WO2015067174A1 - 一种血压测量装置及双气囊脉搏信号检测方法 - Google Patents

一种血压测量装置及双气囊脉搏信号检测方法 Download PDF

Info

Publication number
WO2015067174A1
WO2015067174A1 PCT/CN2014/090345 CN2014090345W WO2015067174A1 WO 2015067174 A1 WO2015067174 A1 WO 2015067174A1 CN 2014090345 W CN2014090345 W CN 2014090345W WO 2015067174 A1 WO2015067174 A1 WO 2015067174A1
Authority
WO
WIPO (PCT)
Prior art keywords
airbag
pressure
pulse signal
downstream
upstream
Prior art date
Application number
PCT/CN2014/090345
Other languages
English (en)
French (fr)
Inventor
陈云权
周萌
Original Assignee
康尚医疗技术(丹阳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310543625.8A external-priority patent/CN103720465B/zh
Priority claimed from CN201310543619.2A external-priority patent/CN103598881B/zh
Application filed by 康尚医疗技术(丹阳)有限公司 filed Critical 康尚医疗技术(丹阳)有限公司
Publication of WO2015067174A1 publication Critical patent/WO2015067174A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis

Definitions

  • the invention belongs to the technical field of medical instruments, and particularly relates to a method for detecting an arterial blood pulse signal and a blood pressure measuring device using the same, in particular to a bloodstream of two limbs at the same time.
  • CN201010247968.6 entitled “A Non-Invasive Blood Pressure Measuring Device and Measuring Method Therefor” describes a sphygmomanometer that uses a pulse wave probe to detect pulsation signals downstream of the cuff to determine systolic and diastolic blood pressure. .
  • the pulse wave probe detects the pulsation signal of the artery downstream of the cuff through a pressure sensor or a photoelectric sensor.
  • the Chinese patent No. CN201220159276.0 entitled “A Double Airbag Strap” describes a double-body coupled double-balloon sleeve with an upstream airbag strap and a downstream airbag strap.
  • the upstream airbag strap body and the downstream airbag strap body are fixedly connected within a distance of 30 cm according to an arterial blood flow direction.
  • the downstream airbag strap is used to detect a blood flow pulse downstream of the tested limb and thereby determine the pressure of the arterial blood of the limb being tested.
  • the prior art has not solved the manner in which the upstream and downstream airbag straps are pressurized and pressurized to what extent, in order to most effectively detect blood flow pulses that can be used to measure the blood pressure of the measured limb in the upstream and downstream airbag straps. To accurately and reliably measure the blood pressure problem.
  • the present invention provides an accurate and reliable sphygmomanometer, and more particularly to a method for inflating and pressurizing two inflatable airbags ligated on a limb to effectively detect a pulse signal therein. And a device for accurately measuring the sphygmomanometer using the method.
  • the invention provides a blood pressure measuring device for measuring arterial blood through a limb part of a test subject Pressure, measuring device includes
  • the upstream and downstream airbags are in the same cuff or in two connected different cuffs or in two different cuffs that are not connected, the cuff is used for binding On a limb being tested;
  • Two pressure sensors a first pressure sensor and a second pressure sensor, respectively connected to one or both of the upstream air bag and the downstream air bag;
  • a microprocessor that performs a blood pressure measurement process that includes the following steps:
  • a further improvement of the present invention resides in that in step A), the downstream balloon is pressurized to a pressure value between the systolic pressure and the diastolic pressure of the artery to be tested and the average blood pressure value of the downstream balloon is pressurized to the artery to be measured minus 10 mmHg.
  • a method of adding a pressure value between the average blood pressure value and 20 mmHg is to detect the pulse signal in the downstream airbag in real time during the pressurization of the downstream airbag, and stop when the amplitude of the pulse signal increases from zero to the maximum and then starts to fall.
  • Pressurizing; and pressurizing the downstream bladder to a pressure value such that the amplitude of the pulse signal detected in the downstream bladder at this pressure value is greater than a given value is in the process of pressurizing the downstream bladder , detecting the pulse signal carried by the air pressure signal in the downstream airbag in real time, and stopping the pressure when the amplitude of the pulse signal increases from zero to a given value;
  • step A the pulse signal amplitude is given a value between 1.3 mmHg and 1.8 mmHg, preferably 1.5 mmHg.
  • step B) the method of pressurizing the upstream balloon to a pressure value higher than the measured systolic blood pressure is to monitor the change of the amplitude of the pulse signal in the downstream airbag in real time during the pressurization of the upstream balloon.
  • the amplitude of the pulse signal in the downstream airbag changes from large to small as the air pressure of the upstream airbag increases, and when it finally disappears, the pressure is stopped.
  • a further improvement of the present invention is that the downstream airbag is pressurized to a pressure value such that the amplitude of the pulse signal detected in the downstream airbag at the pressure value is greater than a given value by compressing the downstream airbag segment. And after each end of the pressurization, the pulse signal in the downstream airbag is detected. When the amplitude of the pulse signal is greater than a given value, the pressurization is stopped, and the segmentation targets for the downstream airbag segment are: 80 mmHg, 120 mmHg, 160 mmHg, And 200mmHg.
  • a further improvement of the present invention is that in step B), during the slow pressurization of the upstream airbag, the continuously changing air pressure in the upstream airbag is measured by the first pressure sensor, and the second pressure sensor simultaneously measures the same
  • the pulse signal in the downstream airbag determines the systolic blood pressure of the artery to be measured according to the air pressure in the upstream airbag when the pulse signal is large to small and finally disappears.
  • a further improvement of the present invention is that, in step B), during the slow pressurization of the upstream airbag, the changing air pressure in the upstream airbag is measured by the first pressure sensor, and the downstream airbag is simultaneously measured by the second pressure sensor.
  • the pulse signal is determined according to the pulse signal from large to small, the amplitude and time of occurrence of the first and last penultial pulse signals when the last disappearance, and the air pressure value in the upstream airbag at the occurrence time, determining the artery to be tested Blood systolic pressure.
  • a further improvement of the present invention is that in step B), during the slow pressurization of the upstream airbag, the changing air pressure in the upstream airbag is measured by the first pressure sensor, and the pulse signal in the downstream airbag is measured by the second pressure sensor.
  • the measured arterial diastolic blood pressure is determined according to the air pressure in the upstream airbag when the pulse signal is changed from constant to on.
  • a further improvement of the present invention is that, in step B), during the slow pressurization of the upstream airbag, the changing air pressure in the upstream airbag is measured by the first pressure sensor, and the pulse signal in the downstream airbag is simultaneously measured by the second pressure sensor, according to One of the following parameters of the pulse signal is determined by the pressure value in the upstream airbag from the constant start to determine the blood diastolic pressure of the measured artery: the first half wave time width of the pulse signal, the second half wave time width, the full wave time width, the amplitude, The product and area of the amplitude and any of the above time widths.
  • a dual-balloon pulse signal detecting method for detecting a relationship between a barometric pressure and a pulse signal and a mutual relationship in a cuff bound to a measured limb comprising the following steps:
  • the upstream and downstream airbags are in the same cuff or in two different cuffs connected or in two different cuffs that are not connected
  • the upstream balloon and the downstream balloon are respectively located upstream and downstream of the blood flow of the artery of the tested limb;
  • a further improvement of the present invention is that during the slow pressurization of the upstream airbag, the continuously changing air pressure in the upstream airbag is measured by the first pressure sensor, and the pulse signal in the downstream airbag is measured by the second pressure sensor, thereby measuring the pulse signal from the large The air pressure in the upstream airbag when it is small and finally disappears.
  • a further improvement of the present invention is that during the slow pressurization of the upstream airbag, the changing air pressure in the upstream airbag is measured by the first pressure sensor, and the pulse signal in the downstream airbag is measured by the second pressure sensor, according to the pulse signal Large to small, the last and last penultimate pulse signal occurrence time when the last disappearance, and the air pressure in the upstream airbag at the time of occurrence is measured.
  • the invention has the beneficial effects that the blood pressure measuring device provided by the invention is to bind two inflatable airbags on one limb for pressure, effectively detecting the pressure and pulse signals therein, thereby accurately and reliably measuring blood pressure, and measuring The result is stable.
  • Figure 1 is a plan development view of a dual airbag sector sleeve of the present invention.
  • FIG. 2 is a schematic view of the use of the dual airbag sector sleeve of the present invention for the forearm of the hand.
  • Figure 3 is a schematic view showing the connection of the blood pressure measuring device of the present invention.
  • Fig. 4 is a schematic view showing the connection of the blood pressure measuring device of the present invention.
  • Fig. 5 is a schematic view showing the connection of the blood pressure measuring device of the present invention.
  • Fig. 6 is a timing chart of pulse signals for measuring systolic blood pressure and diastolic blood pressure by the pressurization method of the present invention.
  • Figure 7 is an enlarged view of 7A of Figure 6 of the present invention.
  • 1-upstream airbag 2-downstream airbag, 3-first pressure sensor, 4-host, 5-second pressure sensing , 6-air pump, 7-vent valve, 8-sleeve, 9-upstream trachea, 10-stream trachea.
  • the present invention is a blood pressure measuring device.
  • the double airbag fan sleeve 8 may be a double airbag fan sleeve, or two ordinary sleeves may be used instead of the upstream airbag 1 and the downstream airbag respectively.
  • Embodiment 1 Method for measuring pulse signal by using pressurization method and detection of systolic blood pressure measuring device or systolic blood pressure and pulse signal
  • the present invention is a blood pressure measuring device comprising a cuff 8 and a main body 4 connected to the cuff 8, the cuff 8 being a double-balloon fan-shaped cuff, and the double-balloon fan-shaped cuff is a cuff with a double air tube and a dual air pocket of the upstream air bag 1 and the downstream air bag 2 bound to the limb to be tested, the upstream air bag 1 and the downstream air bag 2 respectively located upstream and downstream of the blood flow of the measured limb artery After binding, the upstream airbag 1 is fixed to block the blood flow of the elbow artery of the test subject upstream of the wrist pulse, and is connected to the upstream airbag interface on the main body 4, and the downstream airbag 2 is fixed downstream of the blood flow direction of the artery.
  • the part detects the wrist pulse beat and is connected to the downstream airbag interface on the main body 4, the downstream airbag 2 is configured to detect the change information of the pulse signal, and sense the blood flow pulse generated by the pressure change of the upstream airbag 1 in real time.
  • the host 4 includes a microprocessor and a human interaction interface including a keyboard and a display connected to the microprocessor, the host 4 further includes an air pump 6, a vent valve 7,
