WO2009142060A1 - 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 - Google Patents

永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 Download PDF

Info

Publication number
WO2009142060A1
WO2009142060A1 PCT/JP2009/055704 JP2009055704W WO2009142060A1 WO 2009142060 A1 WO2009142060 A1 WO 2009142060A1 JP 2009055704 W JP2009055704 W JP 2009055704W WO 2009142060 A1 WO2009142060 A1 WO 2009142060A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
slit
magnet motor
peripheral side
Prior art date
Application number
PCT/JP2009/055704
Other languages
English (en)
French (fr)
Inventor
俊彦 二見
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN2009801130940A priority Critical patent/CN102007669B/zh
Priority to JP2010512965A priority patent/JP5264897B2/ja
Publication of WO2009142060A1 publication Critical patent/WO2009142060A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors

Definitions

  • the present invention relates to a permanent magnet motor including a stator having windings and a rotor having permanent magnets, a hermetic compressor containing the permanent magnet motor, and a refrigeration cycle apparatus having the hermetic compressor.
  • Permanent magnet motor consists of a stator having windings and a rotor having permanent magnets.
  • the rotor has a rotating shaft inserted through a central portion of a rotor core formed by laminating a large number of circular steel plates, and has a plurality of linear magnet housing holes at positions surrounding the rotating shaft.
  • the magnet accommodation holes have a depth shape that penetrates the rotor core along the rotation axis, and each accommodates a permanent magnet. Due to the interaction between the magnetic field of these permanent magnets and the magnetic field generated by the stator winding, a rotational force is generated in the rotor.
  • a large number of slits are formed at positions outside the respective magnet housing holes in the rotor, and the magnetic flux of the permanent magnets is transferred to the rotor by the low permeability function of these slits.
  • the torque is increased by concentrating on the central portion side (for example, JP-A-2005-94968).
  • reference numeral 100 denotes a rotor, which is a rotor core 101 formed by laminating a large number of circular steel plates, a rotation shaft insertion hole 101a formed in the center of the rotor core 101, and the rotation shaft insertion. It has linear magnet accommodation holes 102 formed at positions of four sides of a substantially square surrounding the hole 101a. Each magnet accommodation hole 102 has a depth shape which penetrates the rotor core 101 along the rotating shaft insertion hole 101a.
  • the plate-like permanent magnets 103 are accommodated in the magnet accommodation holes 102, and the rotor core 101 rotates due to the interaction between the magnetic field of the permanent magnets 103 and the magnetic field generated by the stator side winding.
  • a large number of slits 104 are sequentially formed at positions outside the magnet housing holes 102 in the rotor core 101 and along the circumferential direction of the rotor core 101.
  • Each slit 104 has an elongated shape along the radial direction of the rotor core 101 and has a depth shape penetrating the rotor core along the rotation shaft insertion hole 101 a, and corresponds to each of the permanent magnets 103. Twelve pieces are provided at each position.
  • each slit 104 has a small interval between the inner peripheral side end in the radial direction of the rotor core 101 and the magnet housing hole 102, and the rotor.
  • the distance between the outer peripheral side end in the radial direction of the iron core 101 and the outer peripheral edge of the rotor core 101 is set small.
  • each slit 104 The mutual interval between the outer peripheral side ends of each slit 104 is set evenly within the width of the permanent magnet 103, and the mutual interval between the inner peripheral side ends is P1 from the central portion of the permanent magnet 103 toward both sides. , P2, P3, P4, P5, and P6 (P1> P2> P3> P4> P5> P6).
  • P ⁇ b> 7 indicates a distance between the inner peripheral side end of the slit 104 and the both sides of the permanent magnet 103 corresponding to both sides of the permanent magnet 103.
  • each permanent magnet 103 is represented by an electrical angle of 0 ° to 180 °, and a half-wave sine wave having the same electrical angle as the electrical angle of 0 ° to 180 ° is added to the mutual intervals P1, P2, P3, P4, P5, P6, P7 Is assigned in FIG. That is, since the number of magnetic fluxes passing through the mutual portions of the slits 104 depends on the amount (width) of the magnets corresponding to the mutual portions, the mutual intervals P1, P2, P3, P4, P5, P6, and P7 are set as follows. By setting each of them in accordance with the height of the half-wave sine wave, the voltage induced in the stator winding is made sinusoidal to reduce vibration and noise.
  • the magnetic path of the portion between the slits 104 only by matching the mutual intervals P1, P2, P3, P4, P5, P6, P7 of the inner peripheral side ends of the slits 104 to the height of the half wave sine wave. It is difficult to appropriately set the number of magnetic fluxes passing through the coil, and as shown in FIG. 13, many ripples are generated in the voltage induced in the stator winding.
  • FIG. 14 and FIG. 15 confirmed the magnetic flux distribution in the rotor core 101 and the stator in this case by experiments.
  • 110 is a tooth portion of the stator, and a winding 111 is mounted on the tooth portion 110. Looking at the portion surrounded by a circle in FIG. 14, the magnetic flux passes through the magnetic path between the slits 104 and reaches one tooth portion 110.
