WO2009143544A2 - Vlf-prüfgenerator - Google Patents

Vlf-prüfgenerator Download PDF

Info

Publication number
WO2009143544A2
WO2009143544A2 PCT/AT2009/000212 AT2009000212W WO2009143544A2 WO 2009143544 A2 WO2009143544 A2 WO 2009143544A2 AT 2009000212 W AT2009000212 W AT 2009000212W WO 2009143544 A2 WO2009143544 A2 WO 2009143544A2
Authority
WO
WIPO (PCT)
Prior art keywords
test generator
generator according
oscillator
vlf test
vlf
Prior art date
Application number
PCT/AT2009/000212
Other languages
English (en)
French (fr)
Other versions
WO2009143544A3 (de
Inventor
Peter Mohaupt
Original Assignee
Peter Mohaupt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peter Mohaupt filed Critical Peter Mohaupt
Priority to US12/994,227 priority Critical patent/US8542022B2/en
Priority to AT09753308T priority patent/ATE532080T1/de
Priority to EP09753308A priority patent/EP2281207B1/de
Priority to ES09753308T priority patent/ES2378626T3/es
Publication of WO2009143544A2 publication Critical patent/WO2009143544A2/de
Publication of WO2009143544A3 publication Critical patent/WO2009143544A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Definitions