  • the machine 4 further includes a first pressure sensor 3 and a second pressure sensor 5, the first pressure sensor 3 and the second pressure sensor 5 passing through the gas communication member and one or both of the upstream airbag 1 and the downstream airbag 2
  • the air pump 6 is at least one air pump 6 for inflating one or both of the upstream air bag 1 and the downstream air bag 2, the air release valve 7 being for the upstream air bag 1 and one or two slow or fast deflated deflation valves 7 in the downstream air bag 2, the microprocessor controls the air pump 6, the deflation valve 7 and the process through the first pressure sensor 3
  • a control and data processing program is provided in the microprocessor, the control and processing program performing a blood pressure measurement process comprising the following steps:
  • Solution 1 As shown in Figures 3 and 6-7, the dual balloon pulse signal and systolic blood pressure are detected using a pressurization method, including the following steps:
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 is pressurized to a pressure value between the measured arterial systolic pressure and diastolic blood pressure;
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 a pressure value between the average blood pressure value of the artery to be measured minus 10 mmHg and the average blood pressure value plus 20 mmHg;
  • the amplitude of the pulse signal is a value between 1.3 mmHg and 1.8 mmHg, such as 1.5 mmHg;
  • the first vent valve is closed, the first air pump is slowly inflated to the upstream air bag 1, and the pressure of the upstream air bag 1 is slowly increased from zero;
  • the measured arterial systolic pressure is determined according to the pulse signal and the air pressure in the upstream airbag 1, and the method for determining the measured arterial systolic pressure is as follows, as in steps 5-1) and 5- 2):
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is detected by the second pressure sensor 5, according to
  • the air pressure in the upstream airbag 1 when the pulse signal is large to small, and the air pressure in the upstream airbag 1 is finally determined, and the measured arterial systolic pressure is determined, for example, the pulse signal in the detected downstream airbag 2 is measured from large to small, and the last pulse is finally disappeared.
  • the time at which the peak of the signal occurs, and the value of the air pressure of the upstream airbag 1 at the time of occurrence of the peak of the last pulse signal, the air pressure value of the upstream airbag 1 is the measured systolic blood pressure of the artery, or the measurement is at the last
  • the pressure value of the upstream balloon 1 is taken, and the average value of the three values is the measured arterial systolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to
  • the amplitude and time of the first and last penultial pulse signals, and the value of the air pressure in the upstream airbag 1 at the time of occurrence, are determined from the largest to the smallest, and the blood systolic blood pressure of the measured arteries is determined.
  • the occurrence time of the peak of the first and the second last pulse signal is the two air pressure values in the upstream airbag 1, according to the peak value of the first and second to last pulse signals of the downstream airbag 2 measured above.
  • the occurrence time is calculated by calculating the occurrence time of the pulse wave which is not detected by the last pulse signal of the last, and then based on the estimated time of occurrence of the pulse wave which is not detected and the above-mentioned measured upstream airbag 1
  • the two air pressure values are used to calculate the air pressure value of the upstream airbag 1 at the time when the pulse wave of the last pulse wave signal of the downstream airbag 2 is not detected, which is the measured arterial systolic pressure;
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 is pressurized to a pressure value between the measured arterial systolic pressure and diastolic blood pressure;
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 a pressure value between the average blood pressure value of the artery to be measured minus 10 mmHg and the average blood pressure value plus 20 mmHg;
  • the amplitude of the pulse signal is a value between 1.3 mmHg and 1.8 mmHg, such as 1.5 mmHg;
  • the segment target of the downstream balloon 2 segment compression is 80 mmHg, 120 mmHg, 160 mmHg, 200 mmHg, and the pulse signal amplitude is given a value between 1.3 mmHg and 1.8 mmHg, for example, 1.5 mmHg;
  • the first vent valve is closed, the second switch valve is closed, the first switch valve is opened, the first air pump is slowly inflated to the upstream air bag 1, and the pressure of the upstream air bag 1 is slowly increased from zero;
  • the measured arterial systolic pressure is determined according to the pulse signal and the air pressure in the upstream airbag 1, and the method for determining the measured arterial systolic pressure is as follows, as in steps 5-1) and 5- 2):
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is detected by the second pressure sensor 5, according to
  • the air pressure in the upstream airbag 1 when the pulse signal is large to small, and the air pressure in the upstream airbag 1 is finally determined, and the measured arterial systolic pressure is determined, for example, the pulse signal in the detected downstream airbag 2 is measured from large to small, and the last pulse is finally disappeared.
  • the time at which the peak of the signal occurs, and the value of the air pressure of the upstream airbag 1 at the time of occurrence of the peak of the last pulse signal, the air pressure value of the upstream airbag 1 is the measured systolic blood pressure of the artery, or the measurement is at the last
  • the air pressure value of the upstream airbag 1 at the occurrence of the peak of one pulse signal, and the air pressure value of the upstream airbag 1 in the two pulse periods before and after the occurrence of the peak of the last pulse signal are averaged, and the average value is Measuring arterial systolic pressure; or measuring the air pressure value of the upstream airbag 1 at the time of occurrence of the peak, and upstream of two times before and after the occurrence of the peak
  • the air pressure value of the airbag 1, taking the average of the three values is the measured arterial systolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to
  • the amplitude and time of the first and last penultial pulse signals, and the value of the air pressure in the upstream airbag 1 at the time of occurrence, are determined from the largest to the smallest, and the blood systolic blood pressure of the measured arteries is determined.
  • the two air pressure values P41 and P40 in the upstream airbag 1 are measured as systolic blood pressure (P40-(P40-P41)*A40/(A40-A41)); or the detected pulse signal in the downstream airbag 2 is measured.
  • the amplitude and time of occurrence of the first and last penultial pulse signals from the largest to the smallest, the last disappearance, and the upstream airbag 1 measured at the occurrence time of the peak of the last and the second last pulse signal The two air pressure values are derived based on the peak value and the occurrence time of the last and second to last pulse signals of the downstream airbag 2 measured above, and the occurrence of the next undetected pulse wave of the first pulse signal of the last number is derived. Time, according to the calculated time of occurrence of the undetected pulse wave and the two air pressure values in the above-mentioned measured upstream airbag 1, the latter one of the last pulse wave signals of the downstream airbag 2 is not detected.
  • the pressure value of the upstream balloon 1 at the time of arrival of the pulse wave which is the measured systolic blood pressure;
  • the first vent valve is opened, the first switch valve is opened, and the second switch valve is opened to deflate the upstream air bag 1 and the downstream air bag 2.
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 is pressurized to a pressure value between the measured arterial systolic pressure and diastolic blood pressure;
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped.
  • 2 is a pressure between the average blood pressure value of the artery to be measured minus 10 mmHg and the average blood pressure value plus 20 mmHg Pressure value;
  • the amplitude of the pulse signal is a value between 1.3 mmHg and 1.8 mmHg, such as 1.5 mmHg;
  • the segment target of the downstream balloon 2 segment compression is 80 mmHg, 120 mmHg, 160 mmHg, 200 mmHg, and the pulse signal amplitude is given a value between 1.3 mmHg and 1.8 mmHg, for example, 1.5 mmHg;
  • vent valve is closed, the three venting valve communicates with the passage of the upstream air bag 1 and the air pump and blocks the passage of the downstream air bag 2, the air pump slowly inflates the upstream air bag 1, and the pressure of the upstream air bag 1 gradually increases from zero;
  • the measured arterial systolic pressure is determined according to the pulse signal and the air pressure in the upstream airbag 1, and the method for determining the measured arterial systolic pressure is as follows, as in steps 5-1) and 5- 2):
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is detected by the second pressure sensor 5, according to
  • the air pressure in the upstream airbag 1 when the pulse signal is large to small, and the air pressure in the upstream airbag 1 is finally determined, and the measured arterial systolic pressure is determined, for example, the pulse signal in the detected downstream airbag 2 is measured from large to small, and the last pulse is finally disappeared.
  • the time at which the peak of the signal occurs, and the value of the air pressure of the upstream airbag 1 at the time of occurrence of the peak of the last pulse signal, the air pressure value of the upstream airbag 1 is the measured systolic blood pressure of the artery, or the measurement is at the last
  • the pressure value of the upstream balloon 1 is taken, and the average value of the three values is the measured arterial systolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to
  • the pulse signal is from large to small, and the last one and the second last pulse signal when it finally disappears.
  • the amplitude and time of occurrence, and the value of the air pressure in the upstream balloon 1 at the time of occurrence determine the blood systolic blood pressure of the subject.
  • the time of occurrence of the peak of the first and last penultimate pulse signals t41 and the temperature values of the two pressures P41 and P40 in the upstream airbag 1 are measured (P40-(P40-P41)*A40/ (A40-A41)); or, for example, measuring the amplitude and time of occurrence of the pulse signal in the downstream airbag 2 detected from the largest to the smallest, the last and the second to last pulse signal, and the measurement at the end
  • the time of occurrence of the peak of the first and last penultial pulse signals is the two air pressure values in the upstream airbag 1, according to the peak value of the first and last penultial pulse signals of the downstream airbag 2 measured above The time is calculated by calculating the occurrence time of the pulse wave which is not detected by the
  • the vent valve is opened, the three venting valve communicates the passage of the upstream air bag 1 and the air pump and blocks the passage of the downstream air bag 2, vents the upstream air bag 1, and then connects the three vent valves to the passage of the downstream air bag 2 and the air pump and blocks the upstream air bag.
  • the passage of 1 deflates the downstream airbag 2.
  • the present invention is a blood pressure measuring device comprising a cuff 8 and a main body 4 connected to the cuff 8, the cuff 8 being a double-balloon fan-shaped cuff, and the double-balloon fan-shaped cuff is a cuff with a double air tube and a dual air pocket of the upstream air bag 1 and the downstream air bag 2 bound to the limb to be tested, the upstream air bag 1 and the downstream air bag 2 respectively located upstream and downstream of the blood flow of the measured limb artery After binding, the upstream airbag 1 is fixed to block the blood flow of the elbow artery of the test subject upstream of the wrist pulse, and is connected to the upstream airbag interface on the main body 4, and the downstream airbag 2 is fixed downstream of the blood flow direction of the artery.
