第1の脈波を検出するための演算と、
     前記第1の流体袋が測定部位に巻き付けられ、前記第2の流体袋が前記第1の流体袋よりも末梢側に巻き付けられ、前記第2の流体袋が少なくとも最高血圧よりも低い内圧で、前記第1の流体袋の巻き付けられている前記測定部位の末梢側を圧迫している、第2の状態での、前記第1の流体袋の内圧変化に基づいて第2の脈波を検出するための演算と、
     前記第1の脈波から抽出される第1の特徴点と、前記第2の脈波から抽出される第2の特徴点とのうちの少なくとも一方の特徴点を用いて前記指標を算出するための演算とを行なう、血圧情報測定装置。
  2.  第1の流体袋(13B)および第2の流体袋(13A)と、
     前記第1の流体袋および前記第2の流体袋のそれぞれの内圧を測定するための第1のセンサ(23B)および第2のセンサ(23A)と、
     前記第2の流体袋の内圧を調整するための第1の調整部(21A,22A,26A,27A)と、
     動脈硬化度を判定するための指標を算出する演算、および前記第1の調整部での調整を制御するための制御部(40)とを備え、
     前記制御部は、
     前記第1の流体袋が測定部位に巻き付けられ、前記第2の流体袋が前記第1の流体袋よりも末梢側に巻き付けられ、前記第2の流体袋が、前記第1の流体袋の巻き付けられている前記測定部位の末梢側を圧迫している状態での、前記第1の流体袋の内圧変化に基づいて前記測定部位の脈波を検出するための演算と、
     前記脈波が検出された際の前記第2の流体袋の内圧と最高血圧とを比較することで、前記検出された脈波が、前記第2の流体袋の内圧が最高血圧よりも高い圧力で前記測定部位の末梢側を圧迫している第1の状態のときに検出された前記第1の脈波であるか、前記第2の流体袋の内圧が少なくとも最高血圧よりも低い圧力で前記測定部位の末梢側を圧迫している第2の状態のときに検出された前記第2の脈波であるか、を判別するための演算と、
     前記第1の脈波から抽出される第1の特徴点と、前記第2の脈波から抽出される第2の特徴点とのうちの少なくとも一方の特徴点を用いて前記指標を算出するための演算とを行なう、血圧情報測定装置。
  3.  前記制御部は、
     前記第2の流体袋の内圧を少なくとも最高血圧よりも高くなるまで加圧させ、前記第1の状態とするための前記第1の調整部の制御と、
     前記加圧の後、前記第2の流体袋の内圧を減圧させるための前記第1の調整部の制御と、
     前記第1の状態のときに検出された前記第1の脈波から前記第1の特徴点が抽出されなかった場合に、前記減圧過程の前記第2の状態のときに検出された前記第2の脈波から前記第2の特徴点を抽出し、前記第2の特徴点を用いて前記指標を算出するための演算とを行なう、請求の範囲第1項または第2項に記載の血圧情報測定装置。
  4.  前記指標は、
     駆出波の立ち上がりの出現時間と反射波の立ち上がりの出現時間との時間差であるTr(Traveling time to reflected wave)と、
     駆出波のピークの出現時間と反射波のピークの出現時間との時間差であるTppと、
     駆出波のピークでの振幅と反射波のピークでの振幅の割合であるAI(Augmentation Index)とのうちの少なくとも1つを含む、請求の範囲第1項または第2項に記載の血圧情報測定装置。
  5.  第3の流体袋(13C)と、
     前記第3の流体袋の内圧を調整するための第2の調整部(21C,22C,26C,27C)とをさらに含み、
     前記制御部は、前記第2の状態のときに、前記測定部位から末梢側に所定長さの位置に巻き付けられる前記第3の流体袋の内圧を少なくとも最高血圧よりも高い圧力として、前記測定部位から末梢側に前記所定長さの位置を圧迫するよう、前記第2の調整部を制御する、請求の範囲第1項または第2項に記載の血圧情報測定装置。
  6.  前記測定部位に巻き付けられた前記第1の流体袋から、前記測定部位から末梢側に巻き付けられた前記第3の流体袋までの、前記測定部位に連続する生体の長さを入力するための入力部(3)をさらに備える、請求の範囲第5項に記載の血圧情報測定装置。
  7.  前記測定部位としての上腕から、駆出波の反射位置としての掌までの長さを入力するための入力部(3)をさらに備える請求の範囲第1項または第2項に記載の血圧情報測定装置。
  8.  血圧情報測定装置(1)で測定された脈波より動脈硬化度を判定するための指標を取得する方法であって、
     前記血圧情報測定装置は、
     第1の流体袋(13B)および第2の流体袋(13A)と、
     前記第1の流体袋および前記第2の流体袋のそれぞれの内圧を測定するための第1のセンサ(23B)および第2のセンサ(23A)と、
     前記第2の流体袋の内圧を調整するための第1の調整部(21A,22A,26A,27A)とを含み、
     前記第2の流体袋の内圧を、最高血圧よりも高い圧力にするよう制御するステップ(S5~S9)と、
     前記第1の流体袋が測定部位に巻き付けられ、前記第2の流体袋が前記第1の流体袋よりも末梢側に巻き付けられ、前記第2の流体袋が最高血圧よりも高い内圧で、前記第1の流体袋の巻き付けられている前記測定部位の末梢側を圧迫している第1の状態での、前記第1の流体袋の内圧変化に基づいて、前記測定部位の第1の脈波を検出するステップ(S11)と、
     前記第1の脈波より前記指標を算出するステップ(S11,S19-1)と、
     前記第1の脈波より前記指標が算出されなかった場合に、前記第2の流体袋の内圧を減圧するよう制御するステップ(S15~S16)と、
     前記第1の流体袋が測定部位に巻き付けられ、前記第2の流体袋が前記第1の流体袋よりも末梢側に巻き付けられ、前記第2の流体袋が少なくとも最高血圧よりも低い圧力で前記測定部位の末梢側を圧迫している状態での、前記第1の流体袋の内圧変化に基づいて、前記測定部位の第2の脈波を検出するステップ(S17)と、
     前記第2の脈波より前記指標を算出するステップ(S17,S19-1)とを備える、指標取得方法。
PCT/JP2009/058341 2008-05-27 2009-04-28 動脈硬化度を判定するための指標が得られる、血圧情報測定装置 WO2009145027A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980118776.0A CN102036603B (zh) 2008-05-27 2009-04-28 取得用于判定动脉硬化度的指标的血压信息测定装置
DE112009001264.7T DE112009001264B4 (de) 2008-05-27 2009-04-28 Blutdruckinformationsmessvorrichtung, die einen Index zum Bestimmen eines Arteriosklerosegrads ermitteln kann
US12/993,699 US20110077534A1 (en) 2008-05-27 2009-04-28 Blood pressure information measurement device capable of obtaining index for determining degree of arteriosclerosis
RU2010152566/14A RU2502463C2 (ru) 2008-05-27 2009-04-28 Устройство измерения информации о кровяном давлении, способное получать показатель для определения степени артериосклероза

