WO2009142101A1 - 冷凍サイクル - Google Patents

冷凍サイクル Download PDF

Info

Publication number
WO2009142101A1
WO2009142101A1 PCT/JP2009/058336 JP2009058336W WO2009142101A1 WO 2009142101 A1 WO2009142101 A1 WO 2009142101A1 JP 2009058336 W JP2009058336 W JP 2009058336W WO 2009142101 A1 WO2009142101 A1 WO 2009142101A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
heat exchanger
internal heat
capacity
Prior art date
Application number
PCT/JP2009/058336
Other languages
English (en)
French (fr)
Inventor
金子智
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41340033&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009142101(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to CN2009801189126A priority Critical patent/CN102037292A/zh
Priority to US12/993,458 priority patent/US20110067435A1/en
Priority to EP09750463.3A priority patent/EP2309208B1/en
Publication of WO2009142101A1 publication Critical patent/WO2009142101A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Definitions

  • the present invention relates to a refrigeration cycle, and particularly to a refrigeration cycle that can be operated with a high refrigeration capacity when a new refrigerant is used.
  • a vapor compression refrigeration cycle used for a vehicle air conditioner or the like has a basic structure as shown in FIG.
  • a refrigeration cycle 1 includes a compressor 2 for compressing refrigerant, a condenser 3 for condensing the compressed refrigerant, an expansion valve 4 as decompression / expansion means for decompressing / expanding the condensed refrigerant, An evaporator 5 that evaporates the expanded refrigerant, and an internal heat exchanger 6 that performs heat exchange between the condenser outlet-side refrigerant and the evaporator outlet-side refrigerant are provided. It is circulated in the direction of the arrow while changing the state.
  • R134a can be cited as a typical current refrigerant, but research and development of a new refrigerant is being conducted with the aim of further improving the global warming potential (GWP) (for example, non-patented). Reference 1). Recently, R1234yf has been announced as a new refrigerant aiming at such improvements, and it has become possible to conduct tests and research on application to refrigeration cycles used in, for example, vehicle air conditioners. .
  • GWP global warming potential
  • an object of the present invention is to pay attention to the appearance of the new refrigerant as described above, and particularly when the used refrigerant is changed to a specific new refrigerant R1234yf, a high refrigeration capacity equal to or higher than that of the conventional refrigeration cycle using the refrigerant R134a. It is to provide a refrigeration cycle that can be operated with.
  • a refrigeration cycle includes a compressor that compresses a refrigerant, a condenser that condenses the compressed refrigerant, a decompression / expansion unit that decompresses / expands the condensed refrigerant, and a decompression / expansion unit.
  • a refrigeration cycle comprising an evaporator for evaporating the expanded refrigerant, and an internal heat exchanger for exchanging heat between the condenser outlet side refrigerant and the evaporator outlet side refrigerant, R1234yf is used as the refrigerant,
  • the heat exchange amount by the internal heat exchanger is set to a predetermined value or more obtained in advance by simulation or test.
  • FIG. 2 shows that the internal heat exchanger is not used under the same calculation conditions (condensation temperature, evaporation temperature, degree of superheat, degree of supercooling, etc.) in the refrigeration cycle having the same basic configuration as shown in FIG.
  • the calculation results of the refrigerating capacity are compared.
  • the internal heat exchanger is used. It shows how to improve the refrigerating capacity by using The horizontal axis in FIG.
  • the vertical axis indicates the refrigeration capacity of the entire refrigeration cycle.
  • the current refrigerant R134a is used under conditions where the internal heat exchanger is not used (because the internal heat exchanger is not used, it is displayed as a constant refrigeration capacity with respect to the heat exchange amount of the internal heat exchanger)
  • the refrigeration capacity changes as shown in FIG. 2 due to the installation of the internal heat exchanger. That is, if the amount of heat exchange by the internal heat exchanger is greater than a certain value, that is, 0.7 kW or more in the comparative characteristic diagram shown in FIG.
  • this new refrigerant R1234yf In the case of use, it turns out that the refrigerating capacity improvement effect by an internal heat exchanger installation is acquired reliably. However, when the amount of heat exchange by the internal heat exchanger is smaller than a certain value, in the comparative characteristic diagram shown in FIG. 2, when it is smaller than 0.7 kW, the case of R1234yf is better than the case of R134a. It can be seen that the refrigeration capacity is low, and the effect of installing the internal heat exchanger cannot be obtained as compared with the case of R134a.
  • the present invention is based on this technical idea, and when using the new refrigerant R1234yf as a refrigerant, the heat exchange amount by the internal heat exchanger is set to a predetermined value or more obtained in advance by simulation or test. To do. That is, the right region (region indicated by hatching) of the intersection of the characteristic line in the case of R134a and the characteristic line in the case of R1234yf in FIG.
  • the refrigerating capacity when the predetermined value of the heat exchange amount by the internal heat exchanger is the same under the same condition when R1234yf is used as the refrigerant is the refrigeration cycle when R134a is used as the refrigerant. It is set to be more than the overall refrigeration capacity.
