WO2009142090A1 - 変倍光学系、これを有する光学機器および変倍光学系の製造方法 - Google Patents

変倍光学系、これを有する光学機器および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2009142090A1
WO2009142090A1 PCT/JP2009/058012 JP2009058012W WO2009142090A1 WO 2009142090 A1 WO2009142090 A1 WO 2009142090A1 JP 2009058012 W JP2009058012 W JP 2009058012W WO 2009142090 A1 WO2009142090 A1 WO 2009142090A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
end state
variable magnification
Prior art date
Application number
PCT/JP2009/058012
Other languages
English (en)
French (fr)
Inventor
聡 早川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US12/866,355 priority Critical patent/US8339712B2/en
Publication of WO2009142090A1 publication Critical patent/WO2009142090A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive

Definitions

  • the present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
  • zooming system of the zooming optical system there is a zooming system using a multi-group zoom including five or more lens groups (see, for example, Patent Documents 1 and 2).
  • zooming can be assigned to each group, and zooming becomes easy.
  • Patent Document 1 the zoom ratio of the second and fourth lens groups is large, and the zoom ratio of the fifth lens group is set small.
  • Patent Document 2 the zoom ratios of the third and fourth lens groups are set small, and the zoom ratio of the fifth lens group is set large.
  • the zoom ratio of a specific lens group is large, and zooming is performed in this group, while the zoom ratio of the other lens groups is small, and the zoom ratio of each lens group is small. There was a problem that the ratio was not set appropriately.
  • the present invention has been made in view of such a problem.
  • the zoom ratio of each lens group can be set appropriately. It is an object of the present invention to provide a magnifying optical system, an optical apparatus having the magnifying optical system, and a method for manufacturing a magnifying optical system.
  • variable magnification optical system of the present invention has first to sixth lens groups arranged along the optical axis, and the fifth lens group has a lateral magnification in the telephoto end state.
  • ⁇ 5T is set and the lateral magnification ⁇ 5W in the wide-angle end state is satisfied
  • ⁇ 3.20 is satisfied.
  • the total length of the variable magnification optical system in the telephoto end state is TLT and the focal length of the variable magnification optical system in the telephoto end state is fT
  • the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
  • the distance between the third lens group and the fourth lens group is preferably increased.
  • the lens group disposed closest to the object side has a positive refractive power.
  • the lens group arranged closest to the object side is fixed in the optical axis direction with respect to the image plane when zooming from the wide-angle end state to the telephoto end state.
  • the lateral magnification in the telephoto end state is ⁇ 2T and the lateral magnification in the wide-angle end state is ⁇ 2W, it is preferable that the following formula ⁇ 2T / ⁇ 2W ⁇ 6.100 is satisfied.
  • the focal length of the second lens group is f2 and the focal length of the third lens group is f3, it is preferable that the condition of the following expression
  • the lens group disposed on the object side of the fifth lens group has a negative refractive power.
  • the lens group disposed on the image side of the fifth lens group has a negative refractive power.
  • the second lens group has a negative refractive power
  • the third lens group and the fifth lens group have a positive refractive power
  • the fourth lens group is preferably fixed in the optical axis direction with respect to the image plane when zooming from the wide-angle end state to the telephoto end state.
  • the stop is preferably disposed on the object side or the image side of the fourth lens group, and is fixed in the optical axis direction with respect to the image plane when zooming from the wide-angle end state to the telephoto end state. .
  • the second lens group is moved so that all or a part thereof has a component in a direction perpendicular to the optical axis.
  • optical apparatus of the present invention has the above-described variable magnification optical system.
  • variable magnification optical system manufacturing method further includes a step of arranging the first to sixth lens groups along the optical axis, and the fifth lens group has a lateral magnification ⁇ 5T in the telephoto end state.
  • the lateral magnification ⁇ 5W in the wide-angle end state is given, the following formula 0.65 ⁇
  • the zoom optical system capable of appropriately setting the zoom ratio of each lens group, the optical apparatus including the zoom lens, and the zoom device A double method can be provided.
  • FIG. 7 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.
  • (A), (b) is the aberration diagram at the time of infinity focusing in the telephoto end state of the variable magnification optical system concerning the 1st example, and the meridional lateral aberration diagram at the time of blurring correction.
  • FIG. 6 is a diagram illustrating various aberrations when focusing at a short distance in an intermediate focal length state of the variable magnification optical system according to the first example.
  • (A), (b) is the aberration diagram at the time of a short distance focusing in the telephoto end state of the variable magnification optical system concerning the 1st example, and the meridional lateral aberration diagram at the time of blurring correction. It is a figure which shows the structure and zoom locus
  • FIG. 12 is a diagram illustrating various aberrations at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the second example.
  • (A), (b) is the aberration diagram at the time of infinity focusing in the telephoto end state of the variable magnification optical system concerning 2nd Example, and the meridional lateral aberration figure at the time of blurring correction.
  • FIG. 10 is a diagram illustrating various aberrations when focusing at a short distance in the intermediate focal length state of the variable magnification optical system according to the second example.
  • (A), (b) is the aberration diagram at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the second example, and the meridional lateral aberration diagram when blur correction is performed. It is a figure which shows the structure and zoom locus
  • (A), (b) is the aberration diagram at the time of infinity focusing in the wide angle end state of the variable magnification optical system concerning the 3rd example, and the meridional lateral aberration diagram at the time of blurring correction. It is an aberration diagram at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the third example.
  • (A), (b) is the aberration diagram at the time of infinity focusing in the telephoto end state of the variable magnification optical system concerning 3rd Example, and the meridional lateral aberration figure at the time of blurring correction.
  • FIG. 10 is a diagram illustrating various aberrations during focusing at a short distance in the intermediate focal length state of the variable magnification optical system according to the third example.
  • (A), (b) is the aberration diagram at the time of a short distance focusing in the telephoto end state of the variable magnification optical system concerning the 3rd example, and the meridional lateral aberration diagram at the time of blurring correction. It is a figure which shows the structure and zoom locus
  • FIG. 12 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • (A), (b) is the aberration diagram at the time of infinity focusing in the telephoto end state of the variable magnification optical system concerning a 4th example, and the meridional lateral aberration figure at the time of blurring correction.
  • FIG. 10 is a diagram illustrating various aberrations during focusing at a short distance in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • (A), (b) is the aberration diagram at the time of a short distance focusing in the telephoto end state of the variable magnification optical system concerning the 4th example, and the meridional lateral aberration diagram at the time of blurring correction.
  • It is a schematic sectional view of a digital single-lens reflex camera CAM provided with a variable magnification optical system having the above configuration as a photographic lens. It is a flowchart which shows the manufacturing method of the said variable magnification optical system.
  • the focal length of the entire zoom optical system is f
  • the focal length of the first lens group G1 is f1
  • the i-th lens group is expressed by the following equation (a) where ⁇ i is the lateral magnification of.
  • the focal length of the entire system in the telephoto end state is fT
  • the lateral magnification of the i-th lens group in the telephoto end state is ⁇ iT, it is expressed by the following formula (c).
  • fT f1 ⁇ ⁇ 2T ⁇ ⁇ 3T ⁇ ⁇ 4T ⁇ ⁇ 5T ⁇ ⁇ 6T (c)
  • the zoom ratio Zi of a specific lens group is the same as the zoom ratio Z of the entire system, the zoom ratios Zi of other lens groups are all 1. It will get better.
  • the zoom ratio Zi of a specific lens group is larger than the zoom ratio Z of the entire zoom optical system, the zoom ratio Zi of other lens groups is smaller than 1, and the zoom ratio Z is Does not contribute to enlargement.
  • the zoom ratio Zi of the specific lens group is remarkably increased while the zoom ratio Zi of the other lens groups is remarkably reduced. Therefore, in the zoom optical system of the present embodiment, in order to achieve the predetermined zoom ratio Z, the zoom ratio can be appropriately set in each lens group, and the zoom ratio can be shared among the lens groups. preferable.
  • this embodiment has the first lens group G1 to the sixth lens group G6 arranged in order from the object side, as shown in FIG. 1, and the fifth lens group G5 has a telephoto end state.
  • the condition of the following expression (1) is satisfied.
  • Conditional expression (1) defines the ratio between the lateral magnification ⁇ 5T of the fifth lens group G5 in the telephoto end state and the lateral magnification ⁇ 5W of the fifth lens group G5 in the wide-angle end state.
  • the present variable magnification optical system can achieve good optical performance by satisfying conditional expression (1). If the upper limit of conditional expression (1) is exceeded, the zoom ratio of the fifth lens group G5 increases, and the zoom ratio of the other lens groups decreases, making it difficult to correct spherical aberration. On the other hand, if the lower limit of conditional expression (1) is not reached, the zoom ratio of the fifth lens group G5 becomes small, and the zoom ratios of the other lens groups become large, making it difficult to correct coma.
  • the condition of the following expression (2) is satisfied. It is preferable to do.
  • Conditional expression (2) defines the ratio between the full length TLW of the zooming optical system in the wide-angle end state and the focal length fW of the zooming optical system in the wide-angle end state.
  • the present variable magnification optical system can realize good optical performance by satisfying the conditional expression (2).
  • This variable magnification optical system has a retrofocus type power arrangement in the wide-angle end state. If the upper limit of conditional expression (2) is exceeded, the retrofocus type power arrangement becomes even stronger. Correction becomes difficult. On the other hand, if the lower limit value of conditional expression (2) is not reached, the total length of the variable magnification optical system is shortened, making it difficult to correct spherical aberration.
  • conditional expression (2) In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (2) to 3.00. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (2) to 6.00.
  • the condition of the following expression (3) is satisfied. It is preferable to do.
  • Conditional expression (3) defines the ratio between the total length TLT of the zooming optical system in the telephoto end state and the focal length fT of the zooming optical system in the telephoto end state.
  • the present variable magnification optical system can realize good optical performance by satisfying the conditional expression (3).
  • this variable power optical system has a telephoto power arrangement in the telephoto end state. If the upper limit of conditional expression (3) is exceeded, the total length of this variable power optical system becomes longer and the size is increased. Correction of chromatic aberration becomes difficult. On the other hand, if the lower limit value of conditional expression (3) is not reached, the telephoto power arrangement becomes stronger, making it difficult to correct spherical aberration.
  • conditional expression (3) it is preferable to set the lower limit value of conditional expression (3) to 0.644. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (3) to 0.690.
  • the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the third lens group. It is preferable that the distance from G3 decreases and the distance between the third lens group G3 and the fourth lens group G4 increases. This facilitates correction of field curvature and distortion.
  • the lens group (the first lens group G1 in the present embodiment) arranged on the most object side has a positive refractive power.
  • the total length of the present variable magnification optical system can be shortened.
  • distortion can be easily corrected.
