WO2013039181A1 - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
WO2013039181A1
WO2013039181A1 PCT/JP2012/073538 JP2012073538W WO2013039181A1 WO 2013039181 A1 WO2013039181 A1 WO 2013039181A1 JP 2012073538 W JP2012073538 W JP 2012073538W WO 2013039181 A1 WO2013039181 A1 WO 2013039181A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
groove
degrees
polishing pad
grooves
Prior art date
Application number
PCT/JP2012/073538
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 野呂
奥田 良治
誠司 福田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG11201400614RA priority Critical patent/SG11201400614RA/en
Priority to KR1020147008470A priority patent/KR20140062095A/en
Priority to CN201280044813.XA priority patent/CN103782372A/en
Priority to US14/344,988 priority patent/US20140378035A1/en
Priority to EP12832538.8A priority patent/EP2757578A4/en
Publication of WO2013039181A1 publication Critical patent/WO2013039181A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved

Definitions

  • the present invention relates to a polishing pad. More specifically, the present invention relates to a polishing pad that is preferably used for forming a flat surface in semiconductors, dielectric / metal composites, integrated circuits, and the like.
  • CMP Chemical Mechanical Polishing
  • a CMP apparatus includes a polishing head that holds a semiconductor wafer that is an object to be processed, a polishing pad for polishing the object to be processed, and a polishing surface plate that holds the polishing pad.
  • a polishing technique called CMP is a technique for polishing a material to be polished while supplying slurry using a polishing pad having a polishing layer.
  • CMP polishing of a semiconductor wafer is performed by using a slurry to move a semiconductor wafer (hereinafter simply referred to as a wafer) and a polishing pad relative to each other to remove a protruding portion of a layer on the wafer surface.
  • the surface layer is flattened.
  • CMP polishing has required characteristics such as local flatness of wafer, global flatness, prevention of defects, and high polishing rate. Therefore, in order to achieve these required characteristics, various ingenuity has been made with respect to the polishing pad groove configuration (groove pattern, groove cross-sectional shape, etc.), which is one of the major factors affecting polishing characteristics. Has been made.
  • Patent Document 1 a technique is known in which the cross-sectional shape of a groove formed on the surface of the polishing layer is V-shaped or U-shaped, and the groove pattern is spiral or stitched to stabilize the polishing characteristics.
  • the present inventors provide an inclined surface at a specific angle at the boundary between the polishing surface and the groove, so that a suction force acts between the wafer and the polishing pad, the polishing rate is increased, and in-plane uniformity is achieved. Found to be good. Since it is important to provide an inclined surface at the boundary between the polishing surface and the groove, this also applies to a groove having a V-shaped cross section, for example. In consideration of the manufacturing process, the cross-sectional shape of the groove is preferable because it is a simple figure.
  • the present inventors have the functions of supplying and discharging the slurry at the end of the life of the polishing pad when the polishing pad is worn and the cross-sectional area of the groove is reduced.
  • polishing defects increase due to insufficientness.
  • the present invention reduces the function of supplying and discharging slurry even if the polishing pad wears according to the use of the polishing pad while maintaining a high polishing rate and good in-plane uniformity. It is an object of the present invention to provide a polishing pad in which polishing defects caused by this do not increase.
  • the present inventors use a polishing pad (for example, a V shape) having an inclined surface at a specific angle at the boundary between the polishing surface and the groove for increasing the polishing rate and improving in-plane uniformity, and a polishing pad. Accordingly, even if the polishing pad was worn out, it was thought that it could be eliminated by combining grooves for maintaining the slurry supply and discharge functions (for example, I-shaped or trapezoids close to I-shaped grooves).
  • a polishing pad for example, a V shape
  • the polishing pad of the present invention is a polishing pad for chemical mechanical polishing having at least a polishing layer, and has a first groove and a second groove on a polishing surface of the polishing layer.
  • Each of the two grooves has a side surface continuous with the polishing surface at an edge portion in each groove width direction, and the first groove has at least one of the edge surfaces in the groove width direction and the polishing surface.
  • the angle formed by the side surface continuous with the polishing surface is greater than 105 degrees and 150 degrees or less, and the second groove is continuous with the polishing surface and the polishing surface at both of two edge portions in the groove width direction.
  • the angle formed with the side surface is 60 degrees or more and 105 degrees or less.
  • the polishing pad wears as the polishing pad is used, and polishing without increasing polishing defects even if the slurry supply and discharge functions are reduced.
  • a pad can be provided.
  • FIG. 1A is a diagram showing a cross-sectional shape (first example) of a first groove of a polishing pad according to an embodiment of the present invention.
  • FIG. 1B is a diagram showing a cross-sectional shape (second example) of the first groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 1C is a diagram showing a cross-sectional shape (third example) of the first groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 1D is a diagram showing a cross-sectional shape (fourth example) of the first groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 1A is a diagram showing a cross-sectional shape (first example) of a first groove of a polishing pad according to an embodiment of the present invention.
  • FIG. 1B is a diagram showing a cross-sectional shape (second example) of the first groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 1C is a diagram showing
  • FIG. 2A is a diagram showing a cross-sectional shape (first example) of a second groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 2B is a diagram showing a cross-sectional shape (second example) of the second groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 2C is a diagram showing a cross-sectional shape (third example) of the second groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 2D is a diagram showing a cross-sectional shape (fourth example) of the second groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 2E is a diagram showing a cross-sectional shape (fifth example) of the second groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 2F is a diagram showing a cross-sectional shape (sixth example) of the second groove of the polishing pad according to the embodiment of the present invention.
  • FIG. 3A is a cross-sectional view illustrating a configuration example (first example) of a unit unit including first and second grooves.
  • FIG. 3B is a cross-sectional view illustrating a configuration example (second example) of a unit unit including first and second grooves.
  • FIG. 3C is a cross-sectional view illustrating a configuration example (third example) of the unit unit including the first and second grooves.
  • FIG. 3D is a cross-sectional view illustrating a configuration example (fourth example) of a unit unit including first and second grooves.
  • FIG. 3A is a cross-sectional view illustrating a configuration example (first example) of a unit unit including first and second grooves.
  • FIG. 3B is a cross-sectional view illustrating a configuration example (second example) of a unit unit including first and second
  • FIG. 3E is a cross-sectional view illustrating a configuration example (fifth example) of a unit unit including first and second grooves.
  • FIG. 3F is a cross-sectional view illustrating a configuration example (sixth example) of the unit unit including the first and second grooves.
  • FIG. 3G is a cross-sectional view illustrating a configuration example (seventh example) of the unit unit including the first and second grooves.
  • FIG. 3H is a cross-sectional view illustrating a configuration example (eighth example) of the unit unit including the first and second grooves.
  • FIG. 3I is a cross-sectional view illustrating a configuration example (ninth example) of a unit unit including the first and second grooves.
  • FIG. 4 is a diagram schematically showing an arrangement example of the first grooves on the polishing surface of the polishing pad according to the embodiment of the present invention.
  • the polishing pad of the present invention is a polishing pad having at least a polishing layer, and has a groove A (first groove) and a groove B (second groove) on the polishing surface of the polishing layer.