  • the internal heat exchanger In order to set the heat exchange amount by the internal heat exchanger to a predetermined value or more as described above, specifically, if the performance of the evaporator or condenser used in each refrigeration cycle is known in advance, the internal heat By arbitrarily adjusting the size, thermal efficiency, etc. of the exchanger, it is possible to set the value to a predetermined value or more as described above.
  • Such a refrigeration cycle according to the present invention is basically applicable to any refrigeration cycle in which the new refrigerant R1234yf is to be used.
  • a vehicle air conditioner in which efficient operation is required stably over a long period of time. Suitable for the refrigeration cycle used in the apparatus.
  • the refrigeration cycle 1 includes a compressor 2 that compresses refrigerant, a condenser 3 that condenses the compressed refrigerant, and expansion as decompression / expansion means that decompresses and expands the condensed refrigerant.
  • a valve 4 an evaporator 5 that evaporates the decompressed and expanded refrigerant, and an internal heat exchanger 6 that performs heat exchange between the condenser outlet-side refrigerant and the evaporator outlet-side refrigerant are provided.
  • the present invention basically, the right side area (the area indicated by hatching) of the intersection of the characteristic line in the case of R134a and the characteristic line in the case of R1234yf shown in FIG. That is, in this region, when the new refrigerant R1234yf is used, the refrigeration capacity can be improved as compared with the conventional refrigerant R134a by providing an internal heat exchanger. Therefore, in the internal heat exchanger heat exchange amount condition at the intersection of the characteristic line in the case of R134a and the characteristic line in the case of R1234yf in FIG. 2 described above, for example, when the condensation temperature of the refrigerant is changed, A characteristic A in FIG.
  • FIG. 3 shows how the capacity improvement effect (capacity ratio of the internal heat exchanger) by the internal heat exchanger with respect to the refrigeration capacity of the entire cycle becomes.
  • FIG. 3 shows the relationship of the capacity ratio of the internal heat exchanger to the refrigeration capacity of the entire refrigeration cycle with respect to the condensation temperature, assuming that the efficiency of the internal heat exchanger is 100%.
  • This is characteristic B. That is, if the capacity of the internal heat exchanger is between the characteristic curve A and the characteristic curve B, the effect of improving the refrigerating capacity equal to or higher than that when the R134a is used can be obtained. Since the efficiency of the vessel is less than 100%, the actual setting or control region is located between these characteristic curves A and B.
  • the intersection of the characteristic curves A and B in the calculation result shown in FIG. 3 is located at a position where the capacity ratio of the internal heat exchanger to the refrigeration capacity is 6.6%, so that the capacity ratio is 7% or more. Then, from the relational characteristics shown in FIG. 3, the effect of improving the refrigerating capacity is surely obtained by the internal heat exchanger. Although the upper limit value of the capacity ratio is not particularly limited, the calculation result shown in FIG. 3 confirms that the effect of improving the refrigeration capacity is surely obtained up to about 30%.
  • Table 1 shows an example of calculation results under certain conditions in the case of R134a and R1234yf as described above.
  • the prerequisites for the calculation are as follows. Evaporation temperature: 0deg ⁇ Condensation temperature: 50deg -Evaporator outlet superheat degree: 5deg ⁇ Condenser outlet supercooling degree: 5deg ⁇ Heat exchanger ⁇ Circuit pressure loss: None assumed ⁇ Compressor efficiency: 100% assumed
  • the refrigeration capacity per unit volume becomes equal to or higher than that of the conventional refrigerant R134a as shown in the part surrounded by the bold line in Table 1.
  • I understand that I can do it. Therefore, it is not necessary to increase the speed of the compressor.
  • the compressor suction refrigerant density is reduced, the refrigerant circulation amount is reduced, and the pressure loss can be reduced.
  • the degree of superheat of the compressor suction side refrigerant increases, the compressor discharge temperature becomes higher than R134a, and the efficiency can be improved.
  • the coefficient of performance (COP) can be equal to or higher than that of R134a.
  • FIGS. 4 to 6 show cases where the temperature efficiency of the internal heat exchanger in the case of R1234yf is different.
  • the conditions in each figure are as follows.
  • each example in the above is shown as a simulation result by calculation, separately from this, the above-mentioned predetermined value obtained by an actual test and determined by referring to the above-mentioned predetermined value or both the simulation result and the test result. It is also possible to use a value.
  • the refrigeration cycle according to the present invention can be applied to any refrigeration cycle in which R1234yf is scheduled to be used, and is particularly suitable as a refrigeration cycle used in a vehicle air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 圧縮機と、凝縮器と、減圧・膨張手段と、蒸発器と、凝縮器出口側冷媒と蒸発器出口側冷媒との間で熱交換を行う内部熱交換器を備えた冷凍サイクルにおいて、冷媒としてR1234yfを使用するとともに、内部熱交換器による熱交換量を、予めシミュレーションまたは試験により求めた所定値以上とすることを特徴とする冷凍サイクル。使用冷媒を新冷媒R1234yfに変更した場合に、従来の冷媒R134aを用いた冷凍サイクルと同等以上の高い冷凍能力をもって運転可能な冷凍サイクルを提供できる。

