WO2009142060A1 - 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 - Google Patents
永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2009142060A1 WO2009142060A1 PCT/JP2009/055704 JP2009055704W WO2009142060A1 WO 2009142060 A1 WO2009142060 A1 WO 2009142060A1 JP 2009055704 W JP2009055704 W JP 2009055704W WO 2009142060 A1 WO2009142060 A1 WO 2009142060A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- rotor
- slit
- magnet motor
- peripheral side
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/24—Rotor cores with salient poles ; Variable reluctance rotors
- H02K1/246—Variable reluctance rotors
Definitions
- the present invention relates to a permanent magnet motor including a stator having windings and a rotor having permanent magnets, a hermetic compressor containing the permanent magnet motor, and a refrigeration cycle apparatus having the hermetic compressor.
- Permanent magnet motor consists of a stator having windings and a rotor having permanent magnets.
- the rotor has a rotating shaft inserted through a central portion of a rotor core formed by laminating a large number of circular steel plates, and has a plurality of linear magnet housing holes at positions surrounding the rotating shaft.
- the magnet accommodation holes have a depth shape that penetrates the rotor core along the rotation axis, and each accommodates a permanent magnet. Due to the interaction between the magnetic field of these permanent magnets and the magnetic field generated by the stator winding, a rotational force is generated in the rotor.
- a large number of slits are formed at positions outside the respective magnet housing holes in the rotor, and the magnetic flux of the permanent magnets is transferred to the rotor by the low permeability function of these slits.
- the torque is increased by concentrating on the central portion side (for example, JP-A-2005-94968).
- reference numeral 100 denotes a rotor, which is a rotor core 101 formed by laminating a large number of circular steel plates, a rotation shaft insertion hole 101a formed in the center of the rotor core 101, and the rotation shaft insertion. It has linear magnet accommodation holes 102 formed at positions of four sides of a substantially square surrounding the hole 101a. Each magnet accommodation hole 102 has a depth shape which penetrates the rotor core 101 along the rotating shaft insertion hole 101a.
- the plate-like permanent magnets 103 are accommodated in the magnet accommodation holes 102, and the rotor core 101 rotates due to the interaction between the magnetic field of the permanent magnets 103 and the magnetic field generated by the stator side winding.
- a large number of slits 104 are sequentially formed at positions outside the magnet housing holes 102 in the rotor core 101 and along the circumferential direction of the rotor core 101.
- Each slit 104 has an elongated shape along the radial direction of the rotor core 101 and has a depth shape penetrating the rotor core along the rotation shaft insertion hole 101 a, and corresponds to each of the permanent magnets 103. Twelve pieces are provided at each position.
- each slit 104 has a small interval between the inner peripheral side end in the radial direction of the rotor core 101 and the magnet housing hole 102, and the rotor.
- the distance between the outer peripheral side end in the radial direction of the iron core 101 and the outer peripheral edge of the rotor core 101 is set small.
- each slit 104 The mutual interval between the outer peripheral side ends of each slit 104 is set evenly within the width of the permanent magnet 103, and the mutual interval between the inner peripheral side ends is P1 from the central portion of the permanent magnet 103 toward both sides. , P2, P3, P4, P5, and P6 (P1> P2> P3> P4> P5> P6).
- P ⁇ b> 7 indicates a distance between the inner peripheral side end of the slit 104 and the both sides of the permanent magnet 103 corresponding to both sides of the permanent magnet 103.
- each permanent magnet 103 is represented by an electrical angle of 0 ° to 180 °, and a half-wave sine wave having the same electrical angle as the electrical angle of 0 ° to 180 ° is added to the mutual intervals P1, P2, P3, P4, P5, P6, P7 Is assigned in FIG. That is, since the number of magnetic fluxes passing through the mutual portions of the slits 104 depends on the amount (width) of the magnets corresponding to the mutual portions, the mutual intervals P1, P2, P3, P4, P5, P6, and P7 are set as follows. By setting each of them in accordance with the height of the half-wave sine wave, the voltage induced in the stator winding is made sinusoidal to reduce vibration and noise.
- the magnetic path of the portion between the slits 104 only by matching the mutual intervals P1, P2, P3, P4, P5, P6, P7 of the inner peripheral side ends of the slits 104 to the height of the half wave sine wave. It is difficult to appropriately set the number of magnetic fluxes passing through the coil, and as shown in FIG. 13, many ripples are generated in the voltage induced in the stator winding.
