JP2013018056A - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
JP2013018056A
JP2013018056A JP2011150599A JP2011150599A JP2013018056A JP 2013018056 A JP2013018056 A JP 2013018056A JP 2011150599 A JP2011150599 A JP 2011150599A JP 2011150599 A JP2011150599 A JP 2011150599A JP 2013018056 A JP2013018056 A JP 2013018056A
Authority
JP
Japan
Prior art keywords
polishing
polishing pad
polished
hardness
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011150599A
Other languages
Japanese (ja)
Inventor
Tsutomu Kobayashi
勉 小林
Ryoji Okuda
良治 奥田
Seiji Fukuda
誠司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011150599A priority Critical patent/JP2013018056A/en
Publication of JP2013018056A publication Critical patent/JP2013018056A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polishing pad by which a yield of a product is improved by reducing occurrence of a scratch and defect on a surface of a material to be polished by suppressing a polishing waste from attaching on a surface of the polishing pad, and high flatness and an appropriate polishing speed can be achieved in view of a background of a conventional technology.SOLUTION: The polishing pad is characterized by that a zeta potential of a polishing surface opposite to the material to be polished has a value as: -100 mV≤the zeta potential value<-55 mV.

Description

本発明は、半導体、誘電/金属複合体及び集積回路等において平坦面を形成するのに使用される研磨パッドに関するものである。   The present invention relates to a polishing pad used to form a flat surface in semiconductors, dielectric / metal composites, integrated circuits, and the like.

半導体デバイスが高密度化するにつれ、多層配線と、これに伴う層間絶縁膜形成や、プラグ、ダマシンなどの電極形成等の技術が重要度を増している。これに伴い、これら層間絶縁膜や電極の金属膜の平坦化プロセスの重要度は増しており、この平坦化プロセスのための効率的な技術として、CMP(Chemical Mechanical Polishing)と呼ばれる研磨技術が普及している。   As the density of semiconductor devices increases, the importance of multilayer wiring and the accompanying interlayer insulation film formation, electrode formation of plugs, damascene, and the like is increasing. Along with this, the importance of the flattening process of these interlayer insulating films and electrode metal films has increased, and a polishing technique called CMP (Chemical Mechanical Polishing) has become widespread as an efficient technique for this flattening process. doing.

本CMPと呼ばれる研磨技術は、研磨パッドが貼り付けられた定盤と半導体基板等の被研磨対象物を保持する研磨ヘッドとが、研磨パッドの研磨面と被研磨対象物の被研磨面とが対向するように配置された研磨装置において、被研磨対象物を研磨パッドに接触させ、研磨液であるスラリーを供給しながら両者を相対的に移動させることにより実施されている。   In this polishing technique called CMP, a surface plate to which a polishing pad is attached and a polishing head for holding an object to be polished, such as a semiconductor substrate, have a polishing surface of the polishing pad and a surface to be polished of the object to be polished. In a polishing apparatus arranged to face each other, an object to be polished is brought into contact with a polishing pad, and both are relatively moved while supplying slurry as a polishing liquid.

CMPに要求される主な特性として、被研磨物表面の高い平坦性、生産の効率を上げるために適度な研磨速度、被研磨物表面に発生する研磨傷や異物の付着等の欠陥が少ないことがあげられる。被研磨物を高い平坦性かつ適度な研磨速度で研磨するためには、研磨パッドと被研磨物の間にスラリーが均一に行き渡る必要がある。   The main characteristics required for CMP are high flatness of the surface of the object to be polished, moderate polishing speed to increase the production efficiency, and few defects such as polishing scratches and adhesion of foreign substances on the surface of the object to be polished. Can be given. In order to polish an object to be polished with high flatness and an appropriate polishing rate, it is necessary that the slurry be uniformly distributed between the polishing pad and the object to be polished.

これを達成するための手段として、特許文献1に研磨パッド表面とスラリーとの馴染みが良くなるように、研磨パッド研磨面のゼータ電位を−50mV以上0mV未満とする技術が提案されているが、このような研磨パッドではスラリーに含まれる砥粒と研磨パッドの表面の馴染みが良くなる一方で、研磨中に発生する研磨屑と研磨パッド表面の馴染みも良くなり、研磨パッド表面には研磨屑が堆積しやすくなって、この結果、被研磨物表面にスクラッチと呼ばれる研磨傷やディフェクトと呼ばれる異物の付着が発生することがあり、これら欠陥が配線を切断したりショートさせることにより製品の歩留まりが低下するという問題があった。   As a means for achieving this, Patent Document 1 proposes a technique for setting the zeta potential of the polishing pad polishing surface to -50 mV or more and less than 0 mV so that the familiarity between the polishing pad surface and the slurry is improved. Such a polishing pad improves the familiarity between the abrasive grains contained in the slurry and the surface of the polishing pad, but also improves the familiarity between the polishing debris generated during polishing and the surface of the polishing pad. As a result, the surface of the object to be polished may be subject to polishing scratches called scratches and foreign substances called defects, which may cause the product yield to drop by cutting or shorting the wiring. There was a problem to do.

特許第4326587号公報Japanese Patent No. 4326587

本発明は、かかる従来技術の背景に鑑み、研磨パッド表面への研磨屑付着を抑制することで被研磨物表面のスクラッチやディフェクトの発生を低減させて、製品の歩留まりを向上させ、かつ、高い平坦性と適度な研磨速度が得られる研磨パッドを提供することにある。   In view of the background of such a conventional technique, the present invention reduces the generation of scratches and defects on the surface of an object to be polished by suppressing the adhesion of polishing debris to the surface of the polishing pad, thereby improving the yield of the product and high. An object of the present invention is to provide a polishing pad capable of obtaining flatness and an appropriate polishing rate.

本発明は、被研磨物と相対する研磨面のゼータ電位が−55mvより小さく−100mv以上であることを特徴とする研磨パッドである。   The present invention is a polishing pad characterized in that the zeta potential of the polishing surface facing the object to be polished is smaller than −55 mv and not smaller than −100 mv.

本発明により、ガラス、半導体、誘電/金属複合体および集積回路等の被研磨物を、CMPと呼ばれる研磨をする際に、研磨パッド表面への研磨屑堆積を抑制すること、被研磨物表面のスクラッチやディフェクトを低減させ、かつ、高い平坦性と適度な研磨速度を発現する研磨パッドを得ることが出来る。   According to the present invention, when polishing an object to be polished such as glass, a semiconductor, a dielectric / metal composite and an integrated circuit, which is called CMP, it suppresses the accumulation of polishing debris on the surface of the polishing pad, It is possible to obtain a polishing pad that reduces scratches and defects and exhibits high flatness and an appropriate polishing rate.

本発明は、被研磨物表面のスクラッチやディフェクトを低減させ、かつ、高い平坦性と適度な研磨速度を有する研磨パッドについて鋭意検討した結果、被研磨物と相対する研磨面のゼータ電位が−55mvより小さく−100mv以上であることで、課題を解決することが出来ることを究明したものである。   According to the present invention, as a result of diligent research on a polishing pad that has reduced scratches and defects on the surface of the object to be polished and has high flatness and an appropriate polishing speed, the zeta potential of the polishing surface facing the object to be polished is -55 mV. It has been clarified that the problem can be solved by being smaller than −100 mv.

本発明において、研磨パッド表面のゼータ電位は−55mVより小さく、−100mV以上であることが重要である。   In the present invention, it is important that the zeta potential on the surface of the polishing pad is smaller than −55 mV and not lower than −100 mV.

研磨パッド表面のゼータ電位が−55mVより大きい場合、スラリー中の砥粒との馴染みが良くなり、研磨速度が上昇する一方で、研磨屑との馴染みが良くなり、研磨屑や研磨屑とスラリーの砥粒が絡み合った物体が研磨層表面に堆積しやすくなる場合がある。こうして研磨パッド表面に堆積した研磨屑等により被研磨物の表面にスクラッチと呼ばれる研磨傷や、ディフェクトと呼ばれる異物の付着が発生し、半導体回路の配線を切断したり、ショートさせたりして製品の歩留まりを低下させる場合があるので好ましくない。   When the zeta potential on the surface of the polishing pad is greater than −55 mV, the familiarity with the abrasive grains in the slurry is improved and the polishing rate is increased, while the familiarity with the polishing debris is improved. An object in which abrasive grains are entangled may be easily deposited on the surface of the polishing layer. As a result of polishing debris accumulated on the polishing pad surface, polishing scratches called scratches and foreign substances called defects occur on the surface of the object to be polished, and the wiring of the semiconductor circuit is cut or short-circuited. This is not preferable because the yield may be reduced.

研磨パッド表面のゼータ電位が−100mVより小さいと、研磨パッド表面に研磨屑等の堆積を抑制することが出来るが、スラリーに含まれる砥粒との馴染みも悪くなる場合があり、被研磨物面内の平坦性が悪化したり、研磨速度が低下する場合があるので好ましくない。好ましい研磨パッド表面のゼータ電位としては、−65mV以下であることが、また−90mV以上であることが、研磨パッド表面に研磨屑等の堆積を防ぐことができる一方で、適当な研磨レートを得ることが出来るので好ましい。   If the zeta potential on the polishing pad surface is less than −100 mV, accumulation of polishing debris and the like can be suppressed on the polishing pad surface, but the familiarity with the abrasive grains contained in the slurry may deteriorate, and the surface of the object to be polished This is not preferable because the flatness of the inside may deteriorate and the polishing rate may decrease. The preferred zeta potential on the polishing pad surface is −65 mV or less, and −90 mV or more can prevent deposition of polishing debris on the polishing pad surface, while obtaining an appropriate polishing rate. This is preferable.

なお、本発明の研磨パッドのゼータ電位は、大塚電子(株)製電気泳動光散乱光度計ELS−800を使用し、次の条件で測定した値を言う。   In addition, the zeta potential of the polishing pad of the present invention refers to a value measured under the following conditions using an electrophoretic light scattering photometer ELS-800 manufactured by Otsuka Electronics Co., Ltd.

光源:He−Neレーザー
測定モード:ヘテロダイン法
セル:平板試料用セル
測定角度:20°
電圧:80V
温度:25±2℃
測定室雰囲気:23±2℃、50±5%RH
測定液:0.001M NaCl水溶液
研磨パッド表面のゼータ電位が低いほど研磨屑等の付着を抑制でき、結果として被研磨物表面のスクラッチやディフェクトの発生を抑えることが出来る。その一方で、スラリーの砥粒と研磨パッド表面の馴染みも悪くなり、研磨速度は低下する傾向がある。
Light source: He-Ne laser Measurement mode: Heterodyne method Cell: Cell for flat sample Measurement angle: 20 °
Voltage: 80V
Temperature: 25 ± 2 ° C
Measurement room atmosphere: 23 ± 2 ° C, 50 ± 5% RH
Measurement solution: 0.001 M NaCl aqueous solution The lower the zeta potential on the polishing pad surface, the more the adhesion of polishing debris and the like, and as a result, the generation of scratches and defects on the surface of the object to be polished can be suppressed. On the other hand, the familiarity between the abrasive grains of the slurry and the surface of the polishing pad also deteriorates, and the polishing rate tends to decrease.

研磨パッドの研磨層が発泡体構造であると、研磨パッド表面の開口した気泡がスラリーを保持することが出来、研磨レートの向上に寄与することが出来る。発泡体は独立気泡であることが、スラリーの流出を防ぎ、スラリーを保持することが出来るので好ましい。   When the polishing layer of the polishing pad has a foam structure, the open bubbles on the surface of the polishing pad can hold the slurry and contribute to the improvement of the polishing rate. It is preferable that the foam is a closed cell because the slurry can be prevented from flowing out and retained.

平均気泡径は20μm以上150μmであることが、スラリーの保持性と被研磨物の平坦性、研磨速度の観点から好ましい。平均気泡径が20μm未満の場合、スラリーの保持能力が低下し、適度な研磨レートが得られないので好ましくない。平均気泡径が150μmを越えると、被研磨物の平坦性が悪化するので好ましくない。より好ましくは、30μm以上100μm以下、更に好ましくは40μm以上80μm以下である。   The average cell diameter is preferably 20 μm or more and 150 μm from the viewpoints of slurry retention, flatness of the object to be polished, and polishing rate. When the average cell diameter is less than 20 μm, the holding ability of the slurry is lowered, and an appropriate polishing rate cannot be obtained. When the average bubble diameter exceeds 150 μm, the flatness of the object to be polished is deteriorated, which is not preferable. More preferably, they are 30 micrometers or more and 100 micrometers or less, More preferably, they are 40 micrometers or more and 80 micrometers or less.

なお、平均気泡径は、サンプル断面をキーエンス製VK−8500の超深度顕微鏡にて倍率400倍で観察したときに一視野内に観察される気泡のうち、視野端部に欠損した円状に観察される気泡を除く円状気泡を画像処理装置にて断面面積から円相当径を測定し、数平均値を算出することにより求められる。   The average bubble diameter was observed in a circular shape that was missing at the edge of the field among the bubbles observed in one field of view when the sample cross section was observed with a VK-8500 ultra-deep microscope manufactured by Keyence at a magnification of 400 times. The circular bubbles excluding the generated bubbles are obtained by measuring the equivalent circle diameter from the cross-sectional area with an image processing apparatus and calculating the number average value.

研磨層の硬度は、アスカーD硬度計にて、45〜65度であることが好ましい。アスカーD硬度が45度未満の場合には、被研磨物のプラナリティが低下し、また、65度より大きい場合は、プラナリティは良好であるが、被研磨物のユニフォーミティ(均一性)が低下する傾向にある。   The hardness of the polishing layer is preferably 45 to 65 degrees with an Asker D hardness meter. When the Asker D hardness is less than 45 degrees, the planarity of the object to be polished is reduced. When the Asker D hardness is more than 65 degrees, the planarity is good, but the uniformity of the object to be polished is decreased. There is a tendency.

特に限定されないが、かかる構造体を形成する材料としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、ポリウレア、ポリアミド、ポリ塩化ビニル、ポリアセタール、ポリカーボネート、ポリメチルメタクリレート、ポリテトラフルオロエチレン、エポキシ樹脂、ABS樹脂、AS樹脂、フェノール樹脂、メラミン樹脂、“ネオプレン(登録商標)”ゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、シリコンゴム、フッ素ゴムおよびこれらを主成分とした樹脂等が挙げられる。これらを2種以上用いてもよい。このような樹脂においても、独立気泡径が比較的容易にコントロールできる点でポリウレタンを主成分とする素材がより好ましい。   Although not particularly limited, materials for forming such a structure include polyethylene, polypropylene, polyester, polyurethane, polyurea, polyamide, polyvinyl chloride, polyacetal, polycarbonate, polymethyl methacrylate, polytetrafluoroethylene, epoxy resin, ABS resin, AS resin, phenol resin, melamine resin, “neoprene (registered trademark)” rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, silicon rubber, fluororubber, and resins mainly composed of these. Two or more of these may be used. Even in such a resin, a material mainly composed of polyurethane is more preferable in that the closed cell diameter can be controlled relatively easily.

ポリウレタンとは、ポリイソシアネートの重付加反応または重合反応により合成される高分子である。ポリイソシアネートの対称として用いられる化合物は、含活性水素化合物、すなわち、二つ以上のポリヒドロキシ基、あるいはアミノ基含有化合物である。ポリイソシアネートとして、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなど挙げることができるがこれに限定されるものではない。これらを2種以上用いてもよい。   Polyurethane is a polymer synthesized by polyaddition reaction or polymerization reaction of polyisocyanate. The compound used as the symmetry of the polyisocyanate is an active hydrogen-containing compound, that is, a compound containing two or more polyhydroxy groups or amino groups. Examples of the polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate, but are not limited thereto. Two or more of these may be used.

ポリヒドロキシ基含有化合物としてはポリオールが代表的であり、ポリエーテルポリオール、ポリテトラメチレンエーテルグリコール、エポキシ樹脂変性ポリオール、ポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、シリコーンポリオール等が挙げられる。これらを2種以上用いてもよい。硬度、気泡径および発泡倍率によって、ポリイソシアネートとポリオール、および触媒、発泡剤、整泡剤の組み合わせや最適量を決めることが好ましい。   The polyhydroxy group-containing compound is typically a polyol, and examples thereof include polyether polyol, polytetramethylene ether glycol, epoxy resin-modified polyol, polyester polyol, acrylic polyol, polybutadiene polyol, and silicone polyol. Two or more of these may be used. It is preferable to determine the combination and optimum amount of polyisocyanate and polyol, catalyst, foaming agent, and foam stabilizer depending on the hardness, the cell diameter and the expansion ratio.

これらのポリウレタン中への独立気泡の形成方法としては、ポリウレタン製造時における樹脂中への各種発泡剤の配合による化学発泡法が一般的であるが、機械的な撹拌により樹脂を発泡させたのち硬化させる方法も好ましく使用することができる。   As a method of forming closed cells in these polyurethanes, the chemical foaming method is generally used by blending various foaming agents into the resin during polyurethane production, but it is cured after foaming the resin by mechanical stirring. The method of making it can also be used preferably.

本発明における研磨パッドの一実施態様として好ましいものは、ビニル化合物の重合体およびポリウレタンを含有し、独立気泡を有するパッドである。ビニル化合物からの重合体だけでは靭性と硬度を高めることはできるが、独立気泡を有する均質な研磨パッドを得ることが困難であり、またポリウレタンは、硬度を高くすると脆くなる。ポリウレタン中にビニル化合物を含浸させることにより、独立気泡を含み、靭性と硬度の高い研磨パッドとすることができる。   A preferred embodiment of the polishing pad in the present invention is a pad containing a polymer of a vinyl compound and polyurethane and having closed cells. Toughness and hardness can be increased only with a polymer from a vinyl compound, but it is difficult to obtain a homogeneous polishing pad having closed cells, and polyurethane becomes brittle when the hardness is increased. By impregnating a polyurethane with a vinyl compound, a polishing pad containing closed cells and having high toughness and hardness can be obtained.

ビニル化合物は、重合性の炭素−炭素二重結合を有する化合物である。具体的にはメチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n−ブチルアクリレート、n−ブチルメタクリレート、2−エチルヘキシルメタクリレート、イソデシルメタクリレート、n−ラウリルメタクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシブチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、グリシジルメタクリレート、エチレングリコールジメタクリレート、アクリル酸、メタクリル酸、フマル酸、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、フェニルマレイミド、シクロヘキシルマレイミド、イソプロピルマレイミド、アクリロニトリル、アクリルアミド、塩化ビニル、塩化ビニリデン、スチレン、α−メチルスチレン、ジビニルベンゼン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート等が挙げられる。これらを2種以上用いてもよい。   A vinyl compound is a compound having a polymerizable carbon-carbon double bond. Specifically, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxybutyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, acrylic acid, methacrylic acid, fumaric acid, dimethyl fumarate, diethyl fumarate, dipropyl fumarate, maleic acid, maleic Dimethyl acid, diethyl maleate, dipropyl maleate, phenylmaleimide, Hexyl maleimide, isopropyl maleimide, acrylonitrile, acrylamide, vinyl chloride, vinylidene chloride, styrene, alpha-methyl styrene, divinylbenzene, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and the like. Two or more of these may be used.

上述したビニル化合物の中で、CH=CRCOOR(R:メチル基またはエチル基、R:メチル基、エチル基、プロピル基またはブチル基)が好ましい。中でもメチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレートは、ポリウレタンへの独立気泡の形成が容易な点、モノマーの含浸性が良好な点、重合硬化が容易な点、重合硬化されたビニル化合物の重合体とポリウレタンを含有している発泡構造体の硬度が高く平坦化特性が良好な点で好ましい。 Among the vinyl compounds described above, CH 2 = CR 1 COOR 2 (R 1 : methyl group or ethyl group, R 2 : methyl group, ethyl group, propyl group or butyl group) is preferable. Among them, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and isobutyl methacrylate are easy to form closed cells in polyurethane, good in impregnation of monomers, easy to polymerize, vinyl compound that has been polymerized and cured The foamed structure containing the polymer and polyurethane is preferred because of its high hardness and good flattening characteristics.

これらのビニル化合物の重合体を得るために好ましく用いられる重合開始剤としては、アゾビスイソブチロニトリル、アゾビス(2,4−ジメチルバレロニトリル)、アゾビスシクロヘキサンカルボニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、イソプロピルパーオキシジカーボネート等のラジカル開始剤を挙げることができる。これらを2種以上用いてもよい。また、酸化還元系の重合開始剤、例えばパーオキサイドとアミン類の組合せを使用することもできる。   Polymerization initiators preferably used for obtaining polymers of these vinyl compounds include azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), azobiscyclohexanecarbonitrile, benzoyl peroxide, lauroyl peroxide. Examples thereof include radical initiators such as oxide and isopropyl peroxydicarbonate. Two or more of these may be used. A redox polymerization initiator, for example, a combination of a peroxide and an amine can also be used.

ビニル化合物のポリウレタン中への含浸方法としては、ビニル化合物が入った容器中にポリウレタンを浸漬する方法が挙げられる。なお、その際、含浸速度を速める目的で、加熱、加圧、減圧、撹拌、振盪、超音波振動等の処理を施すことも好ましい。   Examples of the method for impregnating the polyurethane with the vinyl compound include a method of immersing the polyurethane in a container containing the vinyl compound. In this case, it is also preferable to perform treatments such as heating, pressurization, decompression, stirring, shaking, and ultrasonic vibration for the purpose of increasing the impregnation rate.

ビニル化合物のポリウレタン中への含浸量は、使用するビニル化合物およびポリウレタンの種類や、製造される研磨パッドの特性により定められるべきものであり、一概にはいえないが、例えば、重合硬化した発泡構造体中のビニル化合物から得られる重合体とポリウレタンの含有比率が重量比で30/70〜55/45であることが好ましい。この範囲であれば、研磨パッドの硬度を充分高くすることができ、かつ、研磨パッド表面のゼータ電位を−55mVより小さく−100mV以上にする事が出来る。   The amount of vinyl compound impregnated in polyurethane should be determined by the type of vinyl compound and polyurethane used and the characteristics of the polishing pad to be produced. The content ratio of the polymer obtained from the vinyl compound in the body and the polyurethane is preferably 30/70 to 55/45 by weight ratio. Within this range, the hardness of the polishing pad can be made sufficiently high, and the zeta potential on the surface of the polishing pad can be made smaller than −55 mV and made −100 mV or higher.

なお、ポリウレタン中の重合硬化したビニル化合物から得られる重合体およびポリウレタンの含有率は、熱分解ガスクロマトグラフィ/質量分析手法により測定することができる。本手法で使用できる装置としては、熱分解装置としてダブルショットパイロライザー“PY−2010D”(フロンティア・ラボ社製)を、ガスクロマトグラフ・質量分析装置として、“TRIO−1”(VG社製)を挙げることができる。   The content of the polymer obtained from the polymerized and cured vinyl compound in polyurethane and the content of polyurethane can be measured by a pyrolysis gas chromatography / mass spectrometry method. As an apparatus that can be used in this method, a double shot pyrolyzer “PY-2010D” (manufactured by Frontier Laboratories) is used as a thermal decomposition apparatus, and “TRIO-1” (manufactured by VG) is used as a gas chromatograph / mass spectrometer. Can be mentioned.

本発明において、半導体基板の局所的凹凸の平坦性の観点から、ビニル化合物から得られる重合体の相とポリウレタンの相とが分離されずに含有されていることが好ましい。定量的に表現すると、研磨パッドをスポットの大きさが50μmの顕微赤外分光装置で観察した赤外スペクトルがビニル化合物から重合される重合体の赤外吸収ピークとポリウレタンの赤外吸収ピークを有しており、色々な箇所の赤外スペクトルがほぼ同一であることである。ここで使用される顕微赤外分光装置として、SPECTRA−TEC社製のIRμsを挙げることができる。   In the present invention, from the viewpoint of flatness of local irregularities of the semiconductor substrate, it is preferable that the polymer phase obtained from the vinyl compound and the polyurethane phase are contained without being separated. Expressed quantitatively, the infrared spectrum of the polishing pad observed with a micro-infrared spectrometer having a spot size of 50 μm has an infrared absorption peak of a polymer polymerized from a vinyl compound and an infrared absorption peak of polyurethane. In other words, the infrared spectra at various points are almost the same. As a micro-infrared spectrometer used here, IRμs manufactured by SPECTRA-TEC can be mentioned.

研磨パッドは、特性改良を目的として、研磨剤、帯電防止剤、潤滑剤、安定剤、染料等の各種添加剤を含有してもよい。   The polishing pad may contain various additives such as an abrasive, an antistatic agent, a lubricant, a stabilizer, and a dye for the purpose of improving characteristics.

本発明において、研磨層の密度は、局所的な平坦性不良やグローバル段差を低減する観点から、0.3g/cm以上が好ましく、0.6g/cm以上がより好ましく、0.65g/cm以上がより好ましい。一方、スクラッチを低減する観点から、1.1g/cm以下が好ましく、0.9g/cm以下がより好ましく、0.85g/cm以下がより好ましい。なお、本発明における研磨層の密度は、ハーバード型ピクノメーター(JIS R−3503基準)を用い、水を媒体に測定した値である。 In the present invention, the density of the polishing layer is preferably 0.3 g / cm 3 or more, more preferably 0.6 g / cm 3 or more, and 0.65 g / cm 3 from the viewpoint of reducing local flatness defects and global steps. More preferably, it is cm 3 or more. On the other hand, from the viewpoint of reducing scratches, 1.1 g / cm 3 or less is preferable, 0.9 g / cm 3 or less is more preferable, and 0.85 g / cm 3 or less is more preferable. The density of the polishing layer in the present invention is a value measured using water as a medium using a Harvard pycnometer (JIS R-3503 standard).

本発明において研磨される被研磨材としては、例えば半導体ウェハーの上に形成された絶縁層または金属配線の表面が挙げられる。絶縁層としては、金属配線の層間絶縁膜や金属配線の下層絶縁膜や素子分離に使用されるシャロートレンチアイソレーションを挙げることができる。金属配線としては、アルミ、タングステン、銅等を挙げることができ、構造的にダマシン、デュアルダマシン、プラグなどがある。銅を金属配線とした場合には、窒化珪素等のバリアメタルも研磨対象となる。絶縁膜は、現在酸化シリコンが主流であるが、低誘電率絶縁膜も用いられる。半導体ウェハー以外に磁気ヘッド、ハードディスク、サファイヤ等の研磨に用いることもできる。   Examples of the material to be polished in the present invention include the surface of an insulating layer or metal wiring formed on a semiconductor wafer. Examples of the insulating layer include an interlayer insulating film of metal wiring, a lower insulating film of metal wiring, and shallow trench isolation used for element isolation. Examples of the metal wiring include aluminum, tungsten, and copper, and structurally include damascene, dual damascene, and plug. When copper is used as the metal wiring, a barrier metal such as silicon nitride is also subject to polishing. As the insulating film, silicon oxide is currently mainstream, but a low dielectric constant insulating film is also used. In addition to semiconductor wafers, it can also be used for polishing magnetic heads, hard disks, sapphire, and the like.

本発明の研磨方法は、ガラス、半導体、誘電/金属複合体および集積回路等に平坦面を形成するために好適に使用される。   The polishing method of the present invention is suitably used for forming a flat surface on glass, semiconductors, dielectric / metal composites, integrated circuits and the like.

研磨パッドの研磨層は、厚みムラ解消の他、表面の粗さやゼータ電位を調整する目的で研削することが出来る。目の粗いサンドペーパーで調整した面はパッド表面のゼータ電位が大きくなり、目の細かいサンドペーパーで調整した面はパッド表面のゼータ電位は小さくなる。研削をしていない面ではゼータ電位は更に小さくなる。研磨パッドの厚みムラを解消するために、研磨層の研磨面と反対側の面のみを研削し、研磨面は研削していない面とする事も出来る。   The polishing layer of the polishing pad can be ground for the purpose of adjusting the roughness of the surface and the zeta potential in addition to eliminating the thickness unevenness. The zeta potential on the pad surface increases on the surface adjusted with the coarse sandpaper, and the zeta potential on the pad surface decreases on the surface adjusted with the fine sandpaper. The zeta potential is further reduced on the unground surface. In order to eliminate the thickness unevenness of the polishing pad, only the surface opposite to the polishing surface of the polishing layer may be ground and the polishing surface may be an unground surface.

必要とする研磨パッドの性能に応じて、研削する面、研削に用いるサンドペーパーの番手は適宜選ぶことが出来、研磨面の算術平均表面粗さRaが0μm以上5μm以下であることが、研磨面のゼータ電位を−55mVより小さく−100mV以上にするために好ましい面の粗さである。   Depending on the performance of the required polishing pad, the surface to be ground and the sandpaper count used for grinding can be selected as appropriate, and the arithmetic average surface roughness Ra of the polishing surface is from 0 μm to 5 μm. The surface roughness is preferable in order to make the zeta potential of −100 mV smaller than −55 mV.

なお、本発明の研磨パッドの算術平均表面粗さRaは、(株)東京精密製 HANDYSURF E−35Bを使用し、次の条件で測定した値を言う。   In addition, arithmetic mean surface roughness Ra of the polishing pad of this invention says the value measured on condition of the following using HANDYSURF E-35B by Tokyo Seimitsu Co., Ltd.

カットオフ種別:Gaussian
カットオフ波長:2.50mm
測定長さ:12.5mm
Cut-off type: Gaussian
Cut-off wavelength: 2.50 mm
Measurement length: 12.5mm

以下、実施例によって、さらに本発明の詳細を説明する。しかし、本実施例により本発明が限定して解釈される訳ではない。なお、測定は以下のとおりに行った。   Hereinafter, the details of the present invention will be described with reference to examples. However, the present invention is not construed as being limited by this embodiment. The measurement was performed as follows.

マイクロゴムA硬度:
高分子計器(株)製のマイクロゴム硬度計"MD−1"で測定する。マイクロゴム硬度計"MD−1"の構成は下記のとおりである。
1.1センサ部
(1)荷重方式:片持ばり形板バネ
(2)ばね荷重:0ポイント/2.24gf。100ポイント/33.85gf
(3)ばね荷重誤差:±0.32gf
(4)押針寸法:直径:0.16mm円柱形。 高さ0.5mm
(5)変位検出方式:歪ゲージ式
(6)加圧脚寸法:外径4mm 内径1.5mm
1.2センサ駆動部
(1)駆動方式:ステッピングモータによる上下駆動。エアダンパによる降下速度制御
(2)上下動ストローク:12mm
(3)降下速度:10〜30mm/sec
(4)高さ調整範囲:0〜67mm(試料テーブルとセンサ加圧面の距離)
1.3試料台
(1)試料台寸法:直径 80mm
(2)微動機構:XYテーブルおよびマイクロメータヘッドによる微動。ストローク:X軸、Y軸とも15mm
(3)レベル調整器:レベル調整用本体脚および丸型水準器。
Micro rubber A hardness:
It is measured with a micro rubber hardness meter “MD-1” manufactured by Kobunshi Keiki Co., Ltd. The configuration of the micro rubber hardness tester “MD-1” is as follows.
1.1 Sensor part (1) Load method: cantilever leaf spring (2) Spring load: 0 point / 2.24 gf. 100 points / 33.85 gf
(3) Spring load error: ± 0.32 gf
(4) Needle size: Diameter: 0.16 mm cylindrical shape. 0.5mm height
(5) Displacement detection method: Strain gauge type (6) Pressure leg size: Outer diameter 4 mm Inner diameter 1.5 mm
1.2 Sensor driving unit (1) Driving method: Vertical driving by a stepping motor. Descent speed control by air damper (2) Vertical movement stroke: 12mm
(3) Descent speed: 10-30mm / sec
(4) Height adjustment range: 0 to 67 mm (distance between sample table and sensor pressing surface)
1.3 Sample stage (1) Sample stage size: Diameter 80mm
(2) Fine movement mechanism: Fine movement by an XY table and a micrometer head. Stroke: 15mm for both X and Y axes
(3) Level adjuster: Level adjustment body legs and round level.

気泡径測定:日立製作所(株)製SEM2400走査型電子顕微鏡を使用し、倍率200倍で観察した写真を画像解析装置で解析することにより、写真の視野枠にかかっている気泡を除いた写真中に存在するすべての気泡径を計測し、その平均値を平均気泡径とした。   Bubble diameter measurement: Using a SEM2400 scanning electron microscope manufactured by Hitachi, Ltd. and analyzing the photograph observed at a magnification of 200 times with an image analysis device, in the photograph excluding bubbles on the field frame of the photograph All the bubble diameters present in were measured, and the average value was taken as the average bubble diameter.

欠陥検査:KLA−Tencol(株)製のSP−1を用いて、0.18μm以上の欠陥を測定した。欠陥数が30個以下であれば合格とした。   Defect inspection: A defect of 0.18 μm or more was measured using SP-1 manufactured by KLA-Tencol. If the number of defects was 30 or less, it was considered acceptable.

D硬度測定:
JIS K6253−1997に準拠して行った。作製したポリウレタン樹脂を3cm
×3cm(厚み:任意)の大きさに切り出したものを硬度測定用試料とし、温度23℃±
2℃、湿度50%±5%の環境で24時間静置した。測定時には、試料を重ね合わせ、厚
み6mm以上とした。硬度計(高分子計器社製、アスカーD型硬度計)を用い、硬度を測
定した。
D hardness measurement:
This was performed in accordance with JIS K6253-1997. 3cm of the produced polyurethane resin
X3 cm (thickness: arbitrary) cut out into a sample for hardness measurement, temperature 23 ° C. ±
It was allowed to stand for 24 hours in an environment of 2 ° C. and humidity of 50% ± 5%. At the time of measurement, the samples were overlapped to a thickness of 6 mm or more. The hardness was measured using a hardness meter (manufactured by Kobunshi Keiki Co., Ltd., Asker D type hardness meter).

平均研磨レート:
アプライドマテリアルズ(株)のMirra 3400を用いて、所定の研磨条件で終点検出を行いながら研磨を行った。研磨特性は、8インチウェハーの最外周2mmを除外して、直径方向に測定した。中心から半径90mm以内の面内を5mm毎に37点、中心から半径91mm以上の面内を1mm毎に16点を測定して平均研磨レート(nm/分)を算出した。平均研磨レートが190〜230nm/分であれば合格とした。
Average polishing rate:
Polishing was performed using Mirror 3400 from Applied Materials, Inc. while performing end point detection under predetermined polishing conditions. The polishing characteristics were measured in the diametrical direction excluding the outermost 2 mm of the 8-inch wafer. An average polishing rate (nm / min) was calculated by measuring 37 points within a radius of 90 mm from the center every 5 mm and 16 points within a radius of 91 mm or more from the center every 1 mm. If the average polishing rate was 190 to 230 nm / min, the test was accepted.

実施例1
液温を40℃に保った、ポリエーテルポリオール:”サンニックス(登録商標) FA−909”(三洋化成工業(株)製)100重量部,鎖伸長剤:エチレングリコール8重量部,アミン触媒:”Dabco(登録商標) 33LV”(エアープロダクツジャパン(株)製)1重量部,アミン触媒:”Toyocat(登録商標) ET”(東ソー(株)製)0.1重量部,シリコーン整泡剤:”TEGOSTAB(登録商標) B8462”(Th.Goldschmidt AG社製)0.5重量部,発泡剤:水0.2重量部を混合してなるA液と、液温を40℃に保ったイソシアネート:”サンフォーム(登録商標) NC−703”95重量部からなるB液を、RIM成型機により、吐出圧15MPaで衝突混合した後、60℃に保った金型内に吐出量500g/secで吐出し、10分間放置することで、大きさ700×700mm,厚み10mmの発泡ポリウレタンブロック(マイクロゴムA硬度:47度,密度:0.77g/cm3、平均気泡径:37μm)を作製した。その後、該発泡ポリウレタンブロックをスライサーで厚み3mmにスライスした。
Example 1
Polyether polyol maintained at a liquid temperature of 40 ° C .: “Sanix (registered trademark) FA-909” (manufactured by Sanyo Chemical Industries, Ltd.) 100 parts by weight, chain extender: 8 parts by weight of ethylene glycol, amine catalyst: 1 part by weight of “Dabco (registered trademark) 33LV” (produced by Air Products Japan), amine catalyst: 0.1 part by weight of “Toyocat (registered trademark) ET” (produced by Tosoh Corporation), silicone foam stabilizer: "TEGOSTAB (registered trademark) B8462" (manufactured by Th. Goldschmidt AG) 0.5 part by weight, foaming agent: A liquid obtained by mixing 0.2 part by weight of water, and isocyanate maintaining the liquid temperature at 40 ° C: "Sunform (registered trademark) NC-703" 95 parts by weight of B liquid was collided with a RIM molding machine at a discharge pressure of 15 MPa, and then kept at 60 ° C. A foamed polyurethane block having a size of 700 × 700 mm and a thickness of 10 mm (micro rubber A hardness: 47 degrees, density: 0.77 g / cm 3, average cell diameter) : 37 μm). Thereafter, the foamed polyurethane block was sliced with a slicer to a thickness of 3 mm.

次に該発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.1重量部を添加したメチルメタクリレートに浸漬し、メチルメタクリレート含有率を48重量%としたメタクリレートが含浸した該発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、60℃で10時間、120℃で3時間加熱することにより重合硬化させた。ガラス板間から離型した後、50℃で真空乾燥を行った。このようにして得られた硬質発泡シートを厚み2.5mmとなるようにスライサーでスライスし、スライスした面とは反対側の面を研削加工することにより厚み2.0mmの研磨層を作製した。   Next, the foamed polyurethane sheet was immersed in methyl methacrylate to which 0.1 part by weight of azobisisobutyronitrile was added, and the foamed polyurethane sheet impregnated with methacrylate having a methyl methacrylate content of 48% by weight was treated with vinyl chloride. It was sandwiched between two glass plates via a gasket made and polymerized and cured by heating at 60 ° C. for 10 hours and at 120 ° C. for 3 hours. After releasing from between the glass plates, vacuum drying was performed at 50 ° C. The hard foam sheet thus obtained was sliced with a slicer so as to have a thickness of 2.5 mm, and a surface opposite to the sliced surface was ground to produce a polishing layer having a thickness of 2.0 mm.

得られた研磨層中のメチルメタクリレート含有率は48重量%であった。また研磨層のD硬度は54度、密度は0.80g/cm3、独立気泡の平均気泡径は45μmであった。   The methyl methacrylate content in the obtained polishing layer was 48% by weight. The D hardness of the polishing layer was 54 degrees, the density was 0.80 g / cm 3, and the average cell diameter of closed cells was 45 μm.

次に該研磨層の研削加工した面に両面接着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用して貼り合わせた後、剥離紙を剥がし、それを厚み0.3mmの熱可塑性ウレタンゴムシート(A硬度:84度)からなるクッション層の上にラミネーターを使用して貼り合わせた。さらにクッション層の下に両面接着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用して貼り合わせた。この積層体を508mmの直径の円に切り取り、研磨層表面に幅1mm、ピッチ15mm、深さ0.9mmの溝を形成して、研磨パッドとした。   Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the ground surface of the polishing layer using a laminator, and then the release paper was peeled off. A laminator was used for bonding onto a cushion layer made of a urethane rubber sheet (A hardness: 84 degrees). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded under the cushion layer using a laminator. This laminate was cut into a circle having a diameter of 508 mm, and grooves having a width of 1 mm, a pitch of 15 mm, and a depth of 0.9 mm were formed on the surface of the polishing layer to obtain a polishing pad.

得られた研磨パッドの研磨面の算術平均粗さRaは2.8μm、ゼータ電位は−73.0mVであった。   The arithmetic average roughness Ra of the polishing surface of the obtained polishing pad was 2.8 μm, and the zeta potential was −73.0 mV.

上記方法により得られた研磨パッドを、研磨機(アプライドマテリアルズ製“MIRRA3400”)の定盤に貼り付けた。酸化膜の8インチウェハをリテナーリング圧力=41kPa(約6.0psi)、インナーチューブ圧力=28kPa(約4.0psi)、メンブレン圧力=28kPa(約4.0psi)、プラテン回転数=76rpm、研磨ヘッド回転数=75rpm、スラリー(キャボット社製、SS−25)を150mL/分の流量で流し、Saesol製ドレッサーで荷重17.6N(約4.0lbf)、研磨時間1分、研磨開始から30秒間インサイチュードレッシングをしてウェハ100枚を研磨した。25枚目の酸化膜の平均研磨レートは216.6nm/分であり、100枚目の酸化膜の平均研磨レートは221.5nm/分あった。25枚目の平均研磨レートが100枚目の平均研磨レートの±10%であり、問題無い値であった。   The polishing pad obtained by the above method was attached to a surface plate of a polishing machine (“MIRRA3400” manufactured by Applied Materials). Retainering pressure = 41 kPa (about 6.0 psi), inner tube pressure = 28 kPa (about 4.0 psi), membrane pressure = 28 kPa (about 4.0 psi), platen rotation speed = 76 rpm, polishing head Rotation speed = 75 rpm, slurry (Cabot, SS-25) is flowed at a flow rate of 150 mL / min, load is 17.6 N (about 4.0 lbf) with a Saesol dresser, polishing time is 1 minute, 30 seconds from the start of polishing. 100 wafers were polished by chewing. The average polishing rate of the 25th oxide film was 216.6 nm / min, and the average polishing rate of the 100th oxide film was 221.5 nm / min. The average polishing rate of the 25th sheet was ± 10% of the average polishing rate of the 100th sheet, and there was no problem.

研磨した酸化膜の8インチウェハをKLA−Tencol社製欠陥検査装置“SP−1”で0.18μm以上の欠陥数を測定したところ、25枚目のウェハの欠陥数は8個、100枚目のウェハの欠陥数は15個と良好であった。   When the number of defects of 0.18 μm or more was measured on a polished oxide film 8-inch wafer with a defect inspection apparatus “SP-1” manufactured by KLA-Tencol, the number of defects on the 25th wafer was 8th and 100th. The number of defects of the wafer was as good as 15 pieces.

実施例2
実施例1と同様に作製した硬質発泡シートを厚み2.5mmとなるようにスライサーでスライスし、スライスした面とは反対側の面を研削加工することにより厚み2.01mmとし、次にスライスした面を#120の番手のサンドペーパーで0.01mm研削加工して厚み2.00mmの研磨層を作製した。
Example 2
The hard foam sheet produced in the same manner as in Example 1 was sliced with a slicer to a thickness of 2.5 mm, and the surface opposite to the sliced surface was ground to a thickness of 2.01 mm, and then sliced. The surface was ground by 0.01 mm with # 120 count sandpaper to prepare a polishing layer having a thickness of 2.00 mm.

得られた研磨層中のメチルメタクリレート含有率は48重量%であった。また研磨層のD硬度は54度、密度は0.80g/cm3、独立気泡の平均気泡径は45μmであった。   The methyl methacrylate content in the obtained polishing layer was 48% by weight. The D hardness of the polishing layer was 54 degrees, the density was 0.80 g / cm 3, and the average cell diameter of closed cells was 45 μm.

次に該研磨層の最初に研削加工した面に両面接着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用して貼り合わせた後、剥離紙を剥がし、それを厚み0.3mmの熱可塑性ウレタンゴムシート(A硬度:84度)からなるクッション層の上にラミネーターを使用して貼り合わせた。さらにクッション層の下に両面接着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用して貼り合わせた。この積層体を508mmの直径の円に切り取り、研磨層表面に幅1mm、ピッチ15mm、深さ0.9mmの溝を形成して、研磨パッドとした。   Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the first ground surface of the polishing layer using a laminator, and then the release paper was peeled off. The laminate was laminated on a cushion layer made of a thermoplastic urethane rubber sheet (A hardness: 84 degrees) using a laminator. Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded under the cushion layer using a laminator. This laminate was cut into a circle having a diameter of 508 mm, and grooves having a width of 1 mm, a pitch of 15 mm, and a depth of 0.9 mm were formed on the surface of the polishing layer to obtain a polishing pad.

得られた研磨パッドの研磨面の算術平均粗さRaは4.8μm、ゼータ電位は−58.5mVであった。   The arithmetic average roughness Ra of the polishing surface of the obtained polishing pad was 4.8 μm, and the zeta potential was −58.5 mV.

上記方法により得られた研磨パッドを、実施例1と同様にウェハ100枚を研磨した。25枚目の酸化膜の研磨レートは220.0nm/分であり、100枚目の酸化膜の研磨レートは225.5nm/分あった。25枚目の研磨レートが100枚目の研磨レートの±10%であり、問題無い値であった。   100 wafers were polished in the same manner as in Example 1 with the polishing pad obtained by the above method. The polishing rate of the 25th oxide film was 220.0 nm / min, and the polishing rate of the 100th oxide film was 225.5 nm / min. The polishing rate of the 25th sheet was ± 10% of the polishing rate of the 100th sheet, and there was no problem.

研磨した酸化膜の8インチウェハをKLA−Tencol社製欠陥検査装置“SP−1”で0.18μm以上の欠陥数を測定したところ、25枚目のウェハの欠陥数は12個、100枚目のウェハの欠陥数は14個と良好であった。   When the number of defects of 0.18 μm or more was measured on a polished oxide film 8-inch wafer with a defect inspection apparatus “SP-1” manufactured by KLA-Tencol, the number of defects on the 25th wafer was 12th and 100th. The number of defects of this wafer was as good as 14 pieces.

実施例3
実施例1と同様に作製した硬質発泡シートを厚み2.5mmとなるようにスライサーでスライスし、スライスした面とは反対側の面を研削加工することにより厚み2.02mmとし、次にスライスした面を#120の番手のサンドペーパーで0.02mm研削加工して厚み2.00mmの研磨層を作製した。
Example 3
The hard foam sheet produced in the same manner as in Example 1 was sliced with a slicer to a thickness of 2.5 mm, and the surface opposite to the sliced surface was ground to a thickness of 2.02 mm, and then sliced. The surface was ground by 0.02 mm with a # 120 count sandpaper to produce a polishing layer having a thickness of 2.00 mm.

得られた研磨層中のメチルメタクリレート含有率は48重量%であった。また研磨層のD硬度は54度、密度は0.80g/cm3、独立気泡の平均気泡径は45μmであった。   The methyl methacrylate content in the obtained polishing layer was 48% by weight. The D hardness of the polishing layer was 54 degrees, the density was 0.80 g / cm 3, and the average cell diameter of closed cells was 45 μm.

次に該研磨層の最初に研削加工した面に両面接着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用して貼り合わせた後、剥離紙を剥がし、それを厚み0.3mmの熱可塑性ウレタンゴムシート(A硬度:84度)からなるクッション層の上にラミネーターを使用して貼り合わせた。さらにクッション層の下に両面接着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用して貼り合わせた。この積層体を508mmの直径の円に切り取り、研磨層表面に幅1mm、ピッチ15mm、深さ0.9mmの溝を形成して、研磨パッドとした。   Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded to the first ground surface of the polishing layer using a laminator, and then the release paper was peeled off. The laminate was laminated on a cushion layer made of a thermoplastic urethane rubber sheet (A hardness: 84 degrees) using a laminator. Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded under the cushion layer using a laminator. This laminate was cut into a circle having a diameter of 508 mm, and grooves having a width of 1 mm, a pitch of 15 mm, and a depth of 0.9 mm were formed on the surface of the polishing layer to obtain a polishing pad.

得られた研磨パッドの研磨面の算術平均粗さRaは5.6μm、ゼータ電位は−55.5mVであった。   The arithmetic average roughness Ra of the polishing surface of the obtained polishing pad was 5.6 μm, and the zeta potential was −55.5 mV.

上記方法により得られた研磨パッドを、実施例1と同様にウェハ100枚を研磨した。25枚目の酸化膜の研磨レートは248.0nm/分であり、100枚目の酸化膜の研磨レートは226.0nm/分あった。25枚目の研磨レートが100枚目の研磨レートの±10%であり、問題無い値であった。   100 wafers were polished in the same manner as in Example 1 with the polishing pad obtained by the above method. The polishing rate of the 25th oxide film was 248.0 nm / min, and the polishing rate of the 100th oxide film was 226.0 nm / min. The polishing rate of the 25th sheet was ± 10% of the polishing rate of the 100th sheet, and there was no problem.

研磨した酸化膜の8インチウェハをKLA−Tencol社製欠陥検査装置“SP−1”で0.18μm以上の欠陥数を測定したところ、25枚目のウェハの欠陥数は25個、100枚目のウェハの欠陥数は24個と良好であった。   When the number of defects of 0.18 μm or more was measured on a polished oxide film 8-inch wafer with a defect inspection apparatus “SP-1” manufactured by KLA-Tencol, the number of defects on the 25th wafer was 25, 100th. The number of defects of this wafer was as good as 24.

比較例1
実施例1と同様に発泡ポリウレタンシートを作成した。次に該発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.1重量部を添加したメチルメタクリレートに浸漬し、メチルメタクリレート含有率を48重量%としたメタクリレートが含浸した該発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、60℃で10時間、120℃で3時間加熱することにより重合硬化させた。ガラス板間から離型した後、50℃で真空乾燥を行った。このようにして得られた硬質発泡シートの両面を#100の番手のサンドペーパーで研削加工することにより厚み2.0mmの研磨層を作製した。
Comparative Example 1
A foamed polyurethane sheet was prepared in the same manner as in Example 1. Next, the foamed polyurethane sheet was immersed in methyl methacrylate to which 0.1 part by weight of azobisisobutyronitrile was added, and the foamed polyurethane sheet impregnated with methacrylate having a methyl methacrylate content of 48% by weight was treated with vinyl chloride. It was sandwiched between two glass plates via a gasket made and polymerized and cured by heating at 60 ° C. for 10 hours and at 120 ° C. for 3 hours. After releasing from between the glass plates, vacuum drying was performed at 50 ° C. A polishing layer having a thickness of 2.0 mm was prepared by grinding both surfaces of the hard foam sheet thus obtained with a # 100 sandpaper.

得られた研磨層中のメチルメタクリレート含有率は48重量%であった。また研磨層のD硬度は54度、密度は0.79g/cm3、独立気泡の平均気泡径は42μmであった。   The methyl methacrylate content in the obtained polishing layer was 48% by weight. The D hardness of the polishing layer was 54 degrees, the density was 0.79 g / cm 3, and the average cell diameter of closed cells was 42 μm.

次に該研磨層に両面接着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用して貼り合わせた後、剥離紙を剥がし、それを厚み0.3mmの熱可塑性ウレタンゴムシート(A硬度:84度)からなるクッション層の上にラミネーターを使用して貼り合わせた。さらにクッション層の下に両面接着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用して貼り合わせた。この積層体を508mmの直径の円に切り取り、研磨層表面に幅1mm、ピッチ15mm、深さ0.9mmの溝を形成して、研磨パッドとした。   Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the polishing layer using a laminator, and then the release paper was peeled off. The thermoplastic urethane rubber sheet (A A laminate having a hardness of 84 degrees was laminated using a laminator. Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded under the cushion layer using a laminator. This laminate was cut into a circle having a diameter of 508 mm, and grooves having a width of 1 mm, a pitch of 15 mm, and a depth of 0.9 mm were formed on the surface of the polishing layer to obtain a polishing pad.

得られた研磨パッドの研磨面の算術平均粗さRaは6.8μm、ゼータ電位は−28.2mVであった。   The arithmetic average roughness Ra of the polishing surface of the obtained polishing pad was 6.8 μm, and the zeta potential was −28.2 mV.

上記方法により得られた研磨パッドを、実施例1と同様にウェハ100枚を研磨した。25枚目の酸化膜の研磨レートは225.1nm/分であり、100枚目の酸化膜の研磨レートは220.8nm/分であり、ともに合格の値であった。   100 wafers were polished in the same manner as in Example 1 with the polishing pad obtained by the above method. The polishing rate of the 25th oxide film was 225.1 nm / min, and the polishing rate of the 100th oxide film was 220.8 nm / min, both of which were acceptable values.

研磨した酸化膜の8インチウェハをKLA−Tencol社製欠陥検査装置“SP−1”で0.18μm以上の欠陥数を測定したところ、25枚目のウェハの欠陥数は54個、100枚目のウェハの欠陥数は55個と不合格の値であった。   When the number of defects of 0.18 μm or more was measured on a polished oxide film 8-inch wafer with a defect inspection apparatus “SP-1” manufactured by KLA-Tencol, the number of defects on the 25th wafer was 54, 100th. The number of defects in the wafer was 55, which was an unacceptable value.

比較例2
実施例1と同様に発泡ポリウレタンシートを作成した。次に該発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.1重量部を添加したメチルメタクリレートに浸漬し、メチルメタクリレート含有率を57重量%としたメタクリレートが含浸した該発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、60℃で10時間、120℃で3時間加熱することにより重合硬化させた。ガラス板間から離型した後、50℃で真空乾燥を行った。このようにして得られた硬質発泡シートの両面を#100の番手のサンドペーパーで研削加工することにより厚み2.0mmの研磨層を作製した。
Comparative Example 2
A foamed polyurethane sheet was prepared in the same manner as in Example 1. Next, the foamed polyurethane sheet was dipped in methyl methacrylate to which 0.1 part by weight of azobisisobutyronitrile was added, and the foamed polyurethane sheet impregnated with methacrylate having a methyl methacrylate content of 57% by weight was treated with vinyl chloride. It was sandwiched between two glass plates via a gasket made and polymerized and cured by heating at 60 ° C. for 10 hours and at 120 ° C. for 3 hours. After releasing from between the glass plates, vacuum drying was performed at 50 ° C. A polishing layer having a thickness of 2.0 mm was prepared by grinding both surfaces of the hard foam sheet thus obtained with a # 100 sandpaper.

得られた研磨層中のメチルメタクリレート含有率は57重量%であった。また研磨層のD硬度は61度、密度は0.80g/cm3、独立気泡の平均気泡径は44μmであった。   The methyl methacrylate content in the obtained polishing layer was 57% by weight. The D hardness of the polishing layer was 61 degrees, the density was 0.80 g / cm 3, and the average cell diameter of closed cells was 44 μm.

次に該研磨層に両面接着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用して貼り合わせた後、剥離紙を剥がし、それを厚み0.3mmの熱可塑性ウレタンゴムシート(A硬度:84度)からなるクッション層の上にラミネーターを使用して貼り合わせた。さらにクッション層の下に両面接着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用して貼り合わせた。この積層体を508mmの直径の円に切り取り、研磨層表面に幅1mm、ピッチ15mm、深さ0.9mmの溝を形成して、研磨パッドとした。   Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the polishing layer using a laminator, and then the release paper was peeled off. The thermoplastic urethane rubber sheet (A A laminate having a hardness of 84 degrees was laminated using a laminator. Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded under the cushion layer using a laminator. This laminate was cut into a circle having a diameter of 508 mm, and grooves having a width of 1 mm, a pitch of 15 mm, and a depth of 0.9 mm were formed on the surface of the polishing layer to obtain a polishing pad.

得られた研磨パッドの研磨面の算術平均粗さRaは6.8μm、ゼータ電位は−28.2mVであった。   The arithmetic average roughness Ra of the polishing surface of the obtained polishing pad was 6.8 μm, and the zeta potential was −28.2 mV.

上記方法により得られた研磨パッドを、実施例1と同様にウェハ100枚を研磨した。25枚目の酸化膜の研磨レートは215.5nm/分であり、100枚目の酸化膜の研磨レートは210.0nm/分であり、ともに合格の値であった。   100 wafers were polished in the same manner as in Example 1 with the polishing pad obtained by the above method. The polishing rate of the 25th oxide film was 215.5 nm / min, and the polishing rate of the 100th oxide film was 210.0 nm / min, both of which were acceptable values.

研磨した酸化膜の8インチウェハをKLA−Tencol社製欠陥検査装置“SP−1”で0.18μm以上の欠陥数を測定したところ、25枚目のウェハの欠陥数は122個、100枚目のウェハの欠陥数は145個と不合格の値であった。   When the number of defects of 0.18 μm or more was measured on a polished oxide film 8-inch wafer with a defect inspection apparatus “SP-1” manufactured by KLA-Tencol, the number of defects on the 25th wafer was 122, the 100th The number of defects in the wafer was 145, which was an unacceptable value.

比較例3
実施例1と同様に発泡ポリウレタンシートを作成した。次に該発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.1重量部を添加したメチルメタクリレートに浸漬し、メチルメタクリレート含有率を57重量%としたメタクリレートが含浸した該発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、60℃で10時間、120℃で3時間加熱することにより重合硬化させた。ガラス板間から離型した後、50℃で真空乾燥を行った。このようにして得られた硬質発泡シートを厚み2.5mmとなるようにスライサーでスライスし、スライスした面とは反対側の面を研削加工することにより厚み2.0mmの研磨層を作製した。
Comparative Example 3
A foamed polyurethane sheet was prepared in the same manner as in Example 1. Next, the foamed polyurethane sheet was dipped in methyl methacrylate to which 0.1 part by weight of azobisisobutyronitrile was added, and the foamed polyurethane sheet impregnated with methacrylate having a methyl methacrylate content of 57% by weight was treated with vinyl chloride. It was sandwiched between two glass plates via a gasket made and polymerized and cured by heating at 60 ° C. for 10 hours and at 120 ° C. for 3 hours. After releasing from between the glass plates, vacuum drying was performed at 50 ° C. The hard foam sheet thus obtained was sliced with a slicer so as to have a thickness of 2.5 mm, and a surface opposite to the sliced surface was ground to produce a polishing layer having a thickness of 2.0 mm.

得られた研磨層中のメチルメタクリレート含有率は57重量%であった。また研磨層のD硬度は61度、密度は0.79g/cm3、独立気泡の平均気泡径は45μmであった。   The methyl methacrylate content in the obtained polishing layer was 57% by weight. The D hardness of the polishing layer was 61 degrees, the density was 0.79 g / cm 3, and the average cell diameter of closed cells was 45 μm.

次に該研磨層の研削加工した面に両面接着テープ“442JS” (住友スリーエム(株)製)をラミネーターを使用して貼り合わせた後、剥離紙を剥がし、それを厚み0.3mmの熱可塑性ウレタンゴムシート(A硬度:84度)からなるクッション層の上にラミネーターを使用して貼り合わせた。さらにクッション層の下に両面接着テープ“442JS”(住友スリーエム(株)製)をラミネーターを使用して貼り合わせた。この積層体を508mmの直径の円に切り取り、研磨層表面に幅1mm、ピッチ15mm、深さ0.9mmの溝を形成して、研磨パッドとした。   Next, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Co., Ltd.) was bonded to the ground surface of the polishing layer using a laminator, and then the release paper was peeled off. A laminator was used for bonding onto a cushion layer made of a urethane rubber sheet (A hardness: 84 degrees). Furthermore, a double-sided adhesive tape “442JS” (manufactured by Sumitomo 3M Limited) was bonded under the cushion layer using a laminator. This laminate was cut into a circle having a diameter of 508 mm, and grooves having a width of 1 mm, a pitch of 15 mm, and a depth of 0.9 mm were formed on the surface of the polishing layer to obtain a polishing pad.

得られた研磨パッドの研磨面の算術平均粗さRaは2.5μm、ゼータ電位は−26.9mVであった。   The arithmetic average roughness Ra of the polishing surface of the obtained polishing pad was 2.5 μm, and the zeta potential was −26.9 mV.

上記方法により得られた研磨パッドを、実施例1と同様にウェハ100枚を研磨した。25枚目の酸化膜の研磨レートは178.5nm/分であり、100枚目の酸化膜の研磨レートは208.0nm/分であり、25枚目の研磨レートが低く、不合格の値であった。   100 wafers were polished in the same manner as in Example 1 with the polishing pad obtained by the above method. The polishing rate of the 25th oxide film is 178.5 nm / min, the polishing rate of the 100th oxide film is 208.0 nm / min, the polishing rate of the 25th sheet is low, and the reject value is there were.

研磨した酸化膜の8インチウェハをKLA−Tencol社製欠陥検査装置“SP−1”で0.18μm以上の欠陥数を測定したところ、25枚目のウェハの欠陥数は162個、100枚目のウェハの欠陥数は150個と不合格の値であった。   When the number of defects of 0.18 μm or more was measured on a polished oxide film 8-inch wafer with a defect inspection apparatus “SP-1” manufactured by KLA-Tencol, the number of defects on the 25th wafer was 162, 100th The number of wafer defects was 150, which was an unacceptable value.

Claims (2)

被研磨物と相対する研磨面のゼータ電位が−55mvより小さく−100mv以上であることを特徴とする研磨パッド。 A polishing pad, wherein a zeta potential of a polishing surface facing an object to be polished is less than −55 mv and −100 mv or more. 該研磨パッドの研磨面の算術平均粗さRaが0μm以上5μm以下であることを特徴とする請求項1記載の研磨パッド。 2. The polishing pad according to claim 1, wherein an arithmetic average roughness Ra of the polishing surface of the polishing pad is 0 μm or more and 5 μm or less.
JP2011150599A 2011-07-07 2011-07-07 Polishing pad Withdrawn JP2013018056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011150599A JP2013018056A (en) 2011-07-07 2011-07-07 Polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011150599A JP2013018056A (en) 2011-07-07 2011-07-07 Polishing pad

Publications (1)

Publication Number Publication Date
JP2013018056A true JP2013018056A (en) 2013-01-31

Family

ID=47690021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150599A Withdrawn JP2013018056A (en) 2011-07-07 2011-07-07 Polishing pad

Country Status (1)

Country Link
JP (1) JP2013018056A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051796A1 (en) * 2014-10-01 2016-04-07 日東電工株式会社 Polishing pad
WO2017074773A1 (en) * 2015-10-30 2017-05-04 Applied Materials, Inc. An apparatus and method of forming a polishing article that has a desired zeta potential
WO2018021428A1 (en) 2016-07-29 2018-02-01 株式会社クラレ Polishing pad and polishing method using same
WO2018207670A1 (en) 2017-05-12 2018-11-15 株式会社クラレ Chain extender, polyurethane and modification method therefor, polishing layer, polishing pad, and polishing method
WO2019216279A1 (en) 2018-05-11 2019-11-14 株式会社クラレ Method for modifying polyurethane, polyurethane, polishing pad, and method for modifying polishing pad
WO2020095832A1 (en) 2018-11-09 2020-05-14 株式会社クラレ Polyurethane for polishing layers, polishing layer, polishing pad and method for modifying polishing layer
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11851570B2 (en) 2019-04-12 2023-12-26 Applied Materials, Inc. Anionic polishing pads formed by printing processes
US11958162B2 (en) 2020-01-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068255A (en) * 2014-10-01 2016-05-09 日東電工株式会社 Polishing pad
WO2016051796A1 (en) * 2014-10-01 2016-04-07 日東電工株式会社 Polishing pad
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10618141B2 (en) 2015-10-30 2020-04-14 Applied Materials, Inc. Apparatus for forming a polishing article that has a desired zeta potential
WO2017074773A1 (en) * 2015-10-30 2017-05-04 Applied Materials, Inc. An apparatus and method of forming a polishing article that has a desired zeta potential
CN108290267A (en) * 2015-10-30 2018-07-17 应用材料公司 Form the apparatus and method for of the polished product with desired zeta potential
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
KR20190017034A (en) 2016-07-29 2019-02-19 주식회사 쿠라레 Abrasive pad and polishing method using same
US11154960B2 (en) 2016-07-29 2021-10-26 Kuraray Co., Ltd. Polishing pad and polishing method using same
WO2018021428A1 (en) 2016-07-29 2018-02-01 株式会社クラレ Polishing pad and polishing method using same
US11787894B2 (en) 2017-05-12 2023-10-17 Kuraray Co., Ltd. Polyurethane for polishing layer, polishing layer including polyurethane and modification method of the polishing layer, polishing pad, and polishing method
WO2018207670A1 (en) 2017-05-12 2018-11-15 株式会社クラレ Chain extender, polyurethane and modification method therefor, polishing layer, polishing pad, and polishing method
US11053339B2 (en) 2017-05-12 2021-07-06 Kuraray Co., Ltd. Polyurethane for polishing layer, polishing layer including polyurethane and modification method of the polishing layer, polishing pad, and polishing method
KR20200003793A (en) 2017-05-12 2020-01-10 주식회사 쿠라레 Polyurethane for polishing layer, polishing layer containing polyurethane, method for modifying the polishing layer, polishing pad and polishing method
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
WO2019216279A1 (en) 2018-05-11 2019-11-14 株式会社クラレ Method for modifying polyurethane, polyurethane, polishing pad, and method for modifying polishing pad
KR20200136982A (en) 2018-05-11 2020-12-08 주식회사 쿠라레 Polyurethane modification method, polyurethane, polishing pad and polishing pad modification method
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
KR20210057136A (en) 2018-11-09 2021-05-20 주식회사 쿠라레 Polyurethane for polishing layer, polishing layer, polishing pad, and method of modifying polishing layer
WO2020095832A1 (en) 2018-11-09 2020-05-14 株式会社クラレ Polyurethane for polishing layers, polishing layer, polishing pad and method for modifying polishing layer
US11851570B2 (en) 2019-04-12 2023-12-26 Applied Materials, Inc. Anionic polishing pads formed by printing processes
US11964359B2 (en) 2019-10-23 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11958162B2 (en) 2020-01-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes

Similar Documents

Publication Publication Date Title
JP2013018056A (en) Polishing pad
JP5223336B2 (en) Polishing pad and polishing apparatus
WO2013039181A1 (en) Polishing pad
WO2012111502A1 (en) Polishing pad
JP2006339570A (en) Polishing pad and polishing apparatus
WO2013011921A1 (en) Polishing pad
WO2013039203A1 (en) Polishing pad
JP2006210657A (en) Polishing pad, polishing device, and method of manufacturing semiconductor device
JP2006339573A (en) Polishing pad and polishing unit
JP4686912B2 (en) Polishing pad
WO2013103142A1 (en) Polishing pad
WO2013011922A1 (en) Polishing pad
JP5145683B2 (en) Polishing method, polishing pad, and manufacturing method of polishing pad
JP5292958B2 (en) Polishing pad
JP2004119657A (en) Grinding pad, grinding device and grinding method employing it
JP5454153B2 (en) Polishing method and semiconductor device manufacturing method
JP2011200984A (en) Polishing pad
JP2007116194A (en) Polishing method
JP2007150337A (en) Polishing method
JP2004014744A (en) Polishing pad, polishing apparatus, and polishing process using the same
JP2003124161A (en) Polishing pad, polishing device and polishing method using them
JP2007105836A (en) Polishing pad and polishing device
JP2014188647A (en) Polishing pad
JP2012186323A (en) Chemical mechanical polishing method
JP2006339572A (en) Polishing pad and polishing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007