Description

冷凍サイクル
 本発明は、冷凍サイクルに関し、とくに、新しい冷媒を用いる場合に高い冷凍能力をもって運転可能な冷凍サイクルに関する。
 例えば車両用空調装置等に用いられる蒸気圧縮式冷凍サイクルとして、図1に示すような基本構成を有するものが知られている。図1において、冷凍サイクル1は、冷媒を圧縮する圧縮機2と、圧縮した冷媒を凝縮する凝縮器3と、凝縮した冷媒を減圧・膨張させる減圧・膨張手段としての膨張弁4と、減圧・膨張した冷媒を蒸発させる蒸発器5と、凝縮器出口側冷媒と蒸発器出口側冷媒との間で熱交換を行う内部熱交換器6とを備えており、この冷凍サイクル1中を冷媒がその状態を変化させながら矢印の方向に循環される。このように冷凍サイクル1中に内部熱交換器6を設けると、一般的に冷凍能力を向上させることが可能であることが知られている。ところが、現状の代表的な冷媒であるR134aを使用する場合には、内部熱交換器6による効果が比較的低いため、現実には殆ど用いられていないのが実情である。
 上記の如く、現状の代表的な冷媒としてR134aを挙げることができるが、地球温暖化係数(GWP)等のさらなる改善を目指して、新冷媒の研究、開発が行われている(例えば、非特許文献1)。このような改善を目指した新冷媒として、最近、R1234yfが公表され、例えば、車両用空調装置等に用いられる冷凍サイクルへの適用についても、試験、研究を行うことが可能な状況となってきた。
冷凍2008年3月号第83巻第965号
 しかしながら、新冷媒R1234yfを単に現行の冷凍サイクルにそのまま適用した場合、現行の冷媒R134aを用いた冷凍サイクルに比べ、冷凍能力、成績係数(COP)ともに低くなる可能性が高い。また、その場合、冷凍能力を改善するためには、上述のような内部熱交換器6を用いることが有効であると考えられるものの、その効果の度合については明らかにされていない。
 そこで本発明の課題は、上記のような新冷媒の出現に着目し、とくに使用冷媒を特定の新冷媒R1234yfに変更した場合に、従来の冷媒R134aを用いた冷凍サイクルと同等以上の高い冷凍能力をもって運転可能な冷凍サイクルを提供することにある。
 上記課題を解決するために、本発明に係る冷凍サイクルは、冷媒を圧縮する圧縮機と、圧縮した冷媒を凝縮する凝縮器と、凝縮した冷媒を減圧・膨張させる減圧・膨張手段と、減圧・膨張した冷媒を蒸発させる蒸発器と、凝縮器出口側冷媒と蒸発器出口側冷媒との間で熱交換を行う内部熱交換器とを備えた冷凍サイクルにおいて、冷媒としてR1234yfを使用するとともに、前記内部熱交換器による熱交換量を、予めシミュレーションまたは試験により求めた所定値以上とすることを特徴とするものからなる。
 図2に、図1に示したのと同様の基本構成を備えた冷凍サイクルにおいて、同一の計算条件(凝縮温度、蒸発温度、過熱度、過冷却度など)における、内部熱交換器未使用の条件で現行冷媒R134aを使用した場合と、内部熱交換器使用の条件で新冷媒R1234yfを使用した場合の冷凍能力の計算結果を比較し、この新冷媒R1234yfを使用した場合には内部熱交換器を使用することにより、どのように冷凍能力の向上をはかれるかを示している。図2の横軸は、内部熱交換器の熱交換量(内部熱交換器の能力)を示しており、縦軸は、冷凍サイクル全体としての冷凍能力を示している。内部熱交換器未使用の条件で現行冷媒R134aを使用した場合(内部熱交換器未使用であるので、内部熱交換器の熱交換量に対しては一定の冷凍能力として表示されている)に比べ、R134aとは特性の異なる新冷媒R1234yfを使用する場合には、内部熱交換器設置により図2に示すように冷凍能力が変化する。つまり、内部熱交換器による熱交換量として、ある値以上、つまり、図2に示した比較特性図では0.7kW以上得られれば(0.7kW以上の領域に入れば)、この新冷媒R1234yf使用の場合において、内部熱交換器設置による冷凍能力向上効果が確実に得られることが分かる。