  • the present invention relates to a VLF test generator for generating a high voltage with low frequency for the insulation test of capacitive loads, in particular energy cables.
  • VLF test voltages In contrast to line frequency or higher frequency test voltages, VLF test voltages only cause low reactive power in the capacitive load, so that the test generator can be designed correspondingly smaller, and compared to previously used DC tests prevent VLF test voltages the construction of harmful space and residual charges in the cable system, which can later in operation lead to breakdowns.
  • VLF test generators which, however, all have either high circuit complexity or expensive or fault-prone components.
  • a VLF test generator of the aforementioned type which uses a variable transformer with motor-driven adjustment to modulate a mains frequency high voltage by periodic adjustment of the transformer in the amplitude.
  • the amplitude-modulated high voltage is up-converted, and then the modulation frequency is recovered as a VLF high voltage by means of a demodulator.
  • the invention has the object to overcome the disadvantages of the known prior art and to provide a VLF test generator for the generation of low-frequency high voltages, which can be realized easily and inexpensively, has low weight for a portable use in the field, robust and is not prone to failure and requires only low cooling capacity.
  • VLF test generator of the aforementioned type, which is distinguished according to the invention by two oscillators whose oscillator frequencies differ from each other by twice that of the low frequency mentioned above, an oscillator frequency-controlled resonant circuit for voltage boosting that is supplied to the oscillator frequencies in an interfering manner of the interfering oscillator frequencies, and a demodulator for extracting the low frequency high voltage generated by the interference from the resonant circuit and applying it to the load.
  • the invention is based on the new approach of using the interference or beat between two slightly different oscillators for generating a low-frequency modulation in a resonant circuit, which simultaneously causes a voltage overshoot of the interference product.
  • an output voltage of very high amplitude and very low frequency can be generated with surprisingly few components.
  • Fault-prone mechanical elements or complex performance Electronics with high cooling requirements are completely eliminated.
  • the VLF test generator according to the invention is particularly suitable for transportable use in insulation tests on site, eg of buried energy cables.
  • oscillators with oscillator frequencies well above the line frequency can be used since only their frequency difference is relevant to the generation of the VLF test voltage.
  • the oscillator frequencies are in the range of 100 Hz to 10 kHz, more preferably in the range of 500 Hz to 50 kHz, particularly preferably about 1 kHz.
  • volume- and weight-critical components, such as the throttle of the resonant circuit or optional matching transformers can be dimensioned much smaller.
  • the low frequency mentioned is less than 1 hertz, preferably about 0.1 hertz.
  • the test generator can be dimensioned for correspondingly low power.
  • the quality of the resonant circuit is 10 to 100, particularly preferably 50 to 80. This represents an excellent compromise between maximum voltage overshoot and good tunability of the resonant circuit.
  • the interference of the oscillator frequencies can be done both by interference of the oscillator output currents and voltages.
  • the interference is a voltage interference.
  • the resonant circuit can already be excited with twice the voltage amplitude and twice the generator output voltage can be achieved after the voltage increase in the resonant circuit.
  • the voltage increase in the resonant circuit also opens up the possibility of conventional oscillators
  • controllable semiconductor inverters as they are known in the form of so-called "power modules” and can produce any output voltage waveforms of up to 400 V, for example, from a mains supply voltage of 400 V.
  • the oscillators feed the resonant circuit via at least one transformer, whereby a galvanic separation of the oscillators from the resonant and thus high voltage circuit can be achieved and negative repercussions of transient processes of the high voltage side to the oscillators can be prevented ;
  • an inductive load for the oscillator outputs can be provided in this way, as required, for example, by the aforementioned power modules.
  • a particularly advantageous embodiment of the invention is characterized in that the transformers are used simultaneously to up-convert the oscillator output voltages for feeding into the resonant circuit.
  • a further increase in the output voltage of the VLF test generator can be achieved; by the voltage increase twice, once by the feedforward transformer for the resonant circuit and a second time by the voltage overshoot in the resonant circuit itself, VLF test voltages of up to a few hundred kV, e.g. 400 kV, starting from oscillator output voltages in the range of a few hundred volts.
  • a three-fold increase in voltage is even achieved; once through the voltage interference, once through the transformation and once through the resonance peak.
  • the oscillators can be connected to a common primary winding of the transformer, which reduces the component cost.
  • each oscillator feeds its own primary winding of a common transformer, which is connected to the resonant circuit. As a result, a mutual galvanic isolation of the oscillators can be achieved.
  • the oscillator frequency of one oscillator is derived from the oscillator frequency of the other oscillator, or alternatively the oscillator frequencies of the oscillators are derived from a common clock generator. Due to the inventive principle of VLF generation by means of beating absolute errors compensate the oscillator frequencies, so that a much higher frequency constancy of the VLF oscillation can be achieved by a rigid coupling of the oscillators than with the known solutions.
  • the demodulation of the low frequency from the interference product in the resonant circuit can be accomplished using any demodulator circuit known in the art.
  • a circuit technology particularly simple solution results when the demodulator - as known from the cited document DE 103 33 241 B - concomitantly uses the capacitive load and reloads it by means of a rectifier in time with the low frequency.
  • any rectifier circuit known in the art can also be used for the rectifier. It is particularly advantageous if, as is known from DE 103 33 241 B, the rectifier can be switched in its forward direction and switches over at each half-wave of the low frequency, for which purpose the rectifier preferably has two antiparallel diode circuits provided with switches, which solution is minimal Has a component requirement.
  • each diode branch is formed by a chain of diodes and intermediate semiconductor switches, whereby a high dielectric strength for high output voltages can be achieved.
  • the switches are closed at the same time overlapping at short notice during switching over. Thereby, the transient of the generator output voltage when switching the rectifier can be minimized.
  • the demodulator is connected in parallel to the output of the resonant circuit discharging resistor for the capacitive load.
  • the circuit according to the invention has significantly lower power loss; and compared to solutions with a switchable load-parallel discharge resistor, the solution according to the invention eliminates the need for a separate switch:
  • the discharge resistance related to the output potential of the resonant circuit always has a particularly strong effect when the inference product in the resonant circuit has its beat node and thus approaches zero potential ,
  • an additional control device for the oscillators is provided which reduces the amplitude of their output voltages at the end of every second quarter of the low-frequency period in order to support the discharge of the load via the discharge resistor .
  • the demodulator is formed by the interaction of a rectifier with the capacitive load
  • a further simplification arises when, in the case where the diode branches of the rectifier are formed by chains of diodes and intermediate semiconductor switches, a single resistor is connected in parallel to each diode and each semiconductor switch, all together forming said discharge resistor. As a result, the number of required components can be further reduced.
  • Fig. 1 is a circuit diagram of a first embodiment of the VLF test generator of the invention
  • FIG. 2 shows the interference product occurring in the resonance circuit, the resonance voltage U R ;
  • FIG. FIG. 3 does not enlarge the low-frequency modulation of the resonance voltage U R to scale;
  • Fig. 4 is a circuit diagram of a second embodiment of the VLF test generator of the invention.
  • Fig. 5 shows the down-regulation of the oscillator output voltages in each second quarter frequency of the low frequency and the switching characteristics of the rectifier of Figure 4 in support of the load discharge.
  • Figures 6 and 7 show two alternative embodiments for the diode branches of the rectifier and the discharge resistor of Figure 4; and
  • FIGS. 8 to 10 show alternative circuit variants for the connection of the oscillators to the resonant circuit.
  • Test generator 1 shows a test generator 1 which generates a high voltage U 3 in the range of a few tens to a few 100 kV and at a very low frequency (VLF) in the range of a few hertz and below Test generator 1 is used for insulation testing of a capacitive load 2, for example an underground high-voltage cable
  • loads 2 generally have a capacity in the range of up to a few ⁇ F Insulation test of the load 2 after application of the low-frequency high voltage U s , in particular for the measurement of the output voltage, for accompanying diagnostic measurements such as loss factor measurements or partial discharge measurements, etc., is here without concern and not shown.
  • the test generator 1 consists essentially of an oscillator part 3 and a demodulator 4 connected thereto.
  • the oscillator part 3 generates at an output 5 a high voltage U R higher frequency, which is amplitude modulated with said low frequency, and the demodulator 4 demodulates the modulation product U R , to obtain a low-frequency high voltage U s as the generator output voltage and to the load 2 create.
  • the oscillators 6, 7 feed together in series a resonant circuit formed by a choke 8 and a capacitor 9. Due to the mutual interference or interference of the oscillator output voltages Ui, U 2 , an interference product in the resonant circuit 8, 9, which is the oscillation of the frequency can be understood, hereinafter referred to as resonant voltage U R , which with a low-frequency beat U 3 of the frequency is amplitude modulated, as shown in Figs. 2 and 3.
  • Figure 3 shows the resonant voltage U R with non-scaled-up period.
  • the amplitude of the excitation voltage Ui + U 2 of the resonant circuit 8, 9 is twice the amplitudes of the individual oscillator output voltages U 1 , U 2 .
  • the resonant circuit 8, 9 R of the excitation voltage Ui + E 2 is at the frequency f tuned so that the resonance voltage U R is chipboard nungsüberhöht the resonant circuit to the Q of the resonant circuit with respect to the exciting oscillator voltages U + U 2 and thus the 2 - Q times one of the oscillator output voltages Ui, U 2 reached.
  • the quality Q of the resonant circuit 8, 9 is between 10 and 100, more preferably between 50 and 80.
  • the quality Q of the resonant circuit 8, 9 is between 10 and 100, more preferably between 50 and 80.
  • a resonance voltage U R in the range of eg 60-80 kV are generated.
  • the demodulator 4 comprises two antiparallel diode branches 10, 11, which are alternately connected to the output 5 of the resonant circuit 8, 9 by means of appropriate switches 12, 13 at each half cycle of the low frequency f s .
  • a discharge resistor 14 of the load 2 can be connected in parallel.
  • the discharge resistor 14 can be switched in parallel-permanently or with the aid of a switch (not shown) only during the phase of the zero-crossing of the output voltage U s .
  • FIG. 4 shows an alternative embodiment of the VLF generator of FIG. 1, wherein like reference numerals designate like parts.
  • the two oscillators 6, 7 are connected in parallel and interfere with each other via their output currents, but the series circuit of FIG. 1 can also be used.
  • the demodulator 4 (or more precisely its switchable diode branches 10, 11) has a discharge resistor 15 in parallel and discharges the load 2 to the potential of the output 5 of the oscillator part 3.
  • the discharge resistor 15 is particularly effective, especially in the zero-crossing phase of the output voltage U 3 , because there, too, the output 5 due to the nodes of the resonance frequency U R goes to zero potential. .
  • the effectiveness of the discharging resistor 15 can be increased by as shown in FIG 5 in the respective second areas b, d of the four quarters of a - the period of the low frequency f s d, the output voltages Ui, U 2 of the oscillators 6, 7 slightly re- ⁇ quizd are, and in particular in the end portion b ', d' of the quarter b, d, so that the envelope of the resonance voltage U R there has no exactly sinusoidal course.
  • the specific time profile of this voltage reduction is controlled in a control circuit with the aid of a controller 16 which measures the generator output voltage U s in such a way that, taking into account the voltage drops in the diode branches 10, 11 and switches 12, 13 and the residual charges in the load 2 total as sinusoidal waveform of the generator output voltage U s results.
  • the discharge resistor 15 connected in parallel with the demodulator 4 has a certain crosstalk of the high frequency f R to the output frequency f s .
  • FIG. 5 the circuit diagrams S 12 , S 13 of the switches 12, 13 are shown in the time course.
  • the controls S 12 , S 3 .3 of the switches 12, 13 during the switching slightly overlap, u.zw. in such a way that the switches 12, 13 are both simultaneously closed at the same time (regions a r , c ') immediately after the zero crossing of the resonance voltage U R.
  • the transient process of the generator output voltage U s during switching of the rectifier 10 - 13 can be minimized and thus an even better approximation to an ideal sinusoidal profile can be achieved.
  • the closing overlap a ', c' is preferably about 0.1 s.
  • the closing overlap a ', c 1 is in the range of a few thousandths to a few hundredths of 1 / fs.
  • Fig. 6 shows a first practical embodiment for the diode branch 10 and the discharge resistor 15 (diode branch 11 is a mirror image).
  • the diode leg 10 is preferably formed by a chain of individual diodes 10 ', 10 ", etc., and intermediate individual semiconductor switches 12', 12", etc. Each diode 10 ', 10 "is connected to a serial current limiting resistor 17', 17", etc., a parallel test resistor 18 ', 18 ", etc. and a parallel protection capacitor 19', 19", etc.
  • the control of the semiconductor switches 12 ', 12 is symbolized by a provided with resistors 20', 20", etc., control line 21, via which the switching signal S12 is supplied, schematically symbolized;
  • the concrete drive circuits for the semiconductor switches 12 ', 12 are known to the person skilled in the art and are not shown here in detail.
  • the discharge resistor 15 is composed of series-connected individual resistors 15', 15", etc. in order to increase the dielectric strength.
  • the parallel test resistors 18 ', 18 "of the diodes 10', 10" may optionally be included to form the discharge resistor 15.
  • the semiconductor switches 12 ', 12 "resistors 22', 22", etc. connected in parallel, which together with the test resistors 18 ', 18 "- as well as the parallel thereto resistor chain of the mirror image diode branch 11 (not shown) - the Discharge resistor 15 form.
  • FIGS. 8 to 10 show various practical embodiments of the oscillators 6, 7 and their connection to the resonant circuit 8, 9 (only partially shown).
  • the oscillators 6, 7 are each formed here by semiconductor inverters whose output voltages are microprocessor-controlled in both frequency and amplitude as desired (so-called. "Power Module”).
  • each oscillator 6, 7 feeds the resonant circuit 8, 9 via its own high voltage transformer 23, 24.
  • the transformers 23, 24 serve several purposes: for the galvanic isolation of the oscillators 6, 7 from the resonant circuit 8, 9; for the galvanic separation from each other, for the presentation of an inductive load for the oscillators 6, 7; and additional high transforming the oscillator output voltages Ui, U 2 for the excitation of the resonant circuits 8, 9.
  • the two oscillators 6, 7 share a common transformer 25, each oscillator feeding its own primary winding 25 ', 25 "of the transformer 25, which are connected in series on the transformer core, so that here again results in a voltage interference of the oscillator output voltages Ui, U 2 .
  • FIG. 10 shows a further embodiment in which a single high-voltage transformer 26 is used, to the primary winding of which the oscillators 6, 7 are connected in galvanic parallel connection (or series connection, not shown), so that the interference of the oscillators by current interference (resp. Voltage interference, not shown) in the primary circuit.
  • a single high-voltage transformer 26 is used, to the primary winding of which the oscillators 6, 7 are connected in galvanic parallel connection (or series connection, not shown), so that the interference of the oscillators by current interference (resp. Voltage interference, not shown) in the primary circuit.
  • the oscillator frequencies fi, ⁇ 2 of the oscillators 6, 7 may also be derived from a common clock 28, see FIG. 9.
  • matching transformers can also be used for impedance matching and galvanic isolation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Rectifiers (AREA)