  • the zooming optical system there is a system in which, when zooming from the wide-angle end state to the telephoto end state, the first lens group arranged closest to the object side is extended to the object side. This is because aberration correction such as field curvature is facilitated by moving the first lens group.
  • the method of moving the first lens group has a problem that decentration tends to occur when the first lens unit is extended.
  • the lens group (the first lens group G1 in the present embodiment) arranged closest to the object side is located with respect to the image plane I when zooming from the wide-angle end state to the telephoto end state. It is preferably fixed in the optical axis direction. As described above, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I, whereby decentration is reduced. Along with this, a reduction in performance due to decentration, particularly curvature of field, is reduced, so that good optical performance can be realized. Further, the operability is improved by fixing the heavy first lens group G1 in the optical axis direction with respect to the image plane.
  • the change of the weight balance due to the movement of the heavy first lens group G1, the unintentional change of the angle of view, and the first lens group G1 falling by its own weight mainly these three problems are solved.
  • the strength can be expected to improve against impact.
  • the condition of the following expression (4) is satisfied.
  • Conditional expression (4) defines the ratio between the lateral magnification ⁇ 2T of the second lens group G2 in the telephoto end state and the lateral magnification ⁇ 2W of the second lens group G2 in the wide-angle end state.
  • the present variable magnification optical system can realize good optical performance by satisfying the conditional expression (4).
  • the zoom ratio of the second lens group G2 becomes large, and the zoom ratios of the lens groups other than the second lens group G2 become small, making it difficult to correct spherical aberration. become.
  • conditional expression (4) it is preferable to set the upper limit value of conditional expression (4) to 5.700.
  • the condition of the following expression (5) is satisfied when the focal length of the second lens group G2 is f2 and the focal length of the third lens group G3 is f3.
  • Conditional expression (5) defines the ratio between the focal length f3 of the third lens group G3 and the focal length f2 of the second lens group G2.
  • the present variable magnification optical system can realize good optical performance by satisfying the conditional expression (5).
  • the focal length f2 of the second lens group G2 is shortened, the entire length of the variable magnification optical system is lengthened, and correction of field curvature becomes difficult.
  • conditional expression (5) it is preferable to set the upper limit of conditional expression (5) to 1.796.
  • the lens group (the fourth lens group G4 in the present embodiment) disposed on the object side of the fifth lens group G5 has a negative refractive power. Thereby, correction of spherical aberration becomes easy, and good optical performance can be realized.
  • the lens group (for example, the sixth lens group G6) disposed on the image side of the fifth lens group G5 has a negative refractive power. Thereby, correction of field curvature is facilitated, and good optical performance can be realized.
  • the second lens group G2 has a negative refractive power
  • the third lens group G3 and the fifth lens group G5 have a positive refractive power. This facilitates correction of spherical aberration, field curvature, and coma aberration, and can realize good optical performance.
  • the fourth lens group G4 is fixed in the optical axis direction with respect to the image plane I when zooming from the wide-angle end state to the telephoto end state.
  • decentration is reduced, performance degradation associated with decentration, particularly spherical aberration is reduced, and good optical performance can be realized.
  • the diaphragm S is fixed in the optical axis direction with respect to the image plane I when zooming from the wide-angle end state to the telephoto end state. This facilitates the configuration of the present variable magnification optical system. As a result, the accuracy of the aperture diameter is improved, the light flux and spherical aberration can be easily adjusted by the aperture S, and good optical performance can be realized.
  • the second lens group G2 is moved so that all or a part thereof has a component in a direction orthogonal to the optical axis. Therefore, image plane correction at the time of image blur occurrence can be performed, and good optical performance can be realized.
  • the fifth lens group G5 is lighter than the first lens group G1, for example, focusing can be performed at high speed.
  • the fifth lens group G5, which is the focusing lens group is lightweight in this way, it is possible to select an ultrasonic motor, and quiet focusing can be realized.
  • FIG. 29 is a schematic cross-sectional view of a digital single-lens reflex camera CAM (optical apparatus) provided with the variable magnification optical system having the above-described configuration as a photographing lens 1.
  • a digital single-lens reflex camera CAM optical apparatus
  • FIG. 29 shows that light from an object (subject) (not shown) is collected by the taking lens 1 and focused on the focusing screen 4 via the quick return mirror 3.
  • the light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6.
  • the photographer can observe the object (subject) image as an erect image through the eyepiece 6.
  • the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 1 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can photograph an object (subject) with the camera CAM.
  • the camera CAM illustrated in FIG. 29 may hold the photographing lens 1 in a detachable manner, or may be formed integrally with the photographing lens 1.
  • the camera CAM may be a so-called single-lens reflex camera or a compact camera that does not have a quick return mirror or the like.
  • Tables 1 to 4 are shown below. These are tables of specifications in the first to fourth examples.
  • f indicates the focal length of the entire system
  • FNO indicates the F number
  • TL indicates the total length of the entire system
  • 2 ⁇ indicates the total angle of view.
  • the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels
  • r is the radius of curvature of each lens surface
  • d is the next optical surface from each optical surface (or The distance on the optical axis to the image plane)
  • nd is the refractive index for the d-line (wavelength 587.6 nm)
  • ⁇ d is the Abbe number for the d-line
  • the aperture stop S is the aperture stop
  • BF is the back Indicates focus.
  • the curvature radius “0.0000” indicates a plane or an opening.
  • f indicates the focal length of the entire system
  • indicates the lateral magnification of the entire system
  • Di indicates the variable surface interval of the i-th surface.
  • Each group focal length data shows the initial surface, focal length, and zoom ratio of each group.
  • Consditional Expression Corresponding Value indicates values corresponding to the conditional expressions (1) to (5).
  • mm is generally used as the focal length f, radius of curvature r, surface interval d, and other length units.
  • the unit is not limited to “mm”, and other appropriate units can be used.
  • FIG. 1 shows a lens configuration diagram and zoom locus of the first embodiment.
  • the variable magnification optical system according to the first example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • Second lens group G2 third lens group G3 having positive refractive power
  • fourth lens group G4 having negative refractive power
  • fifth lens group G5 having positive refractive power
  • negative refractive power And a sixth lens group G6.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a biconvex positive lens. L13.
  • the second lens group G2 includes a cemented lens of a biconvex positive lens L21 and a biconcave negative lens L22, a biconcave negative lens L23, and the object side, which are arranged in order from the object side along the optical axis.
  • the third lens group G3 includes a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33, which are arranged in order from the object side along the optical axis.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 arranged in order from the object side along the optical axis and having a concave surface directed toward the object side.
  • the fifth lens group G5 is composed of a biconvex positive lens L51, a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object, which are arranged in order from the object side along the optical axis. It consists of a lens.
  • the sixth lens group G6 is composed of a cemented lens of a biconvex positive lens L61 and a biconcave negative lens L62, which are arranged in order from the object side along the optical axis.
  • the zoom optical system when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 once increases and then decreases.
  • the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.
  • the aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.
  • the image plane correction at the time of blurring can be performed by shifting the cemented lens of the lens L23 and the lens L24 in the second lens group G2 in a direction orthogonal to the optical axis.
  • the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the blur correction coefficient K is ⁇ 0.890 and the focal length is 81.6 (mm). Therefore, the lens L23 and the lens for correcting the rotational blur of 0.350 ° The amount of movement of the cemented lens with L24 is -0.560 (mm).
  • the blur correction coefficient K is ⁇ 2.500 and the focal length is 392 (mm). Therefore, the lens L23 and the lens L24 for correcting the rotational blur of 0.160 ° The amount of movement of the cemented lens is -0.437 (mm).
  • Table 1 below lists the values of various specifications of the variable magnification optical system according to the first example.
  • the surface numbers 1 to 29 in Table 1 correspond to the surfaces 1 to 29 shown in FIG.
  • variable magnification optical system according to the first example satisfies all the conditional expressions (1) to (5).
  • FIGS. 2A and 2B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example, and meridional transverse aberration diagrams when blur correction is performed. It is.
  • FIG. 3 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.
  • FIGS. 4A and 4B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to the first example, and meridional transverse aberration diagrams when blur correction is performed. It is.
  • FIGS. 1 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.
  • FIGS. 4A and 4B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical
  • FNO represents an F number
  • Y represents an image height (unit: mm).
  • the spherical aberration diagram shows the F-number value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma diagram shows the value of each image height.
  • d indicates various aberrations with respect to the d-line (wavelength 587.6 nm)
  • g indicates various aberrations with respect to the g-line (wavelength 435.8 nm)
  • those not described indicate various aberrations with respect to the d-line.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • FIG. 8 shows a lens configuration diagram and zoom locus of the second embodiment.
  • the variable magnification optical system according to the second example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • Second lens group G2 third lens group G3 having positive refractive power
  • fourth lens group G4 having negative refractive power
  • fifth lens group G5 having positive refractive power
  • negative refractive power And a sixth lens group G6.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a biconvex positive lens. L13.
  • the second lens group G2 includes a cemented lens of a biconvex positive lens L21 and a biconcave negative lens L22, a biconcave negative lens L23, and the object side, which are arranged in order from the object side along the optical axis.
  • the third lens group G3 includes a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33, which are arranged in order from the object side along the optical axis.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 arranged in order from the object side along the optical axis and having a concave surface directed toward the object side.
  • the fifth lens group G5 is composed of a biconvex positive lens L51, a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object, which are arranged in order from the object side along the optical axis. It consists of a lens.
  • the sixth lens group G6 is composed of a cemented lens composed of a positive meniscus lens L61 having a concave surface directed toward the object side and a biconcave negative lens L62, which are arranged in order from the object side along the optical axis.
  • the zoom optical system when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 once increases and then decreases.
  • the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.
  • the aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.
  • the image plane correction at the time of blurring can be performed by shifting the cemented lens of the lens L23 and the lens L24 in the second lens group G2 in a direction orthogonal to the optical axis.
  • the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the blur correction coefficient K is ⁇ 0.890 and the focal length is 81.6 (mm). Therefore, the lens L23 and the lens for correcting the rotational blur of 0.350 ° The amount of movement of the cemented lens with L24 is -0.560 (mm).