しかし、内部熱交換器による熱交換量がある値よりも小さい場合には、図2に示した比較特性図では0.7kWよりも小さい場合には、R134aの場合よりもR1234yfの場合の方が冷凍能力は低くなり、R134aの場合に比べて内部熱交換器設置の効果が得られないことが分かる。したがって、内部熱交換器による熱交換量をある値(つまり、所定値)以上とすることによって初めて、R1234yfを使用する場合においてR134aの場合と同等以上の冷凍能力が得られ、実際に冷凍能力を向上できるようになることが分かる。本発明は、この技術思想に基づくものであり、冷媒として新冷媒R1234yfを使用する場合に、内部熱交換器による熱交換量を、予めシミュレーションまたは試験により求めた所定値以上とすることを特徴とするものである。つまり、図2におけるR134aの場合の特性線とR1234yfの場合の特性線との交点の右側領域(ハッチングで示した領域)を用いる。換言すれば、上記内部熱交換器による熱交換量の所定値が、同一条件下で、冷媒にR1234yfを使用した場合の冷凍サイクル全体としての冷凍能力が、冷媒にR134aを使用した場合の冷凍サイクル全体としての冷凍能力以上となるように設定される。
 上記のように内部熱交換器による熱交換量を所定値以上とするためには、具体的には、各冷凍サイクルに用いられる蒸発器乃至は凝縮器の性能があらかじめ分かっていれば、内部熱交換器の大きさ、熱効率等を任意に調整することで上記のように所定値以上とすることが可能である。このような考えの基に作られた冷凍サイクルにおいては、内部熱交換器のおおよその能力があらかじめ分かっているので、内部熱交換器の圧縮機側への出口側冷媒の過熱度に応じて、減圧・膨張手段の開度を適切に制御することで、上述の如く、冷凍サイクル全体としての冷凍能力としてR134aを使用した場合の冷凍能力以上の冷凍能力が安定して得られるようになる。
  このような本発明に係る冷凍サイクルは、基本的には新冷媒R1234yfを使用しようとするあらゆる冷凍サイクルに適用可能であるが、とくに効率の良い運転が長期間にわたって安定して求められる車両用空調装置に用いられる冷凍サイクルに好適である。
 本発明に係る冷凍サイクルによれば、使用冷媒を新冷媒であるR1234yfに変更した場合に、従来の冷媒R134aを使用した場合と同等以上の高い冷凍能力を実現でき、併せて新冷媒R1234yf自体が有する優れた地球温暖化係数(GWP)等の改善特性を発揮させることができる。
本発明で対象としている冷凍サイクルの基本機器配置を示す概略構成図である。 冷媒R1234yfとR134aの特性を比較した内部熱交換器熱交換量と冷凍能力との関係図である。 冷媒R1234yfを使用する場合の凝縮温度と内部熱交換器能力割合との関係図である。 冷媒R1234yfとR134aのある条件時の冷凍サイクルの運転状態の一例を示すモリエル線図である。 冷媒R1234yfとR134aの別の条件時の冷凍サイクルの運転状態の一例を示すモリエル線図である。 冷媒R1234yfとR134aのさらに別の条件時の冷凍サイクルの運転状態の一例を示すモリエル線図である。
 以下に、本発明について、実施の形態とともに図面を参照しながら説明する。
 本発明に係る冷凍サイクルの配設機器の基本構成としては、図1に示したものと同等のものでよい。図1においては、前述したように、冷凍サイクル1は、冷媒を圧縮する圧縮機2と、圧縮した冷媒を凝縮する凝縮器3と、凝縮した冷媒を減圧・膨張させる減圧・膨張手段としての膨張弁4と、減圧・膨張した冷媒を蒸発させる蒸発器5と、凝縮器出口側冷媒と蒸発器出口側冷媒との間で熱交換を行う内部熱交換器6とを備えている。