Abstract

VLF-Prüfgenerator (1) zur Erzeugung einer Hochspannung (Us) mit Tieffrequenz (fs) für die Isolationsprüfung von kapazitiven Lasten (2), insbesondere Energiekabeln, mit zwei Oszillatoren (6, 7), deren Oszillatorfrequenzen (f1, f2) sich um das Doppelte der genannten Tieffrequenz (fs) voneinander unterscheiden, einem von den Oszillatoren (6, 7) interferierend gespeisten, auf die Oszillatorfrequenzen (f1, f2) abgestimmten Resonanzkreis (8, 9) zur Spannungsüberhöhung (UR) der interferierenden Oszillatorfrequenzen, und einem Demodulator zum Auskoppeln der durch die Interferenz erzeugten tieffrequenten Hochspannung (Us) aus dem Resonanzkreis (8, 9) und Anlegen an die Last (2).

Description

VLF-Prüfgenerator
Die vorliegende Erfindung betrifft einen VLF-Prüfgenerator zur Erzeugung einer Hochspannung mit Tieffrequenz für die Iso- lationsprüfung von kapazitiven Lasten, insbesondere Energiekabeln.
Für die energietechnische Isolationsprüfung von stark kapazitiven Lasten wie erdverlegten Kabelsystemen hat sich die Prüfung mit Hochspannungen sehr tiefer Frequenz („very low fre- quency", VLF) im Bereich von Zehntel Hertz etabliert. Im Gegensatz zu netzfrequenten oder höherfrequenten PrüfSpannungen rufen VLF-PrüfSpannungen nur geringe Blindleistung in der kapazitiven Last hervor, so daß der Prüfgenerator entsprechend kleiner ausgelegt werden kann; und im Vergleich zu früher ver- wendeten Gleichspannungsprüfungen verhindern VLF-PrüfSpannungen den Aufbau schädlicher Raum- und Restladungen im Kabelsystem, die später im Betrieb zu Durchschlägen führen können.
Die Erzeugung geeigneter VLF-PrüfSpannungen im Hochspannungsbereich, d.h. mit bis zu einigen hundert Kilovolt, ist je- doch keineswegs einfach, da Hochspannungstransformatoren für derart tiefe Frequenzen nicht praktikabel sind. Es wurden daher bereits verschiedenste Schaltungen für VLF-Prüfgeneratoren vorgeschlagen, die jedoch alle entweder hohen Schaltungsaufwand oder kostspielige bzw. störungsanfällige Bauteile haben. So ist beispielsweise aus der DE 103 33 241 B ein VLF- Prüfgenerator der eingangs genannten Art bekannt, welcher einen Stelltransformator mit motorgetriebener Verstellung verwendet, um eine netzfrequente Hochspannung durch periodische Verstellung des Transformators in der Amplitude zu modulieren. Die am- plitudenmodulierte Hochspannung wird aufwärts transformiert, und anschließend wird mit Hilfe eines Demodulators die Modulationsfrequenz als VLF-Hochspannung wiedergewonnen. Die Verwendung eines elektromotorisch betätigten Stelltransformators macht diese Lösung unhandlich, störungsanfällig und nur für ge- ringe Prüfleistungen einsetzbar. Andere bekannte Konstruktionen verwenden aufwendige Hochspannungs-Halbleiterschaltungen, um eine netzfrequente Hochspannung zunächst gleichzurichten und dann mit Hilfe gesteuerter Halbleiterschalter periodisch abzuregein, gleichsam in der Art eines Hochspannungs-Wechselrichters, um eine VLF- Hochspannung zu erzeugen. Diese Konstruktionen kommen zwar ohne mechanische Bauteile aus, erfordern jedoch umfangreiche Leistungselektronik, welche auch einen hohen Kühlbedarf hat.
Die Erfindung setzt sich zum Ziel, die Nachteile des be- kannten Standes der Technik zu überwinden und einen VLF- Prüfgenerator für die Erzeugung tieffrequenter Hochspannungen zu schaffen, welcher einfach und kostengünstig realisiert werden kann, geringes Gewicht für einen transportablen Einsatz vor Ort hat, robust und störungsunanfällig ist und nur geringe Kühlleistung erfordert.
Dieses Ziel wird mit einem VLF-Prüfgenerator der einleitend genannten Art erreicht, der sich gemäß der Erfindung auszeichnet durch zwei Oszillatoren, deren Oszillatorfrequenzen sich um das Doppelte der genannten Tieffrequenz voneinander unterscheiden, einen von den Oszillatoren interferierend gespeisten, auf die Oszillatorfrequenzen abgestimmten Resonanzkreis zur Spannungsüberhöhung der interferierenden Oszillatorfrequenzen, und einen Demodulator zum Auskoppeln der durch die Interferenz erzeugten tieffrequenten Hochspannung aus dem Resonanzkreis und Anlegen an die Last.
In Abkehr von allen bekannten Lösungen beruht die Erfindung auf dem neuen Ansatz, die Interferenz bzw. Schwebung zwischen zwei geringfügig differierenden Oszillatoren zur Erzeu- gung einer tieffrequenten Modulation in einem Resonanzkreis heranzuziehen, welcher gleichzeitig eine Spannungsüberhöhung des Interferenzproduktes bewirkt. Auf diese Weise kann mit überraschend wenigen Bauteilen eine Ausgangsspannung sehr hoher Amplitude und sehr tiefer Frequenz erzeugt werden. Stö- rungsanfällige mechanische Elemente oder aufwendige Leistungs- elektroniken mit hohem Kühlbedarf entfallen zur Gänze. Aufgrund seines geringen Gewichts, Platzbedarfs und seiner Robustheit eignet sich der erfindungsgemäße VLF-Prüfgenerator besonders für den transportablen Einsatz bei Isolationsprüfungen vor Ort, z.B. von erdverlegten Energiekabeln.
In dem VLF-Prüfgenerator der Erfindung können Oszillatoren mit weit über der Netzfrequenz liegenden Oszillatorfrequenzen verwendet werden, da nur ihr Frequenzunterschied für die Erzeugung der VLF-PrüfSpannung relevant ist. Bevorzugt liegen die Oszillatorfrequenzen im Bereich von 100 Hz bis 10 kHz, besonders bevorzugt im Bereich von 500 Hz bis 50 kHz, insbesondere bevorzugt bei etwa 1 kHz. Dadurch können volumen- und gewichtskritische Bauteile, wie die Drossel des Resonanzkreises oder optionale Anpassungstransformatoren, wesentlich kleiner dimensioniert werden.
Besonders vorteilhaft ist es, wenn die genannte Tieffrequenz unter 1 Hertz liegt, bevorzugt bei etwa 0,1 Hertz. Wie an sich bekannt, stellen sich bei derart tiefen Frequenzen nur äußerst geringe Blindleistungen im Lastkreis ein, sodaß der Prüf- generator für entsprechend geringe Leistung dimensioniert werden kann.
In einer bevorzugten Ausführungsform der Erfindung beträgt die Güte des Resonanzkreises 10 bis 100, besonders bevorzugt 50 bis 80. Dies stellt einen ausgezeichneten Kompromiß zwischen maximaler Spannungsüberhöhung und guter Abstimmbarkeit des Resonanzkreises dar.
Die Interferenz der Oszillatorfrequenzen kann sowohl durch Interferenz der Oszillatorausgangsströme als auch -Spannungen erfolgen. Bevorzugt ist die Interferenz eine Spannungsinterfe- renz. Dadurch kann der Resonanzkreis bereits mit doppelter Spannungsamplitude angeregt und nach der Spannungsüberhöhung im Resonanzkreis die doppelte Generatorausgangsspannung erreicht werden.