  • the part detects the wrist pulse beat and is connected to the downstream airbag interface on the main body 4, the downstream airbag 2 is configured to detect the change information of the pulse signal, and sense the blood flow pulse generated by the pressure change of the upstream airbag 1 in real time.
  • the host 4 includes a microprocessor and a human interaction interface including a keyboard and a display connected to the microprocessor, the host 4 further includes an air pump 6, a vent valve 7, Machine 4 also comprises a first pressure sensor 3 and the second pressure sensor 5, the first pressure sensor 3 and the second pressure
  • the force sensor 5 is separately or simultaneously connected to one or both of the upstream air bag 1 and the downstream air bag 2 through a gas communication member, and the air pump 6 is at least one for the upstream air bag 1 and the downstream air bag 2
  • One or two inflated air pumps 6 that are deflating valves 7 for slow or rapid deflation of one or both of the upstream air bag 1 and the downstream air bag 2, the micro The processor controls the air pump 6, the deflation valve 7 and the process to detect one of the
  • a control and data processing program is provided in the microprocessor, the control and processing program performing a blood pressure measurement process comprising the following steps:
  • the method of measuring the pulse signal and diastolic pressure using the pressurization method or the detecting method of detecting the dual balloon pulse signal using the pressurization method includes the steps of:
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 is pressurized to a pressure value between the measured arterial systolic pressure and diastolic blood pressure;
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 a pressure value between the average blood pressure value of the artery to be measured minus 10 mmHg and the average blood pressure value plus 20 mmHg;
  • the amplitude of the pulse signal is a value between 1.3 mmHg and 1.8 mmHg, such as 1.5 mmHg;
  • the segment target of the downstream balloon 2 segment compression is 80 mmHg, 120 mmHg, 160 mmHg, 200 mmHg, and the pulse signal amplitude is given a value between 1.3 mmHg and 1.8 mmHg, for example, 1.5 mmHg;
  • the first vent valve is closed, the first air pump is slowly inflated to the upstream air bag 1, and the pressure of the upstream air bag 1 is slowly increased from zero;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse in the pulse
  • the signal and the air pressure in the upstream airbag 1 determine the diastolic blood pressure of the artery to be measured.
  • the constantly changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the signal is determined by the air pressure in the upstream airbag 1 from constant change, and the measured arterial diastolic pressure is determined.
  • the amplitudes of the pulse signals p30, p31, p32, p33, p34 and p35 in the detected downstream airbag 2 are detected.
  • the value of the barometric pressure which is the measured arterial diastolic pressure
  • the constant pulse signal generation time that is, the air pressure value of the upstream airbag 1 at time t32, which is the measured arterial diastolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the first half-wave time width of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined. For example, as shown in FIG.
  • the pulse signal generation time that is, the air pressure value of the upstream airbag 1 at time t32, which is the measured arterial diastolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the second half-time width of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined.
  • the detected pulse signals p30, p31, p32, p33 in the lower airbag 2 are as shown in FIG.
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the area of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined.
  • the detected pulse signals p30, p31, p32, p33, p34 and p35 in the downstream airbag 2 are as shown in Fig. 7.
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the area of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined.
  • the detected pulse signals p30, p31, p32, p33, p34 and p35 in the downstream airbag 2 are as shown in Fig. 7.
  • Option 2 Pressurization method to detect double balloon pulse signal and diastolic pressure or compression method to detect diastolic pressure double balloon pulse signal detection and blood pressure
  • the device of the invention can also be used for detecting double balloon pulse signal and measuring diastolic blood pressure, and can also be used for detecting diastolic pressure double balloon pulse signal detection and measuring blood pressure by pressure method.
  • the detection method includes the following steps:
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream gas is at this time.
  • the capsule 2 is pressurized to a pressure value between the measured arterial systolic pressure and diastolic pressure;
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 a pressure value between the average blood pressure value of the artery to be measured minus 10 mmHg and the average blood pressure value plus 20 mmHg;
  • the amplitude of the pulse signal is a value between 1.3 mmHg and 1.8 mmHg, such as 1.5 mmHg;
  • the segment target of the downstream balloon 2 segment compression is 80 mmHg, 120 mmHg, 160 mmHg, 200 mmHg, and the pulse signal amplitude is given a value between 1.3 mmHg and 1.8 mmHg, for example, 1.5 mmHg;
  • the first vent valve is closed, the second switch valve is closed, the first switch valve is opened, the first air pump is slowly inflated to the upstream air bag 1, and the pressure of the upstream air bag 1 is slowly increased from zero;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse in the pulse
  • the signal and the air pressure in the upstream airbag 1 determine the diastolic blood pressure of the artery to be measured.
  • the constantly changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the signal is determined by the air pressure in the upstream airbag 1 from constant change, and the measured arterial diastolic pressure is determined.
  • the amplitudes of the pulse signals p30, p31, p32, p33, p34 and p35 in the detected downstream airbag 2 are detected.
  • the value of the barometric pressure which is the measured arterial diastolic pressure
  • the slow pressurization of the upstream airbag 1 the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the time width of the full wave of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured diastolic blood pressure is determined. For example, as shown in FIG.
  • the constant pulse signal generation time that is, the air pressure value of the upstream airbag 1 at time t32, which is the measured arterial diastolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the first half-wave time width of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined. For example, as shown in FIG.
  • the pulse signal generation time that is, the air pressure value of the upstream airbag 1 at time t32, which is the measured arterial diastolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the second half-time width of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined.
  • the detected pulse signals p30, p31, p32, p33 in the lower airbag 2 are as shown in FIG.
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the area of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined.
  • the detected pulse signals p30, p31, p32, p33, p34 and p35 in the downstream airbag 2 are as shown in Fig. 7.
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5,
  • the measured diastolic blood pressure is determined according to the air pressure in the upstream airbag 1 from the constant change of the area of the pulse signal. For example, as shown in FIG. 7, the detected pulse signals p30, p31, p32, p33 in the downstream airbag 2 are as shown in FIG.
  • amplitudes of p34 and p35 A30, A31, A32, A33, A34 and A35, full-wave time width d20, d21, d22, d23, d24 and d25, first half-wave time width d26, d27, d28, d29, d30 and d31,
  • the first vent valve is opened, the first switch valve is opened, and the second switch valve is opened to deflate the upstream air bag 1 and the downstream air bag 2.
  • the device of the invention can also be used for detecting the double balloon pulse signal and measuring the diastolic pressure by the pressure method, and can also be used for detecting the diastolic pressure double balloon pulse signal detection and measuring blood pressure by the pressure method:
  • the pulse signal in the downstream airbag 2 is detected in real time, and when the amplitude of the pulse signal increases from zero to the maximum, and then begins to descend, the pressurization is stopped, and the downstream airbag is stopped. 2 is pressurized to a pressure value between the measured arterial systolic pressure and diastolic blood pressure;
  • the amplitude of the pulse signal is a value between 1.3 mmHg and 1.8 mmHg, such as 1.5 mmHg;
  • the segment target of the downstream balloon 2 segment compression is 80 mmHg, 120 mmHg, 160 mmHg, 200 mmHg, and the pulse signal amplitude is given a value between 1.3 mmHg and 1.8 mmHg, for example, 1.5 mmHg;
  • vent valve is closed, the three venting valve communicates with the passage of the upstream air bag 1 and the air pump and blocks the passage of the downstream air bag 2, the air pump wants the air bag 1 to slowly inflate, and the pressure of the upstream air bag 1 slowly increases from zero;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse in the pulse
  • the signal and the air pressure in the upstream airbag 1 determine the diastolic blood pressure of the artery to be measured.
  • the constantly changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the signal is determined by the air pressure in the upstream airbag 1 from constant change, and the measured arterial diastolic pressure is determined.
  • the amplitudes of the pulse signals p30, p31, p32, p33, p34 and p35 in the detected downstream airbag 2 are detected.
  • the value of the barometric pressure which is the measured arterial diastolic pressure
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the time width of the full wave of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined. For example, as shown in FIG.
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the first half-wave time width of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined. For example, as shown in FIG.
  • the pulse signal generation time that is, the air pressure value of the upstream airbag 1 at time t32, which is the measured arterial diastolic pressure;
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the second half-time width of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined.
  • the detected pulse signals p30, p31, p32, p33 in the lower airbag 2 are as shown in FIG.
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the area of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined.
  • the detected pulse signals p30, p31, p32, p33, p34 and p35 in the downstream airbag 2 are as shown in Fig. 7.
  • the continuously changing air pressure in the upstream airbag 1 is measured by the first pressure sensor 3, and the pulse signal in the downstream airbag 2 is measured by the second pressure sensor 5, according to the pulse
  • the area of the signal is changed from the constant pressure to the air pressure in the upstream airbag 1, and the measured arterial diastolic pressure is determined. For example, as shown in FIG.
  • the vent valve is opened, the three venting valve communicates the passage of the upstream air bag 1 and the air pump and blocks the passage of the downstream air bag 2, vents the upstream air bag 1, and then connects the three vent valves to the passage of the downstream air bag 2 and the air pump and blocks the upstream air bag.
  • the passage of 1 deflates the downstream airbag 2.
  • the device for measuring blood pressure provided by the invention is to bind two inflatable airbags on one limb for pressurization, and the most effective blood flow pulse for detecting the blood pressure of the measured limb is detected in the upstream and downstream airbag straps, and the pulse is effectively detected therein.
  • the signal, accurate and reliable measurement of blood pressure, and the measurement results are stable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血压测量装置,包括袖套(8)以及与袖套(8)连接的主机(4),上游气囊(1)和下游气囊(2)分别位于被测肢体动脉血液流动的上游和下游,下游气囊(2)用于探测脉搏信号的变化信息,实时传感由上游气囊(1)的压力变化而产生的血液流动脉冲的变化,微处理器控制气泵(6)、泄气阀(7)和处理通过第一压力传感器(3)和第二压力传感器(5)中的一个或两个分别或同时检测的上游气囊(1)和下游气囊(2)中的一个或两个中的压力值,脉搏信号,或者压力值和脉搏信号。该测量血压的装置是在一肢体上绑扎两个充气气囊进行加压,有效地在上下游气囊中检测到压力和脉搏信号,从而准确、可靠地测量血压,并且测量结果稳定。