  • the blur correction coefficient K is ⁇ 2.500 and the focal length is 392 (mm). Therefore, the lens L23 and the lens L24 for correcting the rotational blur of 0.160 ° The amount of movement of the cemented lens is -0.437 (mm).
  • Table 2 below lists the values of each item of the variable magnification optical system according to the second example.
  • the surface numbers 1 to 29 in Table 2 correspond to the surfaces 1 to 29 shown in FIG.
  • variable magnification optical system according to the second example satisfies all the conditional expressions (1) to (5).
  • FIGS. 9A and 9B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the second example, and meridional lateral aberration diagrams when blur correction is performed. It is.
  • FIG. 10 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example.
  • FIGS. 11A and 11B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the second example, and meridional lateral aberration diagrams when blur correction is performed. It is.
  • FIGS. 10 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example.
  • FIGS. 11A and 11B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical
  • FIG. 5 is a meridional lateral aberration diagram when blur correction is performed.
  • FIG. 15 shows a lens configuration diagram and zoom locus of the third embodiment.
  • the variable magnification optical system according to the third example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • Second lens group G2 third lens group G3 having positive refractive power
  • fourth lens group G4 having negative refractive power
  • fifth lens group G5 having positive refractive power
  • negative refractive power And a sixth lens group G6.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a biconvex positive lens. L13.
  • the second lens group G2 includes a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22 arranged in order from the object side along the optical axis, and a positive meniscus lens having a concave surface facing the object side. It consists of a cemented lens of L23 and a biconcave negative lens L24, and a biconcave negative lens L25.
  • the third lens group G3 is formed by joining a biconvex positive lens L31, a biconvex positive lens L32, and a negative meniscus lens L33 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis. It consists of a lens.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 arranged in order from the object side along the optical axis and having a concave surface directed toward the object side.
  • the fifth lens group G5 is composed of a cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L53.
  • the sixth lens group G6 is composed of a cemented lens of a biconvex positive lens L61 and a biconcave negative lens L62, which are arranged in order from the object side along the optical axis.
  • the zoom optical system when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 once increases and then decreases.
  • the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.
  • the aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.
  • the image plane correction at the time of blurring is performed by shifting the cemented lens of the lens L23 and the lens L24 in the second lens group G2 in a direction orthogonal to the optical axis.
  • the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the shake correction coefficient K is ⁇ 0.800 and the focal length is 81.6 (mm)
  • the amount of movement of the cemented lens with L24 is -0.623 (mm).
  • the shake correction coefficient K is ⁇ 2.100 and the focal length is 392 (mm)
  • the amount of movement of the cemented lens is -0.520 (mm).
  • Table 3 below shows values of various specifications of the variable magnification optical system according to the third example.
  • the surface numbers 1 to 29 in Table 3 correspond to the surfaces 1 to 29 shown in FIG.
  • variable magnification optical system according to the third example satisfies all the conditional expressions (1) to (5).
  • FIGS. 16A and 16B are graphs showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the third example, and meridional transverse aberration diagrams when blur correction is performed. It is.
  • FIG. 17 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the third example.
  • FIGS. 18A and 18B are graphs showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the third example, and meridional transverse aberration diagrams when blur correction is performed. It is.
  • FIGS. 16A and 16B are graphs showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the third example, and meridional transverse aberration diagrams when blur correction is performed. It is.
  • FIGS. 17 is a diagram of various aberrations
  • FIG. 5 is a meridional lateral aberration diagram when blur correction is performed.
  • FIG. 22 shows a lens configuration diagram and zoom locus of the fourth example.
  • the variable magnification optical system according to the fourth example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • Second lens group G2 third lens group G3 having positive refractive power
  • fourth lens group G4 having negative refractive power
  • fifth lens group G5 having positive refractive power
  • negative refractive power And a sixth lens group G6.
  • the first lens group G1 is arranged in order from the object side along the optical axis, and is a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 is arranged in order from the object side along the optical axis, the negative meniscus lens L21 having a convex surface on the object side, the negative meniscus lens L22 having a convex surface on the object side, and the convex surface on the object side.
  • a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes, in order from the object side along the optical axis, a positive meniscus lens L31 having a convex surface facing the object side, a positive lens L32 having a biconvex shape, and a negative meniscus lens having a concave surface facing the object side. It consists of a cemented lens with L33.
  • the fourth lens group G4 is composed of a biconcave negative lens L41 arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a biconvex positive lens L51, a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object, which are arranged in order from the object side along the optical axis.
  • the sixth lens group G6 is composed of a cemented lens composed of a positive meniscus lens L61 having a concave surface directed toward the object side and a biconcave negative lens L62, which are arranged in order from the object side along the optical axis.
  • the zoom optical system when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 is decreased, the distance between the third lens group G3 and the fourth lens group G4 is increased, and the distance between the fourth lens group G4 and the fifth lens group G5 is temporarily increased.
  • Each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 increases after decreasing and decreases.
  • the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.
  • the aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.
  • the image plane correction at the time of blurring is performed by shifting the cemented lens of the lens L22 and the lens L23 in the second lens group G2 in a direction orthogonal to the optical axis. .
  • the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the blur correction coefficient K is 0.341 and the focal length is 81.6 (mm). Therefore, the lens L22 and the lens L23 for correcting the rotational blur of 0.350 ° are used.
  • the amount of movement of the cemented lens is 1.462 (mm).
  • the blur correction coefficient K is 0.911, and the focal length is 392 (mm). Therefore, the lens L22 and the lens L23 for correcting the rotational blur of 0.160 ° are used.
  • the moving amount of the cemented lens is 1.198 (mm).
  • Table 4 below lists the values of various specifications of the variable magnification optical system according to the fourth example.
  • the surface numbers 1 to 29 in Table 4 correspond to the surfaces 1 to 29 shown in FIG.
  • variable magnification optical system according to the fourth example satisfies all the conditional expressions (1) to (5).
  • FIGS. 23A and 23B are graphs showing various aberrations at the time of focusing on infinity in the wide-angle end state of the zoom optical system according to the fourth example, and meridional lateral aberration diagrams when blur correction is performed. It is.
  • FIG. 24 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIGS. 25A and 25B are graphs showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to the fourth example, and meridional transverse aberration diagrams when blur correction is performed. It is.
  • FIGS. 24 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIGS. 25A and 25B are graphs showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to
  • variable magnification optical system has a six-group configuration, but the present invention can also be applied to other group configurations such as the seventh group and the eighth group. Specifically, a configuration in which a positive lens group is added on the most object side and a configuration in which a positive or negative lens group is added on the most image side can be given.
  • the focusing lens group may be a focusing lens group that performs focusing from an object at infinity to a near object by moving a single lens group, a plurality of lens groups, or a partial lens group in the optical axis direction.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor).
  • the fifth lens group G5 is preferably a focusing lens group.
  • the lens group or the partial lens group may be vibrated in a direction perpendicular to the optical axis so as to correct image blur caused by camera shake.
  • the second lens group G2 is an anti-vibration lens group.
  • each lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • this aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface made of glass with an aspherical shape, and a composite type in which resin is formed on the glass surface in an aspherical shape Any aspherical surface may be used.
  • Each lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably arranged in the vicinity of the fourth lens group G4 (preferably on the image side) or in the vicinity of the third lens group G3. That role may be substituted.
  • each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.
  • the zooming optical system of the present embodiment has a zooming ratio of about 4.5 to 6.
  • the first lens group G1 has two or three positive lenses and one negative lens.
  • the second lens group G2 has two positive lenses and two or three negative lenses.
  • the second lens group G2 it is preferable to dispose the lenses in order of (positive) negative negative positive negative in order from the object side.
  • the arrangement of the cemented lenses may be reversed.
  • the third lens group G3 has two or three positive lenses and one negative lens.
  • the third lens group G3 it is preferable to arrange lenses in order of positive / negative / positive (positive) in order from the object side.
  • the lens arrangement may be reversed.
  • the fourth lens group G4 may have a cemented lens composed of a positive lens and a negative lens.
  • the fifth lens group G5 has two or three positive lenses and one negative lens.
  • the fifth lens group G5 it is preferable to arrange lenses in order of positive / negative / positive (positive) or positive / negative / positive (positive) in order from the object side.
  • the sixth lens group G6 has one positive lens and one (or two) negative lenses.
  • the cemented lens may have the lens arrangement reversed, or may be peeled off to form two single lenses.
  • variable power optical system that has good optical performance, is suitable for a photographic camera, an electronic still camera, a video camera, and the like and can perform focusing at high speed, an optical apparatus having the same, and a variable power method Can be provided.
  • the first lens group G1 to the sixth lens group G6 of this embodiment are assembled in a cylindrical barrel (step S1).
  • the lens groups may be incorporated in the lens barrel one by one in the order along the optical axis, and a part or all of the lens groups are integrally held by the holding member and then the lens barrel member You may assemble to.
  • the fourth lens group G4 and the aperture stop S whose positions in the optical axis direction are fixed at the time of zooming, are first arranged in the barrel, and then the fifth lens group G5 and the fifth lens group G5.
  • the six lens groups G6 may be arranged in this order, and the third lens group G3, the second lens group G2, and the first lens group G1 may be arranged in this order.
  • Step S2 After each lens group is installed in the lens barrel, check whether an object image is formed with each lens group installed in the lens barrel, that is, check whether each lens group is centered. (Step S2) is preferable.
  • step S3 various operations of the zoom optical system are confirmed (step S3).
  • a zooming operation in which at least a part of the lens unit moves along the optical axis direction at the time of zooming, and a focusing group that performs focusing from a long-distance object to a short-distance object in the optical axis direction.
  • an in-focus movement operation and a camera shake correction operation in which at least some of the lenses move so as to have a component in a direction orthogonal to the optical axis.
  • the first lens group G1, the fourth lens group G4, and the aperture stop S are in the optical axis direction with respect to the image plane. It is fixed.
  • the order of confirming the various operations is arbitrary.
  • G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group S Aperture stop I Image surface CAM Digital single lens reflex camera (optical equipment)