Die Spannungsüberhöhung im Resonanzkreis eröffnet insbe- sondere auch die Möglichkeit, für die Oszillatoren herkömmliche steuerbare Halbleiter-Wechselrichter einzusetzen, wie sie in Form sog. „Power-Module" bekannt sind und z.B. aus einer netz- frequenten Versorgungsspannung von 400 V beliebige Ausgangsspannungsverläufe von bis zu 400 V erzeugen können; alleine durch die Spannungsüberhöhung im Resonanzkreis können daraus Ausgangsspannungen im Bereich von einigen zehn kV gewonnen werden.
Besonders günstig ist es, wenn gemäß einem weiteren Merkmal der Erfindung die Oszillatoren den Resonanzkreis über zu- mindest einen Transformator speisen, wodurch eine galvanische Trennung der Oszillatoren vom Resonanz- und damit Hochspannungskreis erreicht und negative Rückwirkungen transienter Vorgänge der Hochspannungsseite auf die Oszillatoren verhindert werden können; darüber hinaus kann auf diese Weise eine induk- tive Last für die Oszillatorausgänge bereitgestellt werden, wie sie beispielsweise von den genannten Power Modulen gefordert wird.
Eine besonders vorteilhafte Ausführungsform der Erfindung zeichnet sich dadurch aus, daß die Transformatoren gleichzeitig dazu verwendet werden, die Oszillatorausgangsspannungen für die Einspeisung in den Resonanzkreis hochzutransformieren. Dadurch kann eine nochmalige Erhöhung der AusgangsSpannung des VLF- Prüfgenerators erreicht werden; durch die zweimalige Spannungserhöhung, einmal durch den Einspeise- bzw. Erregertrans- formator für den Resonanzkreis und ein zweites Mal durch die Spannungsüberhöhung im Resonanzkreis selbst, können VLF-Prüf- spannungen von bis zu einigen hundert kV, z.B. 400 kV, ausgehend von Oszillatorausgangspannungen im Bereich von einigen hundert Volt erzeugt werden. Im Falle der bevorzugten Span- nungsinterferenz der Oszillatoren wird sogar eine dreimalige Spannungserhöhung erreicht; einmal durch die Spannungsinterferenz, einmal durch das Transformieren und einmal durch die Resonanzüberhöhung .
Falls gewünscht, können die Oszillatoren an eine gemein- same Primärwicklung des Transformators angeschlossen werden, was den Bauteileaufwand verringert. Gemäß einer besonders bevorzugten Variante der Erfindung speist jeder Oszillator eine eigene Primärwicklung eines gemeinsamen Transformators, welcher an den Resonanzkreis angeschlossen ist. Dadurch kann eine ge- genseitige galvanische Trennung der Oszillatoren erreicht werden.
Besonders vorteilhaft ist es, wenn die Oszillatorfrequenz des einen Oszillators von der Oszillatorfrequenz des anderen Oszillators abgeleitet ist, oder alternativ die Oszillatorfre- quenzen der Oszillatoren von einem gemeinsamen Taktgeber abgeleitet sind. Aufgrund des erfindungsgemäßen Prinzips der VLF- Erzeugung mittels Schwebung kompensieren sich absolute Fehler der Oszillatorfrequenzen, so daß durch eine starre Koppelung der Oszillatoren eine wesentlich höhere Frequenzkonstanz der VLF-Schwingung erreicht werden kann als mit den bekannten Lösungen.
Die Demodulation der Tieffrequenz aus dem Interferenzprodukt im Resonanzkreis kann mit Hilfe jeder in der Technik bekannten Demodulatorschaltung bewerkstelligt werden. Eine schal- tungstechnisch besonders einfache Lösung ergibt sich, wenn der Demodulator - wie an sich aus der genannten Schrift DE 103 33 241 B bekannt - die kapazitive Last mitverwendet und diese mittels eines Gleichrichters im Takt der Tieffrequenz umlädt.
Auch für den Gleichrichter kann jede in der Technik be- kannte Gleichrichterschaltung verwendet werden. Besonders vorteilhaft ist es, wenn - wie an sich aus der DE 103 33 241 B bekannt - der Gleichrichter in seiner Durchlaßrichtung umschaltbar ist und bei jeder Halbwelle der Tieffrequenz umschaltet, wozu der Gleichrichter bevorzugt zwei antiparallele, mit Schaltern versehene Diodenzweige aufweist, welche Lösung minimalen Bauteilebedarf hat.
In einer weiteren bevorzugten Ausführungsform der Erfindung wird jeder Diodenzweig durch eine Kette von Dioden und zwischenliegenden Halbleiterschaltern gebildet, wodurch eine hohe Spannungsfestigkeit für hohe Ausgangsspannungen erreicht werden kann.
Gemäß noch einem weiteren bevorzugten Merkmal der Erfindung wird vorgesehen, daß die Schalter beim Umschalten kurz- fristig überlappend gleichzeitig geschlossen sind. Dadurch kann der Einschwingvorgang der Generatorausgangsspannung beim Umschalten des Gleichrichters minimiert werden.
Ein besonders rasches Entladen der Last kann gefördert und damit ein unerwünschter Potentialsprung beim Nulldurchgang der Generatorausgangsspannung verhindert werden, wenn gemäß einer besonders bevorzugten Ausführungsform der Erfindung dem Demo- dulator ein zum Ausgang des Resonanzkreises zurückführender Entladewiderstand für die kapazitive Last parallelgeschaltet ist. Gegenüber herkömmlichen Schaltungen mit einem permanenten lastparallelen Entladewiderstand hat die erfindungsgemäße Schaltung wesentlich geringere Verlustleistung; und im Vergleich zu Lösungen mit einem schaltbaren lastparallelen Entladewiderstand erübrigt die erfindungsgemäße Lösung einen gesonderten Schalter: Denn der auf das Ausgangspotential des Reso- nanzkreises bezogene Entladewiderstand kommt immer dann besonders stark zur Wirkung, wenn das Inferenzprodukt im Resonanzkreis seinen Schwebungsknoten hat und damit dem Nullpotential nahekommt .
Besonders vorteilhaft ist es dabei, wenn gemäß einem wei- teren Merkmal der Erfindung zusätzlich eine Steuereinrichtung für die Oszillatoren vorgesehen ist, welche die Amplitude ihrer AusgangsSpannungen am Ende jedes zweiten Viertels der Periode der Tieffrequenz reduziert, um die Entladung der Last über den Entladewiderstand zu unterstützen. Wenn der Demodulator wie oben erörtert durch das Zusammenwirken eines Gleichrichters mit der kapazitiven Last gebildet ist, besteht eine weitere vorteilhafte Ausführungsform der Erfindung darin, den Entladewiderstand einfach dem Gleichrichter parallelzuschalten . Eine weitere Vereinfachung ergibt sich, wenn in dem Fall, daß die Diodenzweige des Gleichrichters durch Ketten von Dioden und zwischenliegenden Halbleiterschaltern gebildet sind, jeder Diode und jedem Halbleiterschalter ein einzelner Widerstand parallelgeschaltet ist, welche alle gemeinsam den genannten Entladewiderstand bilden. Dadurch kann die Anzahl an erforderlichen Bauteilen noch weiter reduziert werden.
Die Erfindung wird nachstehend anhand eines in den beigeschlossenen Zeichnungen dargestellten Ausführungsbeispieles nä- her erläutert. In den Zeichnungen zeigt:
Fig. 1 ein Schalbild einer ersten Ausführungsform des VLF- Prüfgenerators der Erfindung;
Fig. 2 das im Resonanzkreis auftretende Interferenzprodukt, die Resonanzspannung UR; Fig. 3 die tieffrequente Modulation der Resonanzspannung UR nicht-maßstäblich vergrößert;
Fig. 4 ein Schaltbild einer zweiten Ausführungsform des VLF-Prüfgenerators der Erfindung;
Fig. 5 die Herabregelung der Oszillatorausgangsspannungen in jeder zweiten Viertelperiode der Tieffrequenz und die Schaltverläufe des Gleichrichters von Fig. 4 zur Unterstützung der Lastentladung; die Fig. 6 und 7 zwei alternative Ausführungsformen für die Diodenzweige des Gleichrichters und den Entladewiderstand von Fig. 4; und die Fig. 8 bis 10 alternative Schaltungsvarianten für den Anschluß der Oszillatoren an den Resonanzkreis.
In Fig. 1 ist ein Prüfgenerator 1 dargestellt, der eine Hochspannung U3 im Bereich von einigen 10 bis einigen 100 kV und mit einer sehr tiefen Frequenz („very low frequency", VLF) im Bereich von einigen Hertz und darunter erzeugt. Der VLF- Prüfgenerator 1 dient zur Isolationsprüfung einer kapazitiven Last 2, beispielsweise eines unterirdischen Hochspannungskabels. Derartige Lasten 2 haben in der Regel eine Kapazität im Bereich von bis zu einigen μF. Die weitere Meßanordnung für die Isolationsprüfung der Last 2 nach Anlegen der tieffrequenten Hochspannung Us, insbesondere für die Messung der Ausgangsspannung, für begleitende Diagnosemessungen wie Verlustfaktormessungen oder Teilentladungsmessungen usw., ist hier ohne Be- lang und nicht dargestellt.
Der Prüfgenerator 1 setzt sich im wesentlichen aus einem Oszillatorteil 3 und einem daran angeschlossenen Demodulator 4 zusammen. Der Oszillatorteil 3 erzeugt auf einem Ausgang 5 eine Hochspannung UR höherer Frequenz, welche mit der genannten Tieffrequenz amplitudenmoduliert ist, und der Demodulator 4 demoduliert das Modulationsprodukt UR, um daraus eine tieffre- quente Hochspannung Us als Generatorausgangsspannung zu gewinnen und an die Last 2 anzulegen.
Wie in Fig. 1 gezeigt, umfaßt der Oszillatorteil 3 zwei Oszillatoren 6, 1 , deren Oszillatorfrequenzen fi, f2 sich um das Doppelte der gewünschten Tieffrequenz fs der Generatorausgangsspannung U8 unterscheiden, d.h. f2 - fi = 2fs. Die Oszillatorfrequenzen fi, f2 sind bevorzugt wesentlich höher als die übliche Netzfrequenz elektrischer Energieverteilungsnetze (50 bzw. 60 Hz) , und zwar in der Regel im Bereich von 100 Hz bis 10 kHz, bevorzugt im Bereich von 500 Hz bis 5 kHz, und besonders bevorzugt rund um 1 kHz, z.B. fλ = 1000,0 Hz und f2 = 1000,2 Hz.
Die Oszillatoren 6, 7 speisen gemeinsam in Serienschaltung einen durch eine Drossel 8 und einen Kondensator 9 gebildeten Resonanzkreis. Durch die gegenseitige Überlagerung bzw. Interferenz der Oszillatorausgangsspannungen Ui, U2 stellt sich ein Interferenzprodukt im Resonanzkreis 8, 9 ein, das als Schwingung der Frequenz
Figure imgf000010_0001
aufgefaßt werden kann, im weiteren als ResonanzSpannung UR bezeichnet, welche mit einer tieffrequenten Schwebung U3 der Frequenz
Figure imgf000011_0001
amplitudenmoduliert ist, wie in der Fig. 2 und 3 gezeigt.
Da in dem genannten Beispiel fs = 0,1 Hz beträgt, ist die
10.000-fach höherfrequente Resonanzspannung UR in Fig. 2 nur als Fläche ersichtlich; zur besseren Erkennbarkeit ist in Fig.
3 die Resonanzspannung UR mit nicht-maßstäblich vergrößerter Periode dargestellt.
Durch die Serienschaltung der Oszillatoren 6,7 beträgt die Amplitude der Erregerspannung Ui + U2 des Resonanzkreises 8, 9 das Doppelte der Amplituden der einzelnen Oszillatorausgangsspannungen U1, U2. Der Resonanzkreis 8, 9 ist auf die Frequenz fR der Erregerspannung Ui + Ü2 abgestimmt, so daß die Resonanzspannung UR am Resonanzkreis um die Güte Q des Resonanzkreises gegenüber den erregenden Oszillatorspannungen Ui + U2 span- nungsüberhöht ist und damit das 2 -Q-fache einer der Oszillatorausgangsspannungen Ui, U2 erreicht.
Bevorzugt liegt die Güte Q des Resonanzkreises 8, 9 zwischen 10 und 100, besonders bevorzugt zwischen 50 und 80. Auf diese Weise kann durch die Spannungsinterferenz und die Span- nungsüberhöhung im Resonanzfall des Resonanzkreises 8, 9 aus Oszillatorausgangsspannungen Ui, U2 im Bereich von 3-400 V eine Resonanzspannung UR im Bereich von z.B. 60-80 kV erzeugt werden.
Zum Auskoppeln der tieffrequenten Hochspannung Us aus dem Resonanzkreis 8, 9 verwendet der hier dargestellte Demodulator
4 die Last 2 mit, u.zw. indem diese über einen geschalteten Gleichrichter 10 - 13 im Takt der Tieffrequenz fs umgeladen wird. Zu diesem Zweck umfaßt der Demodulator 4 zwei antiparallele Diodenzweige 10, 11, die mittels entsprechender Schalter 12, 13 bei jeder Halbwelle der Tieffrequenz fs wechselweise an den Ausgang 5 des Resonanzkreises 8, 9 angeschaltet werden.
Um einen allfälligen Spannungssprung im Nulldurchgang der Generatorausgangsspannung Us zu verhindern, welcher beispielsweise durch Spannungsabfälle im Gleichrichter 10 - 13 und/oder Restladungen in der Last 2 bedingt ist, kann optional ein Entladewiderstand 14 der Last 2 parallelgeschaltet werden. Der Entladewiderstand 14 kann permanent - oder mit Hilfe eines (nicht dargestellten) Schalters nur während der Phase des NuIl- durchgangs der Ausgangsspannung Us - der Last 2 parallelgeschaltet werden.
Anstelle eines solchen (schaltbaren) lastparallelen Entladewiderstandes 14, welcher hohe Verlustleistung und/oder zusätzliche Schaltelektronik bedingt, wird bevorzugt die folgende Entladeschaltung gemäß Fig. 4 eingesetzt.
Fig. 4 zeigt eine alternative Ausführungsform des VLF-Ge- nerators von Fig. 1, wobei gleiche Bezugszeichen gleiche Teile bezeichnen. Alternativ zu Fig. 1 sind bei dieser Ausführungsform die beiden Oszillatoren 6, 7 einander parallelgeschaltet und interferieren über ihre Ausgangsströme, es kann aber auch die Serienschaltung von Fig. 1 verwendet werden.