Description

一种血压测量装置及双气囊脉搏信号检测方法 技术领域
本发明属于医疗器械技术领域,具体的是涉及一种检测动脉血液脉搏信号的方法及使用该方法的血压测量装置,尤其是一种通过两个可充气气囊在一肢体部位血流的上下游同时检测压力和脉搏信号的方法和以此方法为基础的血压测量装置。
背景技术
血压测量最常用的方法之一是采用一种具有一个可充气气囊的袖带,通过加压先将人体肢体动脉血流阻断,然后缓慢减压,在减压过程中,通过检测血流通过阻断区时所产生的柯氏音,或者是动脉压力在袖带中所产生的脉搏波信号强弱变化值等信息,确定动脉血液的收缩压和舒张压。中国专利号CN201010247968.6,标题为“一种无创血压测量装置及其测量方法”的专利文献介绍了一种使用脉搏波探头检测袖带下游动脉脉动信号,从而确定收缩压和舒张压的血压计。这种脉搏波探头通过压力感应器或者是光电感应器检测袖带下游动脉脉动信号。中国专利号为CN201220159276.0,标题为“一种双气囊绑带”的专利文献介绍了一种双体联接式双气囊袖套,所述袖带有上游气囊绑带体与下游气囊绑带体,且所述上游气囊绑带体与所述下游气囊绑带体按照动脉血流方向间距为30cm以内固定连接。所述下游气囊绑带体用于检测受测肢体下游血液流动脉冲,并以此确定受测肢体动脉血液的压力。
现有技术尚未解决上下游气囊绑带应该按何种方式加压以及加压到何种压力程度,才能最有效地在上下游气囊绑带中检测到可用于测量受测肢体血压的血流脉冲,从而准确、可靠地测量血压的问题。
发明内容
为了解决上述问题,本发明提供了一种准确、可靠的血压计,特别是提供一种对一肢体上绑扎的两个可充气气囊进行充气加压,以便有效地检测其中的脉搏信号的方法,以及使用该方法准确测量血压计的装置。
为了达到上述目的,本发明是通过以下技术方案实现的:
本发明一种血压测量装置,测量装置用于通过被测者肢体部位测量动脉血 压,测量装置包括
两个充气气囊上游气囊和下游气囊;上游气囊和下游气囊在同一袖带内或在两个相连接的不同袖带内或在两个不相连接的不同袖带内,袖带用于绑定在一被测肢体上;
两个与上游气囊和下游气囊中的一个或两个分别或同时连接的压力传感器第一压力传感器和第二压力传感器;
一个微处理器,微处理器执行包括以下步骤的血压测量过程:
A)将下游气囊加压到被测动脉收缩压和舒张压之间的一个压力值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在下游气囊中检测到的脉搏信号幅度大于一给定值;
B)对上游气囊缓慢加压,在上游气囊缓慢加压过程中,通过第一压力传感器测量上游气囊中不断变化的气压,并通过第二压力传感器测量下游气囊中的脉搏信号,根据所述脉搏信号和上游气囊中的气压,或所述脉搏信号和所述上游气囊(1)中的气压之间的关系,确定被测动脉收缩压或脉舒张压。
本发明的进一步改进在于:在步骤A)中,将下游气囊加压到被测动脉的收缩压和舒张压之间的一个压力值和将下游气囊加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值的方法是在对下游气囊加压的过程中,实时检测下游气囊中的脉搏信号,当脉搏信号幅度由零增加到最大,然后开始下降时,停止加压;和将下游气囊加压到一个压力值,以使在此压力值时在下游气囊中检测到的脉搏信号幅度大于一给定值的方法是,将在对下游气囊加压的过程中,实时检测下游气囊中气压信号所携带的脉搏信号,当脉搏信号幅度由零增加到大于给定值时,停止加压;
在步骤A)中,脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,最好为1.5mmHg。
在步骤B)中,将上游气囊加压到高于被测动脉收缩压的一个压力值的方法是,在对上游气囊加压的过程中,实时监测下游气囊中的脉搏信号幅度的变化,当下游气囊中的脉搏信号幅度随上游气囊的气压的增加从大变小,最后消失时,停止加压。
本发明的进一步改进在于:将下游气囊加压到一个压力值,使在此压力值时在下游气囊中检测到的脉搏信号幅度大于一给定值的方法是,对下游气囊分段加压,并在每一段加压结束后,检测下游气囊中的脉搏信号,当脉搏信号幅度大于给定值时,停止加压,对下游气囊分段加压的分段目标为:80mmHg,120mmHg,160mmHg,和200mmHg。
本发明的进一步改进在于:在步骤B)中,在上游气囊缓慢加压的过程中,通过第一压力传感器测量所述上游气囊中不断变化的气压,并通过所述第二压力传感器同时测量所述下游气囊中的脉搏信号,根据所述脉搏信号从大到小,最后消失时所述上游气囊中的气压,确定被测动脉收缩压。
本发明的进一步改进在于:在步骤B)在上游气囊缓慢加压过程中,通过第一压力传感器测量上游气囊中不断变化的气压,并通过所述第二压力传感器同时测量所述下游气囊中的脉搏信号,根据所述脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度和发生时间,和在所述发生时间上游气囊中的气压值,确定被测动脉血液收缩压。
本发明的进一步改进在于:在步骤B)中,在上游气囊缓慢加压过程中,通过第一压力传感器测量上游气囊中不断变化的气压,,并通过第二压力传感器测量下游气囊中的脉搏信号,根据在脉搏信号由不变开始变小时上游气囊中的气压,确定被测动脉舒张压。
本发明的进一步改进在于:在步骤B)在上游气囊缓慢加压过程中,通过第一压力传感器测量上游气囊中不断变化的气压,并通过第二压力传感器同时测量下游气囊中的脉搏信号,根据所述脉搏信号的下列参数之一由不变开始变小时上游气囊中的气压值,确定被测动脉血液舒张压:脉搏信号前半波时间宽度、后半波时间宽度、全波时间宽度、幅度、幅度与上述任意时间宽度的乘积、面积。
一种双气囊脉搏信号检测方法,该方法用于检测绑定在一被测肢体上的袖带中的气压和脉搏信号及互相之间的关系,双气囊脉搏信号检测方法包括以下步骤:
(1)将上游气囊和下游气囊绑定在一被测肢体上,上游气囊和下游气囊在同一袖带内或在两个相连接的不同袖带内或在两个不相连接的不同袖带内,上游气囊和下游气囊分别位于被测肢体动脉血液流动的上游和下游;
(2)将第一压力传感器和第二压力传感器通过气体联通部件与上游气囊和下游气囊中的一个或两个分别或同时相接;
(3)将下游气囊加压到被测动脉收缩压和舒张压之间的一个压力值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在下游气囊中检测到的脉搏信号幅度大于一给定值;
(4)对上游气囊缓慢加压,在上游气囊缓慢加压过程中,通过第一压力传感器测量上游气囊中不断变化的气压,并通过第二压力传感器同时测量下游气囊中的脉搏信号,从而测量在脉搏信号发生时上游气囊中的气压值,或者在脉搏信号的变化与上游气囊中的气压值之间的关系。
本发明的进一步改进在于:在上游气囊缓慢加压过程中,通过第一压力传感器测量上游气囊中不断变化的气压,并通过第二压力传感器测量下游气囊中的脉搏信号,从而测量脉搏信号从大到小,最后消失时上游气囊中的气压。
本发明的进一步改进在于:在上游气囊缓慢加压过程中,通过第一压力传感器测量上游气囊中不断变化的气压,并通过第二压力传感器测量所述下游气囊中的脉搏信号,根据脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号发生时间,测量在所述发生时所述上游气囊中的气压。
本发明的有益效果是:本发明提供的测量血压的装置是在一肢体上绑扎两个可充气气囊进行加压,有效地检测其中的压力和脉搏信号,从而准确、可靠地测量血压,并且测量结果稳定。
附图说明
图1是本发明双气囊扇形袖套的平面展开图。
图2是本发明双气囊扇形袖套用于手前臂的使用示意图。
图3是本发明血压测量装置连接示意图。
图4是本发明的血压测量装置连接示意图。
图5是本发明的血压测量装置连接示意图。
图6是本发明加压法测量收缩压和舒张压的脉搏信号时序图。
图7是本发明图6中7A的放大图。
其中:1-上游气囊,2-下游气囊,3-第一压力传感器,4-主机,5-第二压力传感 器,6-气泵,7-泄气阀,8-袖套,9-上游气管,10-下游气管。
具体实施方式
为了加深对本发明的理解,下面将结合附图和实施例对本发明做进一步详细描述,该实施例仅用于解释本发明,并不对本发明的保护范围构成限定。
如图1-7所示,本发明是一种血压测量装置,所述双气囊扇形袖套8可以是一个双气囊扇形袖套,也可以是两个普通袖套分别代替上游气囊1和下游气囊2的作用。
实施例一、使用加压法测量脉搏信号方法和收缩压测量装置或收缩压和脉搏信号的检测
本发明是一种血压测量装置,所述血压测量装置包括袖套8以及与所述袖套8连接的主机4,所述袖套8是双气囊扇形袖套,所述双气囊扇形袖套是带双气管和上游气囊1与下游气囊2的双充气囊的绑定在被测肢体上的袖带,所述上游气囊1和所述下游气囊2分别位于被测肢体动脉血液流动的上游和下游,绑定后所述上游气囊1固定在腕脉搏上游阻断被测者肘动脉血液流动,并与所述主机4上的上游气囊接口连接,所述下游气囊2固定在动脉血液流动方向的下游部位探测腕脉搏跳动并与所述主机4上的下游气囊接口连接,所述下游气囊2用于探测脉搏信号的变化信息,实时传感由所述上游气囊1的压力变化而产生的血液流动脉冲的变化,所述主机4包括一个微处理器以及与所述微处理器相连接的包括键盘和显示器的人际交互界面,所述主机4还包括气泵6、泄气阀7,所述主机4还包括第一压力传感器3和第二压力传感器5,所述第一压力传感器3和第二压力传感器5通过气体联通部件与所述上游气囊1和所述下游气囊2的一个或两个分别或同时相接,所述气泵6为至少一个用于所述上游气囊1和所述下游气囊2中的一个或两个充气的气泵6,所述泄气阀7为用于对所述上游气囊1和所述下游气囊2中的一个或两个慢速或快速泄气的泄气阀7,所述微处理器控制所述气泵6、泄气阀7和处理通过第一压力传感器3和第二压力传感器5中的一个或两个分别或同时检测所述上游气囊1和所述下游气囊2中的一个或两个中的压力值,脉搏信号,或者压力值和脉搏信号。
在所述微处理器中设置有控制和数据处理程序,所述控制和处理程序执行包括以下步骤的血压测量过程:
A)将所述下游气囊2加压到被测动脉收缩压和舒张压之间的一个压力值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在所述下游气囊2中检测到的脉搏信号幅度大于一给定值;
B)对上游气囊1缓慢加压,在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号和所述上游气囊1中的气压,或所述脉搏信号和所述上游气囊1中的气压之间的关系,确定被测动脉收缩压。
方案一:如图3和6-7所示,使用加压法检测双气囊脉搏信号和收缩压,包括如下步骤:
1)将一个双气囊扇形袖带,或者一个双气囊的非扇形的袖带,或者两个相联接的袖带,或者两个不相联接的袖带绑定一被测肢体上,其中上游气囊1和下游气囊2分别位于肢体动脉血液流动的上游和下游,并将上游气囊1和下游气囊2分别通过上游气管9和下游气管10与主机4上的上游气囊接口和下游气囊接口连接;
2)按下主机4键盘的启动键,第二泄气阀关闭,第二气泵2向下游气囊2充气,下游气囊2的气压从零缓慢增大;
3)本步骤有4种实施方案,分别如步骤3-1)、3-2)、3-3)和3-4):
3-1)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉收缩压和舒张压之间的一个压力值;
3-2)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值;
3-3)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
3-4)对下游气囊2分段加压,并在每一段加压结束后,检测下游气囊2中 的脉搏信号,当所述脉搏信号幅度大于给定值时,停止加压,所述对下游气囊2分段加压的分段目标为80mmHg,120mmHg,160mmHg,200mmHg,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
4)第一泄气阀关闭,第一气泵向上游气囊1缓慢充气,上游气囊1压力从零缓慢增大;
5)继续对上游气囊1缓慢加压,在对上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号和上游气囊1中的气压,确定被测动脉收缩压,所述确定被测动脉收缩压的方法有2种,分别如步骤5-1)和5-2):
5-1)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5检测下游气囊2中的脉搏信号,根据在所述脉搏信号从大到小,最后消失时上游气囊1中的气压,确定被测动脉收缩压,例如,测量检测到的下游气囊2中的脉搏信号从大到小,最后消失时的最后一个脉搏信号的峰值的发生时刻,和测量在所述最后一个脉搏信号的峰值的发生时刻上游气囊1的气压值,所述上游气囊1的气压值即为被测动脉收缩压,或者测量在所述最后一个脉搏信号的峰值的发生时刻上游气囊1的气压值,和在所述最后一个脉搏信号的峰值的发生时刻的前后两个脉搏周期内上游气囊1的气压值的平均值,所述平均值即为被测动脉收缩压;或者说测量在所述峰值的发生时刻上游气囊1的气压值,和在所述峰值的发生时刻的前后两个时刻上游气囊1的气压值,取这3个值的平均值即为被测动脉收缩压;
5-2)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度和发生时间,和在所述发生时间上游气囊1中的气压值,确定被测动脉血液收缩压。例如,测量检测到的下游气囊2中脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度A41和A40和峰值的发生时间t41和t40,和测量在所述倒数第一个和倒数第二个脉搏信号的峰值的发生时间t41和t40上游气囊1中的两个气压值P41和P40,则被测动脉收缩压为(P40-(P40-P41) *A40/(A40-A41));或者说测量检测到的下游气囊2中脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度和发生时间,和测量在所述倒数第一个和倒数第二个脉搏信号的峰值的发生时间上游气囊1中的两个气压值,根据上述所测下游气囊2的倒数第一个和倒数第二个脉搏信号的峰值和发生时间推算出倒数第一个脉搏波信号的后一个没有检测到的脉搏波的发生时间,再根据所推算出的后一个没有检测到的脉搏波的发生时间和上述所测上游气囊1中的两个气压值,推算出下游气囊2倒数第一个脉搏波信号的后一个没有检测到的脉搏波的发生时刻上游气囊1的气压值,该气压值即为被测动脉收缩压;
6)打开第一泄气阀和第二泄气阀,给上游气囊1和下游气囊2泄气。