Abstract

 第5レンズ群の変倍比を適切に設定することにより、各レンズ群の変倍比を適切に設定することが可能な変倍光学系、これを有する光学機器及び製造方法を提供する。  この光学機器は、物体側から順に並んだ第1レンズ群(G1)~第6レンズ群(G6)を有し、第5レンズ群(G5)において、望遠端状態における横倍率β5Tとし、広角端状態における横倍率β5Wとしたとき、次式0.65<|β5T/β5W|<3.20の条件を満足する。

Description

変倍光学系、これを有する光学機器および変倍光学系の製造方法
 本発明は、変倍光学系、これを有する光学機器および変倍光学系の製造方法に関する。
 変倍光学系の変倍方式として、5群以上のレンズ群からなる多群ズームによる変倍方式がある(例えば、特許文献1及び2を参照)。この変倍方式では、構成レンズ群の数が多いため、変倍を各群に分担させることができ、変倍がし易くなる。
特許第3054185号公報 特開平11-223770号公報
 上記の特許文献1では、第2及び第4レンズ群の変倍比が大きく、第5レンズ群の変倍比が小さく設定されている。また、特許文献2では、第3及び第4レンズ群の変倍比が小さく、第5レンズ群の変倍比が大きく設定されている。
 このように、従来の多群ズームにおいては、特定のレンズ群の変倍比が大きく、この群で変倍を行う一方、それ以外のレンズ群の変倍比は小さく、各レンズ群の変倍比が適切に設定されていないという問題があった。
 本発明は、このような問題に鑑みてなされたものであり、第5レンズ群の変倍比を適切に設定することにより、各レンズ群の変倍比も適切に設定することが可能な変倍光学系、これを有する光学機器および変倍光学系の製造方法を提供することを目的とする。
 このような目的を達成するため、本発明の変倍光学系は、光軸に沿って配置された第1~第6レンズ群を有し、前記第5レンズ群において、望遠端状態における横倍率β5Tとし、広角端状態における横倍率β5Wとしたとき、次式0.65<|β5T/β5W|<3.20の条件を満足する。
 なお、広角端状態における前記変倍光学系の全長をTLWとし、広角端状態における前記変倍光学系の焦点距離をfWとしたとき、次式2.90<TLW/fW<6.60
の条件を満足することが好ましい。
 また、望遠端状態における前記変倍光学系の全長をTLTとし、望遠端状態における前記変倍光学系の焦点距離をfTとしたとき、次式
 0.643<TLT/fT<0.692
の条件を満足することが好ましい。
 また、広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が減少し、前記第3レンズ群と前記第4レンズ群との間隔が増大することが好ましい。
 また、最も物体側に配置されたレンズ群は、正の屈折力を有することが好ましい。
 また、最も物体側に配置されたレンズ群は、広角端状態から望遠端状態まで変倍する際に、像面に対して光軸方向に固定されていることが好ましい。
 また、前記第2レンズ群において、望遠端状態における横倍率をβ2Tとし、広角端状態における横倍率β2Wをとしたとき、次式β2T/β2W<6.100の条件を満足することが好ましい。
 また、前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3としたとき、次式|f3/f2|<1.800の条件を満足することが好ましい。
 また、前記第5レンズ群の物体側に配置されたレンズ群は、負の屈折力を有することが好ましい。
 また、前記第5レンズ群の像側に配置されたレンズ群は、負の屈折力を有することが好ましい。
 また、前記第2レンズ群は、負の屈折力を有し、前記第3レンズ群及び前記第5レンズ群は、正の屈折力を有することが好ましい。
 また、前記第4レンズ群は、広角端状態から望遠端状態まで変倍する際に、像面に対して光軸方向に固定されていることが好ましい。
 また、絞りは、前記第4レンズ群の物体側又は像側に配置され、広角端状態から望遠端状態まで変倍する際に、像面に対して光軸方向に固定されていることが好ましい。
 また、前記第2レンズ群は、全体又は一部を光軸に対して直交方向の成分を持つように移動させることが好ましい。
 また、前記第5レンズ群を移動させて合焦を行うことが好ましい。
 また、本発明の光学機器は、上記変倍光学系を有する。
 また、本発明に係る変倍光学系の製造方法は、光軸に沿って第1~第6レンズ群を配置するステップを有し、前記第5レンズ群において、望遠端状態における横倍率β5Tとし、広角端状態における横倍率β5Wとしたとき、次式
 0.65<|β5T/β5W|<3.20
の条件を満足するようにこれらレンズ群を配置する。
 本発明によれば、第5レンズ群の変倍比を適切に設定することにより、各レンズ群の変倍比も適切に設定することが可能な変倍光学系、これを有する光学機器及び変倍方法を提供することができる。
第1実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。 (a),(b)は、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 (a),(b)は、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 (a),(b)は、第1実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第1実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時の諸収差図である。 (a),(b)は、第1実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第2実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。 (a),(b)は、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 (a),(b)は、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 (a),(b)は、第2実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第2実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時の諸収差図である。 (a),(b)は、第2実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第3実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。 (a),(b)は、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 (a),(b)は、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 (a),(b)は、第3実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第3実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時の諸収差図である。 (a),(b)は、第3実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第4実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。 (a),(b)は、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第4実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 (a),(b)は、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 (a),(b)は、第4実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 第4実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時の諸収差図である。 (a),(b)は、第4実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。 上記構成の変倍光学系を撮影レンズとして備えたデジタル一眼レフカメラCAMの略断面図である。 上記変倍光学系の製造方法を示すフローチャートである。
 以下、好ましい実施形態について、図面を用いて説明する。
 まず、変倍光学系における各レンズ群の変倍比の分担について説明する。一般に、変倍光学系の全系の焦点距離をfとし、第1レンズ群G1の焦点距離をf1とし、レンズ群の数をi(i=1、2、…n)とし、第iレンズ群の横倍率をβiとしたとき、全系の焦点距離fは次式(a)で表される。
 f=f1×β2×β3…×βn …(a)
 例えば、6つのレンズ群から構成されている場合(n=6)、広角端状態における全系の焦点距離fWは、広角端状態における第iレンズ群の横倍率(i=1、2、…6)をβiWとしたとき、次式(b)で表わされる。
 fW=f1×β2W×β3W×β4W×β5W×β6W …(b)
 また、6つのレンズ群から構成されている場合(n=6)、望遠端状態における全系の焦点距離をfTは、望遠端状態における第iレンズ群の横倍率(i=1、2、…6)をβiTとしたとき、次式(c)で表される。
 fT=f1×β2T×β3T×β4T×β5T×β6T …(c)
 また、第iレンズ群の変倍比Zi(i=1、2、…n)は、望遠端状態における横倍率βiTと広角端状態における横倍率βiWとの比であり、次式(d)で表される。
 Zi=βiT/βiW …(d)
 従って、変倍光学系の全系の変倍比Zは、次式(e)で表される。
 Z=fT/fW
  =(β2T/β2W)・(β3T/β3W)・(β4T/β4W)・(β5T/β5W)・(β6T/β6W)
  =Z2×Z3×Z4×Z5×Z6 …(e)
 上記の式(e)から分かるように、例えば、特定のレンズ群の変倍比Ziが全系の変倍比Zと同じであると、それ以外のレンズ群の変倍比Ziは全て1でも良くなってしまう。また、特定のレンズ群の変倍比Ziが変倍光学系の全系の変倍比Zより大きい場合は、それ以外のレンズ群の変倍比Ziは1より小さくなり、変倍比Zを大きくすることに寄与しない。このように、特定のレンズ群の変倍比Ziが著しく大きくなる一方、それ以外のレンズ群の変倍比Ziが著しく小さくなることは望ましくない。よって、本実施形態の変倍光学系においては、所定の変倍比Zを達成するために、各レンズ群で変倍比を適切に設定して、各レンズ群において変倍を分担することが好ましい。
 以上のことを踏まえて、本実施形態は、図1に示すように、物体側から順に並んだ第1レンズ群G1~第6レンズ群G6を有し、第5レンズ群G5において、望遠端状態における横倍率をβ5Tとし、広角端状態における横倍率をβ5Wとしたとき、次式(1)の条件を満足する。
 0.65<|β5T/β5W|<3.20 …(1)
 上記条件式(1)は、望遠端状態における第5レンズ群G5の横倍率β5Tと、広角端状態における第5レンズ群G5の横倍率β5Wとの比を規定したものである。本変倍光学系は、この条件式(1)を満足することで、良好な光学性能を実現することができる。なお、条件式(1)の上限値を上回ると、第5レンズ群G5の変倍比が大きくなり、それ以外のレンズ群の変倍比が小さくなり、球面収差の補正が困難になる。一方、条件式(1)の下限値を下回ると、第5レンズ群G5の変倍比が小さくなり、それ以外のレンズ群の変倍比が大きくなり、コマ収差の補正が困難になる。
 なお、本実施形態の効果をより確実にするためには、β5T/β5W>0を満たすのが好ましい。また、本実施形態の効果をより確実にするためには、条件式(1)の下限値を0.90に設定することが好ましい。また、本実施形態の効果をより確実にするためには、条件式(1)の上限値を3.00に設定することが好ましい。
 また、本実施形態においては、広角端状態における本変倍光学系の全長をTLWとし、広角端状態における本変倍光学系の焦点距離をfWとしたとき、次式(2)の条件を満足することが好ましい。
 2.90<TLW/fW<6.60 …(2)
 上記条件式(2)は、広角端状態における本変倍光学系の全長TLWと、広角端状態における本変倍光学系の焦点距離fWとの比を規定したものである。本変倍光学系は、この条件式(2)を満足することで、良好な光学性能を実現することができる。なお、本変倍光学系は広角端状態においてレトロフォーカス型のパワー配置となっており、条件式(2)の上限値を上回ると、レトロフォーカス型のパワー配置がさらに強くなるため、歪曲収差の補正が困難になる。一方、条件式(2)の下限値を下回ると、本変倍光学系の全長が短くなるため、球面収差の補正が困難になる。
 なお、本実施形態の効果をより確実にするためには、条件式(2)の下限値を3.00に設定することが好ましい。また、本実施形態の効果をより確実にするためには、条件式(2)の上限値を6.00に設定することが好ましい。
 また、本実施形態においては、望遠端状態における本変倍光学系の全長をTLTとし、望遠端状態における本変倍光学系の焦点距離をfTとしたとき、次式(3)の条件を満足することが好ましい。
 0.643<TLT/fT<0.692 …(3)
 上記条件式(3)は、望遠端状態における本変倍光学系の全長TLTと、望遠端状態における本変倍光学系の焦点距離fTとの比を規定したものである。本変倍光学系は、この条件式(3)を満足することで、良好な光学性能を実現することができる。なお、本変倍光学系は望遠端状態においてテレフォト型のパワー配置となっており、条件式(3)の上限値を上回ると、本変倍光学系の全長が長くなるため大型化し、軸上色収差の補正が困難になる。一方、条件式(3)の下限値を下回ると、テレフォト型のパワー配置がさらに強くなるため、球面収差の補正が困難になる。
 なお、本実施形態の効果をより確実にするためには、条件式(3)の下限値を0.644に設定することが好ましい。また、本実施形態の効果をより確実にするためには、条件式(3)の上限値を0.690に設定することが好ましい。
 また、本実施形態においては、広角端状態から望遠端状態まで変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大することが好ましい。これにより、像面湾曲及び歪曲収差の補正が容易になる。
 また、本実施形態においては、最も物体側に配置されたレンズ群(本実施形態では第1レンズ群G1)は、正の屈折力を有することが好ましい。これにより、本変倍光学系の全長を短くすることができる。また、歪曲収差の補正が容易になる。
 ところで、変倍光学系の変倍方式として、広角端状態から望遠端状態まで変倍する際に、最も物体側に配置された第1レンズ群を物体側に繰り出す方式がある。これは、第1レンズ群を移動させることにより、像面湾曲などの収差補正が容易になるためである。しかしながら、第1レンズ群を移動する方式は、繰り出した際に偏芯を生じやすいという問題がある。
 そこで、本実施形態においては、最も物体側に配置されたレンズ群(本実施形態では第1レンズ群G1)は、広角端状態から望遠端状態まで変倍する際に、像面Iに対して光軸方向に固定されていることが好ましい。このように、第1レンズ群G1が像面Iに対して光軸方向に固定されていることにより、偏芯が低減される。これに伴い、偏芯に伴う性能の低下、特に像面湾曲が軽減されることで、良好な光学性能を実現することができる。さらに、重たい第1レンズ群G1が像面に対して光軸方向に固定されることで、操作性が向上する。具体的には、重たい第1レンズ群G1の移動による重量バランスの変化、意図しない画角の変化及び第1レンズ群G1の自重落下、主にこれら3点の問題が解決する。また、不意にレンズをぶつけた場合など、衝撃に対して強度が向上することも期待できる。