 また、前述の如く、本発明では、基本的には図2に示したR134aの場合の特性線とR1234yfの場合の特性線との交点の右側領域(ハッチングで示した領域)を用いる。つまり、この領域では、新冷媒R1234yfを使用した場合に、内部熱交換器を備えることによって、従来の冷媒R134aの場合よりも冷凍能力を向上できる。そこで、上記図2における、R134aの場合の特性線とR1234yfの場合の特性線との交点の内部熱交換器熱交換量条件において、他の条件、例えば冷媒の凝縮温度を変化させた場合、冷凍サイクル全体の冷凍能力に対する内部熱交換器による能力向上効果(内部熱交換器の能力割合)がどのようになるかを表したのが、図3の特性Aである。そして、この特性Aに対し、内部熱交換器の効率を100%と仮定した場合の、凝縮温度に対する冷凍サイクル全体の冷凍能力に対する内部熱交換器の能力割合の関係を示したのが、図3の特性Bである。すなわち、この特性曲線Aと特性曲線Bとの間に内部熱交換器の能力があれば、R134aを使用した場合と同等以上の冷凍能力向上効果が得られることになり、実際には内部熱交換器の効率は100%未満であるから、実際の設定、あるいは制御領域はこれら特性曲線AとBとの間に位置することになる。
 上記図3に示した計算結果における特性曲線AとBとの交点は、冷凍能力に対する内部熱交換器の能力割合が6.6%の箇所に位置しているので、該能力割合が7%以上であれば、図3に示した関係特性からは、確実に、内部熱交換器により冷凍能力向上効果が得られることになる。能力割合の上限値はとくに限定しないが、図3に示した計算結果からは、30%程度までは確実に冷凍能力向上効果が得られることを確認している。
 上記のようなR134aの場合とR1234yfの場合の、ある条件下における計算結果の一例を表1に示す。計算の前提条件は、以下の通りである。
・蒸発温度:0deg
・凝縮温度:50deg
・蒸発器出口過熱度:5deg
・凝縮器出口過冷却度:5deg
・熱交換器・回路圧損:無しと仮定
・圧縮機効率:100%と仮定
Figure JPOXMLDOC01-appb-T000001
 新冷媒R1234yfの場合、内部熱交換器の熱交換量を上げていくことで、表1におけるとくに太線で囲んだ部分に示すように、単位体積当たりの冷凍能力は従来の冷媒R134aと同等以上にできることが分かる。したがって、圧縮機の増速などが必要なくなる。また、圧縮機吸入冷媒密度が小さくなるため、冷媒循環量が減少し、圧力損失を低減できる。また、圧縮機吸入側冷媒過熱度が大きくなり、圧縮機吐出温度がR134aよりも高くなり、効率の向上をはかることができる。さらに、圧縮機動力(消費動力)の増加は比較的小さいため、成績係数(COP)もR134aと同等以上にできる。
 また、モリエル線図上において、R134aとR1234yfを比較した結果の例を図4~図6に示す。図4~図6は、R1234yfの場合の内部熱交換器の温度効率が異なる場合をそれぞれ示している。各図における条件は以下の通りである。
(1)図4に示したモリエル線図:
・蒸発温度:0deg
・凝縮温度:50deg
・蒸発器出口過熱度:5deg
・凝縮器出口過冷却度:5deg
・R134aについては内部熱交換器無しの特性
・R1234yfについては、内部熱交換器有りでその温度効率が75.3%
(2)図5に示したモリエル線図:
・蒸発温度:0deg
・凝縮温度:50deg
・蒸発器出口過熱度:5deg
・凝縮器出口過冷却度:5deg
・R134aについては内部熱交換器無しの特性
・R1234yfについては、内部熱交換器有りでその温度効率が93.0%
(3)図6に示したモリエル線図:
・蒸発温度:0deg
・凝縮温度:50deg
・蒸発器出口過熱度:5deg
・凝縮器出口過冷却度:5deg
・R134aについては内部熱交換器無しの特性
・R1234yfについては、内部熱交換器有りでその温度効率が99.9%
 なお、上記における各例は、計算によるシミュレーション結果として示してあるが、これとは別に実際の試験によって求めて前述の所定値、あるいはシミュレーション結果と試験結果の両方を参照して定めた前述の所定値を用いることも可能である。
 本発明に係る冷凍サイクルは、R1234yfの使用を予定しているあらゆる冷凍サイクルに適用可能であり、とくに車両用空調装置に用いられる冷凍サイクルとして好適なものである。
1 冷凍サイクル
2 圧縮機
3 凝縮器
4 減圧・膨張手段としての膨張弁
5 蒸発器
6 内部熱交換器