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-138385 2008-05-27
JP2008138385A JP5151690B2 (ja) 2008-05-27 2008-05-27 血圧情報測定装置および指標取得方法

Publications (1)

Publication Number Publication Date
WO2009145027A1 true WO2009145027A1 (ja) 2009-12-03

Family

ID=41376913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058341 WO2009145027A1 (ja) 2008-05-27 2009-04-28 動脈硬化度を判定するための指標が得られる、血圧情報測定装置

Country Status (6)

Country Link
US (1) US20110077534A1 (ja)
JP (1) JP5151690B2 (ja)
CN (1) CN102036603B (ja)
DE (1) DE112009001264B4 (ja)
RU (1) RU2502463C2 (ja)
WO (1) WO2009145027A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284966A (ja) * 2008-05-27 2009-12-10 Omron Healthcare Co Ltd 血圧情報測定装置および指標取得方法
WO2011096139A1 (ja) * 2010-02-02 2011-08-11 オムロンヘルスケア株式会社 血圧情報測定装置および血圧情報測定装置の制御方法
CN103025232A (zh) * 2010-07-28 2013-04-03 欧姆龙健康医疗事业株式会社 血压测定装置
CN103260503A (zh) * 2010-12-08 2013-08-21 欧姆龙健康医疗事业株式会社 血压信息测定装置及在该装置中的动脉硬化度的指标的计算方法
US9532720B2 (en) 2010-09-28 2017-01-03 Omron Healthcare Co., Ltd. Blood pressure information measurement device and blood pressure information measurement method
US9572501B2 (en) 2010-02-26 2017-02-21 Omron Healthcare Co., Ltd. Blood pressure information measurement device
JP2018130401A (ja) * 2017-02-16 2018-08-23 オムロンヘルスケア株式会社 血圧情報測定装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032057A1 (de) * 2009-07-07 2011-01-20 Siemens Aktiengesellschaft Druckwellen-Aufnahme und Wiedergabe
JP2011177249A (ja) * 2010-02-26 2011-09-15 Omron Healthcare Co Ltd 血圧情報測定装置および血圧情報測定装置用カフの装着状態判別方法
JP5741087B2 (ja) * 2011-03-11 2015-07-01 オムロンヘルスケア株式会社 血圧情報測定装置
JP2012200410A (ja) * 2011-03-25 2012-10-22 Omron Healthcare Co Ltd 血圧情報測定装置用カフおよびこれを備えた血圧情報測定装置
JP6109514B2 (ja) * 2012-09-21 2017-04-05 フクダ電子株式会社 生体情報処理装置
CN103705227B (zh) * 2013-11-06 2016-01-06 康尚医疗技术(丹阳)有限公司 用于血压测量的扇形袖带
WO2015067174A1 (zh) * 2013-11-06 2015-05-14 康尚医疗技术(丹阳)有限公司 一种血压测量装置及双气囊脉搏信号检测方法
CN104905777A (zh) * 2014-03-11 2015-09-16 天创聚合科技(上海)有限公司 一种带心血管功能检测的血压检测装置及其使用方法
JP6440535B2 (ja) * 2015-03-10 2018-12-19 日本光電工業株式会社 測定装置及びプログラム
CN105286817A (zh) * 2015-11-23 2016-02-03 恬家(上海)信息科技有限公司 一种动脉血管硬化度测定装置及充电底座
JP6635842B2 (ja) * 2016-03-25 2020-01-29 京セラ株式会社 血圧推定装置、血圧計、血圧推定システム、及び血圧推定方法
WO2017179695A1 (ja) 2016-04-15 2017-10-19 オムロン株式会社 生体情報分析装置、システム、及び、プログラム
JP6747332B2 (ja) * 2017-02-16 2020-08-26 オムロンヘルスケア株式会社 血圧情報測定装置
CN109833035B (zh) * 2017-11-28 2021-12-07 深圳市岩尚科技有限公司 脉搏波血压测量装置的分类预测数据处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113593A (ja) * 2002-09-27 2004-04-15 Nippon Colin Co Ltd 動脈硬化度評価装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU565664A1 (ru) * 1971-05-17 1977-07-25 Киевский Ордена Трудового Красного Знамени Медицинский Институт Имени А.А.Богомольца Устройство дл измерени кров ного давлени