方案二、如图4所示,使用加压法检测双气囊脉搏信号和收缩压,或使用加压法检测收缩压双气囊脉搏信号检测和血压,包括如下步骤:
1)将一个双气囊扇形袖带,或者一个双气囊的非扇形的袖带,或者两个相联接的袖带,或者两个不相联接的袖带绑定一被测肢体上,其中上游气囊1和下游气囊2分别位于肢体动脉血液流动的上游和下游,并将上游气囊1和下游气囊2分别通过上游气管9和下游气管10与主机4上的上游气囊接口和下游气囊接口连接;
2)按下主机4键盘的启动键,第一泄气阀关闭,第一开关阀关闭,第二开关阀打开,第一气泵向下游气囊2充气,下游气囊2的气压从零缓慢增大;
3)本步骤有4种实施方案,分别如步骤3-1)、3-2)、3-3)和3-4):
3-1)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉收缩压和舒张压之间的一个压力值;
3-2)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值;
3-3)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
3-4)对下游气囊2分段加压,并在每一段加压结束后,检测下游气囊2中的脉搏信号,当所述脉搏信号幅度大于给定值时,停止加压,所述对下游气囊2分段加压的分段目标为80mmHg,120mmHg,160mmHg,200mmHg,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
4)第一泄气阀关闭,第二开关阀关闭,第一开关阀打开,第一气泵向上游气囊1缓慢充气,上游气囊1压力从零缓慢增大;
5)继续对上游气囊1缓慢加压,在对上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号和上游气囊1中的气压,确定被测动脉收缩压,所述确定被测动脉收缩压的方法有2种,分别如步骤5-1)和5-2):
5-1)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5检测下游气囊2中的脉搏信号,根据在所述脉搏信号从大到小,最后消失时上游气囊1中的气压,确定被测动脉收缩压,例如,测量检测到的下游气囊2中的脉搏信号从大到小,最后消失时的最后一个脉搏信号的峰值的发生时刻,和测量在所述最后一个脉搏信号的峰值的发生时刻上游气囊1的气压值,所述上游气囊1的气压值即为被测动脉收缩压,或者测量在所述最后一个脉搏信号的峰值的发生时上游气囊1的气压值,和在所述最后一个脉搏信号的峰值的发生时前后两个脉搏周期内上游气囊1的气压值得平均值,所述平均值即为被测动脉收缩压;或者说测量在所述峰值的发生时刻上游气囊1的气压值,和在所述峰值的发生时刻的前后两个时刻上游气囊1的气压值,取这3个值的平均值即为被测动脉收缩压;
5-2)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度和发生时间,和在所述发生时间上游气囊1中的气压值,确定被测动脉血液收缩压。例如,测量检测到的下游气囊2中脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度A41和A40和峰值的发生时间t41和t40,和测量在所述倒数第一个和倒数第二个脉搏信号的峰值的发生时间t41和t40 上游气囊1中的两个气压值P41和P40,则被测动脉收缩压为(P40-(P40-P41)*A40/(A40-A41));或者说测量检测到的下游气囊2中脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度和发生时间,和测量在所述倒数第一个和倒数第二个脉搏信号的峰值的发生时间上游气囊1中的两个气压值,根据上述所测下游气囊2的倒数第一个和倒数第二个脉搏信号的峰值和发生时间推算出倒数第一个脉搏波信号的后一个没有检测到的脉搏波的发生时间,再根据所推算出的后一个没有检测到的脉搏波的发生时间和上述所测上游气囊1中的两个气压值,推算出下游气囊2倒数第一个脉搏波信号的后一个没有检测到的脉搏波的发生时刻上游气囊1的气压值,该气压值即为被测动脉收缩压;
6)第一泄气阀打开,第一开关阀打开,第二开关阀打开,给上游气囊1和下游气囊2泄气。
方案三:如图5所示,加压法测量收缩压双气囊脉搏信号检测和血压,包括以下步骤:
1)将一个双气囊扇形袖带,或者一个双气囊的非扇形的袖带,或者两个相联接的袖带,或者两个不相联接的袖带绑定一被测肢体上,其中上游气囊1和下游气囊2分别位于肢体动脉血液流动的上游和下游,并将上游气囊1和下游气囊2分别通过上游气管9和下游气管10与主机4上的上游气囊接口和下游气囊接口连接;
2)按下主机4键盘的启动键,泄气阀关闭,三通气阀联通下游气囊2和气泵的通路并阻断上游气囊1的通路,气泵向下游气囊2充气,下游气囊2的气压从零缓慢增大;
3)本步骤有4种实施方案,分别如步骤3-1)、3-2)、3-3)和3-4):
3-1)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉收缩压和舒张压之间的一个压力值;
3-2)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一 个压力值;
3-3)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
3-4)对下游气囊2分段加压,并在每一段加压结束后,检测下游气囊2中的脉搏信号,当所述脉搏信号幅度大于给定值时,停止加压,所述对下游气囊2分段加压的分段目标为80mmHg,120mmHg,160mmHg,200mmHg,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
4)泄气阀关闭,三通气阀联通上游气囊1和气泵的通路并阻断下游气囊2的通路,气泵向上游气囊1缓慢充气,上游气囊1压力从零缓慢增大;
5)继续对上游气囊1缓慢加压,在对上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号和上游气囊1中的气压,确定被测动脉收缩压,所述确定被测动脉收缩压的方法有2种,分别如步骤5-1)和5-2):
5-1)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5检测下游气囊2中的脉搏信号,根据在所述脉搏信号从大到小,最后消失时上游气囊1中的气压,确定被测动脉收缩压,例如,测量检测到的下游气囊2中的脉搏信号从大到小,最后消失时的最后一个脉搏信号的峰值的发生时刻,和测量在所述最后一个脉搏信号的峰值的发生时刻上游气囊1的气压值,所述上游气囊1的气压值即为被测动脉收缩压,或者测量在所述最后一个脉搏信号的峰值的发生时刻上游气囊1的气压值,和在所述最后一个脉搏信号的峰值的发生时刻的前后两个脉搏周期内上游气囊1的气压值的平均值,所述平均值即为被测动脉收缩压;或者说测量在所述峰值的发生时刻上游气囊1的气压值,和在所述峰值的发生时刻的前后两个时刻上游气囊1的气压值,取这3个值的平均值即为被测动脉收缩压;
5-2)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的 幅度和发生时间,和在所述发生时间上游气囊1中的气压值,确定被测动脉血液收缩压。例如,测量检测到的下游气囊2中脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度A41和A40和峰值的发生时间t41和t40,和测量在所述倒数第一个和倒数第二个脉搏信号的峰值的发生时间t41和t40上游气囊1中的两个气压值P41和P40,则被测动脉收缩压为(P40-(P40-P41)*A40/(A40-A41));或者说例如,测量检测到的下游气囊2中脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度和发生时间,和测量在所述倒数第一个和倒数第二个脉搏信号的峰值的发生时间上游气囊1中的两个气压值,根据上述所测下游气囊2的倒数第一个和倒数第二个脉搏信号的峰值和发生时间推算出倒数第一个脉搏波信号的后一个没有检测到的脉搏波的发生时间,再根据所推算出的后一个没有检测到的脉搏波的发生时间和上述所测上游气囊1中的两个气压值,推算出下游气囊2倒数第一个脉搏波信号的后一个没有检测到的脉搏波的发生时刻上游气囊1的气压值,该气压值即为被测动脉收缩压;
6)泄气阀打开,三通气阀联通上游气囊1和气泵的通路并阻断下游气囊2的通路,给上游气囊1泄气,再将三通气阀联通下游气囊2和气泵的通路并阻断上游气囊1的通路,给下游气囊2泄气。
实施例二
加压法检测双气囊脉搏信号和舒张压
本发明是一种血压测量装置,所述血压测量装置包括袖套8以及与所述袖套8连接的主机4,所述袖套8是双气囊扇形袖套,所述双气囊扇形袖套是带双气管和上游气囊1与下游气囊2的双充气囊的绑定在被测肢体上的袖带,所述上游气囊1和所述下游气囊2分别位于被测肢体动脉血液流动的上游和下游,绑定后所述上游气囊1固定在腕脉搏上游阻断被测者肘动脉血液流动,并与所述主机4上的上游气囊接口连接,所述下游气囊2固定在动脉血液流动方向的下游部位探测腕脉搏跳动并与所述主机4上的下游气囊接口连接,所述下游气囊2用于探测脉搏信号的变化信息,实时传感由所述上游气囊1的压力变化而产生的血液流动脉冲的变化,所述主机4包括一个微处理器以及与所述微处理器相连接的包括键盘和显示器的人际交互界面,所述主机4还包括气泵6、泄气阀7,所述主机4还包括第一压力传感器3和第二压力传感器5,所述第一压力传感器3和第二压 力传感器5通过气体联通部件与所述上游气囊1和所述下游气囊2的一个或两个分别或同时相接,所述气泵6为至少一个用于所述上游气囊1和所述下游气囊2中的一个或两个充气的气泵6,所述泄气阀7为用于对所述上游气囊1和所述下游气囊2中的一个或两个慢速或快速泄气的泄气阀7,所述微处理器控制所述气泵6、泄气阀7和处理通过第一压力传感器3和第二压力传感器5中的一个或两个分别或同时检测所述上游气囊1和所述下游气囊2中的一个或两个中的压力值,脉搏信号,或者压力值和脉搏信号。
在所述微处理器中设置有控制和数据处理程序,所述控制和处理程序执行包括以下步骤的血压测量过程:
A)将所述下游气囊(2)加压到被测动脉收缩压和舒张压之间的一个压力值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于一给定值;
B)将上游气囊1缓慢加压,在上游气囊1缓慢加压过程中,通过所述第一压力传感器3测量所述上游气囊1中不断变化的气压,并通过所述第二压力传感器5同时测量所述下游气囊2中的脉搏信号,根据在所述脉搏信号和所述上游气囊1中的气压,或所述脉搏信号和所述上游气囊1中的气压之间的关系,确定被测动脉舒张压。
方案一:
如图3和6-7所示,使用加压法测量脉搏信号和舒张压的方法或使用加压法检测双气囊脉搏信号的检测方法包括步骤:
1)将一个双气囊扇形袖带,或者一个双气囊的非扇形的袖带,或者两个相联接的袖带,或者两个不相联接的袖带绑定一被测肢体上,其中上游气囊1和下游气囊2分别位于肢体动脉血液流动的上游和下游。并将上游气囊1和下游气囊2分别通过上游气管9和下游气管10与主机4上的上游气囊接口和下游气囊接口连接;
2)按下主机4键盘的启动键,第二泄气阀关闭,第二气泵2向下游气囊2充气,下游气囊2的气压从零缓慢增大;
3)本步骤有4种实施方案,分别如步骤3-1)、3-2)、3-3)和3-4):
3-1)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉收缩压和舒张压之间的一个压力值;
3-2)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值;
3-3)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
3-4)对下游气囊2分段加压,并在每一段加压结束后,检测下游气囊2中的脉搏信号,当所述脉搏信号幅度大于给定值时,停止加压,所述对下游气囊2分段加压的分段目标为80mmHg,120mmHg,160mmHg,200mmHg,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
4)第一泄气阀关闭,第一气泵向上游气囊1缓慢充气,上游气囊1压力从零缓慢增大;
5)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号和上游气囊1中的气压,确定被测动脉舒张压,所述确定被测动脉舒张压的方法有6种,分别如步骤5-1)、5-2)、5-3)、5-4)、5-5)和5-6):
5-1)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的幅度A30,A31,A32,A33,A34和A35,得A30=A31=A32>A33>A34>A35,测量在所述脉搏信号最后一个幅度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-2)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号, 根据所述脉搏信号全波的时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的全波时间宽度d20,d21,d22,d23,d24和d25,得d20=d21=d22>d23>d24>d25,测量在所述脉搏信号最后一个全波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-3)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的前半波时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的前半波时间宽度d26,d27,d28,d29,d30和d31,得d26=d27=d28>d29>d30>d31,测量在所述脉搏信号最后一个前半波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-4)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的后半波时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的后半波时间宽度d32,d33,d34,d35,d36和d37,得d32=d33=d34>d35>d36>d37,测量在所述脉搏信号最后一个后半波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-5)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的面积由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的面积S30,S31,S32,S33,S34和S35,得S30=S31=S32>S33>S34>S35,测量在所述脉搏信号最后一个面积最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-6)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的面积由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的幅度A30,A31,A32,A33,A34和A35,全波时间宽度d20,d21,d22,d23,d24和d25,前半波时间宽度d26,d27,d28,d29,d30和d31,后半波时间宽度d32,d33,d34,d35,d36和d37,得下游气囊2中的脉搏信号幅度与上述任意时间宽度的乘积,即A30*d20=A31*d21=A32*d22>A33*d23>A34*d24>A35*d25,或者A0*d26=A1*d27=A2*d28>A3*d29>A4*d30>A5*d31,或者A30*d32=A31*d33=A32*d34>A33*d35>A34*d36>A35*d37,测量在所述脉搏信号幅度与上述任意时间宽度的乘积的第一个最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