 また、本実施形態においては、第2レンズ群G2において、望遠端状態における横倍率をβ2Tとし、広角端状態における横倍率β2Wをとしたとき、次式(4)の条件を満足することが好ましい。
 β2T/β2W<6.100 …(4)
 上記条件式(4)は、望遠端状態における第2レンズ群G2の横倍率β2Tと、広角端状態における第2レンズ群G2の横倍率β2Wとの比を規定したものである。本変倍光学系は、この条件式(4)を満足することで、良好な光学性能を実現することができる。ここで、条件式(4)の上限値を上回ると、第2レンズ群G2の変倍比が大きくなり、第2レンズ群G2以外のレンズ群の変倍比が小さくなり、球面収差補正が困難になる。
 なお、本実施形態の効果をより確実にするためには、条件式(4)の上限値を5.700に設定することが好ましい。
 また、本実施形態においては、第2レンズ群G2の焦点距離をf2とし、第3レンズ群G3の焦点距離をf3としたとき、次式(5)の条件を満足することが好ましい。
 |f3/f2|<1.800 …(5)
 上記条件式(5)は、第3レンズ群G3の焦点距離f3と、第2レンズ群G2の焦点距離f2との比を規定したものである。本変倍光学系は、この条件式(5)を満足することで、良好な光学性能を実現することができる。ここで、条件式(5)の上限値を上回ると、第2レンズ群G2の焦点距離f2が短くなり、本変倍光学系の全長が長くなるとともに、像面湾曲の補正が困難になる。
 なお、本実施形態の効果をより確実にするためには、条件式(5)の上限値を1.796に設定することが好ましい。
 また、本実施形態においては、第5レンズ群G5の物体側に配置されたレンズ群(本実施形態では第4レンズ群G4)は、負の屈折力を有することが好ましい。これにより、球面収差の補正が容易になり、良好な光学性能を実現することができる。
 また、本実施形態においては、第5レンズ群G5の像側に配置されたレンズ群(例えば第6レンズ群G6)は、負の屈折力を有することが好ましい。これにより、像面湾曲の補正が容易になり、良好な光学性能を実現することができる。
 また、本実施形態においては、第2レンズ群G2は負の屈折力を有し、第3レンズ群G3及び第5レンズ群G5は正の屈折力を有することが好ましい。これにより、球面収差、像面湾曲及びコマ収差の補正が容易になり、良好な光学性能を実現することができる。
 また、本実施形態においては、第4レンズ群G4は、広角端状態から望遠端状態まで変倍する際に、像面Iに対して光軸方向に固定されているが好ましい。これにより、偏芯が低減されるとともに、偏芯に伴う性能の低下、特に球面収差が軽減され、良好な光学性能を実現することができる。
 また、本実施形態においては、絞りSは、広角端状態から望遠端状態まで変倍する際に、像面Iに対して光軸方向に固定されていることが好ましい。これにより、本変倍光学系の構成が容易になる。その結果、絞り径の精度が向上し、絞りSによる光束及び球面収差の調整が容易になり、良好な光学性能を実現することができる。
 また、本実施形態においては、第2レンズ群G2は、全体又は一部を光軸に対して直交方向の成分を持つように移動させることが好ましい。これにより、像ブレ発生時の像面補正を行うことができ、良好な光学性能を実現することができる。
 また、本実施形態においては、第5レンズ群G5を移動させて合焦を行うことが好ましい。本実施形態においては、第5レンズ群G5は、例えば第1レンズ群G1に比べ軽量なため、合焦を高速で行うことが可能となる。また、このように合焦レンズ群である第5レンズ群G5が軽量なため、超音波モーターを選択することが可能になり、静粛な合焦を実現することができる。
 図29に、上記構成の変倍光学系を撮影レンズ1として備えたデジタル一眼レフカメラCAM(光学機器)の略断面図を示す。図29に示すデジタル一眼レフカメラCAMにおいて、不図示の物体(被写体)からの光は、撮影レンズ1で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ1で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラCAMによる物体(被写体)の撮影を行うことができる。なお、図29に記載のカメラCAMは、撮影レンズ1を着脱可能に保持するものでもよく、撮影レンズ1と一体に成形されるものでもよい。また、カメラCAMは、いわゆる一眼レフカメラでもよく、クイックリターンミラー等を有さないコンパクトカメラでもよい。
 以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1~表4を示すが、これらは第1~第4実施例における各諸元の表である。[全体諸元]において、fは全系の焦点距離を、FNOはFナンバーを、TLは全系の全長を、2ωは全画角を示す。[レンズデータ]においては、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、rは各レンズ面の曲率半径を、dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔を、ndはd線(波長587.6nm)に対する屈折率を、νdはd線に対するアッベ数を、開口絞りSは開口絞りを、BFはバックフォーカスを示す。なお、曲率半径の「0.0000」は平面又は開口を示す。[可変間隔データ]において、fは全系の焦点距離を、βは全系の横倍率を、Di(但し、iは整数)は第i面の可変の面間隔を示す。[各群焦点距離データ]において、各群の初面、焦点距離及び変倍比を示す。[条件式対応値]において、上記の条件式(1)~(5)に対応する値を示す。
 なお、表中において、焦点距離f、曲率半径r、面間隔d、その他の長さの単位は、一般に「mm」が使われている。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 以上の表の説明は、他の実施例においても同様とし、その説明を省略する。
(第1実施例)
 第1実施例について、図1~図7及び表1を用いて説明する。図1は、第1実施例のレンズ構成図及びズーム軌跡を示したものである。図1に示すように、第1実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とを有している。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、両凸形状の正レンズL13とからなる。第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21と両凹形状の負レンズL22との接合レンズと、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合レンズと、両凹形状の負レンズL25とからなる。第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとからなる。第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL41からなる。第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとからなる。第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL61と両凹形状の負レンズL62との接合レンズからなる。
 このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が一旦増加した後に減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定である。
 また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定である。
 なお、本実施例に係る変倍光学系では、第2レンズ群G2における、レンズL23とレンズL24との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面上の像の移動量の比)がKのレンズで角度θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは-0.890であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL23とレンズL24との接合レンズの移動量は-0.560(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは-2.500であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL23とレンズL24との接合レンズの移動量は-0.437(mm)である。
 以下の表1に第1実施例に係る変倍光学系の各諸元の値を掲げる。なお、表1における面番号1~29は、図1に示す面1~29に対応している。
(表1)
[全体諸元]
        広角端状態  中間焦点距離状態  望遠端状態
 f       81.6   ~   200   ~   392
 FNO     4.6   ~   5.4   ~   5.8
 TL      258   ~   258   ~   258
 2ω      30.0  ~   12.0   ~   6.1
[レンズデータ]
 面番号   r     d    nd   νd
  1   179.6360   2.5   1.83400   37.2
  2   74.9086   10.0   1.49782   82.6
  3   -1035.6800   0.2   1.00000
  4   79.3505   9.0   1.49782   82.6
  5   -556.1685   D5   1.00000
  6   133.4658   4.8   1.78472   25.7
  7   -77.0017   1.8   1.80440   39.6
  8   123.6346   4.0   1.00000
  9   -175.3368   1.7   1.64000   60.1
  10   37.3811   3.5   1.72825   28.5
  11   60.8225   5.2   1.00000
  12   -91.0525   2.0   1.79500   45.3
  13   433.3106   D13   1.00000
  14   73.1265   5.5   1.51680   64.1
  15   -83.8137   0.2   1.00000
  16   61.0089   6.0   1.51680   64.1
  17   -145.1031   2.0   1.80518   25.4
  18   209.2002   D18   1.00000
  19   -72.8028   2.0   1.48749   70.5
  20   -154.9070   2.0   1.00000
  21   0.0000    D21   1.00000(開口絞りS)
  22   121.3551   4.0   1.48749   70.5
  23   -103.9676   0.1   1.00000
  24   48.3824   6.0   1.48749   70.5
  25   -47.3576   1.2   1.83400   37.2
  26   -522.9009   D26   1.00000
  27   1784.6923   3.7   1.80518   25.4
  28   -30.0632   1.1   1.79500   45.3
  29   39.3186   BF   1.00000
[可変間隔データ]
          無限遠               近距離      
    広角端   中間   望遠端   広角端    中間   望遠端
 f   81.6    200    392     -     -     -
 β   0     0     0    -0.0333   -0.0333   -0.0333
 D0   0     0     0    2353.99   5834.28   11543.45
 D5   4.81   34.24   49.46    4.81    34.24   49.46
 D13   70.20   31.01   2.00    70.20   31.01    2.00
 D18   3.99   13.75   27.54    3.99    13.75   27.54
 D21   36.42   20.56   15.83   35.68    19.22   13.53
 D26   8.55   9.74   2.00     9.29    11.09   4.30
 BF   55.56   70.22   82.69   55.56    70.22   82.69
[各群焦点距離データ]
 群番号   群初面  群焦点距離  変倍比
  G1    1    129.25    -
  G2    6    -39.81   3.25
  G3    14    61.69    1.20
  G4    19    -284.03   0.93
  G5    22    74.76    1.05
  G6    27    -51.54   1.25
[条件式対応値]
条件式(1)β5T/β5W=1.052
条件式(2)TLW/fW=3.162
条件式(3)TLT/fT=0.658
条件式(4)β2T/β2W=3.246
条件式(5)|f3/f2|=1.550
 表1に示す諸元の表から、第1実施例に係る変倍光学系では、上記条件式(1)~(5)を全て満たすことが分かる。
 図2(a),(b)は、それぞれ第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。
図3は、第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図4(a),(b)は、それぞれ第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図5(a),(b)は、それぞれ第1実施例に係る変倍光学系の広角端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図6は、第1実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図である。図7(a),(b)は、それぞれ第1実施例に係る変倍光学系の望遠端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。
 各収差図において、FNOはFナンバーを、Yは像高(単位:mm)を示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。また、dはd線(波長587.6nm)、gはg線(波長435.8nm)に対する諸収差を、記載のないものはd線に対する諸収差をそれぞれ示す。また、非点収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。
 各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第2実施例)