SU1602449A1 (ru) * 1988-05-20 1990-10-30 Латвийский Научно-Исследовательский Институт Кардиологии Способ диагностики структурно-адаптивных изменений артериальных сосудов у больных гипертонической болезнью
JP3140007B2 (ja) 1999-05-06 2001-03-05 日本コーリン株式会社 下肢上肢血圧指数測定装置
US6872182B2 (en) * 2000-11-14 2005-03-29 Omron Corporation Electronic sphygmomanometer
US7390303B2 (en) * 2003-09-30 2008-06-24 Ehud Dafni Assessment of vascular dilatation
CN2724627Y (zh) * 2004-08-17 2005-09-14 泰博科技股份有限公司 血压计及生物传感器二合一的测量装置
JP4595526B2 (ja) * 2004-12-20 2010-12-08 オムロンヘルスケア株式会社 血圧計用カフおよび血圧計
JP4764673B2 (ja) 2005-08-11 2011-09-07 株式会社エー・アンド・デイ 血圧脈波検査用カフ
US8197416B1 (en) * 2005-08-19 2012-06-12 Ravi Shankar Pulsatile measurement of cardiac malfunction conditions
DE202005017370U1 (de) * 2005-11-07 2006-05-11 Health & Life Co., Ltd., Chung-Ho Blutdruckmessgerät mit einstellbaren Referenzwerten
JP5151690B2 (ja) * 2008-05-27 2013-02-27 オムロンヘルスケア株式会社 血圧情報測定装置および指標取得方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113593A (ja) * 2002-09-27 2004-04-15 Nippon Colin Co Ltd 動脈硬化度評価装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284966A (ja) * 2008-05-27 2009-12-10 Omron Healthcare Co Ltd 血圧情報測定装置および指標取得方法
US9232899B2 (en) 2010-02-02 2016-01-12 Omron Healthcare Co., Ltd. Blood pressure information measurement device and control method of blood pressure information measurement device
JP2011156212A (ja) * 2010-02-02 2011-08-18 Omron Healthcare Co Ltd 血圧情報測定装置
CN102724912A (zh) * 2010-02-02 2012-10-10 欧姆龙健康医疗事业株式会社 血压信息测定装置及血压信息测定装置的控制方法
WO2011096139A1 (ja) * 2010-02-02 2011-08-11 オムロンヘルスケア株式会社 血圧情報測定装置および血圧情報測定装置の制御方法
US9572501B2 (en) 2010-02-26 2017-02-21 Omron Healthcare Co., Ltd. Blood pressure information measurement device
CN103025232A (zh) * 2010-07-28 2013-04-03 欧姆龙健康医疗事业株式会社 血压测定装置
US9532720B2 (en) 2010-09-28 2017-01-03 Omron Healthcare Co., Ltd. Blood pressure information measurement device and blood pressure information measurement method
CN103260503A (zh) * 2010-12-08 2013-08-21 欧姆龙健康医疗事业株式会社 血压信息测定装置及在该装置中的动脉硬化度的指标的计算方法
JP5929759B2 (ja) * 2010-12-08 2016-06-08 オムロンヘルスケア株式会社 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
JP2018130401A (ja) * 2017-02-16 2018-08-23 オムロンヘルスケア株式会社 血圧情報測定装置
WO2018150750A1 (ja) * 2017-02-16 2018-08-23 オムロンヘルスケア株式会社 血圧情報測定装置
US11786135B2 (en) 2017-02-16 2023-10-17 Omron Healthcare Co., Ltd. Blood pressure information measuring device