Bei der Ausführungsform von Fig. 4 liegt ferner dem Demo- dulator 4 (bzw. genauer seinen schaltbaren Diodenzweigen 10, 11) ein Entladewiderstand 15 parallel und entlädt die Last 2 zum Potential des Ausgangs 5 des Oszillatorteils 3 hin. Dadurch ist der Entladewiderstand 15 gerade in der Nulldurchgangsphase der Ausgangsspannung U3 besonders wirksam, weil dort auch der Ausgang 5 aufgrund der Knotenpunkte der Resonanzfrequenz UR gegen Nullpotential geht. Die Wirksamkeit des Entladewiderstandes 15 kann erhöht werden, indem gemäß Fig. 5 in den jeweils zweiten Vierteln b, d der vier Vierteln a - d der Periode der Tieffrequenz fs die Ausgangsspannungen Ui, U2 der Oszillatoren 6, 7 geringfügig re- duziert werden, und zwar insbesondere im Endteil b', d' der Viertel b, d, so daß die Hüllkurve der Resonanzspannung UR dort keinen exakt sinusförmigen Verlauf mehr hat. Der konkrete zeitliche Verlauf dieser Spannungsreduktion wird dabei mit Hilfe einer Steuerung 16, welche die Generatorausgangsspannung Us mißt, in einem Regelkreis so geregelt, daß sich unter Be- rücksichtigung der Spannungsabfälle in den Diodenzweigen 10, 11 und Schaltern 12, 13 und der Restladungen in der Last 2 insgesamt ein möglichst sinusförmiger Verlauf der Generatorausgangsspannung Us ergibt.
Der dem Demodulator 4 parallelgeschaltete Entladewider- stand 15 hat ein gewisses Übersprechen der Hochfrequenz fR auf die Ausgangsfrequenz fs zur Folge. Durch entsprechende Dimensionierung des Entladewiderstandes 15 und Steuerung der Spannungsreduzierung in den Bereichen b', d1 kann dieser Effekt soweit minimiert werden, daß der Verzerrungsgrad bzw. Klirrfaktor der Generatorausgangsspannung üs z.B. unter 5% THD liegt.
Das Entladen der Last 2 beim Umschalten des Gleichrichters 10 - 13 kann noch durch eine weitere Maßnahme gefördert werden. In Fig. 5 sind die Schaltschemata S12, S13 der Schalter 12, 13 im zeitlichen Verlauf gezeigt. Wie ersichtlich, können sich die Ansteuerungen S12, S3.3 der Schalter 12, 13 während des Umschaltvorganges geringfügig überlappen, u.zw. so, daß die Schalter 12, 13 unmittelbar nach dem Nulldurchgang der Resonanzspannung UR kurzfristig beide gleichzeitig geschlossen sind (Bereiche ar, c') . Dadurch kann der Einschwingvorgang der Ge- neratorausgangsspannung Us beim Umschalten des Gleichrichters 10 - 13 minimiert und damit eine noch bessere Annäherung an einen ideal sinusförmigen Verlauf erreicht werden.
In dem gezeigten Beispiel einer VLF-Periodendauer l/fΞ von 10 s beträgt die Schließüberlappung a', c' bevorzugt ca. 0,1 s. Allgemein liegt die Schließüberlappung a', c1 im Bereich von einigen Tausendstel bis einigen Hunderstel von 1/fs.
Fig. 6 zeigt eine erste praktische Ausführungsform für den Diodenzweig 10 und den Entladewiderstand 15 (Diodenzweig 11 ist spiegelbildlich) . Wie in der Hochspannungstechnik bekannt, wird der Diodenzweig 10 bevorzugt durch eine Kette von einzelnen Dioden 10', 10" usw. und zwischenliegenden einzelnen Halbleiterschaltern 12', 12" usw. gebildet. Jede Diode 10', 10" ist mit einem seriellen Strombegrenzungswiderstand 17', 17" usw., einem parallelen Prüfwiderstand 18', 18" usw. und einem paral- lelen Schutzkondensator 19 ', 19" usw. beschaltet. Die Ansteuerung der Halbleiterschalter 12', 12" ist durch eine mit Widerständen 20', 20" usw. versehene Steuerleitung 21, über welche das Schaltsignal S12 zugeführt wird, schematisch versinnbildlicht; die konkrete Ansteuerschaltungen für die Halbleiterschalter 12', 12" ist dem Fachmann bekannt und hier nicht näher dargestellt. Der Entladewiderstand 15 ist zur Erhöhung der Spannungsfestigkeit aus seriengeschalteten Einzelwiderständen 15', 15" usw. zusammengesetzt.
Wie in Fig. 7 gezeigt, können optional die parallelen Prüfwiderstände 18', 18" der Dioden 10', 10" zur Bildung des Entladewiderstandes 15 mitverwendet werden. Zu diesem Zweck werden den Halbleiterschaltern 12', 12" Widerstände 22', 22" usw. parallelgeschaltet, welche gemeinsam mit den Prüfwiderständen 18', 18" - sowie der parallel dazu liegenden Wider- standskette des spiegelbildlichen Diodenzweiges 11 (nicht gezeigt) - den Entladewiderstand 15 bilden.
Die Fig. 8 bis 10 zeigen verschiedene praktische Ausführungen der Oszillatoren 6, 7 und deren Anbindung an den Resonanzkreis 8, 9 (nur teilweise dargestellt) . Die Oszillatoren 6, 7 werden hier jeweils durch Halbleiter-Wechselrichter gebildet, deren Ausgangsspannungen mikroprozessorgesteuert sowohl in Frequenz als auch Amplitude beliebig regelbar sind (sog. „Power Module") .
Bei der Ausführungsform von Fig. 8 speist jeder Oszillator 6, 7 den Resonanzkreis 8, 9 über einen eigenen Hochspannungstransformator 23, 24. Die Transformatoren 23, 24 dienen mehreren Zwecken: zur galvanischen Trennung der Oszillatoren 6, 7 vom Resonanzkreis 8, 9; zur galvanischen Trennung voneinander, zur Darbietung einer induktiven Last für die Oszillatoren 6, 7; und zum zusätzlichen Hochtransformieren der Oszillatorausgangsspannungen Ui, U2 für die Anregung des Resonanzkreise 8, 9. Beispielsweise können damit Oszillatorausgangsspannungen Ui, U2 von ca. 400 V auf eine Resonanzkreis-Erregerspannung von ca. 4 kV hochtransformiert werden, so daß mit einem Resonanzkreis der Güte Q = 100 eine Generatorausgangsspannung Us von ca. 400 kV erreicht werden kann.
Bei der Ausführungsform von Fig. 9 teilen sich die beiden Oszillatoren 6, 7 einen gemeinsamen Transformator 25, wobei je- der Oszillator eine eigene Primärwicklung 25', 25" des Transformators 25 speist, die auf dem Transformatorkern in Serie liegen, so daß sich hier wieder eine Spannungsinterferenz der Oszillatorausgangsspannungen Ui, U2 ergibt.
Fig. 10 zeigt schließlich eine weitere Ausführungsform, bei welcher ein einziger Hochspannungstransformator 26 Verwendung findet, an dessen Primärwicklung die Oszillatoren 6, 7 in galvanischer Parallelschaltung (oder Serienschaltung, nicht gezeigt) angeschlossen sind, sodaß die Interferenz der Oszillatoren hier durch Strominterferenz (bzw. Spannungsinterferenz, nicht gezeigt) im Primärkreis erfolgt.
Wie durch den Pfeil 27 in Fig. 10 versinnbildlicht, kann die Oszillatorfrequenz f2 des einen Oszillators 7 von der Oszillatorfrequenz fi des anderen Oszillators 6 abgeleitet sein, wodurch eine hohe Konstanz der Schwebungsfrequenz fs = (f* 2 ~ fi) /2 erreicht werden kann. Alternativ können die Oszillatorfrequenzen fi, ±2 der Oszillatoren 6, 7 auch von einem gemeinsamen Taktgeber 28 abgeleitet sein, siehe Fig. 9.
Wenn keine besonders hohe AusgangsSpannung Us erforderlich ist, können anstelle der spannungsübersetzenden Hochspannungs- transformatoren 23 - 26 auch Anpaßtransformatoren zur Impedanzanpassung und galvanischen Trennung verwendet werden.
Die Erfindung ist nicht auf die dargestellten Ausführungs- beispiele beschränkt, sondern umfaßt alle Varianten und Modifikationen, insbesondere auch beliebige Kombinationen der ge- zeigten Ausführungsbeispiele, die in den Rahmen der angeschlossenen Ansprüche fallen.