- FIG. 14 and FIG. 15 confirmed the magnetic flux distribution in the rotor core 101 and the stator in this case by experiments.
- 110 is a tooth portion of the stator, and a winding 111 is mounted on the tooth portion 110. Looking at the portion surrounded by a circle in FIG. 14, the magnetic flux passes through the magnetic path between the slits 104 and reaches one tooth portion 110.
- the number of slits 104 for each permanent magnet 103 is increased to, for example, 14, thereby narrowing the magnetic path between the slits 4 to reduce the magnetic path. It is conceivable to reduce the number of magnetic fluxes passing through. However, in this case, since the magnetic path at the inner peripheral side end of each slit 104 becomes extremely narrow on both end sides of the permanent magnet 103, the magnetic flux distribution in the rotor core 101 collapses from the half-wave sine wave, and the ripple It is difficult to improve.
- the present invention takes the above circumstances into consideration, and its purpose is to maintain the induced voltage of the winding in a sinusoidal shape with less ripples while ensuring the effect of increasing torque by a plurality of slits, and to vibrate.
- a permanent magnet motor, a hermetic compressor, and a refrigeration cycle apparatus that can reliably reduce noise.
- the permanent magnet motor includes a stator on which windings are mounted, a rotor through which a rotation shaft is passed through a central portion, and a plurality of magnet housing holes formed at positions surrounding the rotation shaft of the rotor. And a plurality of permanent magnets housed in the magnet housing holes and an elongated shape along the radial direction of the rotor, and along the circumferential direction of the rotor outside the magnet housing holes in the rotor A plurality of slits sequentially formed.
- interval of the inner peripheral side edge part of each said slit and each said magnet accommodation hole small
- interval of the outer peripheral side edge part of each said slit and the outer periphery of the said rotor is set small.
- the width of each permanent magnet along the circumferential direction of the rotor is W
- the number of each slit corresponding to each permanent magnet is n
- the width W of each permanent magnet is an electrical angle of 0 ° to 180 °.
- the outer peripheral side end of each slit for each of the permanent magnets is located at the electrical angles ⁇ 1, ⁇ 2,... ⁇ n, and has the same half-wave sine waveform as the electrical angles 0 ° to 180 °.
- the permanent magnet motor and a compression mechanism driven by the permanent magnet motor are housed in a hermetic case.
- the refrigeration cycle apparatus of the present invention includes the hermetic compressor, a condenser, an expansion device, and an evaporator.
- FIG. 5 is a diagram showing the correspondence between electrical angles 0 ° to 180 ° representing the width of the permanent magnet and electrical angles ⁇ 1, ⁇ 2,... ⁇ n representing the positions of the outer peripheral ends of the slits in the first embodiment.
- FIG. 10 is a diagram showing the correspondence between electrical angles 0 ° to 180 ° representing the width of the permanent magnet and electrical angles ⁇ 1, ⁇ 2,... ⁇ n representing the positions of the outer peripheral ends of the slits in the third embodiment.
- FIG. 11 is a diagram showing the correspondence between the electrical angles 0 ° to 180 ° representing the width of the permanent magnet in FIG. 10 and the electrical angles P1, P2,...
- FIG. 14 The figure which shows the waveform of the induced voltage in FIG.
- the figure which shows magnetic flux distribution in the rotor and stator of FIG. The figure which shows how the magnetic flux distribution of FIG. 14 changes with a little rotation of a rotor.
- FIG. 1 shows a configuration of a refrigeration cycle apparatus such as an air conditioner or a refrigerator, and an internal configuration of a hermetic compressor mounted on the refrigeration cycle apparatus.
- the hermetic compressor 1 is covered with a metal hermetic case 1a.
- Two suction ports 2a and 2b are attached to the lower part of the sealed case 1a, and one discharge pipe 3 is attached to the upper part.
- One end of a condenser 31 is connected to the discharge pipe 3 via a high-pressure side pipe, and one end of an evaporator 33 is connected to the other end of the condenser 31 via an expansion device such as an expansion valve 32.
- the other end of the evaporator 33 is connected to the suction ports 2a and 2b via an accumulator 34 and two suction pipes 35.
- the permanent magnet motor 10 and the compression mechanism unit 20 are accommodated separately in the upper and lower sides.
- the permanent magnet motor 10 includes a cylindrical stator 11 provided so as to be in contact with the inner peripheral surface of the sealed case 1a, and a rotor 12 provided rotatably inside the stator 11.
- a rotation shaft (also referred to as a shaft) 13 is inserted through the center of the rotor 12, and the rotation shaft 13 extends to the compression mechanism portion 20 below.
- the compression mechanism unit 20 includes two compression chambers 21a and 21b communicating with the suction ports 2a and 2b, and rollers 22a and 22b that rotate eccentrically in response to the rotation of the rotary shaft 13 in the compression chambers 21a and 21b.
- the gas refrigerant in the compression chambers 21a and 21b is compressed by the eccentric rotation of the rollers 22a and 22b and discharged into the sealed case 1a.
- the discharged gas refrigerant flows to the condenser 31 through the discharge pipe 3.
- the stator of the permanent magnet motor 10 is equipped with three phase windings Lu, Lv, and Lw that are star-connected at a neutral point C as shown in FIG.
- An inverter circuit including a forward conversion unit 41 and a switching circuit 42 is connected to the phase windings Lu, Lv, and Lw.
- the forward conversion unit 41 converts the AC voltage of the commercial AC power supply 40 into a DC voltage.
- the switching circuit 42 includes a series circuit of a pair of switching elements for three phases, a series circuit of switching elements U + and U ⁇ for U phase, a series circuit of switching elements V + and V ⁇ for V phase, W As a phase, a switching circuit W +, a series circuit of W ⁇ is provided, and the DC voltage output from the forward conversion unit 41 is converted into a three-phase AC voltage.
- the non-connected end of the phase winding Lu is connected to the interconnection point of the switching elements U + and U ⁇ of the switching circuit 42, and the non-connected end of the phase winding Lv is connected to the interconnection point of the switching elements V + and V ⁇ .
- the non-connection end of the phase winding Lw is connected to the interconnection point of the switching elements W + and W ⁇ , and the control unit 43 is connected to the base of each switching element.
- the control unit 43 turns on one switching element of one phase in the switching circuit 42 and turns off the other switching element, and simultaneously turns off one switching element of another phase and turns on the other switching element.
- current is sequentially passed through the two phase windings of the phase windings Lu, Lv, and Lw.
- the position detection unit 44 detects the rotational position of the rotor 12 from the captured induced voltage. This detection result is supplied to the control unit 43.
- the control unit 43 controls the on / off timing for each switching element of the switching circuit 42 according to the detection result of the position detection unit 44.
- the rotor 12 of the permanent magnet motor 10 includes a rotor core 51 formed by laminating a large number of circular steel plates, and a rotating shaft inserted in the center of the rotor core 51.
- the hole 51a and the linear magnet accommodating hole 52 each formed in the position of the substantially square four sides surrounding this rotating shaft insertion hole 51a are provided.
- Each magnet accommodation hole 52 has a depth shape penetrating the rotor core 51 along the rotation shaft insertion hole 51a.
- plate-like permanent magnets 53 having substantially the same length as the width in the elongated direction are housed, and due to the interaction between the magnetic field of these permanent magnets 53 and the magnetic field generated by the stator side windings.
- the rotor core 51 rotates.
- a large number of slits 54 are sequentially formed at positions outside the magnet housing holes 52 in the rotor core 51 and along the circumferential direction of the rotor core 51.
- Each slit 54 has an elongated shape along the radial direction of the rotor core 51 and a depth shape that penetrates the rotor core along the rotation shaft insertion hole 51 a, and a position corresponding to each of the permanent magnets 53. There are 12 each.
- each slit 54 has a small interval between the inner peripheral side end in the radial direction of the rotor core 51 and the magnet housing hole 52 and the rotor.
- the distance between the outer peripheral side end in the radial direction of the iron core 51 and the outer peripheral edge of the rotor iron core 51 is set small.
- each slit 54 is set to the position of electrical angles ⁇ 1, ⁇ 2,... ⁇ 12 when the width W of the corresponding permanent magnet 53 is represented by an electrical angle of 0 ° to 180 °.
- the mutual intervals ⁇ between the positions ⁇ 1, ⁇ 2,... ⁇ 12 are equal to 12 °, but are not necessarily equal.
- W1, W2, W3, W4, W5, W6 (W1> W2> W3> from the central part of the width of the permanent magnet 53 toward both sides.
- W4> W5> W6) is set to a state of gradually decreasing.
- W ⁇ b> 7 indicates the distance between the inner peripheral side end of the slit 54 corresponding to the both side portions of the permanent magnet 53 and the both side portions of the permanent magnet 53.
- the width of the permanent magnet 53 is W
- the number of slits 54 corresponding to each permanent magnet 53 is n
- the width W of the permanent magnet 53 is represented by an electrical angle of 0 ° to 180 °
- the mutual interval Wn between the inner peripheral side ends of the slits 53 is distributed in accordance with the ratio of the area of the half-wave sine wave corresponding to the positions ⁇ 1, ⁇ 2,.
- the magnetic flux distribution in the rotor core 51 is maintained as a half-wave sine wave regardless of the position ⁇ 1, ⁇ 2,... ⁇ n of the outer peripheral side end portion of each slit 54 and the mutual interval ⁇ . be able to.
- FIG. 6 A second embodiment will be described.
- 14 slits 14 are formed at positions corresponding to the individual permanent magnets 53.
- the positions of the end portions on the outer peripheral side of the slits 54 are set to positions of electrical angles ⁇ 1, ⁇ 2,... ⁇ 14 when the width W of the corresponding permanent magnet 53 is represented by electrical angles of 0 ° to 180 °.
- the mutual interval ⁇ between the positions ⁇ 1, ⁇ 2,... ⁇ 14 is set to 14 ° at both ends, and is set to be gradually reduced to 12 °, 10 °, and 8 ° from there to the central portion and the vicinity thereof. .
- a third embodiment will be described.
- the width W of the permanent magnet 53 is expressed by an electrical angle of 0 ° to 180 °
- the outer peripheral end of each slit 54 with respect to each of the permanent magnets 53 is narrower than the electrical angle of 0 ° to 180 °.
- a half-wave sine wave corresponding to the electrical angles ⁇ 1 to ⁇ n in a range narrower than the electrical angle of 0 ° to 180 ° is shown by a solid line in FIG.
- the electrical angles ⁇ 1 to ⁇ n in a range narrower than the electrical angles 0 ° to 180 ° corresponding to the width W of the permanent magnet 53 are 10 ° to 170 °
- An electrical angle of 20 ° to 160 ° is optimal.
- the permanent magnet motor of the present invention can be used for a hermetic compressor such as an air conditioner and a refrigeration cycle apparatus, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
空気調和機や冷蔵庫等の冷凍サイクル装置の構成及びこの冷凍サイクル装置に搭載された密閉型圧縮機の内部の構成を図1に示している。密閉型圧縮機1は、金属製の密閉ケース1aで覆われている。この密閉ケース1aの下部に2つの吸込口2a,2bが取付けられ、上部に1本の吐出管3が取付けられている。この吐出管3に高圧側配管を介して凝縮器31の一端が接続され、その凝縮器31の他端に膨張装置たとえば膨張弁32を介して蒸発器33の一端が接続されている。そして、蒸発器33の他端がアキュームレータ34および2本の吸込管35を介して上記吸込口2a,2bに接続されている。
図6に示すように、永久磁石53の個々と対応する位置に14個のスリット14が形成されている。これらスリット54の外周側端部の位置は、対応する永久磁石53の幅Wを電気角0°~180°で表わした場合に、電気角θ1,θ2,…θ14の位置に設定される。この位置θ1,θ2,…θ14の相互間隔Δθは、両端部が14°に設定され、そこから中央部およびその付近にかけて12°,10°,8°と徐々に小さくなるように設定されている。
この実施形態では、永久磁石53の幅Wが電気角0°~180°で表わされる場合に、永久磁石53の個々に対する各スリット54の外周側端部がその電気角0°~180°より狭い範囲内の電気角θ1,θ2,…θn(=θ1,θ2,…θ12)の位置に設定される。電気角0°~180°より狭い範囲の電気角θ1~θnに対応する半波正弦波を図8に実線で示している。
なお、上記各実施形態では、スリット54の個数が永久磁石53ごとに12個または14個の場合を例に説明したが、その個数について限定はなく、回転子鉄心51の大きさなどに応じて適宜に設定可能である。
その他、この発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。各実施形態に示される全構成要素から幾つかの構成要素を削除することも可能である。
Claims (6)
- 巻線が装着される固定子と、
中心部に回転軸が通される回転子と、
この回転子の前記回転軸を囲む位置に形成された複数の磁石収容孔と、
これら磁石収容孔に収容された複数の永久磁石と、
前記回転子の径方向に沿う細長形状を有し、前記回転子における前記各磁石収容孔の外側に同回転子の周方向に沿って順に形成された複数のスリットと、
を備え、
前記各スリットの内周側端部と前記各磁石収容孔との間隔を小さく設定するとともに、前記各スリットの外周側端部と前記回転子の外周縁との間隔が小さく設定し、
前記回転子の周方向に沿う前記各永久磁石の幅がW、前記永久磁石ごとに対応する前記各スリットの数がn、前記各永久磁石の幅Wが電気角0°~180°で表わされる場合に前記各永久磁石の個々に対する前記各スリットの外周側端部が電気角θ1,θ2,…θnの位置にあって、前記電気角0°~180°と同じ半波正弦波の波形面積がS、この半波正弦波における前記電気角θ1,θ2,…θnの相互間隔Δθに対応する領域の波形面積がSnである場合、各スリットの内周側端部の相互間隔Wnを、Wn/W=Sn/Sの条件により設定する、
ことを特徴とする永久磁石電動機。 - 前記電気角θ1,θ2,…θnの相互間隔Δθは、前記各永久磁石の幅Wの両端部から中央部にかけて徐々に小さくなることを特徴とする請求項1記載の永久磁石電動機。
- 前記固定子は、巻線を集中巻するための複数の歯部を有し、
前記電気角θ1,θ2,…θnは、前記電気角0°~180°より狭い電気角の範囲内で設定される、
ことを特徴とする請求項1記載の永久磁石電動機。 - 前記固定子の巻線に三相正弦波の交流電圧が印加されることを特徴とする請求項1記載の永久磁石電動機。
- 密閉ケース内に、請求項1乃至4のいずれかの永久磁石電動機と、この永久磁石電動機により駆動される圧縮機構部とを収納したことを特徴とする密閉型圧縮機。
- 請求項5に記載の密閉型圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えたことを特徴とする冷凍サイクル装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801130940A CN102007669B (zh) | 2008-05-21 | 2009-03-23 | 永磁电动机、密闭式压缩机以及制冷循环装置 |
JP2010512965A JP5264897B2 (ja) | 2008-05-21 | 2009-03-23 | 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008133485 | 2008-05-21 | ||
JP2008-133485 | 2008-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009142060A1 true WO2009142060A1 (ja) | 2009-11-26 |
Family
ID=41339999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055704 WO2009142060A1 (ja) | 2008-05-21 | 2009-03-23 | 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5264897B2 (ja) |
CN (1) | CN102007669B (ja) |
WO (1) | WO2009142060A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403862A (zh) * | 2010-09-10 | 2012-04-04 | 三菱电机株式会社 | 压缩机用电动机、压缩机以及冷冻循环装置 |
JP2012244645A (ja) * | 2011-05-16 | 2012-12-10 | Daikin Ind Ltd | モータ |
DE102012018510A1 (de) | 2012-09-18 | 2014-03-20 | Daimler Ag | Rotor für eine elektrische Maschine |
EP2961040A4 (en) * | 2013-02-20 | 2016-11-02 | Mitsubishi Electric Corp | ELECTRIC MOTOR HAVING INTEGRATED PERMANENT MAGNETS |
DE102016223044A1 (de) | 2016-11-22 | 2018-05-24 | Robert Bosch Gmbh | Blechelement für einen Rotor eines Elektromotors |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106374655A (zh) * | 2016-10-24 | 2017-02-01 | 珠海凌达压缩机有限公司 | 一种电机转子及具其的永磁电机 |
EP3687058B1 (en) | 2018-01-03 | 2022-04-27 | Guangdong Meizhi Compressor Co., Ltd. | Compressor and refrigeration device |
CN108288938B (zh) * | 2018-01-03 | 2019-06-04 | 广东美芝制冷设备有限公司 | 压缩机和制冷设备 |
US11888353B2 (en) * | 2018-04-10 | 2024-01-30 | Mitsubishi Electric Corporation | Motor, compressor, and air conditioner |
CN108736610B (zh) | 2018-08-09 | 2019-07-16 | 珠海格力电器股份有限公司 | 电机转子和永磁电机 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005094968A (ja) * | 2003-09-19 | 2005-04-07 | Toshiba Kyaria Kk | 永久磁石電動機 |
-
2009
- 2009-03-23 CN CN2009801130940A patent/CN102007669B/zh active Active
- 2009-03-23 JP JP2010512965A patent/JP5264897B2/ja active Active
- 2009-03-23 WO PCT/JP2009/055704 patent/WO2009142060A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005094968A (ja) * | 2003-09-19 | 2005-04-07 | Toshiba Kyaria Kk | 永久磁石電動機 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403862A (zh) * | 2010-09-10 | 2012-04-04 | 三菱电机株式会社 | 压缩机用电动机、压缩机以及冷冻循环装置 |
JP2012244645A (ja) * | 2011-05-16 | 2012-12-10 | Daikin Ind Ltd | モータ |
DE102012018510A1 (de) | 2012-09-18 | 2014-03-20 | Daimler Ag | Rotor für eine elektrische Maschine |
EP2961040A4 (en) * | 2013-02-20 | 2016-11-02 | Mitsubishi Electric Corp | ELECTRIC MOTOR HAVING INTEGRATED PERMANENT MAGNETS |
US9762096B2 (en) | 2013-02-20 | 2017-09-12 | Mitsubishi Electric Corporation | Interior permanent magnet motor |
DE102016223044A1 (de) | 2016-11-22 | 2018-05-24 | Robert Bosch Gmbh | Blechelement für einen Rotor eines Elektromotors |
WO2018095606A1 (de) | 2016-11-22 | 2018-05-31 | Robert Bosch Gmbh | Blechelement für einen rotor eines elektromotors |
Also Published As
Publication number | Publication date |
---|---|
JP5264897B2 (ja) | 2013-08-14 |
CN102007669A (zh) | 2011-04-06 |
CN102007669B (zh) | 2013-11-27 |
JPWO2009142060A1 (ja) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5264897B2 (ja) | 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 | |
US8405271B2 (en) | Interior permanent magnet type brushless direct current motor | |
TWI569560B (zh) | A permanent magnet type rotating machine, and a compressor using the same | |
US6700270B2 (en) | Synchronous induction motor | |
EP1278293B1 (en) | Method for manufacturing the stator of a low-noise motor-compressor | |
JP3837986B2 (ja) | 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。 | |
JP2003116236A (ja) | 永久磁石式回転電機 | |
US11863020B2 (en) | Motor, compressor, and air conditioner | |
JP2006060952A (ja) | 永久磁石埋込み型電動機 | |
JP2006223097A (ja) | 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。 | |
JP3828015B2 (ja) | 永久磁石形モータ及び永久磁石形モータの製造方法及び圧縮機及び冷凍サイクル装置 | |
JP2000217287A (ja) | 永久磁石形モ―タ及びコンプレッサ | |
JP3772608B2 (ja) | 回転電機および圧縮機 | |
WO2019043850A1 (ja) | ロータ、電動機、圧縮機および空気調和装置 | |
WO2005046022A1 (ja) | 永久磁石式同期電動機及びこれを用いた圧縮機 | |
JP2006345692A (ja) | 永久磁石形モータ | |
US12040680B2 (en) | Compressor and air conditioner | |
JP3763462B2 (ja) | 自己始動式同期電動機及びこれを用いた圧縮機 | |
JP2006034100A (ja) | 永久磁石形モータ | |
JP5354499B2 (ja) | 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 | |
JP2004357468A (ja) | 電動機 | |
JP2003348808A (ja) | 電動機 | |
WO2023032134A1 (ja) | 電動機、圧縮機および冷凍サイクル装置 | |
WO2023181238A1 (ja) | 固定子、電動機、圧縮機および冷凍サイクル装置 | |
JP7419501B2 (ja) | 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980113094.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09750422 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010512965 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09750422 Country of ref document: EP Kind code of ref document: A1 |