Also Published As

Publication number Publication date
US20110077534A1 (en) 2011-03-31
DE112009001264T5 (de) 2011-06-30
CN102036603B (zh) 2013-03-06
CN102036603A (zh) 2011-04-27
RU2010152566A (ru) 2012-07-10
JP2009284966A (ja) 2009-12-10
JP5151690B2 (ja) 2013-02-27
RU2502463C2 (ru) 2013-12-27
DE112009001264B4 (de) 2023-10-05

Similar Documents

Publication Publication Date Title
JP5151690B2 (ja) 血圧情報測定装置および指標取得方法
JP5644325B2 (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
JP5929759B2 (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
US9149194B2 (en) Electronic sphygmomanometer
US20110152650A1 (en) Adaptive pump control during non-invasive blood pressure measurement
JP5399832B2 (ja) 血管内皮機能評価装置
US8211030B2 (en) NIBP target inflation pressure automation using derived SPO2 signals
JP3675796B2 (ja) 血圧測定装置
US6440080B1 (en) Automatic oscillometric apparatus and method for measuring blood pressure
WO2012043013A1 (ja) 血圧情報測定装置および血圧情報測定方法
JP2003250770A (ja) 電子血圧計
JP2012187300A (ja) 血圧情報測定装置
CN104224152A (zh) 血压计测装置
US9232899B2 (en) Blood pressure information measurement device and control method of blood pressure information measurement device
JP2009284965A (ja) 血圧情報測定装置
JP2001008909A (ja) 電子血圧計
JP2010194108A (ja) 血圧情報測定装置および動脈硬化度指標算出プログラム
CN111588365A (zh) 可评估动脉硬化的血压量测装置
KR101918577B1 (ko) 혈압계 및 이를 이용한 혈압 측정 방법
KR102356200B1 (ko) 혈압 측정 시스템 및 이를 이용한 혈압 측정 방법
US20040171945A1 (en) Pulse wave velocity related information obtaining apparatus
JP2011182967A (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
US20230181049A1 (en) Blood pressure meter and method for measuring blood pressure using the same
JP4398553B2 (ja) 電子血圧計
CN116807431A (zh) 血压测量装置及血压测量方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118776.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12993699

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010152566

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09754535

Country of ref document: EP

Kind code of ref document: A1