  • the number of slits 104 for each permanent magnet 103 is increased to, for example, 14, thereby narrowing the magnetic path between the slits 4 to reduce the magnetic path. It is conceivable to reduce the number of magnetic fluxes passing through. However, in this case, since the magnetic path at the inner peripheral side end of each slit 104 becomes extremely narrow on both end sides of the permanent magnet 103, the magnetic flux distribution in the rotor core 101 collapses from the half-wave sine wave, and the ripple It is difficult to improve.
  • the present invention takes the above circumstances into consideration, and its purpose is to maintain the induced voltage of the winding in a sinusoidal shape with less ripples while ensuring the effect of increasing torque by a plurality of slits, and to vibrate.
  • a permanent magnet motor, a hermetic compressor, and a refrigeration cycle apparatus that can reliably reduce noise.
  • the permanent magnet motor includes a stator on which windings are mounted, a rotor through which a rotation shaft is passed through a central portion, and a plurality of magnet housing holes formed at positions surrounding the rotation shaft of the rotor. And a plurality of permanent magnets housed in the magnet housing holes and an elongated shape along the radial direction of the rotor, and along the circumferential direction of the rotor outside the magnet housing holes in the rotor A plurality of slits sequentially formed.
  • interval of the inner peripheral side edge part of each said slit and each said magnet accommodation hole small
  • interval of the outer peripheral side edge part of each said slit and the outer periphery of the said rotor is set small.
  • the width of each permanent magnet along the circumferential direction of the rotor is W
  • the number of each slit corresponding to each permanent magnet is n
  • the width W of each permanent magnet is an electrical angle of 0 ° to 180 °.
  • the outer peripheral side end of each slit for each of the permanent magnets is located at the electrical angles ⁇ 1, ⁇ 2,... ⁇ n, and has the same half-wave sine waveform as the electrical angles 0 ° to 180 °.
  • the permanent magnet motor and a compression mechanism driven by the permanent magnet motor are housed in a hermetic case.
  • the refrigeration cycle apparatus of the present invention includes the hermetic compressor, a condenser, an expansion device, and an evaporator.
  • FIG. 5 is a diagram showing the correspondence between electrical angles 0 ° to 180 ° representing the width of the permanent magnet and electrical angles ⁇ 1, ⁇ 2,... ⁇ n representing the positions of the outer peripheral ends of the slits in the first embodiment.
  • FIG. 10 is a diagram showing the correspondence between electrical angles 0 ° to 180 ° representing the width of the permanent magnet and electrical angles ⁇ 1, ⁇ 2,... ⁇ n representing the positions of the outer peripheral ends of the slits in the third embodiment.
  • FIG. 11 is a diagram showing the correspondence between the electrical angles 0 ° to 180 ° representing the width of the permanent magnet in FIG. 10 and the electrical angles P1, P2,...
  • FIG. 14 The figure which shows the waveform of the induced voltage in FIG.
  • the figure which shows magnetic flux distribution in the rotor and stator of FIG. The figure which shows how the magnetic flux distribution of FIG. 14 changes with a little rotation of a rotor.
  • FIG. 1 shows a configuration of a refrigeration cycle apparatus such as an air conditioner or a refrigerator, and an internal configuration of a hermetic compressor mounted on the refrigeration cycle apparatus.
  • the hermetic compressor 1 is covered with a metal hermetic case 1a.
  • Two suction ports 2a and 2b are attached to the lower part of the sealed case 1a, and one discharge pipe 3 is attached to the upper part.
  • One end of a condenser 31 is connected to the discharge pipe 3 via a high-pressure side pipe, and one end of an evaporator 33 is connected to the other end of the condenser 31 via an expansion device such as an expansion valve 32.
  • the other end of the evaporator 33 is connected to the suction ports 2a and 2b via an accumulator 34 and two suction pipes 35.
  • the permanent magnet motor 10 and the compression mechanism unit 20 are accommodated separately in the upper and lower sides.
  • the permanent magnet motor 10 includes a cylindrical stator 11 provided so as to be in contact with the inner peripheral surface of the sealed case 1a, and a rotor 12 provided rotatably inside the stator 11.
  • a rotation shaft (also referred to as a shaft) 13 is inserted through the center of the rotor 12, and the rotation shaft 13 extends to the compression mechanism portion 20 below.
  • the compression mechanism unit 20 includes two compression chambers 21a and 21b communicating with the suction ports 2a and 2b, and rollers 22a and 22b that rotate eccentrically in response to the rotation of the rotary shaft 13 in the compression chambers 21a and 21b.
  • the gas refrigerant in the compression chambers 21a and 21b is compressed by the eccentric rotation of the rollers 22a and 22b and discharged into the sealed case 1a.
  • the discharged gas refrigerant flows to the condenser 31 through the discharge pipe 3.
  • the stator of the permanent magnet motor 10 is equipped with three phase windings Lu, Lv, and Lw that are star-connected at a neutral point C as shown in FIG.
  • An inverter circuit including a forward conversion unit 41 and a switching circuit 42 is connected to the phase windings Lu, Lv, and Lw.
  • the forward conversion unit 41 converts the AC voltage of the commercial AC power supply 40 into a DC voltage.
  • the switching circuit 42 includes a series circuit of a pair of switching elements for three phases, a series circuit of switching elements U + and U ⁇ for U phase, a series circuit of switching elements V + and V ⁇ for V phase, W As a phase, a switching circuit W +, a series circuit of W ⁇ is provided, and the DC voltage output from the forward conversion unit 41 is converted into a three-phase AC voltage.
  • the non-connected end of the phase winding Lu is connected to the interconnection point of the switching elements U + and U ⁇ of the switching circuit 42, and the non-connected end of the phase winding Lv is connected to the interconnection point of the switching elements V + and V ⁇ .
  • the non-connection end of the phase winding Lw is connected to the interconnection point of the switching elements W + and W ⁇ , and the control unit 43 is connected to the base of each switching element.
  • the control unit 43 turns on one switching element of one phase in the switching circuit 42 and turns off the other switching element, and simultaneously turns off one switching element of another phase and turns on the other switching element.
  • current is sequentially passed through the two phase windings of the phase windings Lu, Lv, and Lw.
  • the position detection unit 44 detects the rotational position of the rotor 12 from the captured induced voltage. This detection result is supplied to the control unit 43.
  • the control unit 43 controls the on / off timing for each switching element of the switching circuit 42 according to the detection result of the position detection unit 44.
  • the rotor 12 of the permanent magnet motor 10 includes a rotor core 51 formed by laminating a large number of circular steel plates, and a rotating shaft inserted in the center of the rotor core 51.
  • the hole 51a and the linear magnet accommodating hole 52 each formed in the position of the substantially square four sides surrounding this rotating shaft insertion hole 51a are provided.
  • Each magnet accommodation hole 52 has a depth shape penetrating the rotor core 51 along the rotation shaft insertion hole 51a.
  • plate-like permanent magnets 53 having substantially the same length as the width in the elongated direction are housed, and due to the interaction between the magnetic field of these permanent magnets 53 and the magnetic field generated by the stator side windings.
  • the rotor core 51 rotates.
  • a large number of slits 54 are sequentially formed at positions outside the magnet housing holes 52 in the rotor core 51 and along the circumferential direction of the rotor core 51.
  • Each slit 54 has an elongated shape along the radial direction of the rotor core 51 and a depth shape that penetrates the rotor core along the rotation shaft insertion hole 51 a, and a position corresponding to each of the permanent magnets 53. There are 12 each.
  • each slit 54 has a small interval between the inner peripheral side end in the radial direction of the rotor core 51 and the magnet housing hole 52 and the rotor.
  • the distance between the outer peripheral side end in the radial direction of the iron core 51 and the outer peripheral edge of the rotor iron core 51 is set small.
  • each slit 54 is set to the position of electrical angles ⁇ 1, ⁇ 2,... ⁇ 12 when the width W of the corresponding permanent magnet 53 is represented by an electrical angle of 0 ° to 180 °.
  • the mutual intervals ⁇ between the positions ⁇ 1, ⁇ 2,... ⁇ 12 are equal to 12 °, but are not necessarily equal.
  • W1, W2, W3, W4, W5, W6 (W1> W2> W3> from the central part of the width of the permanent magnet 53 toward both sides.
  • W4> W5> W6) is set to a state of gradually decreasing.
  • W ⁇ b> 7 indicates the distance between the inner peripheral side end of the slit 54 corresponding to the both side portions of the permanent magnet 53 and the both side portions of the permanent magnet 53.
  • the width of the permanent magnet 53 is W
  • the number of slits 54 corresponding to each permanent magnet 53 is n
  • the width W of the permanent magnet 53 is represented by an electrical angle of 0 ° to 180 °
  • the mutual interval Wn between the inner peripheral side ends of the slits 53 is distributed in accordance with the ratio of the area of the half-wave sine wave corresponding to the positions ⁇ 1, ⁇ 2,.
  • the magnetic flux distribution in the rotor core 51 is maintained as a half-wave sine wave regardless of the position ⁇ 1, ⁇ 2,... ⁇ n of the outer peripheral side end portion of each slit 54 and the mutual interval ⁇ . be able to.
  • FIG. 6 A second embodiment will be described.
  • 14 slits 14 are formed at positions corresponding to the individual permanent magnets 53.
  • the positions of the end portions on the outer peripheral side of the slits 54 are set to positions of electrical angles ⁇ 1, ⁇ 2,... ⁇ 14 when the width W of the corresponding permanent magnet 53 is represented by electrical angles of 0 ° to 180 °.
  • the mutual interval ⁇ between the positions ⁇ 1, ⁇ 2,... ⁇ 14 is set to 14 ° at both ends, and is set to be gradually reduced to 12 °, 10 °, and 8 ° from there to the central portion and the vicinity thereof. .
  • a third embodiment will be described.
  • the width W of the permanent magnet 53 is expressed by an electrical angle of 0 ° to 180 °
  • the outer peripheral end of each slit 54 with respect to each of the permanent magnets 53 is narrower than the electrical angle of 0 ° to 180 °.
  • a half-wave sine wave corresponding to the electrical angles ⁇ 1 to ⁇ n in a range narrower than the electrical angle of 0 ° to 180 ° is shown by a solid line in FIG.
  • the electrical angles ⁇ 1 to ⁇ n in a range narrower than the electrical angles 0 ° to 180 ° corresponding to the width W of the permanent magnet 53 are 10 ° to 170 °
  • An electrical angle of 20 ° to 160 ° is optimal.
  • the permanent magnet motor of the present invention can be used for a hermetic compressor such as an air conditioner and a refrigeration cycle apparatus, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 回転子12における各スリット54の内周側端部と各磁石収容孔52との間隔を小さく設定するとともに、各スリットの外周側端部と回転子12の外周縁との間隔が小さく設定する。そして、各スリット53の内周側端部の相互間隔Wnを、各スリット54の外周側端部の位置θ1,θ2,…θnに対応した半波正弦波の面積の割合に合せて配分する。

Description

永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置
 この発明は、巻線を有する固定子および永久磁石を有する回転子からなる永久磁石電動機、この永久磁石電動機を収納した密閉型圧縮機、およびこの密閉型圧縮機を有する冷凍サイクル装置に関する。
 永久磁石電動機は、巻線を有する固定子および永久磁石を有する回転子からなる。回転子は、円形の多数枚の鋼板を積層してなる回転子鉄心の中心部に回転軸が挿通され、その回転軸を囲む位置に複数の直線状の磁石収容孔を有する。磁石収容孔は、回転軸に沿って回転子鉄心を貫通する深さ形状を持ち、それぞれ永久磁石を収容している。これら永久磁石の磁界と固定子の巻線が発する磁界との相互作用により、回転子に回転力が生じる。
 このような永久磁石電動機の例として、図10に示すように、回転子における各磁石収容孔の外側位置に多数のスリットを形成し、これらスリットの低透磁率機能により永久磁石の磁束を回転子の中央部側に集中させてトルクの増大を図るようにしたものがある(例えば特開2005-94968号公報)。
 すなわち、図10において、100は回転子で、円形の多数枚の鋼板を積層してなる回転子鉄心101、この回転子鉄心101の中心部に形成された回転軸挿通孔101a、この回転軸挿通孔101aを囲む略正方形の四辺の位置にそれぞれ形成された直線状の磁石収容孔102を有している。各磁石収容孔102は、回転軸挿通孔101aに沿って回転子鉄心101を貫通する深さ形状を有する。これら磁石収容孔102に板状の永久磁石103が収容され、これら永久磁石103の磁界と固定子側の巻線が発する磁界との相互作用により、回転子鉄心101が回転する。そして、回転子鉄心101における各磁石収容孔102の外側位置に、かつ回転子鉄心101の周方向に沿って、多数のスリット104が順に形成されている。
 各スリット104は、回転子鉄心101の径方向に沿う細長形状を有するとともに、回転軸挿通孔101aに沿って回転子鉄心を貫通する深さ形状を有し、各永久磁石103の個々と対応する位置に12個ずつ設けられている。
 また、各スリット104は、一部を図11に拡大して示すように、回転子鉄心101の径方向における内周側端部と磁石収容孔102との間隔が小さく設定されるとともに、回転子鉄心101の径方向における外周側端部と回転子鉄心101の外周縁との間隔が小さく設定されている。これらの設定により、各スリット104の相互間部分が磁路として確保され、そこを永久磁石103の磁束が効率よく通るようになる。
 また、各スリット104の外周側端部の相互間隔は永久磁石103の幅内で均等に設定され、内周側端部の相互間隔は永久磁石103の幅の中央部から両側部に向かってP1,P2,P3,P4,P5,P6(P1>P2>P3>P4>P5>P6)と徐々に小さくなる状態に設定されている。P7は、永久磁石103の両側部にそれぞれ対応するスリット104の内周側端部と永久磁石103の両側部との間隔を示している。
 各永久磁石103の幅を電気角0°~180°で表わし、その電気角0°~180°と同じ電気角の半波正弦波に相互間隔P1,P2,P3,P4,P5,P6,P7を割り当てたのが図12である。すなわち、各スリット104の相互間部分を通る磁束数がその相互間部分に対応する磁石の量(幅)に依存することから、相互間間隔P1,P2,P3,P4,P5,P6,P7を上記半波正弦波の高さに合せてそれぞれ設定することにより、固定子巻線に誘起する電圧を正弦波状にして、振動および騒音の低減を図るようにしている。
 しかしながら、各スリット104の内周側端部の相互間隔P1,P2,P3,P4,P5,P6,P7を半波正弦波の高さに合せるだけでは、各スリット104の相互間部分の磁路を通る磁束数を適切に設定することが困難であり、図13に示すように、固定子の巻線に誘起する電圧に多くのリップルが生じてしまう。
 とくに、各スリット104の外周側端部の相互間隔(磁路幅)が大きい場合には、回転子鉄心101と固定子の巻線装着用の歯部との相対位置が回転によって少しぐらい変わっても、回転子鉄心101と固定子との間を通る磁束数に大きな変化は生じなくなる。この場合の回転子鉄心101および固定子における磁束分布を実験により確かめたのが図14および図15である。110は固定子の歯部で、この歯部110に巻線111が装着されている。図14の円で囲んだ部分について見ると、磁束は各スリット104間の磁路を通って1つの歯部110に達している。この状態から回転子鉄心101が反時計方向に少し回転すると、図15の磁束分布となり、円で囲んだ部分について見ると、磁束は各スリット104間の磁路から同じ歯部110に向かって集束するように到達する。つまり、図14の回転位置で巻線111の磁界に対し鎖交する磁束数と、図15の回転位置で巻線111の磁界に対し鎖交する磁束数とを比較すると、両者の差は小さい。この結果、誘起電圧に多くのリップルが生じるのである。
 このリップルを減少させるための対策として、図16に示すように、永久磁石103ごとのスリット104の数を例えば14個に増やし、これにより各スリット4の相互間の磁路を狭くして磁路を通る磁束数を減らすことが考えられる。しかしながら、この場合、各スリット104の内周側端部の磁路が永久磁石103の両端部側で極端に狭くなるため、回転子鉄心101における磁束分布が半波正弦波から崩れてしまい、リップルの改善は困難である。
 この発明は、上記の事情を考慮したもので、その目的は、複数のスリットによるトルク増大の効果を確保しながら、巻線の誘起電圧をリップルの少ない正弦波状に維持することができて、振動および騒音の低減が確実に図れる永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置を提供することである。
 この発明の永久磁石電動機は、巻線が装着される固定子と、中心部に回転軸が通される回転子と、この回転子の前記回転軸を囲む位置に形成された複数の磁石収容孔と、これら磁石収容孔に収容される複数の永久磁石と、前記回転子の径方向に沿う細長形状を有し、前記回転子における前記各磁石収容孔の外側に同回転子の周方向に沿って順に形成された複数のスリットと、を備える。そして、前記各スリットの内周側端部と前記各磁石収容孔との間隔を小さく設定するとともに、前記各スリットの外周側端部と前記回転子の外周縁との間隔を小さく設定する。さらに、前記回転子の周方向に沿う前記各永久磁石の幅がW、前記永久磁石ごとに対応する前記各スリットの数がn、前記各永久磁石の幅Wが電気角0°~180°で表わされる場合に前記各永久磁石の個々に対する前記各スリットの外周側端部が電気角θ1,θ2,…θnの位置にあって、前記電気角0°~180°と同じ半波正弦波の波形面積がS、この半波正弦波における前記電気角θ1,θ2,…θnの相互間隔Δθに対応する領域の波形面積がS1,S2,…Snである場合、各スリットの内周側端部の相互間隔Wnを、Wn/W=Sn/Sの条件により設定する。
 また、この発明の密閉型圧縮機は、密閉ケース内に、前記永久磁石電動機と、この永久磁石電動機により駆動される圧縮機構部とを収納している。
 さらに、この発明の冷凍サイクル装置は、前記密閉型圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えている。
各実施形態における冷凍サイクル装置の構成及びこの冷凍サイクル装置に搭載された密閉型圧縮機の内部の構成を示す図。 各実施形態における相巻線および駆動回路を示すブロック図。 各実施形態における永久磁石電動機の回転子の構成を示す図。 図3における各スリットの構成を拡大して示す図。 第1の実施形態における永久磁石の幅を表わす電気角0°~180°と各スリットの外周側端部の位置を表わす電気角θ1,θ2,…θnとの対応を示す図。 第2の実施形態における永久磁石電動機の回転子の構成を示す図。 第2の実施形態における誘起電圧の波形を示す図。 第3の実施形態における永久磁石の幅を表わす電気角0°~180°と各スリットの外周側端部の位置を表わす電気角θ1,θ2,…θnとの対応を示す図。 第3の実施形態における固定子と回転子の構成を示す図。 従来の永久磁石電動機の回転子の構成を示す図。 図10における各スリットの構成を拡大して示す図。 図10における永久磁石の幅を表わす電気角0°~180°と各スリットの内周側端部に位置を表わす電気角P1,P2,…Pnとの対応を示す図。 図10における誘起電圧の波形を示す図。 図10の回転子および固定子における磁束分布を示す図。 図14の磁束分布が回転子の少しの回転に伴ってどのように変化するかを示す図。 従来の永久磁石電動機の別の回転子の構成を示す図。
 [1]以下、この発明の第1の実施形態について図面を参照して説明する。 
 空気調和機や冷蔵庫等の冷凍サイクル装置の構成及びこの冷凍サイクル装置に搭載された密閉型圧縮機の内部の構成を図1に示している。密閉型圧縮機1は、金属製の密閉ケース1aで覆われている。この密閉ケース1aの下部に2つの吸込口2a,2bが取付けられ、上部に1本の吐出管3が取付けられている。この吐出管3に高圧側配管を介して凝縮器31の一端が接続され、その凝縮器31の他端に膨張装置たとえば膨張弁32を介して蒸発器33の一端が接続されている。そして、蒸発器33の他端がアキュームレータ34および2本の吸込管35を介して上記吸込口2a,2bに接続されている。
 密閉ケース1aの内部には、永久磁石電動機10および圧縮機構部20が上下に分かれて収容されている。
 永久磁石電動機10は、密閉ケース1aの内周面に接するように設けられた筒状の固定子11、この固定子11の内側に回転可能に設けられた回転子12からなる。この回転子12の中心部に回転軸(シャフトともいう)13が挿通され、その回転軸13が下方の圧縮機構部20へ延びている。
 圧縮機構部20は、上記吸込口2a,2bにそれぞれ連通する2つの圧縮室21a,21b、およびこの圧縮室21a,21b内で上記回転軸13の回動を受けて偏心回転するローラ22a,22bを有し、ローラ22a,22bの偏心回転により圧縮室21a,21b内のガス冷媒を圧縮して密閉ケース1a内に吐出する。吐出されたガス冷媒は、吐出管3を通って凝縮器31に流れる。
 上記永久磁石電動機10の固定子には、図2に示すように、中性点Cで星形結線された3つの相巻線Lu,Lv,Lwが装着されている。そして、これら相巻線Lu,Lv,Lwに対し、順変換部41およびスイッチング回路42からなるインバータ回路が接続されている。順変換部41は、商用交流電源40の交流電圧を直流電圧に変換する。スイッチング回路42は、一対のスイッチング素子の直列回路を3相分設けたもので、U相用としてスイッチング素子U+,U-の直列回路、V相用としてスイッチング素子V+,V-の直列回路、W相用としてスイッチング素子W+,W-の直列回路を有し、順変換部41から出力される直流電圧を三相交流電圧に変換する。
 このスイッチング回路42のスイッチング素子U+,U-の相互接続点に相巻線Luの非結線端が接続され、スイッチング素子V+,V-の相互接続点に相巻線Lvの非結線端が接続され、スイッチング素子W+,W-の相互接続点に相巻線Lwの非結線端が接続されるとともに、各スイッチング素子のベースに制御部43が接続される。
 制御部43は、スイッチング回路42における1つの相の一方のスイッチング素子をオンして他方のスイッチング素子をオフし、同時に別の1つの相の一方のスイッチング素子をオフして他方のスイッチング素子をオンする2相通電を順次に切換えることにより、相巻線Lu,Lv,Lwの2つの相巻線に順次に電流を流す。この2相通電の切換えに際し、非通電状態の相巻線に電圧が誘起し、その誘起電圧が位置検出部44に取り込まれる。位置検出部44は、取り込んだ誘起電圧から回転子12の回転位置を検出する。この検出結果が制御部43に供給される。制御部43は、位置検出部44の検出結果に応じてスイッチング回路42の各スイッチング素子に対するオン,オフタイミングを制御する。
 一方、永久磁石電動機10の回転子12は、図3に示すように、円形の多数枚の鋼板を積層してなる回転子鉄心51、この回転子鉄心51の中心部に形成された回転軸挿通孔51a、この回転軸挿通孔51aを囲む略正方形の四辺の位置にそれぞれ形成された直線状の磁石収容孔52を有している。各磁石収容孔52は、回転軸挿通孔51aに沿って回転子鉄心51を貫通する深さ形状を有する。これら磁石収容孔52に、その細長方向の幅と略同じ長さを有する板状の永久磁石53が収容され、これら永久磁石53の磁界と固定子側の巻線が発する磁界との相互作用により、回転子鉄心51が回転する。そして、回転子鉄心51における各磁石収容孔52の外側位置に、かつ回転子鉄心51の周方向に沿って、多数のスリット54が順に形成されている。
 各スリット54は、回転子鉄心51の径方向に沿う細長形状を有するとともに、回転軸挿通孔51aに沿って回転子鉄心を貫通する深さ形状を有し、永久磁石53の個々と対応する位置に12個ずつ設けられている。
 また、各スリット54は、一部を図4に拡大して示すように、回転子鉄心51の径方向における内周側端部と磁石収容孔52との間隔が小さく設定されるとともに、回転子鉄心51の径方向における外周側端部と回転子鉄心51の外周縁との間隔が小さく設定されている。これらの設定により、各スリット54の相互間部分が磁路として確保され、そこを永久磁石53の磁束が効率よく通るようになる。
 各スリット54の外周側端部の位置は、対応する永久磁石53の幅Wを電気角0°~180°で表わした場合に、電気角θ1,θ2,…θ12の位置に設定される。この位置θ1,θ2,…θ12の相互間隔Δθは均等の12°となっているが、必ずしも均等である必要はない。
 とくに、各スリット54の内周側端部の相互間隔Wnについては、永久磁石53の幅の中央部から両側部に向かってW1,W2,W3,W4,W5,W6(W1>W2>W3>W4>W5>W6)と徐々に小さくなる状態に設定される。W7は、永久磁石53の両側部にそれぞれ対応するスリット54の内周側端部と永久磁石53の両側部との間隔を示す。
 この相互間隔Wnの設定に際しては、次の条件が満足される。
 すなわち、永久磁石53の幅がW、永久磁石53ごとに対応する各スリット54の数がn、永久磁石53の幅Wが電気角0°~180°で表わされる場合に永久磁石53の個々に対する各スリット54の外周側端部が電気角θ1,θ2,…θn(=θ1,θ2,…θ12)の位置にあって、その電気角0°~180°と同じ図5に示す半波正弦波の波形面積がS、この半波正弦波における電気角θ1,θ2,…θnの相互間隔Δθに対応する領域の波形面積がSn(=S1,S2,…S12)である場合、各スリット53の内周側端部の相互間隔Wn(=W1,W2,W3,W4,W5,W6)は、Wn/W=Sn/Sの条件により設定される。
 このように、各スリット53の内周側端部の相互間隔Wnを、各スリット54の外周側端部の位置θ1,θ2,…θnに対応した半波正弦波の面積の割合に合せて配分することにより、各スリット54の外周側端部の位置θ1,θ2,…θnおよびその相互間隔Δθがどのように設定されていても、回転子鉄心51における磁束分布を半波正弦波に維持することができる。
 したがって、各スリット54を設けていることによるトルク増大の効果を確保しながら、相巻線への誘起電圧をリップルの少ない正弦波状に維持することができる。これにより、振動および騒音の低減が確実に図れる。
 [2]第2の実施形態について説明する。 
 図6に示すように、永久磁石53の個々と対応する位置に14個のスリット14が形成されている。これらスリット54の外周側端部の位置は、対応する永久磁石53の幅Wを電気角0°~180°で表わした場合に、電気角θ1,θ2,…θ14の位置に設定される。この位置θ1,θ2,…θ14の相互間隔Δθは、両端部が14°に設定され、そこから中央部およびその付近にかけて12°,10°,8°と徐々に小さくなるように設定されている。
 他の構成および作用は第1の実施形態と同じである。よってその説明は省略する。
 この場合、図7に示すように、相巻線への誘起電圧がリップルの少ない正弦波状となる。
 [3]第3の実施形態について説明する。 
 この実施形態では、永久磁石53の幅Wが電気角0°~180°で表わされる場合に、永久磁石53の個々に対する各スリット54の外周側端部がその電気角0°~180°より狭い範囲内の電気角θ1,θ2,…θn(=θ1,θ2,…θ12)の位置に設定される。電気角0°~180°より狭い範囲の電気角θ1~θnに対応する半波正弦波を図8に実線で示している。
 他の構成および作用は第1の実施形態と同じである。よってその説明は省略する。
 このような構成とすることにより、図9に示すように、固定子11の歯部11aの先端の幅が回転子12の各永久磁石53の幅Wよりも小さい場合に、相巻線Lu,Lv,Lwへの誘起電圧をリップルの少ない正弦波状にすることができる。
 図9に示す4極集中巻の固定子11の場合、永久磁石53の幅Wに対応する電気角0°~180°より狭い範囲の電気角θ1~θnとして、電気角10°~170°や電気角20°~160°が最適である。
 [4]変形例 
 なお、上記各実施形態では、スリット54の個数が永久磁石53ごとに12個または14個の場合を例に説明したが、その個数について限定はなく、回転子鉄心51の大きさなどに応じて適宜に設定可能である。 
 その他、この発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。各実施形態に示される全構成要素から幾つかの構成要素を削除することも可能である。
 この発明の永久磁石電動機は、例えば空気調和機等の密閉型圧縮機および冷凍サイクル装置への利用が可能である。

Claims (6)

  1.  巻線が装着される固定子と、
     中心部に回転軸が通される回転子と、
     この回転子の前記回転軸を囲む位置に形成された複数の磁石収容孔と、
     これら磁石収容孔に収容された複数の永久磁石と、
     前記回転子の径方向に沿う細長形状を有し、前記回転子における前記各磁石収容孔の外側に同回転子の周方向に沿って順に形成された複数のスリットと、
     を備え、
     前記各スリットの内周側端部と前記各磁石収容孔との間隔を小さく設定するとともに、前記各スリットの外周側端部と前記回転子の外周縁との間隔が小さく設定し、
     前記回転子の周方向に沿う前記各永久磁石の幅がW、前記永久磁石ごとに対応する前記各スリットの数がn、前記各永久磁石の幅Wが電気角0°~180°で表わされる場合に前記各永久磁石の個々に対する前記各スリットの外周側端部が電気角θ1,θ2,…θnの位置にあって、前記電気角0°~180°と同じ半波正弦波の波形面積がS、この半波正弦波における前記電気角θ1,θ2,…θnの相互間隔Δθに対応する領域の波形面積がSnである場合、各スリットの内周側端部の相互間隔Wnを、Wn/W=Sn/Sの条件により設定する、
     ことを特徴とする永久磁石電動機。
  2.  前記電気角θ1,θ2,…θnの相互間隔Δθは、前記各永久磁石の幅Wの両端部から中央部にかけて徐々に小さくなることを特徴とする請求項1記載の永久磁石電動機。
  3.  前記固定子は、巻線を集中巻するための複数の歯部を有し、
     前記電気角θ1,θ2,…θnは、前記電気角0°~180°より狭い電気角の範囲内で設定される、
     ことを特徴とする請求項1記載の永久磁石電動機。
  4.  前記固定子の巻線に三相正弦波の交流電圧が印加されることを特徴とする請求項1記載の永久磁石電動機。
  5.  密閉ケース内に、請求項1乃至4のいずれかの永久磁石電動機と、この永久磁石電動機により駆動される圧縮機構部とを収納したことを特徴とする密閉型圧縮機。
  6.  請求項5に記載の密閉型圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えたことを特徴とする冷凍サイクル装置。
PCT/JP2009/055704 2008-05-21 2009-03-23 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置 WO2009142060A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801130940A CN102007669B (zh) 2008-05-21 2009-03-23 永磁电动机、密闭式压缩机以及制冷循环装置
JP2010512965A JP5264897B2 (ja) 2008-05-21 2009-03-23 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008133485 2008-05-21
JP2008-133485 2008-05-21