 第2実施例について、図8~図14及び表2を用いて説明する。図8は、第2実施例のレンズ構成図及びズーム軌跡を示したものである。図8に示すように、第2実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とを有している。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、両凸形状の正レンズL13とからなる。第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21と両凹形状の負レンズL22との接合レンズと、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合レンズと、両凹形状の負レンズL25とからなる。第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとからなる。第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL41からなる。第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとからなる。第6レンズ群G6は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL61と両凹形状の負レンズL62との接合レンズからなる。
 このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が一旦増加した後に減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定である。
 また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定である。
 なお、本実施例に係る変倍光学系では、第2レンズ群G2における、レンズL23とレンズL24との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面上の像の移動量の比)がKのレンズで角度θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは-0.890であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL23とレンズL24との接合レンズの移動量は-0.560(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは-2.500であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL23とレンズL24との接合レンズの移動量は-0.437(mm)である。
 以下の表2に第2実施例に係る変倍光学系の各諸元の値を掲げる。なお、表2における面番号1~29は、図8に示す面1~29に対応している。
(表2)
[全体諸元]
        広角端状態  中間焦点距離状態  望遠端状態
 f       81.6   ~   200   ~   392
 FNO     4.5   ~   5.3   ~   5.7
 TL      253   ~   253   ~   253
 2ω      30.0  ~   12.0   ~   6.1
[レンズデータ]
 面番号   r     d    nd   νd
  1   171.3420   2.5   1.83400   37.2
  2   72.5123   10.0   1.49782   82.6
  3   -1130.3971   0.2   1.00000
  4   76.7793   9.0   1.49782   82.6
  5   -564.6225   D5   1.00000
  6   150.6303   4.8   1.78472   25.7
  7   -72.8111   1.8   1.80440   39.6
  8   148.0147   4.0   1.00000
  9   -185.3431   1.7   1.64000   60.1
  10   35.8292   3.5   1.72825   28.5
  11   58.6915   5.2   1.00000
  12   -92.7368   2.0   1.79500   45.3
  13   259.1229   D13   1.00000
  14   68.1244   5.5   1.51680   64.1
  15   -84.3298   0.2   1.00000
  16   58.5569   6.0   1.51680   64.1
  17   -152.0505   2.0   1.80518   25.4
  18   182.6148   D18   1.00000
  19   -68.4161   2.0   1.48749   70.5
  20   -135.8811   2.0   1.00000
  21   0.0000    D21   1.00000(開口絞りS)
  22   130.6828   4.0   1.48749   70.5
  23   -102.4704   0.1   1.00000
  24   49.4879   6.0   1.48749   70.5
  25   -42.8452   1.2   1.83400   37.2
  26   -274.1828   D26   1.00000
  27   -886.3949   3.7   1.80518   25.4
  28   -27.4569   1.1   1.79500   45.3
  29   41.0844   BF   1.00000
[可変間隔データ]
         無限遠              近距離      
   広角端   中間   望遠端   広角端    中間   望遠端 
 f   81.6    200    392     -     -     -
 β   0     0     0    -0.0333   -0.0333   -0.0333
 D0   0     0     0    2353.99   5834.28   11543.44
 D5   5.06   33.52   48.02   5.06    33.52    48.02
 D13   68.13   30.12   2.00   68.13    30.12    2.00
 D18   4.01   13.56   27.18   4.01    13.56    27.18
 D21   33.56   19.09   14.38   32.83   17.74    12.08
 D26   8.64    9.93   2.00   9.37    11.27    4.30
 BF   55.13   68.31   80.94   55.13   68.31    80.94
[各群焦点距離データ]
 群番号   群初面  群焦点距離  変倍比
  G1    1    125.57    -
  G2    6    -38.39   3.29
  G3    14    60.09    1.18
  G4    19    -285.44   0.93
  G5    22    73.85    1.07
  G6    27    -50.18   1.24
[条件式対応値]
条件式(1)β5T/β5W=1.066
条件式(2)TLW/fW=3.100
条件式(3)TLT/fT=0.645
条件式(4)β2T/β2W=3.288
条件式(5)|f3/f2|=1.565
 表2に示す諸元の表から、第2実施例に係る変倍光学系では、上記条件式(1)~(5)を全て満たすことが分かる。
 図9(a),(b)は、それぞれ第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。
図10は、第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図11(a),(b)は、それぞれ第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図12(a),(b)は、それぞれ第2実施例に係る変倍光学系の広角端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図13は、第2実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図である。図14(a),(b)は、それぞれ第2実施例に係る変倍光学系の望遠端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。
 各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第3実施例)
 第3実施例について、図15~図21及び表3を用いて説明する。図15は、第3実施例のレンズ構成図及びズーム軌跡を示したものである。図15に示すように、第3実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とを有している。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、両凸形状の正レンズL13とからなる。第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と両凸形状の正レンズL22との接合レンズと、物体側に凹面を向けた正メニスカスレンズL23と両凹形状の負レンズL24との接合レンズと、両凹形状の負レンズL25とからなる。第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合レンズからなる。第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL41からなる。第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズと、物体側に凸面を向けた正メニスカスレンズL53とからなる。第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL61と両凹形状の負レンズL62との接合レンズからなる。
 このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が一旦増加した後に減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定である。
 また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定である。
 本実施例に係る変倍光学系では、第2レンズ群G2における、レンズL23とレンズL24との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面上の像の移動量の比)がKのレンズで角度θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは-0.800であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL23とレンズL24との接合レンズの移動量は-0.623(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは-2.100であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL23とレンズL24との接合レンズの移動量は-0.520(mm)である。
 以下の表3に第3実施例に係る変倍光学系の各諸元の値を掲げる。なお、表3における面番号1~29は、図15に示す面1~29に対応している。
(表3)
[全体諸元]
        広角端状態  中間焦点距離状態  望遠端状態
 f       81.6   ~   200   ~   392
 FNO     4.6   ~   5.4   ~   5.8
 TL      258   ~   258   ~   258
 2ω      29.9  ~   12.0   ~   6.1
[レンズデータ]
 面番号   r     d    nd   νd
  1   171.6481   2.5   1.80100   35.0
  2   76.0506   10.0   1.49782   82.6
  3  -1159.1033   0.2   1.00000
  4   75.7456   9.4   1.49782   82.6
  5  -4872.1548   D5   1.00000
  6   -328.7250   1.8   1.77250   49.6
  7   73.4374   6.1   1.78472   25.7
  8   -147.7219   2.5   1.00000
  9   -443.0291   3.0   1.72825   28.5
  10   -136.4061   1.7   1.62299   58.2
  11   58.1952   6.7   1.00000
  12   -51.5189   2.0   1.77250   49.6
  13   241.1192   D13   1.00000
  14   68.8807   6.0   1.60311   60.7
  15   -72.6635   0.2   1.00000
  16   99.8244   5.5   1.51680   64.1
  17   -79.1490   2.0   1.84666   23.8
  18   -829.9328   D18   1.00000
  19   -55.7432   2.0   1.48749   70.5
  20   -144.4046   2.0   1.00000
  21   0.0000    D21   1.00000   (開口絞りS)
  22   109.9360   6.0   1.48749   70.5
  23   -33.4380   1.2   1.83400   37.2
  24   -70.6173   0.1   1.00000
  25   52.7594   4.0   1.48749   70.5
  26   403.4790   D26   1.00000
  27   255.8792   3.7   1.75520   27.5
  28   -35.1477   1.1   1.77250   49.6
  29   37.3687   BF   1.00000
[可変間隔データ]
         無限遠             近距離
   広角端   中間   望遠端   広角端   中間   望遠端
 f   81.6   200    392     -    -     -
 β   0    0     0    -0.0333   -0.0333   -0.0333
 D0   0    0     0    2356.68   5834.35   11543.50
 D5   2.55   34.06   52.41   2.55   34.06   52.41
 D13   63.17   25.94   2.00   63.17   25.94   2.00
 D18   3.80    9.51   15.10   3.80   9.51   15.10
 D21   44.06   24.44   18.61   43.28   23.08   16.31
 D26   5.18   10.39    2.00   5.96   11.75   4.30
 BF   59.54   73.95   88.18   59.54   73.95   88.18
[各群焦点距離データ]
 群番号   群初面  群焦点距離  変倍比