  • the groove A and the groove B have side surfaces that are continuous with the polishing surface at the edge portions in the groove width direction.
  • the angle formed by the polishing surface and the side surface continuous with the polishing surface is greater than 105 degrees and 150 degrees or less.
  • the angle formed between the polishing surface and the side surface continuous with the polishing surface is 60 degrees or more and 105 degrees or less at both edge portions in the two groove width directions.
  • a groove A104 shown in FIG. 1D has a recess 5 formed between two side surfaces 2 in a direction perpendicular to the polishing surface 1, and the bottom surface thereof is parallel to the polishing surface 1.
  • the groove A constituting the polishing pad is not necessarily one type.
  • at least one of the edge portions in the groove width direction has a plurality of different cross-sectional shapes such that at least one of the angle formed between the polishing surface and the side surface continuous with the polishing surface is greater than 105 degrees and less than 150 degrees. It is also possible to constitute a polishing pad by combining grooves. From the viewpoint of in-plane uniformity, it is more preferable to configure the polishing pad with one type of groove A.
  • the groove cross-sectional shape when the groove cross-sectional shape is only V-shaped, it has a sufficient slurry supply and discharge function at the initial stage of polishing. In some cases, the discharge is not performed sufficiently, and defects such as an increase in defects and a wafer adsorbing to the polishing pad may occur.
  • FIG. A groove B201 shown in FIG. 2A has a rectangular cross-sectional shape.
  • the groove B201 has two side surfaces 2 that are respectively continuous with the polishing surface 1 at the edge in the groove width direction.
  • the angle ⁇ B formed between the polishing surface and the side surface continuous to the polishing surface is equal to each other at the two edge portions in the groove width direction, and the value is 90 degrees.
  • the groove B201 has a rectangular cross-sectional shape, and the bottom surface 6 is parallel to the polishing surface 1.
  • a groove B202 shown in FIG. 2B has a substantially U-shaped bottom surface 7 between two side surfaces 2.
  • the side surface continuous with the polishing surface in the groove B not only a straight line but also a curve, as long as the angle between the polishing pad and the polishing surface at the edge can be maintained at 60 ° or more and 105 ° or less.
  • a broken line, a straight line having a plurality of bending points, a wavy line, or a combination thereof may be used.
  • the area occupation ratio of the groove A per groove area is a ratio of the area of the groove A per area of the groove formed on the polishing surface, and the groove A per area of the groove formed on the polishing surface. Is preferably 30% or more and 90% or less, more preferably 40% or more, and further preferably 50% or more. Further, the area occupation ratio of the groove A per groove area is more preferably 80% or less, and further preferably 70% or less.
  • grooves that can be taken by normal polishing pads such as lattice shape, dimple shape, spiral shape, concentric circle shape, etc. to suppress hydroplane phenomenon and to prevent the wafer and pad from sticking ( Grooves) may be provided, and combinations thereof are also preferably used, but a lattice shape is particularly preferable.
  • the lattice shape is a shape in which lines are combined at right angles to a grid. In the lattice shape, when the vertical and horizontal grooves are equally spaced, when the vertical groove interval is narrower than the horizontal groove interval, or when the horizontal groove interval is narrower than the vertical groove interval Multiple cases are possible.
  • the total length of the grooves A formed on the entire polishing surface is 10% or more and 90% or less of the total groove length of the grooves formed on the polishing surface. Preferably, it is 20% or more, more preferably 25% or more, still more preferably 30% or more, and particularly preferably 35% or more. Further, the total length of the grooves A among the grooves formed on the polished surface is more preferably 80% or less, further preferably 70% or less, and further preferably 60% or less. Is particularly preferably 55% or less.
  • the ratio of the total groove length of the grooves A formed on the polishing surface to the total groove length of all the grooves is within the above range, a suction force acts between the wafer and the polishing pad, and the polishing rate Expresses the effect of rising.
  • the method for forming a groove formed on the polishing surface of the polishing pad it is possible to form the groove A so as to be concentrated at the center of the polishing pad and form the groove B in the remaining portion.
  • the groove A is a region including two straight lines that pass through the center of the polishing pad and are orthogonal to each other, and the distance from at least one of the two straight lines is that of the polishing pad.
  • FIG. 4 is a diagram schematically showing an arrangement example of the grooves A on the polishing surface of the polishing pad.
  • the groove A403 (indicated by a thick line) is an area including two straight lines L 1 and L 2 passing through the center O of the polishing surface 402 on the circular polishing surface 402. The minimum distance from at least one of the two straight lines is 1/3 (about 33%) or less of the radius r.
  • the broken line shown in FIG. 4 has shown groove
  • the XY lattice shape when applied as the groove shape, it is more preferable to disperse the grooves A403 in two orthogonal directions (X direction and Y direction) than to concentrate the grooves A403 in only one direction. .
  • a polishing pad can be configured based on a unit unit as shown in any of FIGS. 3A to 3H.
  • the ratio of the number of grooves A to the total number of grooves as a combination of grooves is not limited to the example.
  • the groove widths of the groove A and the groove B are preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more, because it is necessary to have a cross-sectional area capable of supplying and discharging the slurry. More preferably, it is 0.5 mm or more. Further, the groove width of the groove A and the groove B is more preferably 8 mm or less, and further preferably 5 mm or less.
  • the groove depths of the groove A and the groove B are preferably 0.2 mm or more and 4 mm or less, more preferably 0.3 mm or more, because it is necessary to ensure supply and discharge of slurry and a sufficient life. More preferably, it is 0.4 mm or more. Further, the groove depths of the groove A and the groove B are more preferably 3 mm or less, and further preferably 2 mm or less.
  • the thickness of the polishing layer is preferably 4.0 mm or less, more preferably 3.5 mm or less, as long as it is smaller than the distance from the upper surface of the surface plate of the polishing apparatus to the lower surface of the polishing head. It is more preferably 0 mm or less, and particularly preferably 2.5 mm or less.
  • the polishing layer constituting the polishing pad has a micro rubber A hardness of 70 degrees or more and a structure having closed cells to form a flat surface in a semiconductor, a dielectric / metal composite, an integrated circuit, or the like. Therefore, it is preferable.
  • materials for forming such a structure include polyethylene, polypropylene, polyester, polyurethane, polyurea, polyamide, polyvinyl chloride, polyacetal, polycarbonate, polymethyl methacrylate, polytetrafluoroethylene, epoxy resin, ABS resin, AS resin, phenol resin, melamine resin, “neoprene (registered trademark)” rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, silicon rubber, fluororubber, and resins mainly composed of these. Two or more of these may be used. Even in such a resin, a material mainly composed of polyurethane is more preferable in that the closed cell diameter can be controlled relatively easily.
  • Polyurethane is a polymer synthesized by polyaddition reaction or polymerization reaction of polyisocyanate.
  • the polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • the polyisocyanate is not limited thereto, and two or more of these may be used.
  • the compound used as the reaction partner of the polyisocyanate is an active hydrogen-containing compound, that is, a compound containing two or more polyhydroxy groups or amino groups.
  • the polyhydroxy group-containing compound is typically a polyol, and examples thereof include polyether polyol, polytetramethylene ether glycol, epoxy resin-modified polyol, polyester polyol, acrylic polyol, polybutadiene polyol, and silicone polyol. It may be used. It is preferable to determine the combination and optimum amount of polyisocyanate and polyol, catalyst, foaming agent, and foam stabilizer depending on the hardness, the cell diameter and the expansion ratio.
  • the chemical foaming method is generally used by blending various foaming agents into the resin during polyurethane production, but it is cured after foaming the resin by mechanical stirring.
  • the method of making it can also be used preferably.
  • the average cell diameter of the closed cells is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more from the viewpoint of holding the slurry on the pad surface.
  • the average cell diameter of closed cells is preferably 150 ⁇ m or less, more preferably 140 ⁇ m or less, and still more preferably 130 ⁇ m or less, from the viewpoint of ensuring the flatness of local irregularities of the semiconductor substrate.
  • the average bubble diameter is observed in a circular shape that is missing at the edge of the field among the bubbles observed in one field of view when the sample cross section is observed at 400 times magnification with a VK-8500 ultra-deep microscope manufactured by Keyence.
  • the equivalent circle diameter is measured from the cross-sectional area by an image processing apparatus, and the number average value is calculated.
  • a preferred embodiment of the polishing pad according to the present invention is a pad containing a polymer of a vinyl compound and polyurethane and having closed cells.
  • the toughness and hardness can be increased only with the polymer from the vinyl compound, it is difficult to obtain a uniform polishing pad having closed cells.
  • Polyurethane becomes brittle when its hardness is increased.
  • a vinyl compound is a compound having a polymerizable carbon-carbon double bond. Specifically, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, isobutyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate, 2 -Hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, acrylic acid, methacrylic acid, fumaric acid, dimethyl fumarate, diethyl fumarate, dipropyl fumarate, malein Acid, dimethyl maleate,
  • Polymerization initiators preferably used for obtaining polymers of these vinyl compounds include azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), azobiscyclohexanecarbonitrile, benzoyl peroxide, lauroyl peroxide. Examples thereof include radical initiators such as oxide and isopropyl peroxydicarbonate. Two or more of these may be used.
  • a redox polymerization initiator for example, a combination of a peroxide and an amine can also be used.
  • a method for impregnating a polyurethane with a vinyl compound a method of immersing the polyurethane in a container containing a vinyl compound can be mentioned.
  • the polymer and polyurethane content obtained from the polymerized and cured vinyl compound in polyurethane can be measured by a pyrolysis gas chromatography / mass spectrometry method.
  • a pyrolysis gas chromatography / mass spectrometry method As an apparatus that can be used in this method, a double shot pyrolyzer “PY-2010D” (manufactured by Frontier Laboratories) is used as a thermal decomposition apparatus, and “TRIO-1” (manufactured by VG) is used as a gas chromatograph / mass spectrometer. Can be mentioned.
  • the polishing pad may contain various additives such as an abrasive, an antistatic agent, a lubricant, a stabilizer, and a dye for the purpose of improving characteristics.
  • the micro rubber A hardness of the polishing layer is a value evaluated by a micro rubber hardness meter MD-1 manufactured by Kobunshi Keiki Co., Ltd.
  • the micro rubber A hardness meter MD-1 makes it possible to measure the hardness of thin and small objects, which are difficult to measure with a conventional hardness meter.
  • the micro rubber A hardness tester MD-1 is designed and manufactured as a reduced model of about 1/5 of the spring type rubber hardness tester (durometer) A type. Therefore, the measurement conforms to the hardness of the spring type hardness tester A type. A value is obtained.
  • a normal polishing pad cannot be evaluated with a spring type rubber hardness tester A type because the thickness of the polishing layer or hard layer is less than 5 mm. Therefore, in the present invention, the micro rubber A hardness of the polishing layer is evaluated by the micro rubber MD-1.
  • the hardness of the polishing layer is preferably 70 degrees or more, more preferably 80 degrees or more in terms of micro rubber A hardness, from the viewpoint of the flatness of local irregularities of the semiconductor substrate.
  • the density of the polishing layer is preferably 0.3 g / cm 3 or more, more preferably 0.6 g / cm 3 or more, and 0.65 g / cm 3 from the viewpoint of reducing local flatness defects and global steps. More preferably, it is cm 3 or more.
  • the density of the polishing layer from the viewpoint of reducing scratches, preferably 1.1 g / cm 3 or less, more preferably 0.9g / cm 3, 0.85g / cm 3 or less is more preferred.
  • the density of the polishing layer in the present invention is a value measured using a Harvard pycnometer (JIS R-3503 standard) and water as a medium.
  • the polishing pad in the present invention preferably has a cushion layer having a bulk modulus of 40 MPa or more and a tensile modulus of 1 MPa or more and 20 MPa or less from the viewpoint of improving in-plane uniformity.
  • the bulk modulus in the present invention is measured by the following method.
  • a sample piece and water at 23 ° C. are placed in a stainless steel measuring cell having an internal volume of about 40 mL, and a 0.5 mL borosilicate glass pipette (minimum scale 0.005 mL) is attached.
  • a tube made of polyvinyl chloride resin (inner diameter 90 mm ⁇ ⁇ 2000 mm, wall thickness 5 mm) is used as a pressure vessel, and the measurement cell in which the above sample piece is placed is placed therein.
  • V1 is measured.
  • nitrogen is pressurized with the pressure P and the volume change V0 is measured.
  • the volume elastic modulus of the cushion layer is preferably 40 MPa or more.
  • the bulk modulus is preferably 40 MPa or more.
  • the in-plane uniformity of the entire surface of the semiconductor substrate can be improved.
  • An example of a tensile stress measuring device is Tensilon Universal Tester RTM-100 manufactured by Orientec.
  • the measurement conditions of the tensile stress are a dumbbell shape in which the test speed is 5 cm / min, the test piece shape is 5 mm wide, and the sample length is 50 mm.
  • Examples of such a cushion layer include non-foamed elastomers such as natural rubber, nitrile rubber, “neoprene (registered trademark)” rubber, polybutadiene rubber, thermosetting polyurethane rubber, thermoplastic polyurethane rubber, and silicon rubber. However, it is not limited to these.
  • the thickness of the cushion layer is preferably in the range of 0.1 to 2 mm.
  • the thickness of the cushion layer is preferably 0.2 mm or more and more preferably 0.3 mm or more from the viewpoint of in-plane uniformity over the entire surface of the semiconductor substrate.
  • the thickness of the cushion layer is preferably 2 mm or less, more preferably 1.75 mm or less from the viewpoint of local flatness.
  • Examples of means for attaching the polishing layer and the cushion layer include a double-sided tape or an adhesive.
  • the double-sided tape has a general configuration in which an adhesive layer is provided on both sides of a base material such as a nonwoven fabric or a film.
  • the polishing pad of this invention may be provided with the double-sided tape on the surface which adhere
  • a double-sided tape a tape having a general configuration in which an adhesive layer is provided on both surfaces of a substrate as described above can be used.
  • a base material a nonwoven fabric, a film, etc. are mentioned, for example.
  • examples of the composition of the adhesive layer include rubber adhesives and acrylic adhesives. Considering the content of metal ions, an acrylic adhesive is preferable because the metal ion content is low. Also, the cushion sheet and the platen often have different compositions, and the composition of each adhesive layer of the double-sided tape can be made different to optimize the adhesive force to the cushion sheet and the platen.
  • Examples of the material to be polished in the present invention include the surface of an insulating layer or metal wiring formed on a semiconductor wafer.
  • Examples of the insulating layer include an interlayer insulating film of metal wiring, a lower insulating film of metal wiring, and shallow trench isolation used for element isolation.
  • Examples of the metal wiring include aluminum, tungsten, and copper, and structurally include damascene, dual damascene, and plug.
  • a barrier metal such as silicon nitride is also subject to polishing.
  • silicon oxide is currently mainstream, but a low dielectric constant insulating film is also used.
  • the material to be polished can be used for polishing a magnetic head, hard disk, sapphire, etc. in addition to a semiconductor wafer.
  • the polishing method of the present invention is suitably used for forming a flat surface on glass, semiconductors, dielectric / metal composites, integrated circuits and the like.
  • a polishing pad with grooves formed on the polishing layer surface is sliced in the groove depth direction, and the cross section of the grooves is observed with an ultra-deep microscope of Keyence VK-8500 to determine the angle between the polishing surface and the side surface continuous with the polishing surface. It was measured.
  • the polishing pad was circular, the groove closest to the position of 50 mm, 150 mm and 250 mm from the center of the polishing pad was measured, and the average of these three points was taken as the inclination angle.
  • the polishing pad was not circular, the groove closest to the 50 mm, 150 mm, and 250 mm positions was measured from the intersection of the diagonal lines of the sheet toward one end, and the average of these three points was taken as the inclination angle.
  • polishing was performed while detecting the end point under predetermined polishing conditions using a Mirror 3400 manufactured by Applied Materials.
  • the polishing rate (nm / min) excluding the outermost periphery 10 mm of the 8-inch wafer was measured.
  • the value obtained by dividing the standard deviation of the polishing rate by the difference between the maximum value and the minimum value of the polishing rate was defined as in-plane uniformity.
  • the polished wafer is immersed in 0.5 wt% hydrofluoric acid for 10 minutes, washed with water, and then washed with a mixed solution of 1.0 wt% ammonia solution and 1.0 wt% hydrogen peroxide solution. And washed with water and dried. For the cleaned wafer, the number of defects of 0.155 ⁇ m or more was counted using SP-1 manufactured by KLA-Tencor.
  • ⁇ Pad grinding speed> The groove depth before and after polishing was measured by using a depth gauge (Digimatic type) manufactured by Mitutoyo Corporation, and the value obtained by dividing the groove reduction value by the disk usage time during evaluation was taken as the pad grinding speed.
  • the obtained hard foam sheet was ground on both sides to prepare a polishing layer having a thickness of 2 mm.
  • Groove A with a groove width of 3.0 mm, a groove pitch of 15 mm, a cross-sectional shape V-shaped with a tilt angle ⁇ A of 135 degrees, a groove depth of 1.5 mm, a groove width of 1.5 mm, a groove pitch of 15 mm, and a groove depth of 1.5 mm
  • the groove area ratio per unit unit of the groove A was 24.9%, and the area occupation ratio of the groove A per groove area was 73.7%.

Abstract

A polishing pad for chemical mechanical polishing having at least a polishing layer, wherein the polishing surface of the polishing layer has a first groove and a second groove, and the first and the second grooves have side surfaces that are continuous with the polishing surface at the widthwise edges of each of the grooves. In the first groove, the angle between the polishing surface and the side surface continuous with the polishing surface is 105-150°on at least one widthwise edge of the groove. In the second groove, the angle between the polishing surface and the side surface continuous with the polishing surface is 60-105°on both widthwise edges of the groove.

Description

研磨パッドPolishing pad
 本発明は、研磨パッドに関する。より詳しくは、本発明は、半導体、誘電/金属複合体および集積回路等において平坦面を形成するために好ましく使用される研磨パッドに関する。 The present invention relates to a polishing pad. More specifically, the present invention relates to a polishing pad that is preferably used for forming a flat surface in semiconductors, dielectric / metal composites, integrated circuits, and the like.
 半導体デバイスが高密度化するにつれ、多層配線と、これに伴う層間絶縁膜形成や、プラグ、ダマシンなどの電極形成等の技術が重要度を増している。これに伴い、これら層間絶縁膜や電極の金属膜の平坦化プロセスの重要度も増している。この平坦化プロセスのための効率的な技術として、CMP(Chemical Mechanical Polishing)と呼ばれる研磨技術が普及している。 As the density of semiconductor devices increases, the importance of multilayer wiring and the accompanying interlayer insulation film formation, electrode formation of plugs, damascene, etc. is increasing. Accordingly, the importance of the flattening process of the interlayer insulating film and the metal film of the electrode is increasing. As an efficient technique for this flattening process, a polishing technique called CMP (Chemical Mechanical Polishing) is widely used.
 一般にCMP装置は、被処理物である半導体ウェハーを保持する研磨ヘッド、被処理物の研磨処理を行うための研磨パッド、および前記研磨パッドを保持する研磨定盤から構成されている。そして、CMPと呼ばれる研磨技術は、研磨層を有する研磨パッドを用いて、スラリーを供給しながら被研磨材を研磨する技術である。半導体ウェハーのCMP研磨とは、具体的には、スラリーを用いて、半導体ウェハー(以下、単にウェハーという)と研磨パッドを相対運動させることにより、ウェハー表面の層の突出した部分を除去し、ウェハー表面の層を平坦化するものである。 Generally, a CMP apparatus includes a polishing head that holds a semiconductor wafer that is an object to be processed, a polishing pad for polishing the object to be processed, and a polishing surface plate that holds the polishing pad. A polishing technique called CMP is a technique for polishing a material to be polished while supplying slurry using a polishing pad having a polishing layer. Specifically, CMP polishing of a semiconductor wafer is performed by using a slurry to move a semiconductor wafer (hereinafter simply referred to as a wafer) and a polishing pad relative to each other to remove a protruding portion of a layer on the wafer surface. The surface layer is flattened.
 CMP研磨には、ウェハーの局所平坦性、グローバル平坦性の確保、欠陥の発生防止、高い研磨レートの確保などの要求特性がある。そのため、これらの要求特性を達成するために、研磨特性に影響を与える因子のうち、大きなものの一つである研磨パッドの溝の構成(溝のパターンおよび溝の断面形状等)について、様々な工夫がなされている。 CMP polishing has required characteristics such as local flatness of wafer, global flatness, prevention of defects, and high polishing rate. Therefore, in order to achieve these required characteristics, various ingenuity has been made with respect to the polishing pad groove configuration (groove pattern, groove cross-sectional shape, etc.), which is one of the major factors affecting polishing characteristics. Has been made.
 例えば、研磨層表面に形成されている溝の断面形状がV字形またはU字形で、溝のパターンを螺旋状または編み目状とし、研磨特性の安定化を図る技術が知られている(特許文献1参照)。 For example, a technique is known in which the cross-sectional shape of a groove formed on the surface of the polishing layer is V-shaped or U-shaped, and the groove pattern is spiral or stitched to stabilize the polishing characteristics (Patent Document 1). reference).
 この技術では、溝の断面形状における角部がウェハーの表面にスクラッチを発生させたり、断面形状において、研磨前後や研磨中に行われるドレッシング等に起因して、角部にバリ状物が形成されることでスクラッチを発生させたりすることがある。これを解消するための技術として、研磨面と溝の境界部に傾斜面を設ける技術も知られている(特許文献2、3参照)。 In this technique, the corners in the cross-sectional shape of the grooves generate scratches on the surface of the wafer, or burr-like objects are formed in the corners due to dressing performed before and after polishing or during polishing in the cross-sectional shape. May cause scratches. As a technique for solving this problem, a technique of providing an inclined surface at the boundary between the polishing surface and the groove is also known (see Patent Documents 2 and 3).
特開2001-212752号公報JP 2001-212752 A 特開2010-45306号公報JP 2010-45306 A 特開2004-186392号公報JP 2004-186392 A
 ここで、本発明者らは、研磨面と溝の境界部に特定の角度の傾斜面を設けることで、ウェハーと研磨パッドの間で吸引力が働き、研磨レートが高くなり、面内均一性が良好になることを見出した。これは研磨面と溝の境界部に傾斜面を設けることが重要なのであるから、例えば、断面形状がV字形の溝にも当てはまる。なお、製造工程を考慮すると、溝の断面形状は、単純な図形であることから好ましい。 Here, the present inventors provide an inclined surface at a specific angle at the boundary between the polishing surface and the groove, so that a suction force acts between the wafer and the polishing pad, the polishing rate is increased, and in-plane uniformity is achieved. Found to be good. Since it is important to provide an inclined surface at the boundary between the polishing surface and the groove, this also applies to a groove having a V-shaped cross section, for example. In consideration of the manufacturing process, the cross-sectional shape of the groove is preferable because it is a simple figure.
 ところが、本発明者らは、溝の断面形状がV字形の場合、研磨パッドの使用に応じて研磨パッドが摩耗し、溝断面積が減少した研磨パッド寿命終期において、スラリーの供給、排出機能が十分でないことを原因とする、研磨欠陥が増加する問題を見出した。 However, when the cross-sectional shape of the groove is V-shaped, the present inventors have the functions of supplying and discharging the slurry at the end of the life of the polishing pad when the polishing pad is worn and the cross-sectional area of the groove is reduced. We have found a problem that polishing defects increase due to insufficientness.
 本発明は、かかる従来技術の課題に鑑み、高い研磨レートと良好な面内均一性を保ちながら、研磨パッドの使用に応じて研磨パッドが摩耗しても、スラリーの供給、排出機能を低減させることによる研磨欠陥が増加することの無い研磨パッドを提供することを目的とする。 In view of the problems of the prior art, the present invention reduces the function of supplying and discharging slurry even if the polishing pad wears according to the use of the polishing pad while maintaining a high polishing rate and good in-plane uniformity. It is an object of the present invention to provide a polishing pad in which polishing defects caused by this do not increase.
 本発明者らは、研磨レートが高くなり、面内均一性が良好になるための研磨面と溝の境界部に特定の角度の傾斜面を有する溝(例えばV字形)と、研磨パッドの使用に応じて研磨パッドが摩耗しても、スラリーの供給、排出機能を維持するための溝(例えばI字形やI字溝に近い台形)を組み合わせることで解消できるのではないかと考えた。 The present inventors use a polishing pad (for example, a V shape) having an inclined surface at a specific angle at the boundary between the polishing surface and the groove for increasing the polishing rate and improving in-plane uniformity, and a polishing pad. Accordingly, even if the polishing pad was worn out, it was thought that it could be eliminated by combining grooves for maintaining the slurry supply and discharge functions (for example, I-shaped or trapezoids close to I-shaped grooves).
 そこで、本発明は、上記課題を解決するために、次のような手段を採用する。即ち、本発明の研磨パッドは、少なくとも研磨層を有する化学機械研磨用の研磨パッドであって、前記研磨層の研磨面に第1の溝および第2の溝を有し、前記第1および第2の溝は、それぞれの溝幅方向の縁端部に前記研磨面と連続する側面を有し、前記第1の溝は、少なくとも一方の溝幅方向の縁端部において、前記研磨面と該研磨面に連続する側面とのなす角度が105度より大きく150度以下であり、前記第2の溝は、溝幅方向の2つの縁端部の両方において、前記研磨面と該研磨面に連続する側面とのなす角度が60度以上105度以下であることを特徴とする。 Therefore, the present invention employs the following means in order to solve the above problems. That is, the polishing pad of the present invention is a polishing pad for chemical mechanical polishing having at least a polishing layer, and has a first groove and a second groove on a polishing surface of the polishing layer. Each of the two grooves has a side surface continuous with the polishing surface at an edge portion in each groove width direction, and the first groove has at least one of the edge surfaces in the groove width direction and the polishing surface. The angle formed by the side surface continuous with the polishing surface is greater than 105 degrees and 150 degrees or less, and the second groove is continuous with the polishing surface and the polishing surface at both of two edge portions in the groove width direction. The angle formed with the side surface is 60 degrees or more and 105 degrees or less.
 本発明により、高い研磨レートと良好な面内均一性を保ちながら、研磨パッドの使用につれて研磨パッドが摩耗し、スラリーの供給、排出機能が低減しても、研磨欠陥が増加することの無い研磨パッドを提供することができる。 According to the present invention, while maintaining a high polishing rate and good in-plane uniformity, the polishing pad wears as the polishing pad is used, and polishing without increasing polishing defects even if the slurry supply and discharge functions are reduced. A pad can be provided.
図1Aは、本発明の一実施の形態に係る研磨パッドが有する第1の溝の断面形状(第1例)を示す図である。FIG. 1A is a diagram showing a cross-sectional shape (first example) of a first groove of a polishing pad according to an embodiment of the present invention. 図1Bは、本発明の一実施の形態に係る研磨パッドが有する第1の溝の断面形状(第2例)を示す図である。FIG. 1B is a diagram showing a cross-sectional shape (second example) of the first groove of the polishing pad according to the embodiment of the present invention. 図1Cは、本発明の一実施の形態に係る研磨パッドが有する第1の溝の断面形状(第3例)を示す図である。FIG. 1C is a diagram showing a cross-sectional shape (third example) of the first groove of the polishing pad according to the embodiment of the present invention. 図1Dは、本発明の一実施の形態に係る研磨パッドが有する第1の溝の断面形状(第4例)を示す図である。FIG. 1D is a diagram showing a cross-sectional shape (fourth example) of the first groove of the polishing pad according to the embodiment of the present invention. 図2Aは、本発明の一実施の形態に係る研磨パッドが有する第2の溝の断面形状(第1例)を示す図である。FIG. 2A is a diagram showing a cross-sectional shape (first example) of a second groove of the polishing pad according to the embodiment of the present invention. 図2Bは、本発明の一実施の形態に係る研磨パッドが有する第2の溝の断面形状(第2例)を示す図である。FIG. 2B is a diagram showing a cross-sectional shape (second example) of the second groove of the polishing pad according to the embodiment of the present invention. 図2Cは、本発明の一実施の形態に係る研磨パッドが有する第2の溝の断面形状(第3例)を示す図である。FIG. 2C is a diagram showing a cross-sectional shape (third example) of the second groove of the polishing pad according to the embodiment of the present invention. 図2Dは、本発明の一実施の形態に係る研磨パッドが有する第2の溝の断面形状(第4例)を示す図である。FIG. 2D is a diagram showing a cross-sectional shape (fourth example) of the second groove of the polishing pad according to the embodiment of the present invention. 図2Eは、本発明の一実施の形態に係る研磨パッドが有する第2の溝の断面形状(第5例)を示す図である。FIG. 2E is a diagram showing a cross-sectional shape (fifth example) of the second groove of the polishing pad according to the embodiment of the present invention. 図2Fは、本発明の一実施の形態に係る研磨パッドが有する第2の溝の断面形状(第6例)を示す図である。FIG. 2F is a diagram showing a cross-sectional shape (sixth example) of the second groove of the polishing pad according to the embodiment of the present invention. 図3Aは、第1および第2の溝からなる単位ユニットの構成例(第1例)示す断面図である。FIG. 3A is a cross-sectional view illustrating a configuration example (first example) of a unit unit including first and second grooves. 図3Bは、第1および第2の溝からなる単位ユニットの構成例(第2例)示す断面図である。FIG. 3B is a cross-sectional view illustrating a configuration example (second example) of a unit unit including first and second grooves. 図3Cは、第1および第2の溝からなる単位ユニットの構成例(第3例)示す断面図である。FIG. 3C is a cross-sectional view illustrating a configuration example (third example) of the unit unit including the first and second grooves. 図3Dは、第1および第2の溝からなる単位ユニットの構成例(第4例)示す断面図である。FIG. 3D is a cross-sectional view illustrating a configuration example (fourth example) of a unit unit including first and second grooves. 図3Eは、第1および第2の溝からなる単位ユニットの構成例(第5例)示す断面図である。FIG. 3E is a cross-sectional view illustrating a configuration example (fifth example) of a unit unit including first and second grooves. 図3Fは、第1および第2の溝からなる単位ユニットの構成例(第6例)示す断面図である。FIG. 3F is a cross-sectional view illustrating a configuration example (sixth example) of the unit unit including the first and second grooves. 図3Gは、第1および第2の溝からなる単位ユニットの構成例(第7例)示す断面図である。FIG. 3G is a cross-sectional view illustrating a configuration example (seventh example) of the unit unit including the first and second grooves. 図3Hは、第1および第2の溝からなる単位ユニットの構成例(第8例)示す断面図である。FIG. 3H is a cross-sectional view illustrating a configuration example (eighth example) of the unit unit including the first and second grooves. 図3Iは、第1および第2の溝からなる単位ユニットの構成例(第9例)示す断面図である。FIG. 3I is a cross-sectional view illustrating a configuration example (ninth example) of a unit unit including the first and second grooves. 図4は、本発明の一実施の形態に係る研磨パッドの研磨面における第1の溝の配置例を模式的に示す図である。FIG. 4 is a diagram schematically showing an arrangement example of the first grooves on the polishing surface of the polishing pad according to the embodiment of the present invention.
 以下、本発明を実施するための形態を説明する。
 本発明の研磨パッドは少なくとも研磨層を有する研磨パッドであって、研磨層の研磨面に溝A(第1の溝)および溝B(第2の溝)を有する。溝Aおよび溝Bは、それぞれの溝幅方向の縁端部に研磨面と連続する側面を有する。溝Aは、少なくとも一方の溝幅方向の縁端部において、研磨面と該研磨面に連続する側面とのなす角度が105度より大きく150度以下である。溝Bは、2つの溝幅方向の縁端部の両方において、研磨面と該研磨面に連続する側面とのなす角度が60度以上105度以下である。
Hereinafter, modes for carrying out the present invention will be described.
The polishing pad of the present invention is a polishing pad having at least a polishing layer, and has a groove A (first groove) and a groove B (second groove) on the polishing surface of the polishing layer. The groove A and the groove B have side surfaces that are continuous with the polishing surface at the edge portions in the groove width direction. In the groove A, at least one edge in the groove width direction, the angle formed by the polishing surface and the side surface continuous with the polishing surface is greater than 105 degrees and 150 degrees or less. In the groove B, the angle formed between the polishing surface and the side surface continuous with the polishing surface is 60 degrees or more and 105 degrees or less at both edge portions in the two groove width directions.
 溝Aが少なくとも一方の溝幅方向の縁端部において、研磨面と該研磨面に連続する側面とのなす角度が105度より大きく150度以下であることにより、ウェハーと研磨パッドの間で吸引力が働き、研磨レートが上昇すると考えられる。また、吸引力が働くことでウェハー面内に均一に研磨パッドが接触する効果も伴い、ウェハーの研磨レートに高い面内均一性を与えると考えられる。 At least one edge of the groove A in the groove width direction has an angle between the polishing surface and the side surface continuous with the polishing surface that is greater than 105 degrees and less than or equal to 150 degrees, so that suction is performed between the wafer and the polishing pad. It is thought that the power works and the polishing rate increases. Further, it is considered that the suction force acts to bring the polishing pad into uniform contact with the wafer surface, thereby providing high in-plane uniformity to the wafer polishing rate.
 研磨面と該研磨面に連続する側面とのなす角度は、大きすぎると研磨パッドの表面積が低減し、また、溝の断面積が大きくなりすぎるため、スラリーが排出過多となり、研磨レートの低下を招く。一方、小さすぎると傾斜する溝側面が有する吸引効果が発現しない。このため、研磨面と該研磨面に連続する側面とのなす角度は、105度より大きく150度以下であることが必要であり、110度以上であることが好ましく、115度以上であることがより好ましく、120度以上であることがさらに好ましい。 If the angle formed between the polishing surface and the side surface continuous with the polishing surface is too large, the surface area of the polishing pad is reduced, and the cross-sectional area of the groove is too large, so that the slurry is excessively discharged and the polishing rate is reduced. Invite. On the other hand, if it is too small, the suction effect of the inclined groove side surface does not appear. For this reason, the angle formed between the polishing surface and the side surface continuous with the polishing surface must be greater than 105 degrees and 150 degrees or less, preferably 110 degrees or more, and preferably 115 degrees or more. More preferably, it is 120 degrees or more.
 溝Aは底面を有していても構わない。底面とは、研磨面に連続する側面に対して研磨面とは逆側に連続する面であって、対向するもう一方の側面と接続する面である。なお、底面の形状は特に限定されるものではない。 The groove A may have a bottom surface. The bottom surface is a surface continuous to the side opposite to the polishing surface with respect to the side surface continuous to the polishing surface, and is a surface connected to the opposite side surface. Note that the shape of the bottom surface is not particularly limited.
 図1A~図1Dは、溝Aの断面形状の具体例を示す図である。
 図1Aに示す溝A101は、V字形の断面形状を有する。溝A101は、溝幅方向の縁端部において研磨面1にそれぞれ連続する2つの側面2を有する。図1Aに示す場合、研磨面と該研磨面に連続する側面とのなす角度θAは溝幅方向の2つの縁端部において互いに等しく、その値は上述したように105度より大きく150度以下である。
 図1Bに示す溝A102は、2つの側面2の間に略U字形の底面3を有する。
 図1Cに示す溝A103は、台形の断面形状を有しており、2つの側面2の間に研磨面1と平行な底面4を有する。
 図1Dに示す溝A104は、2つの側面2の間に研磨面1と直交する方向に穿設された凹部5を有しており、その底面は研磨面1と平行である。
1A to 1D are diagrams showing specific examples of the cross-sectional shape of the groove A. FIG.
A groove A101 shown in FIG. 1A has a V-shaped cross-sectional shape. The groove A101 has two side surfaces 2 each continuous with the polishing surface 1 at the edge in the groove width direction. In the case shown in FIG. 1A, the angle θ A formed by the polishing surface and the side surface continuous with the polishing surface is equal to each other at the two edge portions in the groove width direction, and the value is larger than 105 degrees and not larger than 150 degrees as described above. It is.
The groove A102 shown in FIG. 1B has a substantially U-shaped bottom surface 3 between two side surfaces 2.
A groove A103 shown in FIG. 1C has a trapezoidal cross-sectional shape, and has a bottom surface 4 parallel to the polishing surface 1 between two side surfaces 2.
A groove A104 shown in FIG. 1D has a recess 5 formed between two side surfaces 2 in a direction perpendicular to the polishing surface 1, and the bottom surface thereof is parallel to the polishing surface 1.
 なお、溝Aにおいて研磨面に連続する側面については、研磨パッドが摩耗しても、縁端部において研磨面とのなす角度が105度より大きく150度以下に維持できれば、直線だけでなく、曲線、折れ線、波線あるいはそれらの組み合わせでも良い。 In addition, as for the side surface that is continuous with the polishing surface in the groove A, not only a straight line but also a curved line can be maintained if the angle formed with the polishing surface at the edge portion is greater than 105 degrees and 150 degrees or less even when the polishing pad is worn. A broken line, a wavy line, or a combination thereof may be used.
 ここで、研磨パッドを構成する溝Aは1種類である必要はない。例えば、少なくとも一方の溝幅方向の縁端部において、研磨面と該研磨面に連続する側面とのなす角度の少なくとも片方が105度より大きく150度以下であるような複数の異なる断面形状を有する溝を組み合わせることによって研磨パッドを構成することも可能である。なお、面内均一性の観点からは1種類の溝Aによって研磨パッドを構成する方がより好ましい。 Here, the groove A constituting the polishing pad is not necessarily one type. For example, at least one of the edge portions in the groove width direction has a plurality of different cross-sectional shapes such that at least one of the angle formed between the polishing surface and the side surface continuous with the polishing surface is greater than 105 degrees and less than 150 degrees. It is also possible to constitute a polishing pad by combining grooves. From the viewpoint of in-plane uniformity, it is more preferable to configure the polishing pad with one type of groove A.
 研磨パッドは研磨に際し、金属或いはセラミックの台座にダイヤモンドを配したコンディショナーを用いることによってパッド表面の目立てを行うコンディショニングが不可欠である。コンディショニングを行うことで、研磨パッドの表面は研磨に適した凹凸形状を保ち、安定的な研磨が実施可能となる。しかし、コンディショニングによって研磨層は研削され、研磨を進めるに従って溝が減少する。溝の断面積が低減すると、スラリーの供給・排出のバランスが悪化し、研磨レートの低下や欠陥の増加などの悪影響を及ぼす場合がある。 When polishing a polishing pad, it is essential to condition the pad surface using a conditioner with diamonds on a metal or ceramic base. By performing conditioning, the surface of the polishing pad can be maintained in a concavo-convex shape suitable for polishing, and stable polishing can be performed. However, the polishing layer is ground by conditioning, and the number of grooves decreases as the polishing progresses. When the cross-sectional area of the groove is reduced, the supply / discharge balance of the slurry is deteriorated, which may have adverse effects such as a decrease in polishing rate and an increase in defects.
 例えば、溝の断面形状がV字のみ場合、研磨初期は十分なスラリーの供給、排出機能を有するが、研磨が進行して溝の断面積が低減した研磨パッド寿命終期の場合、スラリーの供給・排出が十分に実施されず、欠陥の増加や、ウェハーが研磨パッドに吸着するなどの不具合が生じる場合がある。 For example, when the groove cross-sectional shape is only V-shaped, it has a sufficient slurry supply and discharge function at the initial stage of polishing. In some cases, the discharge is not performed sufficiently, and defects such as an increase in defects and a wafer adsorbing to the polishing pad may occur.
 前記の側面を有する溝Aのみが、パッド表面全面に配されている場合、研磨パッド寿命終期で断面積が低減して、研磨レートの低下や欠陥が増加するなどの不具合が生じる場合があるが、スラリーの供給・排出を担う溝Bを備えることで、高い研磨レートと面内均一性を保ち、研磨パッド寿命終期まで安定的な研磨ができると考えられる。 When only the groove A having the above-mentioned side surface is disposed on the entire pad surface, the cross-sectional area may decrease at the end of the polishing pad life, resulting in problems such as a decrease in polishing rate and an increase in defects. By providing the groove B for supplying and discharging the slurry, it is considered that a high polishing rate and in-plane uniformity can be maintained and stable polishing can be performed until the end of the polishing pad life.
 従って溝Bでは、溝の形状を安定化させるためには、研磨面と「溝Bの研磨面と連続する側面」とのなす角度のいずれもが60度以上105度以下であることが必要であり、80度以上であることがより好ましく、85度以上であることがさらに好ましい。また、100度以下であることがより好ましく、95度以下であることがさらに好ましい。 Therefore, in order to stabilize the shape of the groove in the groove B, it is necessary that both the angle formed by the polishing surface and the “side surface continuous with the polishing surface of the groove B” be 60 degrees or more and 105 degrees or less. Yes, more preferably 80 degrees or more, and still more preferably 85 degrees or more. Further, it is more preferably 100 degrees or less, and further preferably 95 degrees or less.
 溝Bは底面を有することが好ましい。なお、溝Bにおいても底面の形状は特に限定されるものではない。 The groove B preferably has a bottom surface. Note that the shape of the bottom surface of the groove B is not particularly limited.
 図2A~図2Fは、溝Bの断面形状の具体例を示す図である。
 図2Aに示す溝B201は、矩形の断面形状を有する。溝B201は、溝幅方向の縁端部において研磨面1にそれぞれ連続する2つの側面2を有する。図2Aに示す場合、研磨面と該研磨面に連続する側面とのなす角度θBは溝幅方向の2つの縁端部において互いに等しく、その値は90度をなす。このように、溝B201は矩形断面形状を有しており、底面6は研磨面1と平行である。
 図2Bに示す溝B202は、2つの側面2の間に略U字形の底面7を有する。
 図2Cに示す溝B203は、2つの側面2の間に幅を狭めて穿設された凹部8を有しており、その底面は研磨面1と平行である。
 図2Dに示す溝B204は、2つの側面2にそれぞれ連続して形成され、内周側に傾斜するテーパ状の斜面9と、2つの斜面9の間に形成される略U字形の底面10とを有する。
 図2Eに示す溝B205は、2つの側面2にそれぞれ連続して形成され、内周側に傾斜するテーパ状の斜面11と、2つの斜面11の間に形成されるV字形の底面12とを有する。
 図2Fに示す溝B206は、2つの側面13の間に研磨面1と平行な底面14を有する。溝B206において、研磨面1と該研磨面1に連続する側面2との角度θB’は鋭角である。
2A to 2F are diagrams showing specific examples of the cross-sectional shape of the groove B. FIG.