Claims

Patentansprüche :
1. VLF-Prüfgenerator (1) zur Erzeugung einer Hochspannung (U3) mit Tieffrequenz (fs) für die Isolationsprüfung von kapazitiven Lasten (2), insbesondere Energiekabeln, gekennzeichnet durch zwei Oszillatoren (6, 7), deren Oszillatorfrequenzen (fi, f2) sich um das Doppelte der genannten Tieffrequenz (fs) voneinander unterscheiden, einen von den Oszillatoren (6, 7) interferierend gespeisten, auf die Oszillatorfrequenzen (fx, f2) abgestimmten Resonanzkreis (8, 9) zur Spannungsüberhöhung (UR) der interferierenden Oszillatorfrequenzen, und einen Demodulator zum Auskoppeln der durch die Interferenz erzeugten tieffrequenten Hochspannung (üs) aus dem Resonanzkreis (8, 9) und Anlegen an die Last (2) .
2. VLF-Prüfgenerator nach Anspruch 1, dadurch gekennzeichnet, daß die Oszillatorfrequenzen (fi, f2) im Bereich von 100 Hz bis 10 kHz liegen, bevorzugt im Bereich von 500 Hz bis 5 kHz, besonders bevorzugt bei etwa 1 kHz.
3. VLF-Prüfgenerator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Tieffrequenz (fs) unter 1 Hertz liegt, bevorzugt bei etwa 0,1 Hertz.
4. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Güte (Q) des Resonanzkreises
(8, 9) 10 bis 100 beträgt, bevorzugt 50 bis 80.
5. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Interferenz der Oszillatorfrequenzen (fi, f2) eine Spannungsinterferenz (Ui + U2) ist.
6. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß jeder Oszillator (6, 7) durch einen steuerbaren Halbleiter-Wechselrichter gebildet ist.
7. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Oszillatoren (β, 7) den Reso- nanzkreis über zumindest einen Transformator (23 - 26). speisen.
8. VLF-Prüfgenerator nach Anspruch 7, dadurch gekennzeichnet, daß der Transformator (23 - 26) die Oszillatorausgangsspannungen (Ui, U2) hochtransformiert.
9. VLF-Prüfgenerator nach Anspruch 7 oder 8, dadurch ge- kennzeichnet, daß jeder Oszillator (6, 7) eine eigene Primärwicklung (25', 25") eines gemeinsamen Transformators (25) speist, welcher an den Resonanzkreis (8, 9) angeschlossen ist.
10. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Oszillatorfrequenz (f2) des ei- nen Oszillators (7) von der Oszillatorfrequenz (fi) des anderen Oszillators (6) abgeleitet ist.
11. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Oszillatorfrequenzen (flr I2) der Oszillatoren (6, 7) von einem gemeinsamen Taktgeber (28) abgeleitet sind.
12. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Demodulator (4) die kapazitive Last (2) mitverwendet und diese mittels eines Gleichrichters
(10 - 13) im Takt der Tieffrequenz (f2) umlädt.
13. VLF-Prüfgenerator nach Anspruch 12, dadurch gekennzeichnet, daß der Gleichrichter (10 - 13) in seiner Durchlaßrichtung umschaltbar ist und bei jeder Halbwelle der Tieffre- quenz (f2) umschaltet.
14. VLF-Prüfgenerator nach Anspruch 13, dadurch gekenn- zeichnet, daß der Gleichrichter (10 - 13) zwei antiparallele, mit Schaltern (12, 13) versehene Diodenzweige (10, 11) aufweist .
15. VLF-Prüfgenerator nach Anspruch 14, dadurch gekennzeichnet, daß jeder Diodenzweig (10, 11) durch eine Kette von Dioden (10', 10") und zwischenliegenden Halbleiterschaltern (12 ' , 12") gebildet ist.
16. VLF-Prüfgenerator nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die Schalter (12, 13) beim Umschalten kurzfristig überlappend (ar, c ' ) gleichzeitig geschlossen sind.
17. VLF-Prüfgenerator nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß dem Demodulator (4) ein zum Ausgang
(5) des Resonanzkreises (8, 9) zurückführender Entladewiderstand (15) für die kapazitive Last (2) parallelgeschaltet ist.
18. VLF-Prüfgenerator nach Anspruch 17, dadurch gekennzeichnet, daß eine Steuereinrichtung (16) für die Oszillatoren (β, 7) vorgesehen ist, welche die Amplitude ihrer Ausgangsspannungen (Ui, U2) am Ende (bf, dr ) jedes zweiten Viertels (b, d) der Periode der Tieffrequenz (fΞ) reduziert, um die Entladung der Last (2) über den Entladewiderstand (15) zu unterstützen.
19. VLF-Prüfgenerator nach Anspruch 17 oder 18 in Verbindung mit einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß der Entladewiderstand (15) dem Gleichrichter (10 - 13) parallelgeschaltet ist.
20. VLF-Prüfgenerator nach Anspruch 19 in Verbindung mit Anspruch 15, dadurch gekennzeichnet, daß jeder Diode (101, 10") und jedem Halbleiterschalter (12', 12") ein einzelner Wi- derstand (18', 18", 22', 22") parallelgeschaltet ist, welche gemeinsam den genannten Entladewiderstand (15) bilden.
PCT/AT2009/000212 2008-05-28 2009-05-20 Vlf-prüfgenerator WO2009143544A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/994,227 US8542022B2 (en) 2008-05-28 2009-05-20 VLF test generator
AT09753308T ATE532080T1 (de) 2008-05-28 2009-05-20 Vlf-prüfgenerator
EP09753308A EP2281207B1 (de) 2008-05-28 2009-05-20 Vlf-prüfgenerator
ES09753308T ES2378626T3 (es) 2008-05-28 2009-05-20 Generador de vlf para ensayos.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0085708A AT506816B9 (de) 2008-05-28 2008-05-28 Vlf-prüfgenerator
ATA857/2008 2008-05-28