  G1    1    129.47    -
  G2    6    -36.21   3.65
  G3    14    52.72   1.18
  G4    19    -187.63   0.96
  G5    22    72.14   0.93
  G6    27    -55.40   1.25
[条件式対応値]
条件式(1)β5T/β5W=0.930
条件式(2)TLW/fW=3.162
条件式(3)TLT/fT=0.658
条件式(4)β2T/β2W=3.647
条件式(5)|f3/f2|=1.456
 表3に示す諸元の表から、第3実施例に係る変倍光学系では、上記条件式(1)~(5)を全て満たすことが分かる。
 図16(a),(b)は、それぞれ第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図17は、第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図18(a),(b)は、それぞれ第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図19(a),(b)は、それぞれ第3実施例に係る変倍光学系の広角端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図20は、第3実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図である。図21(a),(b)は、それぞれ第3実施例に係る変倍光学系の望遠端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。
 各収差図から明らかなように、第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第4実施例)
 第4実施例について、図22~図28及び表4を用いて説明する。図22は、第4実施例のレンズ構成図及びズーム軌跡を示したものである。図22に示すように、第4実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とを有している。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズと、両凹形状の負レンズL24と物体側に凸面を向けた正メニスカスレンズL25とからなる。第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合レンズからなる。第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL41からなる。第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズからなる。第6レンズ群G6は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL61と両凹形状の負レンズL62との接合レンズからなる。
 このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が一旦減少した後増加し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定である。
 また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定である。
 本実施例に係る変倍光学系では、第2レンズ群G2における、レンズL22とレンズL23との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面上の像の移動量の比)がKのレンズで角度θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは0.341であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL22とレンズL23との接合レンズの移動量は1.462(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは0.911であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL22とレンズL23との接合レンズの移動量は1.198(mm)である。
 以下の表4に第4実施例に係る変倍光学系の各諸元の値を掲げる。なお、表4における面番号1~29は、図22に示す面1~29に対応している。
(表4)
[全体諸元]
        広角端状態  中間焦点距離状態  望遠端状態
 f       81.5   ~   200   ~   392
 FNO     4.7   ~   5.6   ~   5.8
 TL      270   ~   270   ~   270
 2ω      30.1  ~   12.2   ~   6.1
[レンズデータ]
 面番号   r     d     nd   νd
  1    149.7243   2.5   1.79504
  2    87.6167   10   1.49782
  3    -766.3399   0.2   1.00000
  4    80.4609   9   1.49782
  5    1010.7373   D5   1.00000
  6    171.2447   2.8   1.79952
  7    39.8614   3.8   1.00000
  8    51.8170   1.6   1.67790
  9    39.4650   3.7   1.79504
  10    67.3033   4.7   1.00000
  11    -69.4371   1.9   1.69680
  12    44.2653   3.6   1.78470
  13    222.7146   D13   1.00000
  14    119.9680   3.1   1.77250
  15    639.3796   0.2   1.00000
  16    58.2905   5.6   1.49782
  17    -128.5450   2.2   1.80809
  18    -422.5145   D18   1.00000
  19    -103.3774   2   1.48749
  20    2465.6583   3   1.00000
  21    0.0000   D21   1.00000   (開口絞りS)
  22    209.8911   4   1.48749
  23    -75.5934   0.1   1.00000
  24    63.1794   6   1.48749
  25    -50.5413   1.2   1.83400
  26    -240.6249   D26   1.00000
  27    -103.5005   3.5   1.80518
  28    -37.2320   1.1   1.79500
  29    116.4975   BF   1.00000
[可変間隔データ]
         無限遠             近距離
   広角端   中間   望遠端   広角端   中間   望遠端
 f   81.5   200    392     -    -     -
 β   0    0     0    -0.0333   -0.0333   -0.0333
 D0   0    0     0    2371.78   5861.79   11356.81
 D5   1.00   32.52   51.64   1.00   32.52   51.64
 D13   65.91   26.19   1.03   65.91   26.19   1.03
 D18   7.37   15.57   21.61   7.37   15.57   21.61
 D21   38.09   29.93   44.81   37.25   28.16   41.27
 D26   26.83   25.29   1.61   27.67   27.05   5.14
 BF   55.00   64.70   73.50   55.00   64.70   73.50
[各群焦点距離データ]
 群番号   群初面  群焦点距離  変倍比
  G1    1    122.24    -
  G2    6    -42.26   5.65
  G3    14    75.85   0.50
  G4    19    -203.48   0.51
  G5    22    75.60   2.93
  G6    27    -69.15   1.15
[条件式対応値]
条件式(1)β5T/β5W=2.932
条件式(2)TLW/fW=3.312
条件式(3)TLT/fT=0.689
条件式(4)β2T/β2W=5.646
条件式(5)|f3/f2|=1.795
 表4に示す諸元の表から、第4実施例に係る変倍光学系では、上記条件式(1)~(5)を全て満たすことが分かる。
 図23(a),(b)は、それぞれ第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図24は、第4実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図25(a),(b)は、それぞれ第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図26(a),(b)は、それぞれ第4実施例に係る変倍光学系の広角端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。図27は、第4実施例に係る変倍光学系の中間焦点距離状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図である。図28(a),(b)は、それぞれ第4実施例に係る変倍光学系の望遠端状態における近距離合焦時(全系の横倍率β=-0.033)の諸収差図、及び、ぶれ補正を行った際のメリディオナル横収差図である。
 各収差図から明らかなように、第4実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。
 なお、上述の実施形態において、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 上記実施例では、変倍光学系として6群構成のものを示したが、7群、8群等の他の群構成にも適用可能である。具体的には、最も物体側に正のレンズ群を追加した構成や、最も像側に正又は負のレンズ群を追加した構成が挙げられる。
 また、単独又は複数のレンズ群、又は部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、第5レンズ群G5を合焦レンズ群とするのが好ましい。
 また、レンズ群または部分レンズ群を光軸に垂直な方向に振動させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第2レンズ群G2の少なくとも一部を防振レンズ群とするのが好ましい。
 また、各レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。一方、レンズ面が非球面の場合、この非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、各レンズ面は、回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 また、開口絞りSは、第4レンズ群G4の近傍(好ましくは像側)または第3レンズ群G3の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズ枠でその役割を代用してもよい。
 また、各レンズ面には、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
 本実施形態の変倍光学系は、変倍比が4.5~6程度である。
 また、本実施形態の変倍光学系は、第1レンズ群G1が正レンズを2つ又は3つと、負レンズを1つ有するのが好ましい。また、第1レンズ群G1は、物体側から順に、負正正(正)の順番にレンズを配置するのが好ましい。
 また、本実施形態の変倍光学系は、第2レンズ群G2が正レンズを2つと、負レンズを2つ又は3つ有するのが好ましい。また、第2レンズ群G2は、物体側から順に、(正)負負正負の順番にレンズを配置するのが好ましい。なお、各接合レンズの配置を逆にしてもよい。
 また、本実施形態の変倍光学系は、第3レンズ群G3が正レンズを2つ又は3つと、負レンズを1つ有するのが好ましい。また、第3レンズ群G3は、物体側から順に、正正負(正)の順番にレンズを配置するのが好ましい。なお、レンズL32とレンズL33との接合レンズにおいては、レンズの配置を逆にしてもよい。
 また、本実施形態の変倍光学系は、第4レンズ群G4が、正レンズと負レンズとからなる接合レンズを有することとしてもよい。
 また、本実施形態の変倍光学系は、第5レンズ群G5が正レンズを2つ又は3つと、負レンズを1つ有するのが好ましい。また、第5レンズ群G5は、物体側から順に、正正負(正)、又は正負正(正)の順番にレンズを配置するのが好ましい。
 また、本実施形態の変倍光学系は、第6レンズ群G6が正レンズを1つと、負レンズを1つ(又は2つ)有するのが好ましい。なお、接合レンズは、レンズ配置を逆にしてもよく、はがして単レンズ2枚としてもよい。
 なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。
 以上のように、良好な光学性能を有し、写真用カメラ、電子スチルカメラ及びビデオカメラ等に好適で、フォーカスを高速で行うことができる変倍光学系、これを有する光学機器及び変倍方法を提供することができる。
 以下、変倍光学系の製造方法の概略を、図30を参照して説明する。この方法においては、まず、円筒状の鏡筒内に、本実施形態の第1レンズ群G1~第6レンズ群G6を組み込む(ステップS1)。各レンズ群を鏡筒内に組み込む際、光軸に沿った順に一つずつレンズ群を鏡筒内に組み込んでも良く、一部または全てのレンズ群を保持部材で一体保持してから鏡筒部材に組み付けても良い。また、本実施形態のレンズ鏡筒は、変倍時に光軸方向の位置が固定される第4レンズ群G4と開口絞りSを先ず鏡筒内に配置してから、第5レンズ群G5,第6レンズ群G6の順に配置するとともに、第3レンズ群G3、第2レンズ群G2、第1レンズ群G1の順に配置することとしても良い。鏡筒内に各レンズ群が組み込まれた後、鏡筒内に各レンズ群が組み込まれた状態で物体の像が形成されるか確認する、すなわち、各レンズ群の中心が合っているかを確認する(ステップS2)のが好ましい。
 上記のように変倍光学系を組み立てた後は、変倍光学系の各種動作を確認する(ステップS3)。各種動作の一例としては、変倍時に少なくとも一部のレンズ群が光軸方向に沿って移動する変倍動作、遠距離物体から近距離物体への合焦を行う合焦群が光軸方向に沿って移動する合焦動作、少なくとも一部のレンズが光軸に直交する方向の成分を持つように移動する手ぶれ補正動作などが挙げられる。なお、本実施形態においては、広角端状態から望遠端状態への変倍の際に、第1レンズ群G1と第4レンズ群G4と開口絞りSとが、像面に対して光軸方向に固定されている。また、各種動作の確認順序は任意である。
 G1  第1レンズ群
 G2  第2レンズ群
 G3  第3レンズ群
 G4  第4レンズ群
 G5  第5レンズ群
 G6  第6レンズ群
 S   開口絞り
 I   像面
 CAM デジタル一眼レフカメラ(光学機器)
 