Publications (1)

Publication Number Publication Date
WO2009142060A1 true WO2009142060A1 (ja) 2009-11-26

Family

ID=41339999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055704 WO2009142060A1 (ja) 2008-05-21 2009-03-23 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP5264897B2 (ja)
CN (1) CN102007669B (ja)
WO (1) WO2009142060A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403862A (zh) * 2010-09-10 2012-04-04 三菱电机株式会社 压缩机用电动机、压缩机以及冷冻循环装置
JP2012244645A (ja) * 2011-05-16 2012-12-10 Daikin Ind Ltd モータ
DE102012018510A1 (de) 2012-09-18 2014-03-20 Daimler Ag Rotor für eine elektrische Maschine
EP2961040A4 (en) * 2013-02-20 2016-11-02 Mitsubishi Electric Corp ELECTRIC MOTOR HAVING INTEGRATED PERMANENT MAGNETS
DE102016223044A1 (de) 2016-11-22 2018-05-24 Robert Bosch Gmbh Blechelement für einen Rotor eines Elektromotors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374655A (zh) * 2016-10-24 2017-02-01 珠海凌达压缩机有限公司 一种电机转子及具其的永磁电机
EP3687058B1 (en) 2018-01-03 2022-04-27 Guangdong Meizhi Compressor Co., Ltd. Compressor and refrigeration device
CN108288938B (zh) * 2018-01-03 2019-06-04 广东美芝制冷设备有限公司 压缩机和制冷设备
US11888353B2 (en) * 2018-04-10 2024-01-30 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
CN108736610B (zh) 2018-08-09 2019-07-16 珠海格力电器股份有限公司 电机转子和永磁电机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094968A (ja) * 2003-09-19 2005-04-07 Toshiba Kyaria Kk 永久磁石電動機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094968A (ja) * 2003-09-19 2005-04-07 Toshiba Kyaria Kk 永久磁石電動機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403862A (zh) * 2010-09-10 2012-04-04 三菱电机株式会社 压缩机用电动机、压缩机以及冷冻循环装置
JP2012244645A (ja) * 2011-05-16 2012-12-10 Daikin Ind Ltd モータ
DE102012018510A1 (de) 2012-09-18 2014-03-20 Daimler Ag Rotor für eine elektrische Maschine
EP2961040A4 (en) * 2013-02-20 2016-11-02 Mitsubishi Electric Corp ELECTRIC MOTOR HAVING INTEGRATED PERMANENT MAGNETS
US9762096B2 (en) 2013-02-20 2017-09-12 Mitsubishi Electric Corporation Interior permanent magnet motor
DE102016223044A1 (de) 2016-11-22 2018-05-24 Robert Bosch Gmbh Blechelement für einen Rotor eines Elektromotors
WO2018095606A1 (de) 2016-11-22 2018-05-31 Robert Bosch Gmbh Blechelement für einen rotor eines elektromotors

Also Published As

Publication number Publication date
JP5264897B2 (ja) 2013-08-14
CN102007669A (zh) 2011-04-06
CN102007669B (zh) 2013-11-27
JPWO2009142060A1 (ja) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5264897B2 (ja) 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置
US8405271B2 (en) Interior permanent magnet type brushless direct current motor
TWI569560B (zh) A permanent magnet type rotating machine, and a compressor using the same
US6700270B2 (en) Synchronous induction motor
EP1278293B1 (en) Method for manufacturing the stator of a low-noise motor-compressor
JP3837986B2 (ja) 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。
JP2003116236A (ja) 永久磁石式回転電機
US11863020B2 (en) Motor, compressor, and air conditioner
JP2006060952A (ja) 永久磁石埋込み型電動機
JP2006223097A (ja) 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。
JP3828015B2 (ja) 永久磁石形モータ及び永久磁石形モータの製造方法及び圧縮機及び冷凍サイクル装置
JP2000217287A (ja) 永久磁石形モ―タ及びコンプレッサ
JP3772608B2 (ja) 回転電機および圧縮機
WO2019043850A1 (ja) ロータ、電動機、圧縮機および空気調和装置
WO2005046022A1 (ja) 永久磁石式同期電動機及びこれを用いた圧縮機
JP2006345692A (ja) 永久磁石形モータ
US12040680B2 (en) Compressor and air conditioner
JP3763462B2 (ja) 自己始動式同期電動機及びこれを用いた圧縮機
JP2006034100A (ja) 永久磁石形モータ
JP5354499B2 (ja) 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置
JP2004357468A (ja) 電動機
JP2003348808A (ja) 電動機
WO2023032134A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2023181238A1 (ja) 固定子、電動機、圧縮機および冷凍サイクル装置
JP7419501B2 (ja) 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113094.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512965

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750422

Country of ref document: EP

Kind code of ref document: A1