Publications (2)

Publication Number Publication Date
WO2009143544A2 true WO2009143544A2 (de) 2009-12-03
WO2009143544A3 WO2009143544A3 (de) 2010-01-21

Family

ID=41259435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2009/000212 WO2009143544A2 (de) 2008-05-28 2009-05-20 Vlf-prüfgenerator

Country Status (5)

Country Link
US (1) US8542022B2 (de)
EP (1) EP2281207B1 (de)
AT (2) AT506816B9 (de)
ES (1) ES2378626T3 (de)
WO (1) WO2009143544A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013120539A1 (de) 2012-02-18 2013-08-22 Baur Prüf- Und Messtechnik Gmbh Schaltungsanordnung zur erzeugung einer prüfspannung insbesondere zur isolations prüfung von verlegten energiekabeln

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8264224B2 (en) * 2009-10-27 2012-09-11 University Of Seoul Industry Cooperation Foundation Detection of magnetic fields using nano-magnets
CN103076497A (zh) * 2012-12-18 2013-05-01 江苏常隆客车有限公司 一种基于低频脉冲信号注入的绝缘检测方法
DE102013002114A1 (de) * 2013-02-08 2014-08-14 B2 Electronic Gmbh Mobiles Hochspannungsprüfgerät
US9614589B1 (en) 2015-12-01 2017-04-04 Lockheed Martin Corporation Communication via a magnio
US9541610B2 (en) 2015-02-04 2017-01-10 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US10338162B2 (en) 2016-01-21 2019-07-02 Lockheed Martin Corporation AC vector magnetic anomaly detection with diamond nitrogen vacancies
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
WO2016118756A1 (en) 2015-01-23 2016-07-28 Lockheed Martin Corporation Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system
WO2017127096A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with dual rf sources
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US20180275224A1 (en) * 2017-03-24 2018-09-27 Lockheed Martin Corporation Generation of magnetic field proxy through rf frequency dithering
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
RU2662952C1 (ru) * 2017-08-24 2018-07-31 Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика" Установка для испытания изоляции электрооборудования повышенным напряжением

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1008461A (en) * 1961-03-29 1965-10-27 Post Office Improvements in or relating to cable testing
DE10333241B3 (de) * 2003-07-21 2004-11-18 Neumann Elektrotechnik Gmbh Prüfgerät zur Spannungsprüfung von Kabeln und Kabelgarnituren mit VLF-Spannung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169406B1 (en) * 1998-05-02 2001-01-02 Stanley G. Peschel Very low frequency high voltage sinusoidal electrical testing method, systems and apparatus
US6611148B2 (en) * 2001-07-24 2003-08-26 Henry H. Clinton Apparatus for the high voltage testing of insulated conductors and oscillator circuit for use with same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1008461A (en) * 1961-03-29 1965-10-27 Post Office Improvements in or relating to cable testing
DE10333241B3 (de) * 2003-07-21 2004-11-18 Neumann Elektrotechnik Gmbh Prüfgerät zur Spannungsprüfung von Kabeln und Kabelgarnituren mit VLF-Spannung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013120539A1 (de) 2012-02-18 2013-08-22 Baur Prüf- Und Messtechnik Gmbh Schaltungsanordnung zur erzeugung einer prüfspannung insbesondere zur isolations prüfung von verlegten energiekabeln

Also Published As

Publication number Publication date
AT506816A4 (de) 2009-12-15
ES2378626T3 (es) 2012-04-16
EP2281207B1 (de) 2011-11-02
ATE532080T1 (de) 2011-11-15
US20110062967A1 (en) 2011-03-17
AT506816B9 (de) 2010-01-15
EP2281207A2 (de) 2011-02-09
US8542022B2 (en) 2013-09-24
WO2009143544A3 (de) 2010-01-21
AT506816B1 (de) 2009-12-15

Similar Documents

Publication Publication Date Title
EP2281207B1 (de) Vlf-prüfgenerator
DE3750541T2 (de) Gerät zur Hochfrequenzerzeugung in abgestimmten Schwingkreisen.
DE2423718C3 (de) Schaltungsanordnung zur Erzeugung einer Wechselspannung
DE19908124C2 (de) Wechselrichter ohne Oberschwingungen
DE69619720T2 (de) Geschalteter Invertermodulator
EP2281206B1 (de) Vlf-prüfgenerator
EP0212172A1 (de) Verfahren und Kompensationseinrichtung zur Kompensation von Stromschwingungen
DE19513441B4 (de) Verfahren zur Erzeugung einer Prüfspannung für die Prüfung elektrischer Betriebsmittel sowie Schaltungsanordnung zur Ausführung des Verfahrens
DE2814320C2 (de) Röntgendiagnostikgenerator mit einer seinen Hochspannungstransformator aus einem Netzgleichrichter speisenden, zwei Wechselrichter aufweisenden Wechselrichterschaltung
DE4443551A1 (de) Anordnung zur Leistungsversorgung eines elektrischen Verbrauchers, insbesondere Röntgen-Apparat
EP0026374B1 (de) Vorrichtung zur Übertragung elektrischer Energie hoher Leistung aus einem dreiphasigen Versorgungsnetz höherer Frequenz in ein einphasiges Lastnetz niedrigerer Frequenz
DE3125240A1 (de) Gleichhochspannungsgenerator
DE1638505C3 (de) Frequenzumformer
DE4311455C2 (de) Vorrichtung zur Erzeugung von Spannungs- oder Strompulsen
DE102010054005A1 (de) Elektrisches Gerät mit einem Wechselrichter und einem EMV Filter
DE478645C (de) Anordnung zum Umformen von Gleichstrom in Wechselstrom mittels einer Gruppe abwechselnd arbeitender Roehrenumformer
DE2718999A1 (de) Spannungs- oder stromgeregelter spannungswandler
WO2017167477A1 (de) Vorrichtung und verfahren zum aufprägen eines elektrischen stromes
DE705021C (de) Steuereinrichtung fuer mit gittergesteuerten Dampf- oder Gasentladungsstrecken arbeitende Wechselrichter
DE1557098A1 (de) Verfahren und Vorrichtung zur Regelung der Arbeitsspannung eines mit Gleichspannung gespeisten elektrostatischen Staubabscheiders
DE505461C (de) Frequenzvervielfaeltiger
DE10250213A1 (de) Schaltungsanordnung zur Erzeugung von Ultraschall
AT269995B (de) Anordnung mit einem Umrichter
EP0596152A1 (de) Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen
DE916962C (de) Frequenzwandler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753308

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009753308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12994227

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE