本発明の研磨パッドは、研磨層とクッション層との積層体からなる。
The polishing pad of the present invention comprises a laminate of a polishing layer and a cushion layer.
該研磨層は、マイクロゴムA硬度が75度以上の材料からなり、その厚みは、0.8mm乃至3.0mmである。
The polishing layer is made of a material having a micro rubber A hardness of 75 degrees or more, and has a thickness of 0.8 mm to 3.0 mm.
マイクロゴムA硬度は、高分子計器(株)製マイクロゴム硬度計MD-1で測定した硬度である。マイクロゴム硬度計MD-1は、従来の硬度計では測定が困難であった薄物、小物の試料の硬度の測定を可能にしたものである。この硬度計は、スプリング式ゴム硬度計(デュロメータ)A型の約1/5の縮小モデルとして設計、製作されている。そのため、その測定値は、スプリング式ゴム硬度計A型での測定値と同一のものとして考えることが出来る。なお、通常の研磨パッドは、研磨層または硬質層の厚みが5mm以下と薄すぎるため、スプリング式ゴム硬度計では評価出来ないが、マイクロゴム硬度計MD-1を使用することにより、評価することが出来る。
The micro rubber A hardness is a hardness measured with a micro rubber hardness meter MD-1 manufactured by Kobunshi Keiki Co., Ltd. The micro rubber hardness meter MD-1 makes it possible to measure the hardness of thin and small samples, which are difficult to measure with a conventional hardness meter. This hardness meter is designed and manufactured as a reduced model of about 1/5 of a spring type rubber hardness meter (durometer) A type. Therefore, the measured value can be considered as the same as the measured value with the spring type rubber hardness tester A type. Note that a normal polishing pad cannot be evaluated with a spring-type rubber hardness meter because the thickness of the polishing layer or hard layer is too thin at 5 mm or less, but it should be evaluated by using a micro rubber hardness meter MD-1. I can do it.
研磨層のマイクロゴムA硬度が75度に満たない場合は、平坦化特性が不十分である。研磨層の厚みが0.8mmに満たない場合は、平坦化特性が不十分である。研磨層の厚みが3.0mmを超える場合は、面内均一性が悪くなる。
If the micro rubber A hardness of the polishing layer is less than 75 degrees, the planarization characteristics are insufficient. When the thickness of the polishing layer is less than 0.8 mm, the planarization characteristics are insufficient. When the thickness of the polishing layer exceeds 3.0 mm, the in-plane uniformity is deteriorated.
研磨層を形成する材料は、特に限定されない。このような材料としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、ポリウレア、ポリスチレン、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリメチルメタクリレート、ポリカーボネート、ポリアミド、ポリアセタール、ポリイミド、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ABS樹脂、ベークライト、エポキシ樹脂/紙、エポキシ樹脂/繊維等の各種積層板、FRP、天然ゴム、ネオプレン(登録商標)ゴム、クロロプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、エチレンプロピレンゴム、シリコーンゴム、フッ素ゴム等の各種ゴム等がある。
The material for forming the polishing layer is not particularly limited. Examples of such materials include polyethylene, polypropylene, polyester, polyurethane, polyurea, polystyrene, polyvinyl chloride, polyvinylidene fluoride, polymethyl methacrylate, polycarbonate, polyamide, polyacetal, polyimide, epoxy resin, unsaturated polyester resin, melamine resin, Various laminates such as phenol resin, ABS resin, bakelite, epoxy resin / paper, epoxy resin / fiber, FRP, natural rubber, neoprene (registered trademark) rubber, chloroprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, ethylene There are various rubbers such as propylene rubber, silicone rubber, and fluoro rubber.
研磨層は、発泡構造および無発泡構造のいずれでも良い。しかし、研磨速度、面内均一性等の研磨特性が良好で、ダスト、スクラッチ等の欠陥が少ない点で、発泡構造であることが好ましい。
The polishing layer may be either a foam structure or a non-foam structure. However, a foamed structure is preferable in terms of good polishing characteristics such as polishing rate and in-plane uniformity and few defects such as dust and scratches.
研磨層の発泡構造の形成方法としては、公知の方法を使用することが出来る。例えば、単量体もしくは重合体中に各種発泡剤を配合し、後に加熱等により発泡させる方法、単量体もしくは重合体中に中空のマイクロビーズを分散して硬化させ、マイクロビーズ部分を独立気泡とする方法、溶融した重合体を機械的に撹拌して発泡させた後、冷却硬化させる方法、重合体を溶媒に溶解させた溶液をシート状に成膜した後、重合体に対する貧溶媒中に浸漬し溶媒のみを抽出する方法、単量体を発泡構造を有するシート状高分子中に含浸させた後、重合硬化させる方法等を挙げることが出来る。これらの中で、研磨層の発泡構造の形成や気泡径のコントロールが比較的簡便であり、また研磨層の作製も簡便な点で、単量体を発泡構造を有するシート状高分子中に含浸させた後、重合硬化させる方法が好ましい。
As a method for forming the foam structure of the polishing layer, a known method can be used. For example, various foaming agents are blended in the monomer or polymer, followed by foaming by heating or the like, hollow microbeads are dispersed and cured in the monomer or polymer, and the microbead portion is closed cell A method in which a molten polymer is mechanically stirred and foamed, and then cooled and cured, and a solution in which the polymer is dissolved in a solvent is formed into a sheet, and then in a poor solvent for the polymer. Examples include a method of immersing and extracting only a solvent, a method of impregnating a monomer into a sheet-like polymer having a foam structure, and then polymerizing and curing. Among these, the formation of the foam structure of the polishing layer and the control of the bubble diameter are relatively simple, and the preparation of the polishing layer is also simple, so that the monomer is impregnated into the sheet-like polymer having the foam structure. Then, a method of polymerizing and curing is preferable.
発泡構造を有するシート状高分子を形成する材料は、単量体が含浸出来るものであれば特に限定されない。このような材料として、ポリウレタン、ポリウレア、軟質塩化ビニル、天然ゴム、ネオプレン(登録商標)ゴム、クロロプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、エチレンプロピレンゴム、シリコーンゴム、フッ素ゴム等の各種ゴム等を主成分とした樹脂シートや布、不織布、紙等が挙げられる。これらの中でも、気泡径が比較的容易にコントール出来る点で、ポリウレタンを主成分とする材料が好ましい。シート状高分子には、製造される研磨パッドの特性改良を目的として、研磨剤、潤滑剤、帯電防止剤、酸化防止剤、安定剤等の各種添加剤が添加されていても良い。
The material for forming the sheet-like polymer having a foam structure is not particularly limited as long as it can be impregnated with a monomer. Examples of such materials include polyurethane, polyurea, soft vinyl chloride, natural rubber, neoprene (registered trademark) rubber, chloroprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, ethylene propylene rubber, silicone rubber, and fluoro rubber. Examples thereof include resin sheets, cloths, non-woven fabrics, and papers mainly composed of rubber. Among these, a material mainly composed of polyurethane is preferable in that the bubble diameter can be controlled relatively easily. Various additives such as an abrasive, a lubricant, an antistatic agent, an antioxidant, and a stabilizer may be added to the sheet-like polymer for the purpose of improving the characteristics of the produced polishing pad.
単量体は、付加重合、重縮合、重付加、付加縮合、開環重合等の重合反応をするものであれば、種類は特に限定されない。単量体としては、ビニル化合物、エポキシ化合物、イソシアネート化合物、ジカルボン酸等が挙げられる。これらの中でも、シート状高分子への含浸、重合が容易な点で、ビニル化合物が好ましい。ビニル化合物は、特に限定されないが、ポリウレタンへの含浸、重合が容易な点でも好ましい。
The monomer is not particularly limited as long as it undergoes a polymerization reaction such as addition polymerization, polycondensation, polyaddition, addition condensation, and ring-opening polymerization. Examples of the monomer include vinyl compounds, epoxy compounds, isocyanate compounds, dicarboxylic acids, and the like. Among these, a vinyl compound is preferable in terms of easy impregnation into a sheet-like polymer and polymerization. The vinyl compound is not particularly limited, but is also preferable from the viewpoint of easy impregnation and polymerization in polyurethane.
ビニル化合物としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、イソデシルメタクリレート、n-ラウリルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、グリシジルメタクリレート、エチレングリコールジメタクリレート、アクリル酸、メタクリル酸、フマル酸、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、フェニルマレイミド、シクロヘキシルマレイミド、イソプロピルマレイミド、アクリロニトリル、アクリルアミド、塩化ビニル、塩化ビニリデン、スチレン、α-メチルスチレン、ジビニルベンゼン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート等が挙げられる。これらのモノマーは単独であっても2種以上を混合しても使用出来る。
Examples of vinyl compounds include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxy Propyl methacrylate, 2-hydroxybutyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, acrylic acid, methacrylic acid, fumaric acid, dimethyl fumarate, diethyl fumarate, dipropyl fumarate, maleic acid, Dimethyl maleate, diethyl maleate, dipropyl maleate, phenyl monomer Imides, cyclohexyl maleimide, isopropyl maleimide, acrylonitrile, acrylamide, vinyl chloride, vinylidene chloride, styrene, alpha-methyl styrene, divinylbenzene, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more.
上述したビニル化合物の中で、メチルメタクリレートが、ポリウレタンへの含浸性が良好な点、重合硬化が容易な点、重合硬化されたポリウレタンとビニル化合物から重合される重合体の硬度が高く研磨時の平坦化特性が良好な点で、特に好ましい。
Among the vinyl compounds mentioned above, methyl methacrylate has good impregnation into polyurethane, is easy to polymerize and cure, and the polymer polymerized from polymer-cured polyurethane and vinyl compound has high hardness during polishing. It is particularly preferable in terms of good flattening characteristics.
研磨層が発泡構造を有する場合の平均気泡径は、特に限定されないが、20μm乃至300μmであることが好ましい。平均気泡径が20μmに満たないと、研磨時の研磨速度が低下したり、研磨後の半導体基板表面にスクラッチ、ダストが発生し易い傾向がある。平均気泡径が300μmを超えると、研磨層の剛性が低下することで、平坦化特性等の研磨特性が悪化したり、研磨パッドの寿命が短くなる傾向がある。平均気泡径が30μm乃至250μmであることがより好ましい。
The average cell diameter when the polishing layer has a foam structure is not particularly limited, but is preferably 20 μm to 300 μm. If the average bubble diameter is less than 20 μm, the polishing rate during polishing tends to decrease, and scratches and dust tend to be generated on the polished semiconductor substrate surface. When the average bubble diameter exceeds 300 μm, the rigidity of the polishing layer decreases, so that polishing characteristics such as flattening characteristics tend to deteriorate and the life of the polishing pad tends to be shortened. The average cell diameter is more preferably 30 μm to 250 μm.
平均気泡径は、研磨層の断面を倍率200倍でSEM観察し、記録されたSEM写真の気泡径を画像処理装置で測定し、その平均値を取ることにより求められた値である。
The average bubble diameter is a value obtained by observing the cross section of the polishing layer with a SEM at a magnification of 200 times, measuring the bubble diameter of the recorded SEM photograph with an image processing apparatus, and taking the average value.
研磨層の密度は、特に限定されないが、0.4g/cm3乃至1.0g/cm3であることが好ましい。密度が0.4g/cm3より低いと、研磨時の平坦化特性が悪化する傾向がある。密度が1.0g/cm3より高いと、研磨時の面内均一性が悪化したり、研磨後の半導体基板表面にスクラッチ、ダストが発生し易い傾向がある。密度が0.5g/cm3乃至0.8g/cm3であることが更に好ましい。
The density of the polishing layer is not particularly limited, but is preferably 0.4 g / cm 3 to 1.0 g / cm 3 . If the density is lower than 0.4 g / cm 3 , the planarization characteristics at the time of polishing tend to deteriorate. If the density is higher than 1.0 g / cm 3 , the in-plane uniformity during polishing tends to deteriorate, and scratches and dust tend to be generated on the polished semiconductor substrate surface. More preferably, the density is 0.5 g / cm 3 to 0.8 g / cm 3 .
密度は、日本工業規格(JIS)K-7222記載の方法により測定した値である。
The density is a value measured by the method described in Japanese Industrial Standard (JIS) K-7222.
クッション層は、厚みが0.05mm乃至1.5mmの無発泡エラストマーでで形成されている。該クッション層により、安定した研磨レートと優れた面内均一性が達成される。厚みが0.05mm未満の場合は、面内均一性が悪くなるので好ましくない。厚みが1.5mmを超える場合も、エッジ部の研磨レートが不安定で、面内均一性が悪くなるので好ましくない。
The cushion layer is made of a non-foamed elastomer having a thickness of 0.05 mm to 1.5 mm. The cushion layer achieves a stable polishing rate and excellent in-plane uniformity. When the thickness is less than 0.05 mm, in-plane uniformity is deteriorated, which is not preferable. A thickness exceeding 1.5 mm is also undesirable because the polishing rate of the edge portion is unstable and the in-plane uniformity is deteriorated.
無発泡エラストマーのクッション層の材料としては、天然ゴム、ニトリルゴム、ネオプレン(登録商標)ゴム、ポリブタジエンゴム、クロロプレンゴム、熱可塑性ポリウレタンゴム、熱硬化性ポリウレタンゴム、シリコーンゴム、フッ素ゴム等が挙げられるが、これらに限定されない。
Examples of the non-foamed elastomer cushion layer include natural rubber, nitrile rubber, neoprene (registered trademark) rubber, polybutadiene rubber, chloroprene rubber, thermoplastic polyurethane rubber, thermosetting polyurethane rubber, silicone rubber, and fluorine rubber. However, it is not limited to these.
これらの中でも、ポリウレタンゴムが好ましく、更に、熱可塑性ポリウレタンゴムが、比較的厚み精度に優れた製品を得ることが出来る上、離型剤を使用せずに成形出来、接着性に優れるため、好ましい。熱可塑性ポリウレタンは、ゴム状弾性を示すソフトセグメントおよび三次元綱目の結び目となるハードセグメントから構成され、常温ではゴム弾性を示し、高温では可塑化するので押出成形することが出来る。具体的には、ハードセグメントがウレタン結合を有するポリウレタン系ブロックポリマーで、ソフトセグメントがポリエステル又はポリエーテルであるエラストマーである。
Among these, polyurethane rubber is preferable, and thermoplastic polyurethane rubber is preferable because a product having relatively high thickness accuracy can be obtained, and it can be molded without using a release agent and has excellent adhesiveness. . Thermoplastic polyurethane is composed of a soft segment exhibiting rubber-like elasticity and a hard segment serving as a knot of a three-dimensional rope, exhibits rubber elasticity at room temperature, and plasticizes at high temperature, so that it can be extruded. Specifically, it is an elastomer in which the hard segment is a polyurethane block polymer having a urethane bond, and the soft segment is polyester or polyether.
クッション層を形成する材料には、クッション層に必要とする特性を付与するために、帯電防止剤、潤滑剤、安定剤、染料等の各種添加剤や、他の樹脂が添加されても良い。
In the material forming the cushion layer, various additives such as an antistatic agent, a lubricant, a stabilizer, and a dye, and other resins may be added in order to impart necessary characteristics to the cushion layer.
本発明のクッション層の引っ張り弾性率は、15MPa乃至50MPaであることが、研磨レートが安定し、パッド間の研磨特性のバラツキが少ないので好ましい。引っ張り弾性率が15MPaに満たない場合は、エッジ部の研磨レートが不安定で、面内均一性が悪いので好ましくない。引っ張り弾性率が50MPaを超える場合は、研磨レートが安定しないので好ましくない。
The tensile elastic modulus of the cushion layer of the present invention is preferably 15 MPa to 50 MPa because the polishing rate is stable and the variation in polishing characteristics between pads is small. When the tensile elastic modulus is less than 15 MPa, the polishing rate at the edge portion is unstable and the in-plane uniformity is not preferable. A tensile modulus exceeding 50 MPa is not preferable because the polishing rate is not stable.
研磨層の表面には、研磨スラリーの保持性、流動性の向上、研磨層表面からの研磨屑除去効率の向上を目的として、多数本の溝が形成される。これらの溝は、溝幅の相違によって区分される少なくとも2種類の溝群からなる。当該2種類の溝群の内の一つは、第1の溝群と呼称され、他の一つは、第2の溝群と呼称される。
A large number of grooves are formed on the surface of the polishing layer for the purpose of improving the retention and fluidity of the polishing slurry and improving the removal efficiency of polishing debris from the surface of the polishing layer. These grooves are composed of at least two types of groove groups that are divided by the difference in groove width. One of the two types of groove groups is referred to as a first groove group, and the other is referred to as a second groove group.
第1の溝群における各溝の溝幅は、0.5mm乃至1.2mmで、各溝の溝ピッチは、7.5mm乃至50mmである。
The groove width of each groove in the first groove group is 0.5 mm to 1.2 mm, and the groove pitch of each groove is 7.5 mm to 50 mm.
第2の溝群における各溝の溝幅は、1.5mm乃至3mmで、各溝の溝ピッチは、20mm乃至50mmである。
The groove width of each groove in the second groove group is 1.5 mm to 3 mm, and the groove pitch of each groove is 20 mm to 50 mm.
研磨層の表面の全面には、少なくとも第1の溝群と第2の溝群に属する多数の溝が、形成され、第1の溝群と第2の溝群に属する多数の溝の全てが、研磨層の側端面に開口している。ただし、全面と云っても、実質的に問題ない程度に溝のない領域があっても構わない。また、溝の全てが研磨層の側端面に開口していると云っても、実質的に問題ない程度に研磨層の側端部に開口していない溝が存在しても構わない。
A large number of grooves belonging to at least the first groove group and the second groove group are formed on the entire surface of the polishing layer, and all of the many grooves belonging to the first groove group and the second groove group are formed. Opening is made on the side end face of the polishing layer. However, even if it is the entire surface, there may be a region having no groove to such an extent that there is substantially no problem. Further, even if all of the grooves are open at the side end face of the polishing layer, there may be grooves that are not open at the side end of the polishing layer to the extent that there is substantially no problem.
研磨層の表面の全面に存在する第1の溝群における隣り合う溝同士の最小距離が、溝ピッチと定義される。同様に、研磨層の表面の全面に存在する第2の溝群における隣り合う溝同士の最小距離が、溝ピッチと定義される。第1の溝群における各溝は、一定溝間距離(溝ピッチ)で、研磨層の表面の全面に存在している。第2の溝群の溝ピッチが、第1の溝群の溝ピッチの整数倍の場合には、第1の溝群の一部の溝が、第2の溝群の溝と重なり、その存在が確認出来ない場合があるが、当該溝は、存在しているものとする。一定溝間距離(溝ピッチ)については、製作上のバラツキは、許容出来るものとする。
The minimum distance between adjacent grooves in the first groove group existing on the entire surface of the polishing layer is defined as a groove pitch. Similarly, the minimum distance between adjacent grooves in the second groove group existing on the entire surface of the polishing layer is defined as the groove pitch. Each groove in the first groove group is present on the entire surface of the polishing layer at a constant groove distance (groove pitch). When the groove pitch of the second groove group is an integral multiple of the groove pitch of the first groove group, a part of the grooves of the first groove group overlaps with the grooves of the second groove group, and the presence thereof However, it is assumed that the groove is present. As for the constant inter-groove distance (groove pitch), manufacturing variations are acceptable.
第1の溝群における溝幅が0.5mm未満の場合、ウェハーへの吸い付きが大きくなり、ウェハーが研磨ヘッドから外れ易くなり、研磨が安定しない。第1の溝群における溝幅が1.2mmを超える場合、研磨レートが不安定となる。第1の溝群における溝ピッチが7.5mmに満たない場合は、研磨レートが不安定となる。第1の溝群における溝ピッチが50mmを超える場合は、面内均一性が悪くなる。
When the groove width in the first groove group is less than 0.5 mm, the sticking to the wafer is increased, the wafer is easily detached from the polishing head, and the polishing is not stable. When the groove width in the first groove group exceeds 1.2 mm, the polishing rate becomes unstable. When the groove pitch in the first groove group is less than 7.5 mm, the polishing rate becomes unstable. When the groove pitch in the first groove group exceeds 50 mm, the in-plane uniformity is deteriorated.
第2の溝群における溝幅が1.5mmに満たない場合は、研磨パッド間の研磨特性のバラツキが大きくなる。第2の溝群における溝幅が3mmを超える場合は、研磨レートが不安定となる。第2の溝群における溝ピッチが20mmに満たない場合は、研磨レートが不安定となる。第2の溝群における溝ピッチが50mmを超える場合は、面内均一性が悪くなる。
When the groove width in the second groove group is less than 1.5 mm, the variation in polishing characteristics between the polishing pads becomes large. When the groove width in the second groove group exceeds 3 mm, the polishing rate becomes unstable. When the groove pitch in the second groove group is less than 20 mm, the polishing rate becomes unstable. When the groove pitch in the second groove group exceeds 50 mm, the in-plane uniformity is deteriorated.
溝の配列パターンは、特に限定されないが、格子状、同心円状、らせん状、放射線状等が挙げられる。中でも、第1の溝群における溝の配列パターンと第2の溝群における溝の配列パターンとが、共に格子状の配列であることが好ましい。格子状の配列であることで、研磨中の研磨屑が速やかに除去され、スクラッチの発生が抑えられ、研磨レートも安定する。溝の格子状の配列において、各溝が直線状に配列され、かつ、各溝が互いに平行に配列されていることが、上記利点に加え、溝形成位置の正確性および溝形成作業の容易性から、好ましい。
The arrangement pattern of the grooves is not particularly limited, and examples thereof include a lattice shape, a concentric circle shape, a spiral shape, and a radial shape. In particular, it is preferable that the groove arrangement pattern in the first groove group and the groove arrangement pattern in the second groove group are both in a lattice arrangement. Due to the grid-like arrangement, polishing debris during polishing is quickly removed, generation of scratches is suppressed, and the polishing rate is stabilized. In addition to the above advantages, the grooves are arranged in a straight line and the grooves are arranged in parallel with each other in the grid-like arrangement of grooves. Therefore, it is preferable.
第1の溝群および第2の溝群の全ての溝が、研磨層の側端部につながっている、すなわち、側端部に開口していることで、研磨屑が研磨パッド表面から除去され、スクラッチが入り難くなる。ただし、溝の全てが研磨層の側端部につながっているといっても、実質的に問題ない程度に研磨層の側端部につながっていない溝が存在しても構わない。
Since all the grooves of the first groove group and the second groove group are connected to the side end of the polishing layer, that is, open to the side end, the polishing dust is removed from the surface of the polishing pad. , Scratches are difficult to enter. However, even though all of the grooves are connected to the side end of the polishing layer, there may be grooves that are not connected to the side end of the polishing layer to the extent that there is substantially no problem.
溝の深さは、研磨パッドの寿命を出来るだけ長くするという観点で、研磨層の厚みと溝深さの差が、0.3mm乃至1.0mmとなるように選定されることが好ましい。研磨層の厚みと溝深さの差が0.3mm未満であると、研磨パッドの力学的な強度は小さく、定盤での貼り合わせ時に、溝部分で折れ皺が発生して好ましくない。研磨層の厚みと溝深さの差が1.0mmを超える場合は、研磨パッドの寿命が短くなるので好ましくない。
The depth of the groove is preferably selected so that the difference between the thickness of the polishing layer and the groove depth is 0.3 mm to 1.0 mm from the viewpoint of extending the life of the polishing pad as much as possible. If the difference between the thickness of the polishing layer and the groove depth is less than 0.3 mm, the mechanical strength of the polishing pad is small, and creases are generated in the groove portion when bonded on a surface plate, which is not preferable. When the difference between the thickness of the polishing layer and the groove depth exceeds 1.0 mm, the life of the polishing pad is shortened, which is not preferable.
溝の横断面形状は、長方形であることが、研磨中における横断面形状の変形が少ないため、研磨特性が安定するので好ましい。
It is preferable that the cross-sectional shape of the groove is a rectangle because the cross-sectional shape is less deformed during polishing and the polishing characteristics are stable.
研磨層の表面への溝の形成方法は、特に限定されない。溝の形成方法としては、研磨層の表面をルーター等の装置を使用して切削加工することにより溝を形成する方法、研磨層の表面に加熱された金型、熱線等を接触させ、接触部を溶解させることにより溝を形成する方法、溝の形成された金型等を使用し、初めから溝が形成された研磨層を成形する方法、ドリル、トムソン刃等で孔を形成する方法等が挙げられる。
The method for forming grooves on the surface of the polishing layer is not particularly limited. As a method of forming the groove, a method of forming a groove by cutting the surface of the polishing layer using a device such as a router, a heated mold, a hot wire, etc. are brought into contact with the surface of the polishing layer, and a contact portion A method of forming a groove by dissolving a mold, a method of forming a polishing layer from which a groove is formed from the beginning, a method of forming a hole with a drill, a Thomson blade, etc. Can be mentioned.
研磨層とクッション層とは、互いに積層され、積層体を形成する。この積層体は、研磨層とクッション層を粘着剤または接着剤等で直接貼り合わせた構造や研磨層とクッション層の間に高分子シートを介在させて、それぞれを粘着剤または接着剤または自己接着で貼り合わせた構造でも構わない。
The polishing layer and the cushion layer are laminated together to form a laminate. This laminate has a structure in which the polishing layer and the cushion layer are directly bonded together with an adhesive or an adhesive, and a polymer sheet is interposed between the polishing layer and the cushion layer, and each of them is adhesive or adhesive or self-adhesive. The structure may be bonded together.
研磨層とクッション層の積層方法は、特に限定されない。積層方法としては、ラミネーターによる研磨層への両面粘着テープの貼り合わせや各種コーターによる研磨層への接着剤塗布等の方法により、粘着材層、接着剤層を研磨層とクッション層間に形成した後、ラミネーター、ロールプレス、平板プレス等により加圧する方法、研磨層とクッション層の間に高分子シートを介在させ粘着剤または接着剤等を塗布した後、ラミネーター、ロールプレス、平板プレス等により加圧する方法が挙げられる。なお、その際、研磨層、クッション層に悪影響を与えない範囲でラミネーターやプレス自体を加熱しても良い。
The lamination method of the polishing layer and the cushion layer is not particularly limited. As the lamination method, after the adhesive layer and adhesive layer are formed between the polishing layer and the cushion layer by a method such as laminating a double-sided adhesive tape to the polishing layer or applying an adhesive to the polishing layer with various coaters , A method of pressurizing with a laminator, roll press, flat plate press, etc., a polymer sheet interposed between the polishing layer and the cushion layer, applying an adhesive or adhesive, and then applying pressure with a laminator, roll press, flat plate press, etc. A method is mentioned. At that time, the laminator or the press itself may be heated within a range that does not adversely affect the polishing layer and the cushion layer.
接着剤は、特に限定されない。接着剤としては、ウレタン系、エポキシ系、アクリル系、ゴム系等の各種接着剤、これらの接着剤をフィルム、不織布等の基材の両面に塗布し製造された各種両面テープ等が挙げられる。
The adhesive is not particularly limited. Examples of the adhesive include various adhesives such as urethane-based, epoxy-based, acrylic-based, and rubber-based adhesives, and various double-sided tapes that are manufactured by applying these adhesives to both surfaces of a substrate such as a film or a nonwoven fabric.
ウレタン系接着剤としては、例えば、市販されている1液型、あるいは、2液型を用いることが出来る。
As the urethane-based adhesive, for example, a commercially available one-component type or two-component type can be used.
エポキシ系接着剤としては、例えば、市販されている1液型、あるいは、2液型を用いることが出来る。アクリル系接着剤、あるいは、ゴム系接着剤も、市販されているものを用いることが出来る。
As the epoxy adhesive, for example, a commercially available one-pack type or two-pack type can be used. Commercially available acrylic adhesives or rubber adhesives can also be used.
接着剤としては、上述した通常の接着剤以外に、環境、作業性の点から、無溶剤型の加熱溶融型接着剤も好ましく使用される。加熱溶融型接着剤は、種類にもよるが、70℃乃至130℃程度の温度で接着剤を溶融させ被接着物の一方又は両方にロールコーター等で塗布し、粘着性のある間に接着し加圧処理等を施した後、接着剤が冷却固化することにより接着機能が得られるものである。また、接着後に空気中や被着体の水分や湿気によって架橋反応して硬化し、接着強度が増大するものもある。
As the adhesive, in addition to the normal adhesive described above, a solventless heat-melt adhesive is also preferably used from the viewpoint of environment and workability. Depending on the type of heat-melt adhesive, the adhesive is melted at a temperature of about 70 ° C. to 130 ° C. and applied to one or both of the adherends with a roll coater, etc., and bonded while sticky. After the pressure treatment or the like, the adhesive function is obtained by cooling and solidifying the adhesive. In some cases, after bonding, the resin is cured by crosslinking reaction in the air or by moisture or moisture of the adherend, thereby increasing the adhesive strength.
加熱溶融型接着剤としては、ポリエステル系、変性オレフィン系、ウレタン系のもの等が挙げられ、タイプも、上述した溶融接着後冷却硬化させるタイプ、溶融接着・冷却硬化後、更に空気中の湿気と反応し架橋する2種類のタイプがある。ポリエステル系加熱溶融型接着剤、変性オレフィン系加熱溶融型接着剤、および、ウレタン系加熱溶融型接着剤は、市販されているので、それらを用いることが出来る。両面粘着テープも市販されているので、それらを用いることが出来る。
Examples of heat-melt adhesives include polyester-based, modified olefin-based, urethane-based adhesives, etc., and types that are cooled and hardened after the above-mentioned melt-bonding, after melt-adhesion / cooling-curing, and further with moisture in the air. There are two types that react and crosslink. Since the polyester-based heat-melt adhesive, the modified olefin-based heat-melt adhesive, and the urethane-based heat-melt adhesive are commercially available, they can be used. Since double-sided adhesive tapes are also commercially available, they can be used.
研磨層とクッション層との剪断接着力の測定:
研磨層とクッション層との積層体から、幅20mm、長さ60mmのサンプルを切り出す。サンプルの端から40mmの位置において、研磨層側から接着剤層または高分子シートが完全に切断され、かつ、クッション層が完全に切断されない深さまで、剃刀などの鋭利な刃物で切り込みを入れる。サンプルの先の端とは反対側の端から40mmの位置において、クッション層側から接着剤層または高分子シートが完全に切断され、かつ、研磨層が完全に切断されない深さまで、同様に切り込みを入れる。研磨層およびクッション層のそれぞれの表面に、接着剤で、アルミ板(360番、耐水研磨紙で表面を研磨したもの)を貼り付ける。該アルミ板を貼り付け後1日以上放置し、接着剤が完全に固化した後、万能試験機“テンシロン”RTG-1250 (オリエンテック社製)を用い、上側引張り治具に研磨層に貼り付けたアルミ板、下側引張り治具にクッション層に貼り付けたアルミ板を掴ませ、変位速度300mm/minでサンプルを引っ張り、サンプル中央部の幅20mm、長さ20mmの領域において、研磨層とクッション層が剥離したときの荷重を測定し、その値を剪断接着力とする。
Measurement of shear adhesive strength between polishing layer and cushion layer:
A sample having a width of 20 mm and a length of 60 mm is cut out from the laminate of the polishing layer and the cushion layer. At a position of 40 mm from the edge of the sample, a cut is made with a sharp blade such as a razor to a depth at which the adhesive layer or polymer sheet is completely cut from the polishing layer side and the cushion layer is not completely cut. Similarly, at a position 40 mm from the end opposite to the tip end of the sample, cut the adhesive layer or polymer sheet from the cushion layer side to a depth at which the polishing layer is not completely cut and the abrasive layer is not completely cut. Put in. An aluminum plate (No. 360, whose surface is polished with water-resistant abrasive paper) is attached to the respective surfaces of the polishing layer and the cushion layer with an adhesive. After the aluminum plate is pasted, it is allowed to stand for one day or more, and after the adhesive is completely solidified, it is pasted on the polishing layer on the upper tension jig using a universal testing machine “Tensilon” RTG-1250 (Orientec). The aluminum plate attached to the cushion layer on the lower tension jig and pulling the sample at a displacement speed of 300 mm / min. In the region of 20 mm width and 20 mm length in the center of the sample, the polishing layer and cushion The load when the layer peels is measured, and the value is taken as the shear adhesive strength.
研磨層とクッション層との間の剪断接着力は、3000gf/(20×20mm2)以上であることが好ましい。剪断接着力が3000gf/(20×20mm2)に満たない場合は、初期の研磨特性での面内均一性が不良で、連続研磨で研磨特性が安定しないので、好ましくない。剪断接着力は、6000gf/(20×20mm2)以上であることが、更に好ましい。
The shear adhesive force between the polishing layer and the cushion layer is preferably 3000 gf / (20 × 20 mm 2 ) or more. When the shear adhesive strength is less than 3000 gf / (20 × 20 mm 2 ), the in-plane uniformity in the initial polishing characteristics is poor, and the polishing characteristics are not stable in continuous polishing, which is not preferable. The shear adhesive strength is more preferably 6000 gf / (20 × 20 mm 2 ) or more.
研磨層とクッション層とを積層した後、クッション層の積層面とは反対側の面に、研磨定盤固定用の両面粘着テープを貼り合わせることが好ましい。両面粘着テープとしては、市販されているものを用いることが出来る。
After laminating the polishing layer and the cushion layer, it is preferable to attach a double-sided pressure-sensitive adhesive tape for fixing the polishing surface plate to the surface opposite to the laminated surface of the cushion layer. What is marketed can be used as a double-sided adhesive tape.
研磨層は、上述の材料から形成した原研磨層(生の研磨層)の表面を研削することで、製造することが出来る。原研磨層の表面を研削することによって、研磨層の厚みムラが少なくなるため、研磨特性の安定性が高くなり、使用時の立ち上げ時間の短縮が可能となる。研磨層とクッション層を積層した後に、研磨層の表面を研削しても構わない。
The polishing layer can be manufactured by grinding the surface of the original polishing layer (raw polishing layer) formed from the above-mentioned materials. By grinding the surface of the original polishing layer, the thickness unevenness of the polishing layer is reduced, so that the stability of the polishing characteristics is increased and the start-up time during use can be shortened. After laminating the polishing layer and the cushion layer, the surface of the polishing layer may be ground.
研磨層の表面の研削方法は、特に限定されない。研削方法としては、サンドペーパーによる研削、ダイヤモンドディスクやバイトを用いた研削等を挙げることが出来る。これらの中でもコストの点で、サンドペーパーによる研削が好ましい。また、サンドペーパーを用いた研削としては、生産性の点で、ワイドベルトサンダーによる研削が好ましい。
The method for grinding the surface of the polishing layer is not particularly limited. Examples of the grinding method include grinding with sandpaper, grinding with a diamond disk or a bite. Among these, grinding with sandpaper is preferable in terms of cost. In addition, as grinding using sandpaper, grinding with a wide belt sander is preferable in terms of productivity.
研磨パッドは、研磨パッドより大きな治具ロールを有する研削機で、研磨層の表面を研削することで、製造することが出来る。研磨パッドより大きな治具ロールを使用することで、研磨パッドを全面均一に保持し、厚みバラツキの少ない研削が可能となる。治具ロールが研磨パッドより小さい場合、研磨パッドを局部的に保持するため、均一に研削が出来ず、厚みバラツキも大きくなる傾向があるため好ましくない。
The polishing pad can be manufactured by grinding the surface of the polishing layer with a grinding machine having a jig roll larger than the polishing pad. By using a jig roll larger than the polishing pad, it is possible to hold the polishing pad uniformly over the entire surface and perform grinding with less variation in thickness. When the jig roll is smaller than the polishing pad, it is not preferable because the polishing pad is held locally, so that uniform grinding cannot be performed and thickness variation tends to increase.
サンドペーパーの番手は、特に限定されないが、60番乃至400番であることが好ましい。60番より番手が荒いと、研削後の表面粗さが荒くなり、研磨時の立ち上げ時間が増加する傾向があるため好ましくない。一方、400番より細かい番手では、研削能力に乏しく、作業性の観点から、好ましくない。
The count of the sandpaper is not particularly limited, but is preferably 60 to 400. Rougher than No. 60 is not preferable because the surface roughness after grinding becomes rough and the start-up time during polishing tends to increase. On the other hand, a count smaller than 400 is not preferable from the viewpoint of workability because of poor grinding ability.
サンドペーパー砥粒の材料は、特に限定されない。材料としては、アルミナ、ホワイトアルミナ、アルミナジルコニア、炭化ケイ素、ダイヤモンド、ガーネット、エメリー、フリント等が挙げられる。
The material for the sandpaper abrasive grains is not particularly limited. Examples of the material include alumina, white alumina, alumina zirconia, silicon carbide, diamond, garnet, emery, flint and the like.
本発明の研磨パッドを用いて、スラリーとして、シリカ系スラリー、酸化アルミニウム系スラリー、酸化セリウム系スラリー等を用いて、半導体ウェハ上での絶縁膜の凹凸や金属配線の凹凸を局所的に平坦化することが出来る。また、グローバル段差を小さくしたり、ディッシングを抑えたりすることが出来る。スラリーとしては、市販されているものを用いることが出来る。
Using the polishing pad of the present invention, as the slurry, silica-based slurry, aluminum oxide-based slurry, cerium oxide-based slurry, etc. are used to locally planarize the unevenness of the insulating film and the metal wiring on the semiconductor wafer. I can do it. In addition, the global level difference can be reduced and dishing can be suppressed. As the slurry, a commercially available one can be used.
半導体ウェハの上に形成された絶縁層としては、金属配線の層間絶縁膜や金属配線の下層絶縁膜や素子分離に使用されるシャロートレンチアイソレーションがある。半導体ウェハの上に形成された金属配線としては、アルミ、タングステン、銅等の配線があり、構造的には、ダマシン、デュアルダマシン、プラグがある。銅が金属配線として用いられている場合には、窒化珪素等のバリアメタルも研磨対象となる。
As an insulating layer formed on a semiconductor wafer, there are an interlayer insulating film of metal wiring, a lower insulating film of metal wiring, and shallow trench isolation used for element isolation. Examples of the metal wiring formed on the semiconductor wafer include wiring of aluminum, tungsten, copper and the like, and structurally include damascene, dual damascene, and plug. In the case where copper is used as the metal wiring, a barrier metal such as silicon nitride is also subject to polishing.
絶縁膜は、現在、酸化シリコンが主流であるが、遅延時間の問題で、低誘電率絶縁膜が用いられる場合がある。
As the insulating film, silicon oxide is currently mainstream, but a low dielectric constant insulating film may be used due to a problem of delay time.
本発明の研磨パッドを用いると、スクラッチが入り難い状態で、研磨しながら、研磨状態を良好に測定することが可能である。本発明の研磨パッドは、半導体ウェハ以外に、磁気ヘッド、ハードディスク、サファイヤ等の研磨に用いることも出来る。
When the polishing pad of the present invention is used, it is possible to satisfactorily measure the polishing state while polishing without scratching. The polishing pad of the present invention can be used for polishing a magnetic head, a hard disk, sapphire, etc. in addition to a semiconductor wafer.
次に、実施例および比較例を用いて、本発明を説明する。実施例および比較例において用いられた研磨パッドの各種の評価手法は、次の通りである。
Next, the present invention will be described using examples and comparative examples. Various evaluation methods of the polishing pad used in Examples and Comparative Examples are as follows.
クッション層の引っ張り弾性率:
万能材料試験機“Model5565”(Instron社製)を用いて、測定温度23℃、速度5cm/minで行い、得られた線図より勾配を求め、引っ張り弾性率を測定した。試験片は、幅5mm、長さ50mmのダンベル形状とした。
Cushion layer tensile modulus:
Using a universal material testing machine “Model 5565” (manufactured by Instron) at a measurement temperature of 23 ° C. and a speed of 5 cm / min, a gradient was obtained from the obtained diagram, and a tensile elastic modulus was measured. The test piece had a dumbbell shape with a width of 5 mm and a length of 50 mm.
研磨層の厚み、および、クッション層の厚み:
ダイヤルゲージ“ID-125B”((株)ミツトヨ製)を使用して、測定圧230gfで、研磨パッド面内の49点について測定し、それらの平均値として算出した。
Polishing layer thickness and cushion layer thickness:
Using a dial gauge “ID-125B” (manufactured by Mitutoyo Corporation), 49 points in the polishing pad surface were measured at a measurement pressure of 230 gf and calculated as an average value thereof.
研磨層のマイクロゴムA硬度:
マイクロゴムA硬度計“MD-1”(高分子計器(株)製)により測定した。マイクロゴムA硬度計“MD-1”の構成は、次の通りである。
Micro rubber A hardness of polishing layer:
It was measured with a micro rubber A hardness meter “MD-1” (manufactured by Kobunshi Keiki Co., Ltd.). The configuration of the micro rubber A hardness meter “MD-1” is as follows.
1.1センサ部
(1)荷重方式:片持ばり形板バネ。
1.1 Sensor part (1) Load system: Cantilever leaf spring.
(2)ばね荷重:0ポイント/2.24gf、および、100ポイント/33.85gf。
(2) Spring load: 0 point / 2.24 gf and 100 point / 33.85 gf.
(3)ばね荷重誤差:±0.32gf。
(3) Spring load error: ± 0.32 gf.
(4)押針寸法:直径:0.16mm円柱形。高さ:0.5mm。
(4) Needle dimensions: Diameter: 0.16 mm cylindrical shape. Height: 0.5 mm.
(5)変位検出方式:歪ゲージ式。
(5) Displacement detection method: strain gauge method.
(6)加圧脚寸法:外径4mm、内径1.5mm。
(6) Pressure leg dimensions: 4 mm outer diameter, 1.5 mm inner diameter.
1.2センサ駆動部
(1)駆動方式:ステッピングモータによる上下駆動。エアダンパによる降下速度制御。
1.2 Sensor driving unit (1) Driving method: vertical driving by a stepping motor. Descent speed control by air damper.
(2)上下動ストローク:12mm。
(2) Vertical movement stroke: 12 mm.
(3)降下速度:10mm/sec乃至30mm/sec。
(3) Descent speed: 10 mm / sec to 30 mm / sec.
(4)高さ調整範囲:0mm乃至67mm(試料テーブルとセンサ加圧面の距離)。
(4) Height adjustment range: 0 mm to 67 mm (distance between sample table and sensor pressure surface).
研磨層の密度:
JIS K-7222に記載の方法により測定した。
Polishing layer density:
It was measured by the method described in JIS K-7222.
研磨層の平均気泡径:
走査型電子顕微鏡“SEM2400”(日立製作所(株)製 )を使用し、研磨層切断面を倍率200倍で観察した写真を画像処理装置で解析することにより、写真中に存在するすべての気泡径を計測し、その平均値を平均気泡径とした。
Average cell diameter of polishing layer:
By using a scanning electron microscope “SEM2400” (manufactured by Hitachi, Ltd.) and analyzing the photograph of the cut surface of the polishing layer observed at a magnification of 200 times with an image processing device, all the bubble diameters present in the photograph Was measured and the average value was defined as the average bubble diameter.
研磨層とクッション層との剪断接着力:
研磨層とクッション層との積層体から、幅20mm、長さ60mmのサンプルを切り出した。サンプルの端から40mmの位置において、研磨層側から接着剤層または高分子シートが完全に切断され、かつ、クッション層が完全に切断されない深さまで、剃刀などの鋭利な刃物で切り込みを入れた。サンプルの先の端とは反対側の端から40mmの位置において、クッション層側から接着剤層または高分子シートが完全に切断され、かつ、研磨層が完全に切断されない深さまで、同様に切り込みを入れた。
Shear adhesion between the polishing layer and the cushion layer:
A sample having a width of 20 mm and a length of 60 mm was cut out from the laminate of the polishing layer and the cushion layer. At a position 40 mm from the edge of the sample, the adhesive layer or the polymer sheet was cut from the polishing layer side to a depth at which the cushion layer was not completely cut with a sharp blade such as a razor. Similarly, at a position 40 mm from the end opposite to the tip end of the sample, cut the adhesive layer or polymer sheet from the cushion layer side to a depth at which the polishing layer is not completely cut and the abrasive layer is not completely cut. I put it in.
研磨層およびクッション層表面のそれぞれ表面に、接着剤で、アルミ板(360番、耐水研磨紙で表面を研磨したもの)を貼り付けた。該アルミ板を貼り付け後1日以上放置し、接着剤が完全に固化した後、万能試験機“テンシロン”RTG-1250 (オリエンテック社製)を用い、上側引張り治具に研磨層に貼り付けたアルミ板、下側引張り治具にクッション層に貼り合わせたアルミ板を掴ませ、変位速度300mm/minでサンプルを引っ張り、サンプル中央部の幅20mm、長さ20mmの領域おいて、研磨層とクッション層が剥離したときの荷重を測定し、その値を剪断接着力とした。
An aluminum plate (No. 360, whose surface was polished with water-resistant abrasive paper) was attached to each surface of the polishing layer and the cushion layer with an adhesive. After the aluminum plate is pasted, it is allowed to stand for one day or more, and after the adhesive is completely solidified, it is pasted on the polishing layer on the upper tension jig using a universal testing machine “Tensilon” RTG-1250 (manufactured by Orientec). The aluminum plate bonded to the cushion layer on the lower tension jig, pulling the sample at a displacement speed of 300 mm / min, and in the region of 20 mm wide and 20 mm long in the center of the sample, The load when the cushion layer peeled was measured, and the value was taken as the shear adhesive strength.
研磨の状態の評価は、酸化膜を研磨した場合は、次の評価方法(I)で、メタル(タングステン)を研磨した場合は、次の評価方法(II)で行った。
The polishing state was evaluated by the following evaluation method (I) when the oxide film was polished, and by the following evaluation method (II) when the metal (tungsten) was polished.
研磨の状態の評価方法(I):
作製した研磨パッドを研磨機(アプライドマテリアルズ製“MIRRA(登録商標)”)に取り付け、2倍に希釈したスラリー“SS-25”(キャボット社製)を150mm/minの流量で流しながら、プラテン速度=93rpm、研磨ヘッド速度=89rpm、メンブレン圧力=4psi、リテーナリング圧力=5.5psi、インナーチューブ圧力=4psiの研磨条件で、研磨時間=1分で、酸化膜付きウェハを300枚連続で研磨した。
Polishing condition evaluation method (I):
The prepared polishing pad was attached to a polishing machine (“MIRRA (registered trademark)” manufactured by Applied Materials), and the slurry “SS-25” (manufactured by Cabot) was flown at a flow rate of 150 mm / min while flowing the platen Polishing of 300 wafers with oxide film in a polishing time of 1 minute under polishing conditions of speed = 93 rpm, polishing head speed = 89 rpm, membrane pressure = 4 psi, retainer ring pressure = 5.5 psi, inner tube pressure = 4 psi did.
50枚毎の研磨結果を研磨安定性の評価結果とし、最大研磨レートと最小研磨レートの差を平均値で除して、得られた値に100を掛けた値を求め、求められた値を安定性の指標とした。面内均一性は、50枚毎の面内均一性の各値の平均値を指標とした。研磨後のウェハの研磨レート、面内均一性は、次のようにして求めた。
The polishing result for every 50 sheets is used as the evaluation result of the polishing stability, the difference between the maximum polishing rate and the minimum polishing rate is divided by the average value, and the value obtained is multiplied by 100 to obtain the obtained value. It was used as an index of stability. For the in-plane uniformity, the average value of the in-plane uniformity values for every 50 sheets was used as an index. The polishing rate and in-plane uniformity of the wafer after polishing were determined as follows.
“ラムダエース(登録商標)”VM-2000(大日本スクリーン製造(株)製)を使用して、ウェハーのエッジから3mm以内の範囲において、決められた198点を測定して、下記式(1)により、各々の点での研磨レートを算出した。また、下記式(2)により、面内均一性を算出した。
Using “Lambda Ace (registered trademark)” VM-2000 (manufactured by Dainippon Screen Mfg. Co., Ltd.), 198 points determined within a range of 3 mm from the edge of the wafer were measured, and the following formula (1 ) To calculate the polishing rate at each point. Further, the in-plane uniformity was calculated by the following formula (2).
研磨レート=
(研磨前の酸化膜の厚み-研磨後の酸化膜の厚み)/研磨時間 ……(1)
面内均一性(%)=
(最大研磨レート-最小研磨レート)/(最大研磨レート+最小研磨レート)×100 ……(2)
各仕様の研磨パッドを10枚作成し、300枚の連続テストをそれぞれ行い、各平均研磨レートの最大と最小の差を算出した。10枚のそれぞれの平均研磨レートから10枚の平均研磨レートを算出して、最大と最小の差を10枚の平均研磨レートで除したものを研磨パッド間のバラツキの指標とした。
Polishing rate =
(Thickness of oxide film before polishing−thickness of oxide film after polishing) / polishing time (1)
In-plane uniformity (%) =
(Maximum polishing rate−minimum polishing rate) / (maximum polishing rate + minimum polishing rate) × 100 (2)
Ten polishing pads of each specification were prepared, 300 continuous tests were performed, and the difference between the maximum and minimum of each average polishing rate was calculated. The average polishing rate of 10 sheets was calculated from the average polishing rate of each of 10 sheets, and the difference between the maximum and the minimum was divided by the average polishing rate of 10 sheets was used as an index of variation between polishing pads.
平坦化特性の評価:
8インチシリコンウェハーに20mm角のダイを配置した。この20mm角のダイの左半分に、30μm幅、高さ1.2μmのアルミ配線を、300μm幅のスペースで、ラインアンドスペースで配置し、前記ダイの右半分に、300μm幅、高さ1.2μmのアルミ配線を、30μmのスペースで、ラインアンドスペースで配置した。更に、その上に、絶縁膜として、テトラエトキシシランをCVDで、厚さが3μmになるように形成した。得られたウェハーを、平坦化特性評価用ウェハーとした。この平坦化特性評価用ウェハーを、上記研磨条件で研磨し、左半分の300μm幅のスペースと右半分の300μm幅のラインの高さの差を段差として、平坦化特性の指標とした。
Evaluation of planarization characteristics:
A 20 mm square die was placed on an 8-inch silicon wafer. Aluminum wiring with a width of 30 μm and a height of 1.2 μm is arranged in a space of 300 μm width in a line-and-space manner on the left half of the 20 mm square die. 2 μm aluminum wiring was arranged in a line and space with a 30 μm space. Further, tetraethoxysilane was formed thereon as an insulating film by CVD so as to have a thickness of 3 μm. The obtained wafer was used as a wafer for planarization property evaluation. This wafer for flattening characteristic evaluation was polished under the above polishing conditions, and the difference in height between the 300 μm width space on the left half and the 300 μm width line on the right half was used as an index of the flattening characteristics.
研磨の状態の評価方法(II):
作製した研磨パッドを研磨機(アプライドマテリアルズ製“MIRRA(登録商標)”)に取り付け、2倍に希釈した“W-2000”(キャボット社製)に2%過酸化水素水を添加して調整したスラリーを140mm/minの流量で流しながら、プラテン速度=113rpm、研磨ヘッド速度=110rpm、メンブレン圧力=3.8psi、リテーナリング圧力=6.0psi、インナーチューブ圧力=6.0psiの研磨条件で、研磨時間=1分で、タングステン付きウェハを300枚連続で研磨した。
Polishing condition evaluation method (II):
The prepared polishing pad is attached to a polishing machine (“MIRRA (registered trademark)” manufactured by Applied Materials) and adjusted by adding 2% hydrogen peroxide water to “W-2000” (manufactured by Cabot) diluted twice. While flowing the slurry at a flow rate of 140 mm / min, under the polishing conditions of platen speed = 113 rpm, polishing head speed = 110 rpm, membrane pressure = 3.8 psi, retaining ring pressure = 6.0 psi, inner tube pressure = 6.0 psi, Polishing time = 1 minute, 300 wafers with tungsten were polished continuously.
50枚毎の研磨結果を研磨安定性の評価結果とし、最大研磨レートと最小研磨レートの差を平均値で除して、得られた値に100を掛けた値を求め、求められた値を安定性の指標とした。面内均一性は、50枚毎の面内均一性の各値の平均値を指標とした。研磨後のウェハの研磨レート、面内均一性は、次のようにして求めた。
The polishing result for every 50 sheets is used as the evaluation result of the polishing stability, the difference between the maximum polishing rate and the minimum polishing rate is divided by the average value, and the value obtained is multiplied by 100 to obtain the obtained value. It was used as an index of stability. For the in-plane uniformity, the average value of the in-plane uniformity values for every 50 sheets was used as an index. The polishing rate and in-plane uniformity of the wafer after polishing were determined as follows.
“金属膜厚計VR-120S”(国際電気(株)製)を使用して、ウェハーのエッジから5mm以内の範囲において、決められた49点を測定して、下記式(3)により、各々の点での研磨レートを算出した。また、下記式(4)により、面内均一性を算出した。
Using a “metal film thickness meter VR-120S” (made by Kokusai Denki Co., Ltd.), 49 points determined within a range of 5 mm from the edge of the wafer were measured. The polishing rate at this point was calculated. Further, the in-plane uniformity was calculated by the following formula (4).
研磨レート=
(研磨前のタングステン膜の厚み-研磨後のタングステン膜の厚み)/研磨時間 ……(3)
面内均一性(%)=
(最大研磨レート-最小研磨レート)/(最大研磨レート+最小研磨レート)÷2×100 ……(4)
各仕様の研磨パッドを10枚作成し、300枚の連続テストをそれぞれ行い、各平均研磨レートの最大と最小の差を算出した。10枚のそれぞれの平均研磨レートから10枚の平均研磨レートを算出して、最大と最小の差を10枚の平均研磨レートで除したものを研磨パッド間のバラツキの指標とした。
Polishing rate =
(Thickness of tungsten film before polishing−thickness of tungsten film after polishing) / polishing time (3)
In-plane uniformity (%) =
(Maximum polishing rate−minimum polishing rate) / (maximum polishing rate + minimum polishing rate) ÷ 2 × 100 (4)
Ten polishing pads of each specification were prepared, 300 continuous tests were performed, and the difference between the maximum and minimum of each average polishing rate was calculated. The average polishing rate of 10 sheets was calculated from the average polishing rate of each of 10 sheets, and the difference between the maximum and the minimum was divided by the average polishing rate of 10 sheets was used as an index of variation between polishing pads.
平坦化特性の評価:
SKW Associate、Inc.から販売されているSKW5-4パターンウェハーを用い、0.25μmのラインアンドスペースの部分の窪み(ディッシング)を評価した。該パターンウェハーを研磨機(アプライドマテリアルズ製“MIRRA(登録商標)”)に取り付け、2倍に希釈した“W-2000”(キャボット社製)に2%過酸化水素水を添加して調整したスラリーを140mm/minの流量で流しながら、プラテン速度=113rpm、研磨ヘッド速度=110rpm、メンブレン圧力=3.8psi、リテーナリング圧力=6.0psi、インナーチューブ圧力=6.0psiの研磨条件で、レーザーの終点検出を行い、タングステンが除去されてから過研磨を16秒行って停止させた。得られた研磨済みのパターンウェハーの0.25μmのラインアンドスペースの部分の窪み(ディッシング)を、KLA-Tenchol社製P-15で評価した。
Evaluation of planarization characteristics:
SKW Associate, Inc. Using a SKW5-4 pattern wafer sold by the company, a 0.25 μm line and space recess (dishing) was evaluated. The pattern wafer was attached to a polishing machine (“MIRRA (registered trademark)” manufactured by Applied Materials) and adjusted by adding 2% hydrogen peroxide water to “W-2000” (manufactured by Cabot) diluted twice. While flowing the slurry at a flow rate of 140 mm / min, the laser was used under the polishing conditions of platen speed = 113 rpm, polishing head speed = 110 rpm, membrane pressure = 3.8 psi, retaining ring pressure = 6.0 psi, inner tube pressure = 6.0 psi. After the tungsten was removed, overpolishing was performed for 16 seconds and stopped. The 0.25 μm line-and-space dents (dishing) of the polished pattern wafer obtained were evaluated with P-15 manufactured by KLA-Tenchol.
液温を40℃に保った、ポリエーテルポリオール:“サンニックス(登録商標)FA-909”(三洋化成工業(株)製)100重量部、鎖伸長剤:エチレングリコール8重量部、アミン触媒:“Dabco(登録商標)33LV”(エアープロダクツジャパン(株)製)1重量部、アミン触媒:“Toyocat(登録商標)ET”(東ソー(株)製)0.1重量部、シリコーン整泡剤:“TEGOSTAB(登録商標)B8462”(Th.Goldschmidt AG社製)0.5重量部、発泡剤:水0.2重量部を混合してなるA液と、液温を40℃に保ったイソシアネート:“サンフォーム(登録商標)NC-703”95重量部からなるB液を、RIM成型機により、吐出圧15MPaで衝突混合した後、60℃に保った金型内に吐出量500g/secで吐出し、10分間放置することで、大きさ700mm×700mm、厚み10mmの発泡ポリウレタンブロック(マイクロゴムA硬度:47度、密度:0.77g/cm3、平均気泡径:37μm)を作製した。その後、該発泡ポリウレタンブロックをスライサーで厚み3mmにスライスした。
Polyether polyol maintained at a liquid temperature of 40 ° C .: 100 parts by weight of “Sanix (registered trademark) FA-909” (manufactured by Sanyo Chemical Industries), chain extender: 8 parts by weight of ethylene glycol, amine catalyst: 1 part by weight of “Dabco (registered trademark) 33LV” (produced by Air Products Japan), amine catalyst: 0.1 part by weight of “Toyocat (registered trademark) ET” (produced by Tosoh Corporation), silicone foam stabilizer: "A TEGOSTAB (registered trademark) B 8462" (manufactured by Th. Goldschmidt AG) 0.5 part by weight, foaming agent: A liquid obtained by mixing 0.2 part by weight of water, and an isocyanate maintaining the liquid temperature at 40 ° C: “Sunform (registered trademark) NC-703” 95 parts by weight of B liquid was collided with a RIM molding machine at a discharge pressure of 15 MPa, and then kept at 60 ° C. A foamed polyurethane block having a size of 700 mm × 700 mm and a thickness of 10 mm (micro rubber A hardness: 47 degrees, density: 0.77 g / cm 3 , average cell diameter) : 37 μm). Thereafter, the foamed polyurethane block was sliced with a slicer to a thickness of 3 mm.
次に、該発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.1重量部を添加したメチルメタクリレートに45分間浸漬した。得られたメチルメタクリレートが含浸した発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、60℃で10時間、120℃で3時間加熱することにより、重合硬化させた。ガラス板間から離型した後、50℃で真空乾燥を行い、硬質発泡シートを得た。得られた硬質発泡シートの両面を、厚みが2.0mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層のマイクロゴムA硬度は、92度、密度は、0.77g/cm3、平均気泡径は、47μm、研磨層中のポリメチルメタクリレートの含有率は、54重量%であった。
Next, the foamed polyurethane sheet was immersed in methyl methacrylate to which 0.1 part by weight of azobisisobutyronitrile was added for 45 minutes. The obtained polyurethane foam impregnated with methyl methacrylate was sandwiched between two glass plates via a vinyl chloride gasket, and heated and cured at 60 ° C. for 10 hours and 120 ° C. for 3 hours. . After releasing from between the glass plates, vacuum drying was performed at 50 ° C. to obtain a hard foam sheet. Both surfaces of the obtained rigid foamed sheet were ground until the thickness became 2.0 mm to produce an original polishing layer. The resulting raw polishing layer had a micro rubber A hardness of 92 degrees, a density of 0.77 g / cm 3 , an average cell diameter of 47 μm, and a polymethyl methacrylate content of 54 wt% in the polishing layer. It was.
得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1mm、溝ピッチ10mm、溝深さ1.5mmの格子状に配列された溝からなる第1の溝群と、溝幅2mm、溝ピッチ30mm、溝深さ1.5mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、数値制御ルーター(NCルーター)を用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1 mm, a groove pitch of 10 mm, and a groove depth of 1.5 mm, a groove width of 2 mm, a groove pitch of 30 mm, The second groove group consisting of grooves arranged in a grid with a groove depth of 1.5 mm is connected to the numerical control router (NC) in a state where the grooves of the first groove group and the second groove group are parallel to each other. Router). The cross-sectional shape of each groove was almost rectangular.
次に、該研磨層に、両面粘着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた後、剥離紙を剥がし、それを、厚み0.5mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:16MPa)からなるクッション層の上に、ラミネーターを使用し線圧1kg/cmで貼り合わせ、研磨パッドを作製した。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、3000gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)を、ラミネーターを使用し線圧1kg/cmで貼り合わせた。
Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the polishing layer using a laminator at a linear pressure of 1 kg / cm, and then the release paper was peeled off, and the thickness was 0.5 mm. On a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 16 MPa), a laminator was used and bonded at a linear pressure of 1 kg / cm to prepare a polishing pad. The shear adhesive force between the polishing layer and the cushion layer in the produced polishing pad was 3000 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハ300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2530(オングストローム/分)で、面内均一性は、8.3%と良好であった。研磨レートの最大と最小の差は、120(オングストローム/分)であったので、安定性の指標は、4.7%と良好であった。
The polishing pad produced here was attached to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2530 (angstrom / min), and the in-plane uniformity was as good as 8.3%. The difference between the maximum and minimum polishing rates was 120 (angstrom / min), so the stability index was good at 4.7%.
絶縁膜として、テトラエトキシシランを、CVDで、厚さが3μmになるように形成して得られた前記平坦化特性用ウェハーを、上記研磨条件で4分研磨し、段差を測定した。測定された段差は、1200オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、酸化膜付きウェハ300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、2510(オングストローム/分)であった。最大の研磨レートと最小の研磨レートとの差は、130(オングストローム/分)であり、パッド間のバラツキは、5.1%で、バラツキが少ない結果が得られた。
The wafer for flattening characteristics obtained by forming tetraethoxysilane as an insulating film by CVD so as to have a thickness of 3 μm was polished for 4 minutes under the above polishing conditions, and the level difference was measured. The measured step was as good as 1200 angstroms. Nine other polishing pads having the same specifications were prepared, and 300 wafers with oxide films were subjected to a continuous polishing test, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 2510 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 130 (angstrom / min), and the variation between the pads was 5.1%, indicating that the variation was small.
実施例1と同様にして作製した原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.2mm、溝ピッチ12.5mm、溝深さ1.5mmの格子状に配列された溝からなる第1の溝群と、溝幅3mm、溝ピッチ37.5mm、溝深さ1.5mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the original polishing layer produced in the same manner as in Example 1. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1.2 mm, a groove pitch of 12.5 mm, and a groove depth of 1.5 mm, and a groove width of 3 mm, A second groove group consisting of grooves arranged in a lattice shape with a groove pitch of 37.5 mm and a groove depth of 1.5 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. And formed using an NC router. The cross-sectional shape of each groove was almost rectangular.
次に、該研磨層に、両面粘着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた後、剥離紙を剥がし、それを、厚み0.2mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:20MPa)からなるクッション層の上に、ラミネーターを使用し線圧1kg/cmで貼り合わせ、研磨パッドを作製した。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、3000gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)を、ラミネーターを使用し線圧1kg/cmで貼り合わせた。
Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the polishing layer at a linear pressure of 1 kg / cm using a laminator, and then the release paper was peeled off. On a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 20 MPa), a laminator was used and bonded at a linear pressure of 1 kg / cm to prepare a polishing pad. The shear adhesive force between the polishing layer and the cushion layer in the produced polishing pad was 3000 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2570(オングストローム/分)で、面内均一性は、6.3%と良好であった。研磨レートの最大と最小の差は、115(オングストローム/分)であったので、安定性の指標は、4.5%と良好であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2570 (angstrom / min), and the in-plane uniformity was as good as 6.3%. The difference between the maximum and minimum polishing rates was 115 (angstrom / min), so the stability index was a good 4.5%.
絶縁膜として、テトラエトキシシランを、CVDで、厚さが3μmになるように形成して得られた前記平坦化特性用ウェハーを、上記研磨条件で4分研磨し、段差を測定した。測定された段差は、1000オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、酸化膜付きウェハー300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、2580(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、130(オングストローム/分)であり、パッド間のバラツキは、5.0%で、バラツキが少ない結果が得られた。
The wafer for flattening characteristics obtained by forming tetraethoxysilane as an insulating film by CVD so as to have a thickness of 3 μm was polished for 4 minutes under the above polishing conditions, and the level difference was measured. The measured step was as good as 1000 angstroms. Nine other polishing pads having the same specifications were prepared, and 300 wafers with oxide films were subjected to a continuous polishing test, and the polishing characteristics of 10 sheets were calculated. The polishing property was 2580 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 130 (angstrom / min), and the pad-to-pad variation was 5.0%, indicating that the variation was small.
実施例1と同様にして作製した原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅0.7mm、溝ピッチ7.5mm、溝深さ1.2mmの格子状に配列された溝からなる第1の溝群と、溝幅2mm、溝ピッチ45mm、溝深さ1.5mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the original polishing layer produced in the same manner as in Example 1. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 0.7 mm, a groove pitch of 7.5 mm, and a groove depth of 1.2 mm, and a groove width of 2 mm, A second groove group consisting of grooves arranged in a lattice shape with a groove pitch of 45 mm and a groove depth of 1.5 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. Formed using a router. The cross-sectional shape of each groove was almost rectangular.
次に、該研磨層に、両面粘着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた後、剥離紙を剥がし、それを、厚み0.05mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:35MPa)からなるクッション層の上に、ラミネーターを使用し線圧1kg/cmで貼り合わせ、研磨パッドを作製した。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、3000gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)を、ラミネーターを使用し線圧1kg/cmで貼り合わせた。
Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the polishing layer at a linear pressure of 1 kg / cm using a laminator, and then the release paper was peeled off to obtain a thickness of 0.05 mm. On a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 35 MPa), a laminator was used and bonded at a linear pressure of 1 kg / cm to prepare a polishing pad. The shear adhesive force between the polishing layer and the cushion layer in the produced polishing pad was 3000 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2500(オングストローム/分)で、面内均一性は、5.3%と良好であった。研磨レートの最大と最小の差は、100(オングストローム/分)であったので、安定性の指標は、4.0%と良好であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2500 (angstrom / min), and the in-plane uniformity was good at 5.3%. The difference between the maximum and minimum polishing rates was 100 (angstrom / min), so the stability index was good at 4.0%.
絶縁膜として、テトラエトキシシランを、CVDで、厚さが3μmになるように形成して得られた前記平坦化特性用ウェハーを、上記研磨条件で4分研磨し、段差を測定した。測定された段差は、900オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、酸化膜付きウェハー300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、2490(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、130(オングストローム/分)であり、パッド間のバラツキは、5.2%で、バラツキが少ない結果が得られた。
The wafer for flattening characteristics obtained by forming tetraethoxysilane as an insulating film by CVD so as to have a thickness of 3 μm was polished for 4 minutes under the above polishing conditions, and the level difference was measured. The measured step was as good as 900 angstroms. Nine other polishing pads having the same specifications were prepared, and 300 wafers with oxide films were subjected to a continuous polishing test, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 2490 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 130 (angstrom / min), and the variation between the pads was 5.2%, indicating that the variation was small.
実施例1において作製された硬質発泡シートの両面を、厚みが1.0mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅0.8mm、溝ピッチ10.0mm、溝深さ0.4mmの格子状に配列された溝からなる第1の溝群と、溝幅2.3mm、溝ピッチ30mm、溝深さ0.4mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the hard foam sheet produced in Example 1 were ground until the thickness became 1.0 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. A first groove group consisting of grooves arranged in a lattice pattern having a groove width of 0.8 mm, a groove pitch of 10.0 mm, and a groove depth of 0.4 mm on the surface of the obtained circular polishing layer; A second groove group consisting of grooves arranged in a grid pattern of 3 mm, a groove pitch of 30 mm, and a groove depth of 0.4 mm, in a state where the grooves of the first groove group and the second groove group are parallel to each other. And formed using an NC router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.05mmの熱硬化性ウレタンゴムシート(引っ張り弾性率:48MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、80μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、12500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after the adhesive is applied, a cushion layer made of a thermosetting urethane rubber sheet (tensile elastic modulus: 48 MPa) having a thickness of 0.05 mm is bonded onto the applied adhesive, and a roll press wire Both were quickly pressure-bonded at a pressure of 1.5 kg / cm to produce a polishing pad. The thickness of the adhesive after solidification was 80 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 12,500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2700(オングストローム/分)で、面内均一性は、7.5%と良好であった。研磨レートの最大と最小の差は、100(オングストローム/分)であったので、安定性の指標は、3.7%と良好であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2700 (angstrom / min), and the in-plane uniformity was as good as 7.5%. The difference between the maximum and the minimum polishing rate was 100 (angstrom / min), so the stability index was good at 3.7%.
絶縁膜として、テトラエトキシシランをCVDで、厚さが3μmになるように形成して得られた前記平坦化特性用ウェハーを、上記研磨条件で4分研磨し、段差を測定した。測定された段差は、1000オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、酸化膜付きウェハー300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、2690(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、110(オングストローム/分)であり、パッド間のバラツキは、4.1%で、バラツキが少ない結果が得られた。
As the insulating film, the wafer for flattening characteristics obtained by forming tetraethoxysilane by CVD so as to have a thickness of 3 μm was polished for 4 minutes under the above polishing conditions, and the level difference was measured. The measured step was as good as 1000 angstroms. Nine other polishing pads having the same specifications were prepared, and 300 wafers with oxide films were subjected to a continuous polishing test, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 2690 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 110 (angstrom / min), and the variation between the pads was 4.1%, indicating that the variation was small.
実施例1において作製された硬質発泡シートの両面を、厚みが0.8mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.0mm、溝ピッチ10.0mm、溝深さ0.2mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ30mm、溝深さ0.2mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 0.8 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. A first groove group consisting of grooves arranged in a lattice shape having a groove width of 1.0 mm, a groove pitch of 10.0 mm, and a groove depth of 0.2 mm on the surface of the obtained circular polishing layer; A second groove group consisting of grooves arranged in a lattice pattern with 0 mm, a groove pitch of 30 mm, and a groove depth of 0.2 mm, in a state where the grooves of the first groove group and the second groove group are parallel to each other. And formed using an NC router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.2mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:18MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、50μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、9500gf/(20×20mm2)であった。更に、クッション層の下に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute of applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 18 MPa) having a thickness of 0.2 mm is bonded onto the applied adhesive, and a roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 50 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 9500 gf / (20 × 20 mm 2 ). Further, under the cushion layer, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2300(オングストローム/分)で、面内均一性は、8.5%と良好であった。研磨レートの最大と最小の差は、80(オングストローム/分)であったので、安定性の指標は、3.5%と良好であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2300 (angstrom / min), and the in-plane uniformity was as good as 8.5%. Since the difference between the maximum and the minimum polishing rate was 80 (angstrom / min), the stability index was a good 3.5%.
絶縁膜として、テトラエトキシシランを、CVDで、厚さが3μmになるように形成して得られた前記平坦化特性用ウェハーを、上記研磨条件で4分研磨し、段差を測定した。測定された段差は、1350オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、酸化膜付きウェハー300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、2340(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、90(オングストローム/分)であり、パッド間のバラツキは、3.8%で、バラツキが少ない結果が得られた。
The wafer for flattening characteristics obtained by forming tetraethoxysilane as an insulating film by CVD so as to have a thickness of 3 μm was polished for 4 minutes under the above polishing conditions, and the level difference was measured. The measured step was as good as 1350 angstroms. Nine other polishing pads having the same specifications were prepared, and 300 wafers with oxide films were subjected to a continuous polishing test, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 2340 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 90 (angstrom / min), and the variation between the pads was 3.8%, and a result with little variation was obtained.
実施例1において作製された硬質発泡シートの両面を、厚みが1.5mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.0mm、溝ピッチ45.0mm、溝深さ0.7mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ45mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群Bを、第1の溝群の溝ピッチと第2の溝群の溝ピッチがピッチの1/2ずつずれて双方の溝群の溝同士が重ならず、かつ、各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 1.5 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. A first groove group consisting of grooves arranged in a lattice shape having a groove width of 1.0 mm, a groove pitch of 45.0 mm, and a groove depth of 0.7 mm on the surface of the obtained circular polishing layer; The second groove group B consisting of grooves arranged in a grid pattern having a 0 mm, a groove pitch of 45 mm, and a groove depth of 0.9 mm has a groove pitch of the first groove group and a groove pitch of the second groove group. It was formed by using an NC router in a state in which the grooves of both groove groups were not overlapped with each other by 1/2 and the grooves were parallel to each other. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.15mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:24MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、50μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、9500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 24 MPa) having a thickness of 0.15 mm is bonded onto the applied adhesive, and a roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 50 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 9500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、研磨評価方法(II)に記載の研磨条件で、300枚のタングステン膜の連続研磨テストを行った。50枚毎の研磨レートの平均は、4500(オングストローム/分)で、面内均一性は、3.5%と良好であった。研磨レートの最大と最小の差は、144(オングストローム/分)であったので、安定性の指標は、3.2%と良好であった。
The polishing pad prepared here was attached to a polishing machine, and a continuous polishing test of 300 tungsten films was performed under the polishing conditions described in the polishing evaluation method (II). The average polishing rate for every 50 sheets was 4500 (angstrom / min), and the in-plane uniformity was good at 3.5%. Since the difference between the maximum and the minimum polishing rate was 144 (angstrom / min), the stability index was good at 3.2%.
タングステン用平坦化特性用ウェハーを、上記研磨条件で研磨し、段差を測定した。測定された段差は、350オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、タングステン膜300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、4480(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、188(オングストローム/分)であり、パッド間のバラツキは、4.2%で、バラツキが少ない結果が得られた。
The wafer for flattening characteristics for tungsten was polished under the above polishing conditions, and the level difference was measured. The measured step was as good as 350 angstroms. Nine other polishing pads having the same specifications were prepared, and a continuous polishing test of 300 tungsten films was performed, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 4480 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 188 (angstrom / min), and the variation between the pads was 4.2%, indicating that the variation was small.
液温を40℃に保った、ポリエーテルポリオール:“サンニックス(登録商標)FA-909”(三洋化成工業(株)製)100重量部、鎖伸長剤:エチレングリコール8重量部、アミン触媒:“Dabco(登録商標) 33LV”(エアープロダクツジャパン(株)製)1重量部、アミン触媒:“Toyocat(登録商標)ET”(東ソー(株)製)0.1重量部、シリコーン整泡剤:“TEGOSTAB(登録商標)B8462”(Th.Goldschmidt AG社製)0.5重量部、発泡剤:水1.0重量部を混合してなるA液と、液温を40℃に保ったイソシアネート:“サンフォーム(登録商標)NC-703”95重量部からなるB液を、RIM成型機により、吐出圧15MPaで衝突混合した後、60℃に保った金型内に吐出量500g/secで吐出し、10分間放置することで、大きさ700×700mm、厚み10mmの発泡ポリウレタンブロック(マイクロゴムA硬度:38度、密度:0.55g/cm3、平均気泡径:63μm)を作製した。その後、該発泡ポリウレタンブロックをスライサーで厚み3mmにスライスし、発泡ポリウレタンシートを作製した。
Polyether polyol maintained at a liquid temperature of 40 ° C .: 100 parts by weight of “Sanix (registered trademark) FA-909” (manufactured by Sanyo Chemical Industries), chain extender: 8 parts by weight of ethylene glycol, amine catalyst: 1 part by weight of “Dabco (registered trademark) 33LV” (produced by Air Products Japan), amine catalyst: 0.1 part by weight of “Toyocat (registered trademark) ET” (produced by Tosoh Corporation), silicone foam stabilizer: “ATGOSTAB (registered trademark) B8462” (manufactured by Th. Goldschmidt AG) 0.5 part by weight, foaming agent: A liquid obtained by mixing 1.0 part by weight of water, and an isocyanate whose liquid temperature was kept at 40 ° C .: "Sunform (registered trademark) NC-703" B liquid consisting of 95 parts by weight is collided with a RIM molding machine at a discharge pressure of 15 MPa, and then kept at 60 ° C Discharging a discharge rate 500 g / sec into, by standing for 10 minutes, size 700 × 700 mm, foamed polyurethane block thickness 10 mm (micro rubber A hardness: 38 degrees, a density: 0.55 g / cm 3, average cell diameter : 63 μm). Thereafter, the polyurethane foam block was sliced with a slicer to a thickness of 3 mm to produce a polyurethane foam sheet.
次に、該発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.1重量部を添加したメチルメタクリレートに10分間浸漬した。得られたメチルメタクリレートが含浸した発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、60℃で10時間、120℃で3時間加熱することにより、重合硬化させた。ガラス板間から離型した後、50℃で真空乾燥を行い、硬質発泡シートを得た。得られた硬質発泡シートの両面を、厚み1.5mmまで、研削加工して、原研磨層を作製した。得られた原研磨層のマイクロゴムA硬度は、80度、密度は、0.56g/cm3、平均気泡径は、65μm、研磨層中のポリメチルメタクリレートの含有率は、47重量%であった。
Next, the foamed polyurethane sheet was immersed in methyl methacrylate to which 0.1 part by weight of azobisisobutyronitrile was added for 10 minutes. The obtained polyurethane foam impregnated with methyl methacrylate was sandwiched between two glass plates via a vinyl chloride gasket, and heated and cured at 60 ° C. for 10 hours and 120 ° C. for 3 hours. . After releasing from between the glass plates, vacuum drying was performed at 50 ° C. to obtain a hard foam sheet. Both surfaces of the obtained rigid foamed sheet were ground to a thickness of 1.5 mm to produce an original polishing layer. The obtained raw polishing layer had a micro rubber A hardness of 80 degrees, a density of 0.56 g / cm 3 , an average cell diameter of 65 μm, and a polymethyl methacrylate content of 47 wt% in the polishing layer. It was.
得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.0mm、溝ピッチ40.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ40mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群の溝ピッチと第2の溝群の溝ピッチがピッチの1/2ずつずれて双方の溝群の溝同士が重ならず、かつ、各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. A first groove group consisting of grooves arranged in a lattice pattern having a groove width of 1.0 mm, a groove pitch of 40.0 mm, and a groove depth of 0.9 mm on the surface of the obtained circular polishing layer; A second groove group consisting of grooves arranged in a lattice pattern having 0 mm, a groove pitch of 40 mm, and a groove depth of 0.9 mm is defined as a groove pitch of the first groove group and a groove pitch of the second groove group of 1 pitch. It was formed by using an NC router in such a state that the grooves in both groove groups were not overlapped with each other by 2 and the grooves were parallel to each other. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.1mmのポリエステルフィルムを貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させた。更に、研磨層と0.1mmのポリエステルフィルム貼り合わせ品のポリエステルフィルム面に、接着剤として“ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーターで塗布した。
As a reactive hot melt adhesive mainly composed of urethane, “Hibon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a 0.1 mm thick polyester film was bonded onto the applied adhesive, and both were quickly pressed together at a roll press linear pressure of 1.5 kg / cm. . Furthermore, “Hibon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as an adhesive was heated to a roll temperature of 120 ° C. on the polyester film surface of the bonded product of the polishing layer and 0.1 mm polyester film. It was melted on the roll coater and applied with a roll coater.
接着剤を塗布してから1分以内に、ロールプレス線圧1.5kg/cmで、ポリエステルフィルム面に、厚み0.5mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:24MPa)からなるクッション層を、速やかに貼り合わせて、ロールプレス線圧1.5kg/cmで、双方を速やかに圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、50μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、9500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 24 MPa) having a thickness of 0.5 mm is formed on the polyester film surface at a roll press linear pressure of 1.5 kg / cm. Then, they were quickly pasted together, and both of them were quickly pressure-bonded at a roll press linear pressure of 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 50 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 9500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(II)に記載の研磨条件で、300枚のタングステン膜の連続研磨テストを行った。50枚毎の研磨レートの平均は、4700(オングストローム/分)で、面内均一性は、5.0%と良好であった。研磨レートの最大と最小の差は、146(オングストローム/分)であったので、安定性の指標は、3.1%と良好であった。
The polishing pad prepared here was attached to a polishing machine, and a continuous polishing test of 300 tungsten films was performed under the polishing conditions described in the polishing evaluation method (II). The average polishing rate for every 50 sheets was 4700 (angstrom / min), and the in-plane uniformity was good at 5.0%. Since the difference between the maximum and minimum polishing rates was 146 (angstrom / min), the stability index was as good as 3.1%.
タングステン用平坦化特性用ウェハーを、上記研磨条件で研磨し、段差を測定した。測定された段差は、400オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、タングステン膜300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、4780(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、177(オングストローム/分)であり、パッド間のバラツキは、3.7%で、バラツキが少ない結果が得られた。
The wafer for flattening characteristics for tungsten was polished under the above polishing conditions, and the level difference was measured. The measured step was as good as 400 Å. Nine other polishing pads having the same specifications were prepared, and a continuous polishing test of 300 tungsten films was performed, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 4780 (Angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 177 (angstrom / min), and the variation between the pads was 3.7%, and a result with little variation was obtained.
実施例7と同様の発泡ポリウレタンブロックを作成し、スライサーで厚み3mmにスライスし、発泡ポリウレタンシートを作製した。
A foamed polyurethane block similar to that in Example 7 was prepared and sliced to a thickness of 3 mm with a slicer to prepare a foamed polyurethane sheet.
次に、該発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.1重量部を添加したメチルメタクリレートに8分間浸漬した。得られたメチルメタクリレートが含浸した発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、60℃で10時間、120℃で3時間加熱することにより、重合硬化させた。ガラス板間から離型した後、50℃で真空乾燥を行い、硬質発泡シートを得た。得られた硬質発泡シートの両面を、厚み1.5mmまで、研削加工して、原研磨層を作製した。得られた原研磨層のマイクロゴムA硬度は、76度、密度は、0.54g/cm3、平均気泡径は、62μm、研磨層中のポリメチルメタクリレートの含有率は、41重量%であった。
Next, the foamed polyurethane sheet was immersed in methyl methacrylate to which 0.1 part by weight of azobisisobutyronitrile was added for 8 minutes. The obtained polyurethane foam impregnated with methyl methacrylate was sandwiched between two glass plates via a vinyl chloride gasket, and heated and cured at 60 ° C. for 10 hours and 120 ° C. for 3 hours. . After releasing from between the glass plates, vacuum drying was performed at 50 ° C. to obtain a hard foam sheet. Both surfaces of the obtained rigid foamed sheet were ground to a thickness of 1.5 mm to produce an original polishing layer. The obtained raw polishing layer had a micro rubber A hardness of 76 degrees, a density of 0.54 g / cm 3 , an average cell diameter of 62 μm, and a polymethyl methacrylate content of 41 wt% in the polishing layer. It was.
得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.0mm、溝ピッチ40.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ40mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群の溝ピッチと第2の溝群の溝ピッチがピッチの1/2ずつずれて双方の溝群の溝同士が重ならず、かつ、各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. A first groove group consisting of grooves arranged in a lattice pattern having a groove width of 1.0 mm, a groove pitch of 40.0 mm, and a groove depth of 0.9 mm on the surface of the obtained circular polishing layer; A second groove group consisting of grooves arranged in a lattice pattern having 0 mm, a groove pitch of 40 mm, and a groove depth of 0.9 mm is defined as a groove pitch of the first groove group and a groove pitch of the second groove group of 1 pitch. It was formed by using an NC router in such a state that the grooves in both groove groups were not overlapped with each other by 2 and the grooves were parallel to each other. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.1mmのポリエステルフィルムを貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させた。更に、研磨層と0.1mmのポリエステルフィルム貼り合わせ品のポリエステルフィルム面に、接着剤として“ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーターで塗布した。
As a reactive hot melt adhesive mainly composed of urethane, “Hibon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a 0.1 mm thick polyester film was bonded onto the applied adhesive, and both were quickly pressed together at a roll press linear pressure of 1.5 kg / cm. . Furthermore, “Hibon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as an adhesive was heated to a roll temperature of 120 ° C. on the polyester film surface of the bonded product of the polishing layer and 0.1 mm polyester film. It was melted on the roll coater and applied with a roll coater.
接着剤を塗布してから1分以内に、ロールプレス線圧1.5kg/cmで、ポリエステルフィルム面に、厚み1.5mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:18MPa)からなるクッション層を、速やかに貼り合わせて、ロールプレス線圧1.5kg/cmで、双方を速やかに圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、50μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、9300gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
Within 1 minute of applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 18 MPa) having a thickness of 1.5 mm is formed on the polyester film surface at a roll press linear pressure of 1.5 kg / cm. Then, they were quickly pasted together, and both of them were quickly pressure-bonded at a roll press linear pressure of 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 50 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 9300 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(II)に記載の研磨条件で、300枚のタングステン膜の連続研磨テストを行った。50枚毎の研磨レートの平均は、4900(オングストローム/分)で、面内均一性は、5.0%と良好であった。研磨レートの最大と最小の差は、157(オングストローム/分)であったので、安定性の指標は、3.2%と良好であった。
The polishing pad prepared here was attached to a polishing machine, and a continuous polishing test of 300 tungsten films was performed under the polishing conditions described in the polishing evaluation method (II). The average polishing rate for every 50 sheets was 4900 (angstrom / min), and the in-plane uniformity was good at 5.0%. Since the difference between the maximum and the minimum polishing rate was 157 (angstrom / min), the stability index was good at 3.2%.
タングステン用平坦化特性用ウェハーを、上記研磨条件で研磨し、段差を測定した。測定された段差は、450オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、タングステン膜300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、4850(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、175(オングストローム/分)であり、パッド間のバラツキは、3.6%で、バラツキが少ない結果が得られた。
The wafer for flattening characteristics for tungsten was polished under the above polishing conditions, and the level difference was measured. The measured step was as good as 450 Å. Nine other polishing pads having the same specifications were prepared, and a continuous polishing test of 300 tungsten films was performed, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 4850 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 175 (angstrom / min), and the variation between the pads was 3.6%, indicating that the variation was small.
比較例1Comparative Example 1
実施例1と同様にして作製した原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅0.4mm、溝ピッチ3mm、溝深さ1.5mmの格子状に配列された溝からなる第1の溝群と、溝幅1.5mm、溝ピッチ20mm、溝深さ1.5mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the original polishing layer produced in the same manner as in Example 1. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 0.4 mm, a groove pitch of 3 mm, and a groove depth of 1.5 mm, and a groove width of 1.5 mm, A second groove group consisting of grooves arranged in a grid pattern with a groove pitch of 20 mm and a groove depth of 1.5 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. Formed using a router. The cross-sectional shape of each groove was a rectangle.
次に、該研磨層に、両面粘着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた後、剥離紙を剥がし、それを、厚み0.3mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:25MPa)からなるクッション層の上に、ラミネーターを使用し線圧1kg/cmで貼り合わせ、研磨パッドを作製した。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、3000gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)を、ラミネーターを使用し線圧1kg/cmで貼り合わせた。
Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the polishing layer using a laminator at a linear pressure of 1 kg / cm, and then the release paper was peeled off to obtain a thickness of 0.3 mm. On a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 25 MPa), a laminator was used and bonded at a linear pressure of 1 kg / cm to prepare a polishing pad. The shear adhesive force between the polishing layer and the cushion layer in the produced polishing pad was 3000 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。しかし、テストの途中でウェハーが研磨層に吸い付き、安定した連続研磨が出来なかった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). However, the wafer stuck to the polishing layer during the test, and stable continuous polishing was not possible.
比較例2Comparative Example 2
実施例1において作製された硬質発泡シートの両面を、厚みが1.5mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.3mm、溝ピッチ5.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ25mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 1.5 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. A first groove group consisting of grooves arranged in a lattice pattern having a groove width of 1.3 mm, a groove pitch of 5.0 mm, and a groove depth of 0.9 mm on the surface of the obtained circular polishing layer; A second groove group consisting of grooves arranged in a grid with 0 mm, a groove pitch of 25 mm, and a groove depth of 0.9 mm, in a state where the grooves of the first groove group and the second groove group are parallel to each other. And formed using an NC router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.3mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:25MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、60μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、10500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 25 MPa) having a thickness of 0.3 mm is bonded onto the applied adhesive, and the roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 60 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 10500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2600(オングストローム/分)で、面内均一性は、6.5%と良好であった。研磨レートの最大と最小の差は、300(オングストローム/分)であったので、安定性の指標は、11.5%であり、研磨が安定していないという結果が得られた。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2600 (angstrom / min), and the in-plane uniformity was as good as 6.5%. Since the difference between the maximum and minimum polishing rates was 300 (angstrom / min), the stability index was 11.5%, and the result was that polishing was not stable.
比較例3Comparative Example 3
実施例1において作製された硬質発泡シートの両面を、厚みが1.5mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1mm、溝ピッチ5.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ15mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 1.5 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1 mm, a groove pitch of 5.0 mm, and a groove depth of 0.9 mm, and a groove width of 2.0 mm, A second groove group consisting of grooves arranged in a grid pattern with a groove pitch of 15 mm and a groove depth of 0.9 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. Formed using a router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.3mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:25MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、60μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、10500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 25 MPa) having a thickness of 0.3 mm is bonded onto the applied adhesive, and the roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 60 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 10500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2600(オングストローム/分)で、面内均一性は、6.5%と良好であった。研磨レートの最大と最小の差は、400(オングストローム/分)であったので、安定性の指標は、15.4%であり、研磨が安定していないという結果が得られた。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2600 (angstrom / min), and the in-plane uniformity was as good as 6.5%. Since the difference between the maximum and minimum polishing rates was 400 (angstrom / min), the stability index was 15.4%, indicating that the polishing was not stable.
比較例4Comparative Example 4
実施例1において作製された硬質発泡シートの両面を、厚みが1.5mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1mm、溝ピッチ2.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ20mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 1.5 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1 mm, a groove pitch of 2.0 mm, and a groove depth of 0.9 mm, and a groove width of 2.0 mm, A second groove group consisting of grooves arranged in a lattice shape with a groove pitch of 20 mm and a groove depth of 0.9 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. Formed using a router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.3mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:25MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、60μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、10500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 25 MPa) having a thickness of 0.3 mm is bonded onto the applied adhesive, and the roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 60 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 10500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2500(オングストローム/分)で、面内均一性は、6.5%と良好であった。研磨レートの最大と最小の差は、350(オングストローム/分)であったので、安定性の指標は、14%であり、研磨が安定していないという結果が得られた。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2500 (angstrom / min), and the in-plane uniformity was as good as 6.5%. Since the difference between the maximum and minimum polishing rates was 350 (angstrom / min), the stability index was 14%, and the result was that polishing was not stable.
比較例5Comparative Example 5
実施例1において作製された硬質発泡シートの両面を、厚みが1.5mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1mm、溝ピッチ5.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅2.0mm、溝ピッチ55mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 1.5 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1 mm, a groove pitch of 5.0 mm, and a groove depth of 0.9 mm, and a groove width of 2.0 mm, A second groove group consisting of grooves arranged in a lattice shape with a groove pitch of 55 mm and a groove depth of 0.9 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. Formed using a router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.3mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:25MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、60μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、10500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 25 MPa) having a thickness of 0.3 mm is bonded onto the applied adhesive, and the roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 60 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 10500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2500(オングストローム/分)で、面内均一性は、13.0%と不良であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2500 (angstrom / min), and the in-plane uniformity was poor at 13.0%.
比較例6Comparative Example 6
実施例1において作製された硬質発泡シートの両面を、厚みが1.5mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1mm、溝ピッチ5.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅1.4mm、溝ピッチ25mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 1.5 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1 mm, a groove pitch of 5.0 mm, and a groove depth of 0.9 mm, and a groove width of 1.4 mm, A second groove group consisting of grooves arranged in a lattice shape with a groove pitch of 25 mm and a groove depth of 0.9 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. Formed using a router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.3mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:25MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、60μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、10500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 25 MPa) having a thickness of 0.3 mm is bonded onto the applied adhesive, and the roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 60 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 10500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2500(オングストローム/分)で、面内均一性は、7.5%と良好であった。研磨レートの最大と最小の差は、100(オングストローム/分)であったので、安定性の指標は、3.7%と良好であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2500 (angstrom / min), and the in-plane uniformity was as good as 7.5%. The difference between the maximum and the minimum polishing rate was 100 (angstrom / min), so the stability index was good at 3.7%.
絶縁膜として、テトラエトキシシランを、CVDで、厚さが3μmになるように形成して得られた前記平坦化特性用ウェハーを、上記研磨条件で4分研磨し、段差を測定した。測定された段差は、1100オングストロームと良好であった。同じ仕様の研磨パッドを他に9枚作成して、酸化膜付きウェハー300枚の連続研磨テストを行い、10枚の研磨特性を算出した。研磨特性は、2790(オングストローム/分)であった。最大の研磨レートと最小の研磨レートの差は、350(オングストローム/分)であり、パッド間のバラツキは、12.5%で、バラツキが多いという結果が得られた。
The wafer for flattening characteristics obtained by forming tetraethoxysilane as an insulating film by CVD so as to have a thickness of 3 μm was polished for 4 minutes under the above polishing conditions, and the level difference was measured. The measured step was as good as 1100 angstroms. Nine other polishing pads having the same specifications were prepared, and 300 wafers with oxide films were subjected to a continuous polishing test, and the polishing characteristics of 10 sheets were calculated. The polishing characteristic was 2790 (angstrom / min). The difference between the maximum polishing rate and the minimum polishing rate was 350 (angstrom / min), and the variation between the pads was 12.5%, indicating that the variation was large.
比較例7Comparative Example 7
実施例1において作製された硬質発泡シートの両面を、厚みが1.5mmになるまで、研削加工して、原研磨層を作製した。得られた原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1mm、溝ピッチ5.0mm、溝深さ0.9mmの格子状に配列された溝からなる第1の溝群と、溝幅3.2mm、溝ピッチ25mm、溝深さ0.9mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
The both sides of the rigid foam sheet produced in Example 1 were ground until the thickness became 1.5 mm to produce an original polishing layer. A circular polishing layer having a diameter of 508 mm was cut out from the obtained original polishing layer. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1 mm, a groove pitch of 5.0 mm, and a groove depth of 0.9 mm, a groove width of 3.2 mm, A second groove group consisting of grooves arranged in a lattice shape with a groove pitch of 25 mm and a groove depth of 0.9 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. Formed using a router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.3mmの熱可塑性ウレタンゴムシート(引っ張り弾性率:25MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、60μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、10500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic urethane rubber sheet (tensile elastic modulus: 25 MPa) having a thickness of 0.3 mm is bonded onto the applied adhesive, and the roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 60 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 10500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2600(オングストローム/分)で、面内均一性は、7.5%と良好であった。研磨レートの最大と最小の差は、400(オングストローム/分)であったので、安定性の指標は、15.3%であり、不良であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2600 (angstrom / min), and the in-plane uniformity was as good as 7.5%. Since the difference between the maximum and the minimum polishing rate was 400 (angstrom / min), the stability index was 15.3%, which was poor.
比較例8Comparative Example 8
実施例1において作製した原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.2mm、溝ピッチ12.5mm、溝深さ1.5mmの格子状に配列された溝からなる第1の溝群と、溝幅3mm、溝ピッチ37.5mm、溝深さ1.5mmの格子状に配列された溝からなる第2の溝を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the original polishing layer produced in Example 1. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1.2 mm, a groove pitch of 12.5 mm, and a groove depth of 1.5 mm, and a groove width of 3 mm, In the state where the grooves of the first groove group and the second groove group are parallel to each other, the second groove formed of grooves arranged in a lattice shape with a groove pitch of 37.5 mm and a groove depth of 1.5 mm. It was formed using an NC router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み1.7mmの熱可塑性ポリウレタンウレタンシート(引っ張り弾性率:25MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、70μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、9500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermoplastic polyurethane urethane sheet (tensile elastic modulus: 25 MPa) having a thickness of 1.7 mm is laminated on the applied adhesive, and a roll press linear pressure is applied. Both were quickly pressure-bonded at 1.5 kg / cm to prepare a polishing pad. The thickness of the adhesive after solidification was 70 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 9500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)に記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2570(オングストローム/分)で、面内均一性は、13.0%と不良であった。
The polishing pad produced here was affixed to a polishing machine, and a continuous polishing test of 300 wafers with oxide films was performed under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2570 (angstrom / min), and the in-plane uniformity was poor at 13.0%.
比較例9Comparative Example 9
実施例1において作製した原研磨層から直径508mmの円形の研磨層を切り出した。得られた円形の研磨層の表面に、溝幅1.2mm、溝ピッチ12.5mm、溝深さ1.5mmの格子状に配列された溝からなる第1の溝群と、溝幅3mm、溝ピッチ37.5mm、溝深さ1.5mmの格子状に配列された溝からなる第2の溝群を、第1の溝群と第2の溝群の各溝が互いに平行になる状態で、NCルーターを用いて形成した。各溝の横断面形状は、ほぼ長方形であった。
A circular polishing layer having a diameter of 508 mm was cut out from the original polishing layer produced in Example 1. On the surface of the obtained circular polishing layer, a first groove group consisting of grooves arranged in a lattice shape having a groove width of 1.2 mm, a groove pitch of 12.5 mm, and a groove depth of 1.5 mm, and a groove width of 3 mm, A second groove group consisting of grooves arranged in a lattice shape with a groove pitch of 37.5 mm and a groove depth of 1.5 mm is arranged in a state where the grooves of the first groove group and the second groove group are parallel to each other. And formed using an NC router. The cross-sectional shape of each groove was almost rectangular.
ウレタンが主成分の反応性ホットメルト接着剤として “ハイボン(登録商標)YR713-1W”(日立化成ポリマー(株)製)を、ロール温度120℃に加熱されたロールコーター上で溶融し、ロールコーター上に研磨層を接触させ、研磨層に接着剤を塗布した。接着剤を塗布してから1分以内に、塗布した接着剤の上に、厚み0.5mmの熱硬化性硬質ポリウレタンウレタンシート(引っ張り弾性率:53MPa)からなるクッション層を貼り合わせて、ロールプレス線圧1.5kg/cmで、速やかに双方を圧着させ、研磨パッドを作製した。固化後の接着剤の厚さは、70μmであった。作製された研磨パッドにおける研磨層とクッション層との間の剪断接着力は、8500gf/(20×20mm2)であった。更に、クッション層の下面に、両面粘着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用し線圧1kg/cmで貼り合わせた。
“Hybon (registered trademark) YR713-1W” (manufactured by Hitachi Chemical Co., Ltd.) as a reactive hot melt adhesive mainly composed of urethane is melted on a roll coater heated to a roll temperature of 120 ° C. The polishing layer was brought into contact with the top, and an adhesive was applied to the polishing layer. Within 1 minute after applying the adhesive, a cushion layer made of a thermosetting rigid polyurethane urethane sheet (tensile elastic modulus: 53 MPa) having a thickness of 0.5 mm is bonded onto the applied adhesive, and then a roll press. Both were quickly pressure-bonded at a linear pressure of 1.5 kg / cm to produce a polishing pad. The thickness of the adhesive after solidification was 70 μm. The shear adhesive force between the polishing layer and the cushion layer in the prepared polishing pad was 8500 gf / (20 × 20 mm 2 ). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the lower surface of the cushion layer at a linear pressure of 1 kg / cm using a laminator.
ここに作製された研磨パッドを、研磨機に貼り付けて、前記研磨評価方法(I)記載の研磨条件で、酸化膜付きウェハー300枚の連続研磨テストを行った。50枚毎の研磨レートの平均は、2500(オングストローム/分)で、面内均一性は、7.5%と良好であった。研磨レートの最大と最小の差は、400(オングストローム/分)であったので、安定性の指標は、16%であり、不良であった。
The polishing pad prepared here was attached to a polishing machine, and a continuous polishing test was performed on 300 wafers with oxide films under the polishing conditions described in the polishing evaluation method (I). The average polishing rate for every 50 sheets was 2500 (angstrom / min), and the in-plane uniformity was as good as 7.5%. Since the difference between the maximum and the minimum polishing rate was 400 (angstrom / min), the stability index was 16%, which was poor.
以上に説明した各実施例および各比較例に登場する代表的な数値を、互いに比較対比し易くするために、これらの数値を、表1、表2および表3に示す。
In order to make it easy to compare and compare the representative numerical values appearing in the respective examples and comparative examples described above, these numerical values are shown in Table 1, Table 2, and Table 3.