6)打开第一泄气阀和第二泄气阀,给上游气囊1和下游气囊2泄气。
方案二:加压法检测双气囊脉搏信号和舒张压或加压法检测舒张压双气囊脉搏信号检测和血压
本发明的装置还可以用于检测双气囊脉搏信号和测量舒张压,还可以用于加压法检测舒张压双气囊脉搏信号检测和测量血压,
如图4所示,检测方法包括如下步骤:
1)将一个双气囊扇形袖带,或者一个双气囊的非扇形的袖带,或者两个相联接的袖带,或者两个不相联接的袖带绑定一被测肢体上,其中上游气囊1和下游气囊2分别位于肢体动脉血液流动的上游和下游。并将上游气囊1和下游气囊2分别通过上游气管9和下游气管10与主机4上的上游气囊接口和下游气囊接口连接;
2)按下主机4键盘的启动键,第一泄气阀关闭,第一开关阀关闭,第二开关阀打开,第一气泵向下游气囊2充气,下游气囊2的气压从零缓慢增大;
3)本步骤有4种实施方案,分别如步骤3-1)、3-2)、3-3)和3-4):
3-1)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气 囊2被加压到被测动脉收缩压和舒张压之间的一个压力值;
3-2)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值;
3-3)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
3-4)对下游气囊2分段加压,并在每一段加压结束后,检测下游气囊2中的脉搏信号,当所述脉搏信号幅度大于给定值时,停止加压,所述对下游气囊2分段加压的分段目标为80mmHg,120mmHg,160mmHg,200mmHg,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
4)第一泄气阀关闭,第二开关阀关闭,第一开关阀打开,第一气泵向上游气囊1缓慢充气,上游气囊1压力从零缓慢增大;
5)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号和上游气囊1中的气压,确定被测动脉舒张压,所述确定被测动脉舒张压的方法有6种,分别如步骤5-1)、5-2)、5-3)、5-4)、5-5)和5-6):
5-1)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的幅度A30,A31,A32,A33,A34和A35,得A30=A31=A32>A33>A34>A35,测量在所述脉搏信号最后一个幅度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-2)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号全波的时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31, p32,p33,p34和p35的全波时间宽度d20,d21,d22,d23,d24和d25,得d20=d21=d22>d23>d24>d25,测量在所述脉搏信号最后一个全波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-3)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的前半波时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的前半波时间宽度d26,d27,d28,d29,d30和d31,得d26=d27=d28>d29>d30>d31,测量在所述脉搏信号最后一个前半波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-4)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的后半波时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的后半波时间宽度d32,d33,d34,d35,d36和d37,得d32=d33=d34>d35>d36>d37,测量在所述脉搏信号最后一个后半波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-5)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的面积由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的面积S30,S31,S32,S33,S34和S35,得S30=S31=S32>S33>S34>S35,测量在所述脉搏信号最后一个面积最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-6)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号, 根据所述脉搏信号的面积由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的幅度A30,A31,A32,A33,A34和A35,全波时间宽度d20,d21,d22,d23,d24和d25,前半波时间宽度d26,d27,d28,d29,d30和d31,后半波时间宽度d32,d33,d34,d35,d36和d37,得下游气囊2中的脉搏信号幅度与上述任意时间宽度的乘积,即A30*d20=A31*d21=A32*d22>A33*d23>A34*d24>A35*d25,或者A0*d26=A1*d27=A2*d28>A3*d29>A4*d30>A5*d31,或者A30*d32=A31*d33=A32*d34>A33*d35>A34*d36>A35*d37,测量在所述脉搏信号幅度与上述任意时间宽度的乘积的第一个最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
6)第一泄气阀打开,第一开关阀打开,第二开关阀打开,给上游气囊1和下游气囊2泄气。
方案三:如图5所示,加压法检测双气囊脉搏信号和舒张压
本发明的装置还可以用于加压法检测双气囊脉搏信号和测量舒张压,还可以用于加压法检测舒张压双气囊脉搏信号检测和测量血压:
1)将一个双气囊扇形袖带,或者一个双气囊的非扇形的袖带,或者两个相联接的袖带,或者两个不相联接的袖带绑定一被测肢体上,其中上游气囊1和下游气囊2分别位于肢体动脉血液流动的上游和下游。并将上游气囊1和下游气囊2分别通过上游气管9和下游气管10与主机4上的上游气囊接口和下游气囊接口连接;
2)按下主机4键盘的启动键,泄气阀关闭,三通气阀联通下游气囊2和气泵的通路并阻断上游气囊1的通路,气泵向下游气囊2充气,下游气囊2的气压从零缓慢增大;
3)本步骤有4种实施方案,分别如步骤3-1)、3-2)、3-3)和3-4):
3-1)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉收缩压和舒张压之间的一个压力值;
3-2)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号, 当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压,此时下游气囊2被加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值;
3-3)在对下游气囊2加压的过程中,实时检测下游气囊2中的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
3-4)对下游气囊2分段加压,并在每一段加压结束后,检测下游气囊2中的脉搏信号,当所述脉搏信号幅度大于给定值时,停止加压,所述对下游气囊2分段加压的分段目标为80mmHg,120mmHg,160mmHg,200mmHg,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,例如1.5mmHg;
4)泄气阀关闭,三通气阀联通上游气囊1和气泵的通路并阻断下游气囊2的通路,气泵想上游气囊1缓慢充气,上游气囊1压力从零缓慢增大;
5)在上游气囊1缓慢加压的过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据在所述脉搏信号和上游气囊1中的气压,确定被测动脉舒张压,所述确定被测动脉舒张压的方法有6种,分别如步骤5-1)、5-2)、5-3)、5-4)、5-5)和5-6):
5-1)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的幅度A30,A31,A32,A33,A34和A35,得A30=A31=A32>A33>A34>A35,测量在所述脉搏信号最后一个幅度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-2)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号全波的时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的全波时间宽度d20,d21,d22,d23,d24和d25,得d20=d21=d22>d23>d24>d25,测量在所述脉搏信号最后一个全波时间宽度最大且不变的脉 搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-3)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的前半波时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的前半波时间宽度d26,d27,d28,d29,d30和d31,得d26=d27=d28>d29>d30>d31,测量在所述脉搏信号最后一个前半波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-4)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的后半波时间宽度由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的后半波时间宽度d32,d33,d34,d35,d36和d37,得d32=d33=d34>d35>d36>d37,测量在所述脉搏信号最后一个后半波时间宽度最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-5)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的面积由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33,p34和p35的面积S30,S31,S32,S33,S34和S35,得S30=S31=S32>S33>S34>S35,测量在所述脉搏信号最后一个面积最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
5-6)在上游气囊1缓慢加压过程中,通过第一压力传感器3测量上游气囊1中不断变化的气压,并通过第二压力传感器5测量下游气囊2中的脉搏信号,根据所述脉搏信号的面积由不变开始变小时上游气囊1中的气压,确定被测动脉舒张压,例如,如图7,检测到的下游气囊2中的脉搏信号p30,p31,p32,p33, p34和p35的幅度A30,A31,A32,A33,A34和A35,全波时间宽度d20,d21,d22,d23,d24和d25,前半波时间宽度d26,d27,d28,d29,d30和d31,后半波时间宽度d32,d33,d34,d35,d36和d37,得下游气囊2中的脉搏信号幅度与上述任意时间宽度的乘积,即A30*d20=A31*d21=A32*d22>A33*d23>A34*d24>A35*d25,或者A0*d26=A1*d27=A2*d28>A3*d29>A4*d30>A5*d31,或者A30*d32=A31*d33=A32*d34>A33*d35>A34*d36>A35*d37,测量在所述脉搏信号幅度与上述任意时间宽度的乘积的第一个最大且不变的脉搏信号发生时刻,即t32时刻上游气囊1的气压值,该气压值即为被测动脉舒张压;
6)泄气阀打开,三通气阀联通上游气囊1和气泵的通路并阻断下游气囊2的通路,给上游气囊1泄气,再将三通气阀联通下游气囊2和气泵的通路并阻断上游气囊1的通路,给下游气囊2泄气。
本发明提供的测量血压的装置是在一肢体上绑扎两个充气气囊进行加压,有最有效的在上下游气囊绑带检测到可用于受测肢体血压的血流脉冲,有效的检测其中脉搏的信号,准确可靠的测量血压,并且测量结果稳定。

Claims (19)

  1. 一种血压测量装置,所述测量装置用于通过被测者一肢体部位测量动脉血压,其特征在于:所述测量装置包括
    两个充气气囊上游气囊(1)和下游气囊(2);所述上游气囊(1)和下游气囊(2)在同一袖带内或在两个相连接的不同袖带内或在两个不相连接的不同袖带内,所述袖带用于绑定在所述肢体上;
    两个与所述上游气囊(1)和下游气囊(2)中的一个或两个分别或同时连接的压力传感器第一压力传感器(3)和第二压力传感器(5);
    一个微处理器,所述微处理器执行包括以下步骤的血压测量过程:
    A)将所述下游气囊(2)加压到被测动脉收缩压和舒张压之间的一个压力值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于一给定值;
    B)对所述上游气囊(1)缓慢加压,在所述上游气囊(1)缓慢加压过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)测量所述下游气囊(2)中的脉搏信号,根据所述脉搏信号和所述上游气囊(1)中的气压,或所述脉搏信号和所述上游气囊(1)中的气压之间的关系,确定被测动脉收缩压或舒张压。
  2. 根据权利要求1所述一种血压测量装置,其特征在于:
    在所述步骤A)中,将所述下游气囊(2)加压到被测动脉的收缩压和舒张压之间的一个压力值和将所述下游气囊(2)加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值的方法是在对下游气囊(2)加压的过程中,实时检测下游气囊(2)中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压;和将下游气囊(2)加压到一个压力值,以使在此压力值时在下游气囊(2)中检测到的脉搏信号幅度大于一给定值的方法是,将在对所述下游气囊(2)加压的过程中,实时检测所述下游气囊(2)中气压信号所携带的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压;
    在所述步骤A)中,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的 一个值,最好为1.5mmHg。
  3. 根据权利要求1所述一种血压测量装置,其特征在于:
    在所述步骤A)中,将所述下游气囊(2)加压到被测动脉的收缩压和舒张压之间的一个压力值和将所述下游气囊(2)加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值的方法是在对下游气囊(2)加压的过程中,实时检测下游气囊(2)中的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压;和将下游气囊(2)加压到一个压力值,以使在此压力值时在下游气囊(2)中检测到的脉搏信号幅度大于一给定值的方法是,将在对所述下游气囊(2)加压的过程中,实时检测所述下游气囊(2)中气压信号所携带的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压;
    在所述步骤A)中,所述脉搏信号幅度给定值为1.3mmHg到1.8mmHg之间的一个值,最好为1.5mmHg;
    在所述步骤B)中,将所述上游气囊(1)加压到高于被测动脉收缩压的一个压力值的方法是,在对所述上游气囊(1)加压的过程中,实时监测下游气囊(2)中的脉搏信号幅度的变化,当所述下游气囊(2)中的脉搏信号幅度随所述上游气囊(1)的气压的增加从大变小,最后消失时,停止加压。
  4. 根据权利要求1所述一种血压测量装置,其特征在于:将所述下游气囊(2)加压到一个压力值,使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于一给定值的方法是,对所述下游气囊(2)分段加压,并在每一段加压结束后,检测所述下游气囊(2)中的脉搏信号,当所述脉搏信号幅度大于所述给定值时,停止加压;所述下游气囊(2)分段加压的分段目标为:80mmHg,120mmHg,160mmHg,和200mmHg。
  5. 根据权利要求1所述一种血压测量装置,其特征在于:在所述步骤B)中,在所述上游气囊(1)缓慢加压过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)同时测量所述下游气囊(2)中的脉搏信号,根据所述脉搏信号从大到小,最后消失时所述上游气囊(1)中的气压,确定被测动脉收缩压。
  6. 根据权利要求1所述一种血压测量装置,其特征在于:在所述步骤B)在 所述上游气囊(1)缓慢加压的过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)同时测量所述下游气囊(2)中的脉搏信号,根据所述脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的幅度和发生时间,和在所述发生时间上游气囊(1)中的气压值,确定被测动脉血液收缩压。
  7. 根据权利要求1所述一种血压测量装置,其特征在于:在所述步骤B)中,在所述上游气囊(1)缓慢加压过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)测量所述下游气囊(2)中的脉搏信号,根据所述脉搏信号由不变开始变小时所述上游气囊(1)中的气压,确定被测动脉舒张压。
  8. 根据权利要求1所述一种血压测量装置,其特征在于:在所述步骤B)在所述上游气囊(1)缓慢加压的过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)同时测量所述下游气囊(2)中的脉搏信号,根据所述脉搏信号的下列参数之一由不变开始变小时所述上游气囊(1)中的气压值,确定被测动脉血液舒张压:脉搏信号前半波时间宽度、后半波时间宽度、全波时间宽度、幅度、幅度与上述任意时间宽度的乘积、面积。
  9. 一种双气囊脉搏信号检测方法,该方法用于检测绑定在一被测肢体上的袖带中的气压和脉搏信号及互相之间的关系,其特征在于:所述双气囊脉搏信号检测方法包括以下步骤:
    (1)将上游气囊(1)和下游气囊(2)绑定在一被测肢体上,所述上游气囊(1)和所述下游气囊(2)在同一袖带内或在两个相连接的不同袖带内或在两个不相连接的不同袖带内;
    (2)将第一压力传感器(3)和第二压力传感器(5)与所述上游气囊(1)和所述下游气囊(2)中的一个或两个分别或同时相接;
    (3)将所述下游气囊(2)加压到被测动脉收缩压和舒张压之间的一个压力值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在下游气囊(2)中检测到的脉搏信号幅度大于一给定值;
    (4)对所述上游气囊(1)缓慢加压,在所述上游气囊(1)缓慢加压的过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)同时测量所述下游气囊(2)中的脉搏信号,从而测量在所述脉搏信号发生时上游气囊(1)中的气压值。
  10. 一种双气囊脉搏信号检测方法,该方法用于检测绑定在一被测肢体上的袖带中的气压和脉搏信号及互相之间的关系,其特征在于:所述双气囊脉搏信号检测方法包括以下步骤:
    (1)将上游气囊(1)和下游气囊(2)绑定在一被测肢体上,所述上游气囊(1)和所述下游气囊(2)在同一袖带内或在两个相连接的不同袖带内或在两个不相连接的不同袖带内;
    (2)将第一压力传感器(3)和第二压力传感器(5)与所述上游气囊(1)和所述下游气囊(2)中的一个或两个分别或同时相接;
    (3)将所述下游气囊(2)加压到被测动脉收缩压和舒张压之间的一个压力值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在下游气囊(2)中检测到的脉搏信号幅度大于一给定值;
    (4)对所述上游气囊(1)缓慢加压,在所述上游气囊(1)缓慢加压的过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)同时测量所述下游气囊(2)中的脉搏信号,从而测量在所述脉搏信号发生时上游气囊(1)中的气压值。
  11. 根据权利要求10所述一种双气囊脉搏信号检测方法,其特征在于:
    在所述步骤(3)中,将所述下游气囊(2)加压到被测动脉的收缩压和舒张压之间的一个压力值的方法和将所述下游气囊(2)加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值的方法是,在对所述下游气囊(2)加压的过程中,实时检测所述下游气囊(2)中气压信号所携带的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压;和将所述下游气囊(2)加压到一个压力值,以使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于一给定值的方法是,在对所述下游气囊(2)加压的过程中,实时检测所述下游气囊(2)中气压信号所携带的脉搏信号,当所述 脉搏信号幅度由零增加到大于给定值时,停止加压;
    在所述步骤(3)中,所述脉搏信号幅度给定值为1.3mmHg-1.8mmHg之间的一个值。
  12. 根据权利要求10所述一种双气囊脉搏信号检测方法,其特征在于:将所述下游气囊(2)加压到一个压力值,使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于所述给定值的方法是,对所述下游气囊(2)分段加压,并在每一段加压结束后,检测所述下游气囊(2)中的脉搏信号,当所述脉搏信号幅度大于所述给定值时,停止加压,所述下游气囊(2)分段加压的分段目标为,80mmHg,120mmHg,160mmHg和200mmHg。
  13. 根据权利要求10所述一种双气囊脉搏信号检测方法,其特征在于:在所述上游气囊(1)缓慢加压的过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)测量所述下游气囊(2)中的脉搏信号,从而测量所述脉搏信号从大到小,最后消失时所述上游气囊(1)中的气压。
  14. 根据权利要求10所述一种双气囊脉搏信号检测方法,其特征在于:在所述上游气囊(1)缓慢加压过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)测量所述下游气囊(2)中的脉搏信号,根据所述脉搏信号从大到小,最后消失时倒数第一个和倒数第二个脉搏信号的发生时间,测量在所述发生时所述上游气囊(1)中的气压。
  15. 一种双气囊脉搏信号检测方法,该方法用于检测绑定在一被测肢体上的袖带中的气压和脉搏信号及互相之间的关系,其特征在于:所述双气囊脉搏信号检测方法包括以下步骤:
    (1)将一上游气囊(1)和一下游气囊(2)绑定在一被测肢体上,所述上游气囊(1)和所述下游气囊(2)在同一袖带内或在两个相连接的不同袖带内或在两个不相连接的不同袖带内;
    (2)将第一压力传感器(3)和第二压力传感器(5)与所述上游气囊(1)和所述下游气囊(2)中的一个或两个分别或同时相接;
    (3)将所述下游气囊(2)加压到被测动脉收缩压和舒张压之间的一个压力 值,或者被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值,或者一个压力值,使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于一给定值;
    (4)对所述上游气囊(1)缓慢加压,在所述上游气囊(1)缓慢加压的过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)同时测量所述下游气囊(2)中的脉搏信号,从而测量在所述脉搏信号的变化与所述上游气囊(1)中的气压值之间的关系。
  16. 根据权利要求15所述一种双气囊脉搏信号检测方法,其特征在于:
    在所述步骤(3)中,将所述下游气囊(2)加压到被测动脉的收缩压和舒张压之间的一个压力值的方法和将所述下游气囊(2)加压到被测动脉的平均血压值减10mmHg和平均血压值加20mmHg之间的一个压力值的方法是,在对所述下游气囊(2)加压的过程中,实时检测所述下游气囊(2)中气压信号所携带的脉搏信号,当所述脉搏信号幅度由零增加到最大,然后开始下降时,停止加压;和将所述下游气囊(2)加压到一个压力值,以使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于一给定值的方法是,将在对所述下游气囊(2)加压的过程中,实时检测所述下游气囊(2)中气压信号所携带的脉搏信号,当所述脉搏信号幅度由零增加到大于给定值时,停止加压;
    在所述步骤(3)中,所述脉搏信号幅度给定值为1.3mmHg-1.8mmHg之间的一个值,最好为1.5mmHg。
  17. 根据权利要求15所述一种双气囊脉搏信号检测方法,其特征在于:将所述下游气囊(2)加压到一个压力值,使在此压力值时在所述下游气囊(2)中检测到的脉搏信号幅度大于所述给定值的方法是,对所述下游气囊(2)分段加压,并在每一段加压结束后,检测所述下游气囊(2)中的脉搏信号,当所述脉搏信号幅度大于所述给定值时,停止加压,所述下游气囊(2)分段加压的分段目标为,80mmHg,120mmHg,160mmHg,和200mmHg。
  18. 根据权利要求15所述一种双气囊脉搏信号检测方法,其特征在于:在所述上游气囊(1)缓慢加压过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)测量所述下游气囊(2)中的脉搏信号,从而测量所述脉搏信号由不变开始变小时所述上游气 囊(1)中的气压。
  19. 根据权利要求15所述一种双气囊脉搏信号检测方法,其特征在于:在所述上游气囊(1)缓慢加压过程中,通过所述第一压力传感器(3)测量所述上游气囊(1)中不断变化的气压,并通过所述第二压力传感器(5)测量所述下游气囊(2)中的脉搏信号,根据所述脉搏信号的下列参数之一由不变开始变小时所述上游气囊(1)中的气压值:脉搏信号前半波时间宽度、后半波时间宽度、全波时间宽度、幅度、幅度与上述任意时间宽度的乘积、面积。
PCT/CN2014/090345 2013-11-06 2014-11-05 一种血压测量装置及双气囊脉搏信号检测方法 WO2015067174A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310543619.2 2013-11-06
CN201310543625.8 2013-11-06
CN201310543625.8A CN103720465B (zh) 2013-11-06 2013-11-06 一种血压测量装置及双气囊脉搏信号检测方法
CN201310543619.2A CN103598881B (zh) 2013-11-06 2013-11-06 一种双气囊脉搏信号检测方法及血压测量装置

Publications (1)

Publication Number Publication Date
WO2015067174A1 true WO2015067174A1 (zh) 2015-05-14

Family

ID=53040906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090345 WO2015067174A1 (zh) 2013-11-06 2014-11-05 一种血压测量装置及双气囊脉搏信号检测方法

Country Status (1)

Country Link
WO (1) WO2015067174A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433736A (zh) * 2002-01-23 2003-08-06 沈明 血压测量装置及血压测量方法
US20040044288A1 (en) * 2002-09-03 2004-03-04 Miguel Gorenberg Apparatus and method for non-invasive monitoring of cardiac output
CN102036603A (zh) * 2008-05-27 2011-04-27 欧姆龙健康医疗事业株式会社 取得用于判定动脉硬化度的指标的血压信息测定装置
CN102462493A (zh) * 2010-11-19 2012-05-23 伍霆杰 一种血压测量用测量带、装置、其制备方法及用途
CN103598881A (zh) * 2013-11-06 2014-02-26 康尚医疗技术(丹阳)有限公司 一种双气囊脉搏信号检测方法及血压测量装置
CN103720465A (zh) * 2013-11-06 2014-04-16 康尚医疗技术(丹阳)有限公司 一种血压测量装置及双气囊脉搏信号检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433736A (zh) * 2002-01-23 2003-08-06 沈明 血压测量装置及血压测量方法
US20040044288A1 (en) * 2002-09-03 2004-03-04 Miguel Gorenberg Apparatus and method for non-invasive monitoring of cardiac output
CN102036603A (zh) * 2008-05-27 2011-04-27 欧姆龙健康医疗事业株式会社 取得用于判定动脉硬化度的指标的血压信息测定装置
CN102462493A (zh) * 2010-11-19 2012-05-23 伍霆杰 一种血压测量用测量带、装置、其制备方法及用途
CN103598881A (zh) * 2013-11-06 2014-02-26 康尚医疗技术(丹阳)有限公司 一种双气囊脉搏信号检测方法及血压测量装置
CN103720465A (zh) * 2013-11-06 2014-04-16 康尚医疗技术(丹阳)有限公司 一种血压测量装置及双气囊脉搏信号检测方法

Similar Documents

Publication Publication Date Title
JP5821658B2 (ja) 測定装置および測定方法
AU2007217214B2 (en) Automatic ankle brachial pressure index system
EP2601885B1 (en) Non-invasive blood pressure measuring apparatus and measuring method thereof
JP5151690B2 (ja) 血圧情報測定装置および指標取得方法
US8211030B2 (en) NIBP target inflation pressure automation using derived SPO2 signals
CN103598881B (zh) 一种双气囊脉搏信号检测方法及血压测量装置
US20080045846A1 (en) Method and system of determining nibp target inflation pressure using an sp02 plethysmograph signal
JP2011125716A (ja) 非侵襲血圧測定における適応的ポンプ制御
US20110224558A1 (en) Blood pressure information measurement device for measuring pulse wave propagation speed as blood pressure information
CN103584846B (zh) 一种脉搏信号检测方法及血压测量装置
CN113143234B (zh) 一种血压测量装置和控制方法
CA2779602A1 (en) Cuff for arterial blood pressure monitor
US6743179B2 (en) Arteriostenosis inspecting apparatus
US20110077535A1 (en) Apparatus and method for digital sphygmomanometer
JP2020521543A (ja) 収縮期血圧キャリブレーション
CN211094071U (zh) 腕式电子血压计校准装置
WO2015067174A1 (zh) 一种血压测量装置及双气囊脉搏信号检测方法
WO2015067173A1 (zh) 一种脉搏信号检测方法及血压测量装置
CN103584849B (zh) 一种血压测量装置及脉搏信号检测方法
CN203724083U (zh) 具有双麦克风降噪装置的电子血压计
CN103720465B (zh) 一种血压测量装置及双气囊脉搏信号检测方法
CN209884253U (zh) 压脉带
CN113080910A (zh) 血压测量装置和血压计
KR101264105B1 (ko) 맥상 판단 기능을 갖는 혈압 측정 장치,이를 이용한 혈압 측정 방법 및 맥상 판단 방법
JP2022524186A (ja) 血圧測定システム及びそれを利用した血圧測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860613

Country of ref document: EP

Kind code of ref document: A1