Claims (6)

  1.  冷媒を圧縮する圧縮機と、圧縮した冷媒を凝縮する凝縮器と、凝縮した冷媒を減圧・膨張させる減圧・膨張手段と、減圧・膨張した冷媒を蒸発させる蒸発器と、凝縮器出口側冷媒と蒸発器出口側冷媒との間で熱交換を行う内部熱交換器とを備えた冷凍サイクルにおいて、冷媒としてR1234yfを使用するとともに、前記内部熱交換器による熱交換量を、予めシミュレーションまたは試験により求めた所定値以上とすることを特徴とする冷凍サイクル。
  2.  前記内部熱交換器による熱交換量の所定値が、同一条件下で、冷媒にR1234yfを使用した場合の冷凍サイクル全体としての冷凍能力が、冷媒にR134aを使用した場合の冷凍サイクル全体としての冷凍能力以上となるように設定されている、請求項1に記載の冷凍サイクル。
  3.  前記内部熱交換器による熱交換量の所定値が、冷凍サイクル全体としての冷凍能力に対する能力割合として設定されている、請求項1に記載の冷凍サイクル。
  4.  前記内部熱交換器による熱交換量の所定値の前記冷凍サイクル全体としての冷凍能力に対する能力割合が7%以上に設定されている、請求項3に記載の冷凍サイクル。
  5.  前記減圧・膨張手段の開度を前記内部熱交換器の圧縮機側への出口側冷媒の過熱度に応じて制御する、請求項1に記載の冷凍サイクル。
  6.  車両用空調装置に用いられる、請求項1に記載の冷凍サイクル。
PCT/JP2009/058336 2008-05-20 2009-04-28 冷凍サイクル WO2009142101A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801189126A CN102037292A (zh) 2008-05-20 2009-04-28 制冷循环
US12/993,458 US20110067435A1 (en) 2008-05-20 2009-04-28 Refrigeration cycle
EP09750463.3A EP2309208B1 (en) 2008-05-20 2009-04-28 Refrigeration cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008131981A JP5180680B2 (ja) 2008-05-20 2008-05-20 冷凍サイクル
JP2008-131981 2008-05-20

Publications (1)

Publication Number Publication Date
WO2009142101A1 true WO2009142101A1 (ja) 2009-11-26

Family

ID=41340033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058336 WO2009142101A1 (ja) 2008-05-20 2009-04-28 冷凍サイクル

Country Status (5)

Country Link
US (1) US20110067435A1 (ja)
EP (1) EP2309208B1 (ja)
JP (1) JP5180680B2 (ja)
CN (1) CN102037292A (ja)
WO (1) WO2009142101A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918338A (zh) * 2010-05-27 2013-02-06 松下电器产业株式会社 制冷装置和供冷供暖装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032157A (ja) * 2008-07-30 2010-02-12 Denso Corp 冷凍サイクル装置
JP2011179689A (ja) * 2010-02-26 2011-09-15 Hitachi Appliances Inc 冷凍サイクル装置
DE102010033518A1 (de) * 2010-08-05 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Klimaanlage und Verfahren zum Betreiben einer Klimaanlage
AU2011357097B2 (en) * 2011-01-26 2015-01-22 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5792585B2 (ja) * 2011-10-18 2015-10-14 サンデンホールディングス株式会社 冷凍機、冷蔵ショーケース及び自動販売機
JP7473198B2 (ja) 2020-10-16 2024-04-23 京都電子工業株式会社 振動式密度計、及び振動式密度計における気泡混入判定方法
EP4170262A1 (en) * 2021-10-20 2023-04-26 Thermo King Corporation Heat pump, methods of operation and simulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337700A (ja) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd 冷媒冷却回路
JP2006077998A (ja) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置および制御方法
JP2007303379A (ja) * 2006-05-11 2007-11-22 Mitsubishi Electric Corp 圧縮機、回転電機、圧縮機の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392612A (en) * 1984-08-08 1995-02-28 Richard H. Alsenz Refrigeration system having a self adjusting control range
JPH0754207B2 (ja) * 1986-11-25 1995-06-07 日本電装株式会社 冷凍サイクル装置
US4948525A (en) * 1988-04-06 1990-08-14 Nippon Oil Co., Ltd. Lubricating oil compositions for refrigerators
JP2000179960A (ja) * 1998-12-18 2000-06-30 Sanden Corp 蒸気圧縮式冷凍サイクル
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
JP2006505763A (ja) * 2002-11-11 2006-02-16 ボルテックス エアコン バイパスサブクーリングおよびコンポーネントサイズ脱最適化を用いた冷却システム
US6969701B2 (en) * 2004-04-16 2005-11-29 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
JP2006071174A (ja) * 2004-09-01 2006-03-16 Daikin Ind Ltd 冷凍装置
JP4626531B2 (ja) * 2005-04-01 2011-02-09 株式会社デンソー エジェクタ式冷凍サイクル
JP4246189B2 (ja) * 2005-09-07 2009-04-02 株式会社デンソー 冷凍サイクル装置
JP2007155229A (ja) * 2005-12-06 2007-06-21 Sanden Corp 蒸気圧縮式冷凍サイクル
JP4787070B2 (ja) * 2006-05-30 2011-10-05 サンデン株式会社 冷凍サイクル
FR2905633B1 (fr) * 2006-09-08 2008-12-05 Valeo Systemes Thermiques Boucle de climatisation d'un vehicule automobile dont le fluide refrigerant est a base de 1,1,1,2-tetrafluoroproprene et de trifluoroiodomethane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337700A (ja) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd 冷媒冷却回路
JP2006077998A (ja) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置および制御方法
JP2007303379A (ja) * 2006-05-11 2007-11-22 Mitsubishi Electric Corp 圧縮機、回転電機、圧縮機の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REFRIGERATION, vol. 83, no. 965, March 2008 (2008-03-01)
See also references of EP2309208A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918338A (zh) * 2010-05-27 2013-02-06 松下电器产业株式会社 制冷装置和供冷供暖装置

Also Published As

Publication number Publication date
EP2309208B1 (en) 2014-04-16
EP2309208A4 (en) 2011-07-06
US20110067435A1 (en) 2011-03-24
CN102037292A (zh) 2011-04-27
JP5180680B2 (ja) 2013-04-10
JP2009281610A (ja) 2009-12-03
EP2309208A1 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2009142101A1 (ja) 冷凍サイクル
KR101873595B1 (ko) 캐스케이드 히트펌프 장치 및 그 구동 방법
CN110337570B (zh) 空调装置
JP2007240025A (ja) 冷凍装置
JP2005147456A (ja) 空気調和装置
JP6495064B2 (ja) 空調システムの制御装置、空調システム、空調システムの制御プログラム、及び空調システムの制御方法
JP4096984B2 (ja) 冷凍装置
JP2006336943A (ja) 冷凍システムおよび保冷庫
KR20050072299A (ko) 냉난방 공기조화시스템
JPH09152204A (ja) 冷凍サイクル
WO2019021464A1 (ja) 空気調和装置
JP2007309585A (ja) 冷凍装置
JP2011007482A (ja) 空気調和装置
JP2007051788A (ja) 冷凍装置
WO2009096179A1 (ja) 暖房用補助ユニットおよび空気調和装置
WO2014203500A1 (ja) 空気調和機
JP2007298218A (ja) 冷凍装置
KR20080082357A (ko) 공기조화기
KR100549062B1 (ko) 냉장고
JP2007327717A (ja) 空気調和機
JP4104519B2 (ja) 冷凍システム
WO2009136566A1 (ja) 冷凍サイクル
KR20050043089A (ko) 히트 펌프
JP2003302111A (ja) 空気調和装置
KR100488532B1 (ko) 냉동시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118912.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12993458

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009750463

Country of ref document: EP