Claims (17)

  1.  光軸に沿って配置された第1~第6レンズ群を有し、
     前記第5レンズ群において、望遠端状態における横倍率β5Tとし、広角端状態における横倍率β5Wとしたとき、次式
     0.65<|β5T/β5W|<3.20
    の条件を満足することを特徴とする変倍光学系。
  2.  広角端状態における前記変倍光学系の全長をTLWとし、広角端状態における前記変倍光学系の焦点距離をfWとしたとき、次式
     2.90<TLW/fW<6.60
    の条件を満足することを特徴とする請求項1に記載の変倍光学系。
  3.  望遠端状態における前記変倍光学系の全長をTLTとし、望遠端状態における前記変倍光学系の焦点距離をfTとしたとき、次式
     0.643<TLT/fT<0.692
    の条件を満足することを特徴とする請求項1に記載の変倍光学系。
  4.  広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が減少し、前記第3レンズ群と前記第4レンズ群との間隔が増大することを特徴とする請求項1に記載の変倍光学系。
  5.  最も物体側に配置されたレンズ群は、正の屈折力を有することを特徴とする請求項1に記載の変倍光学系。
  6.  最も物体側に配置されたレンズ群は、広角端状態から望遠端状態まで変倍する際に、像面に対して光軸方向に固定されていることを特徴とする請求項1に記載の変倍光学系。
  7.  前記第2レンズ群において、望遠端状態における横倍率をβ2Tとし、広角端状態における横倍率β2Wをとしたとき、次式
     β2T/β2W<6.100
    の条件を満足することを特徴とする請求項1に記載の変倍光学系。
  8.  前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3としたとき、次式
     |f3/f2|<1.800
    の条件を満足することを特徴とする請求項1に記載の変倍光学系。
  9.  前記第5レンズ群の物体側に配置されたレンズ群は、負の屈折力を有することを特徴とする請求項1に記載の変倍光学系。
  10.  前記第5レンズ群の像側に配置されたレンズ群は、負の屈折力を有することを特徴とする請求項1に記載の変倍光学系。
  11.  前記第2レンズ群は、負の屈折力を有し、
     前記第3レンズ群及び前記第5レンズ群は、正の屈折力を有することを特徴とする請求項1に記載の変倍光学系。
  12.  前記第4レンズ群は、広角端状態から望遠端状態まで変倍する際に、像面に対して光軸方向に固定されていることを特徴とする請求項1に記載の変倍光学系。
  13.  絞りは、前記第4レンズ群の物体側又は像側に配置され、
     広角端状態から望遠端状態まで変倍する際に、像面に対して光軸方向に固定されていることを特徴とする請求項1に記載の変倍光学系。
  14.  前記第2レンズ群は、全体又は一部を光軸に対して直交方向の成分を持つように移動させることを特徴とする請求項1に記載の変倍光学系。
  15.  前記第5レンズ群を移動させて合焦を行うことを特徴とする請求項1に記載の変倍光学系。
  16.  請求項1~15のいずれか一項に記載の変倍光学系を有することを特徴とする光学機器。
  17.  光軸に沿って第1~第6レンズ群を配置するステップを有し、
     前記第5レンズ群において、望遠端状態における横倍率β5Tとし、広角端状態における横倍率β5Wとしたとき、次式
     0.65<|β5T/β5W|<3.20
    の条件を満足するように配置することを特徴とする変倍光学系の製造方法。
PCT/JP2009/058012 2008-05-21 2009-04-22 変倍光学系、これを有する光学機器および変倍光学系の製造方法 WO2009142090A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/866,355 US8339712B2 (en) 2008-05-21 2009-04-22 Variable magnification optical system, optical apparatus with the same, and method for manufacturing variable magnification optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-133063 2008-05-21
JP2008133063A JP5168641B2 (ja) 2008-05-21 2008-05-21 変倍光学系、これを有する光学機器及び変倍方法

Publications (1)

Publication Number Publication Date
WO2009142090A1 true WO2009142090A1 (ja) 2009-11-26

Family

ID=41340024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058012 WO2009142090A1 (ja) 2008-05-21 2009-04-22 変倍光学系、これを有する光学機器および変倍光学系の製造方法

Country Status (3)

Country Link
US (1) US8339712B2 (ja)
JP (1) JP5168641B2 (ja)
WO (1) WO2009142090A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037223A (ja) * 2011-08-09 2013-02-21 Nikon Corp 光学系、この光学系を有する光学機器、及び、光学系の製造方法
CN103969813A (zh) * 2013-02-05 2014-08-06 株式会社腾龙 变焦透镜
CN106324798A (zh) * 2015-06-26 2017-01-11 浙江大华技术股份有限公司 一种透镜系统和镜头

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369898B2 (ja) * 2009-05-27 2013-12-18 株式会社ニコン ズームレンズ、光学機器
JP5369897B2 (ja) * 2009-05-27 2013-12-18 株式会社ニコン レンズ系、光学機器
JP5539062B2 (ja) * 2010-06-24 2014-07-02 キヤノン株式会社 ズームレンズ
CN103443687B (zh) 2010-12-15 2016-06-15 株式会社尼康 变焦光学系统、具有该变焦光学系统的光学设备和用于制造变焦光学系统的方法
JP5765533B2 (ja) * 2011-06-24 2015-08-19 株式会社ニコン 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
JP5749866B2 (ja) 2012-09-14 2015-07-15 富士フイルム株式会社 広角レンズおよび撮像装置
TWI476442B (zh) * 2013-02-26 2015-03-11 Sintai Optical Shenzhen Co Ltd 變焦鏡頭
JP6300507B2 (ja) * 2013-12-16 2018-03-28 オリンパス株式会社 ズームレンズ及びそれを有するズームレンズ装置
JP6366323B2 (ja) * 2014-03-27 2018-08-01 キヤノン株式会社 ズームレンズおよび撮像装置
JP6515480B2 (ja) * 2014-10-15 2019-05-22 株式会社シグマ 防振機能を備えた変倍結像光学系
US9784949B1 (en) 2016-08-31 2017-10-10 Zhejiang Sunny Optics Co., Ltd. Image pickup optical lens system
CN109804292B (zh) * 2016-10-07 2021-05-25 株式会社尼康 变倍光学系统以及光学设备
JP2018097321A (ja) * 2016-12-17 2018-06-21 コニカミノルタ株式会社 ズームレンズ及び撮像装置
US11314042B2 (en) * 2017-05-26 2022-04-26 Nittoh Inc. Optical system for image pickup, and image pickup device
JP7260036B2 (ja) * 2018-11-20 2023-04-18 株式会社ニコン 変倍光学系および光学機器
JP7242411B2 (ja) * 2019-04-26 2023-03-20 キヤノン株式会社 光学系及び撮像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174327A (ja) * 1997-12-15 1999-07-02 Canon Inc ズームレンズ
JPH11223770A (ja) * 1998-02-06 1999-08-17 Canon Inc ズームレンズ
JP2000221398A (ja) * 1999-02-01 2000-08-11 Tamron Co Ltd インナンーフォーカスズームレンズ
JP2003015038A (ja) * 2001-06-29 2003-01-15 Ricoh Opt Ind Co Ltd 投射用ズームレンズ
JP2003241098A (ja) * 2002-02-21 2003-08-27 Sigma Corp 変倍光学系
JP2004198529A (ja) * 2002-12-16 2004-07-15 Canon Inc ズームレンズ及びそれを有する光学機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054185B2 (ja) 1990-10-23 2000-06-19 オリンパス光学工業株式会社 ズームレンズ
JP4380158B2 (ja) 2002-12-27 2009-12-09 株式会社ニコン ズームレンズ
US7844701B2 (en) * 2005-08-01 2010-11-30 Network Appliance, Inc. Rule-based performance analysis of storage appliances
JP5151333B2 (ja) * 2007-09-11 2013-02-27 株式会社リコー ズームレンズおよびカメラ装置および携帯情報端末装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174327A (ja) * 1997-12-15 1999-07-02 Canon Inc ズームレンズ
JPH11223770A (ja) * 1998-02-06 1999-08-17 Canon Inc ズームレンズ
JP2000221398A (ja) * 1999-02-01 2000-08-11 Tamron Co Ltd インナンーフォーカスズームレンズ
JP2003015038A (ja) * 2001-06-29 2003-01-15 Ricoh Opt Ind Co Ltd 投射用ズームレンズ
JP2003241098A (ja) * 2002-02-21 2003-08-27 Sigma Corp 変倍光学系
JP2004198529A (ja) * 2002-12-16 2004-07-15 Canon Inc ズームレンズ及びそれを有する光学機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037223A (ja) * 2011-08-09 2013-02-21 Nikon Corp 光学系、この光学系を有する光学機器、及び、光学系の製造方法
CN103969813A (zh) * 2013-02-05 2014-08-06 株式会社腾龙 变焦透镜
CN106324798A (zh) * 2015-06-26 2017-01-11 浙江大华技术股份有限公司 一种透镜系统和镜头
CN106324798B (zh) * 2015-06-26 2019-05-21 浙江大华技术股份有限公司 一种透镜系统和镜头

Also Published As

Publication number Publication date
JP5168641B2 (ja) 2013-03-21
JP2009282214A (ja) 2009-12-03
US20100321791A1 (en) 2010-12-23
US8339712B2 (en) 2012-12-25

Similar Documents

Publication Publication Date Title
JP5168641B2 (ja) 変倍光学系、これを有する光学機器及び変倍方法
JP5423190B2 (ja) 変倍光学系、及び、この変倍光学系を備える光学機器
JP5273184B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP5135723B2 (ja) 防振機能を有するズームレンズ、撮像装置、ズームレンズの防振方法、ズームレンズの変倍方法
JP5641680B2 (ja) ズームレンズ、これを有する光学機器
JP5904273B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP5975773B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2010032702A (ja) ズームレンズ、これを有する光学機器及び変倍方法
WO2010004806A1 (ja) ズームレンズ、これを有する光学機器及びズームレンズの製造方法
JP6806238B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP6787485B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
WO2018185868A1 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JPWO2018074413A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2011118366A (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP2012027309A (ja) ズームレンズ、光学装置、ズームレンズの製造方法
WO2014077120A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2016194774A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5201460B2 (ja) ズームレンズ、これを有する光学機器及び変倍方法
JP2023060137A (ja) 光学系、光学機器、および光学系の製造方法
JP2007271752A (ja) マクロレンズ、光学装置、マクロレンズの合焦方法
JP6268792B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP6806239B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP4955875B2 (ja) ズームレンズ及びそれを有する光学機器
WO2015136988A1 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP5540513B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750452

Country of ref document: EP

Kind code of ref document: A1