A groove B201 shown in FIG. 2A has a rectangular cross-sectional shape. The groove B201 has two side surfaces 2 that are respectively continuous with the polishing surface 1 at the edge in the groove width direction. In the case shown in FIG. 2A, the angle θ B formed between the polishing surface and the side surface continuous to the polishing surface is equal to each other at the two edge portions in the groove width direction, and the value is 90 degrees. Thus, the groove B201 has a rectangular cross-sectional shape, and the bottom surface 6 is parallel to the polishing surface 1.
A groove B202 shown in FIG. 2B has a substantially U-shaped bottom surface 7 between two side surfaces 2.
A groove B203 shown in FIG. 2C has a concave portion 8 formed with a narrow width between two side surfaces 2, and the bottom surface thereof is parallel to the polishing surface 1.
A groove B204 shown in FIG. 2D is formed continuously on each of the two side surfaces 2, and has a tapered inclined surface 9 inclined to the inner peripheral side, and a substantially U-shaped bottom surface 10 formed between the two inclined surfaces 9. Have
A groove B205 shown in FIG. 2E is formed continuously on each of the two side surfaces 2, and includes a tapered inclined surface 11 inclined to the inner peripheral side and a V-shaped bottom surface 12 formed between the two inclined surfaces 11. Have.
The groove B206 shown in FIG. 2F has a bottom surface 14 parallel to the polishing surface 1 between the two side surfaces 13. In the groove B206, the angle θ B ′ between the polishing surface 1 and the side surface 2 continuous to the polishing surface 1 is an acute angle.
 なお、溝Bにおいて研磨面に連続する側面については、研磨パッドが摩耗しても、縁端部において研磨面とのなす角度が60度以上105度以下に維持できれば、直線だけでなく、曲線、折れ線、複数の屈曲点を有する直線、波線あるいはそれらの組み合わせでも良い。 In addition, as for the side surface continuous with the polishing surface in the groove B, not only a straight line but also a curve, as long as the angle between the polishing pad and the polishing surface at the edge can be maintained at 60 ° or more and 105 ° or less. A broken line, a straight line having a plurality of bending points, a wavy line, or a combination thereof may be used.
 ここで、研磨パッドを構成する溝Bは、1種類の溝の場合である必要はなく、複数の異なる断面形状を有する溝を組み合わせることによって研磨パッドを構成することも可能である。なお、面内均一性の観点からは1種類の溝の場合が好ましい。 Here, the groove B constituting the polishing pad does not have to be a single type of groove, and the polishing pad can be constituted by combining grooves having a plurality of different cross-sectional shapes. From the viewpoint of in-plane uniformity, one type of groove is preferable.
 研磨面に形成される溝は、研磨面の面積あたりに形成される溝の面積率で規定する。研磨面に形成される溝は、単位ユニットあたりの溝面積率が5%以上50%以下であることが好ましい。特に、単位ユニットあたりの溝面積率の下限が10%以上であることが好ましく、15%以上であることがさらに好ましい。また、単位ユニットあたりの溝面積率の上限が45%以下であることがより好ましく、40%以下であることがさらに好ましい。 The groove formed on the polished surface is defined by the area ratio of the groove formed per area of the polished surface. The groove formed on the polished surface preferably has a groove area ratio per unit unit of 5% to 50%. In particular, the lower limit of the groove area ratio per unit unit is preferably 10% or more, and more preferably 15% or more. Further, the upper limit of the groove area ratio per unit unit is more preferably 45% or less, and further preferably 40% or less.
 単位ユニットとは互いに平行に並べられる溝Aと溝Bとの組み合わせによって形成される単位であり、単位ユニットが繰り返し研磨面に形成されることで、研磨面全面に溝が形成される。 The unit unit is a unit formed by a combination of the groove A and the groove B arranged in parallel to each other, and the unit unit is repeatedly formed on the polishing surface, whereby a groove is formed on the entire polishing surface.
 図3A~図3Iは、溝Aおよび溝Bからなる代表的な単位ユニットの構成例を示す図である。
 図3Aに示す単位ユニット301は、1本の溝Aと、隣接する3本の溝Bとの組み合わせ(配列パターン:ABBB)からなる。
 図3Bに示す単位ユニット302は、1本の溝Aと、隣接する2本の溝Bとの組み合わせ(配列パターン:ABB)からなる。
 図3Cに示す単位ユニット303は、隣接する2本の溝Aと、隣接する3本の溝Bとの組み合わせ(配列パターン:AABBB)からなる。
 図3Dに示す単位ユニット304は、互いに隣接する1本の溝Aおよび1本の溝B(配列パターン:AB)からなる。
 図3Eに示す単位ユニット305は、隣接する2本の溝Aと、隣接する2本の溝Bとの組み合わせ(配列パターン:AABB)からなる。
 図3Fに示す単位ユニット306は、隣接する3本の溝Aと、隣接する3本の溝Bとの組み合わせ(配列パターン:AAABBB)からなる。
 図3Gに示す単位ユニット307は、隣接する3本の溝Aと、隣接する2本の溝Bとの組み合わせ(配列パターン:AAABB)からなる。
 図3Hに示す単位ユニット308は、隣接する2本の溝Aと、1本の溝Bとの組み合わせ(配列パターン:AAB)からなる。
 図3Iに示す単位ユニット309は、隣接する3本の溝Aと、1本の溝Bとの組み合わせ(配列パターン:AAAB)からなる。
3A to 3I are diagrams showing a configuration example of a typical unit unit including the groove A and the groove B. FIG.
The unit unit 301 shown in FIG. 3A is composed of a combination of one groove A and three adjacent grooves B (array pattern: ABBB).
The unit unit 302 shown in FIG. 3B is a combination of one groove A and two adjacent grooves B (array pattern: ABB).
The unit unit 303 shown in FIG. 3C is a combination of two adjacent grooves A and three adjacent grooves B (array pattern: AABBBB).
The unit unit 304 shown in FIG. 3D includes one groove A and one groove B (array pattern: AB) adjacent to each other.
A unit unit 305 shown in FIG. 3E is formed by a combination of two adjacent grooves A and two adjacent grooves B (array pattern: AABB).
A unit 306 shown in FIG. 3F is formed by a combination of three adjacent grooves A and three adjacent grooves B (array pattern: AAABBB).
The unit 307 shown in FIG. 3G is a combination of three adjacent grooves A and two adjacent grooves B (array pattern: AAAB).
A unit unit 308 shown in FIG. 3H is a combination of two adjacent grooves A and one groove B (array pattern: AAB).
The unit unit 309 shown in FIG. 3I is composed of a combination of three adjacent grooves A and one groove B (array pattern: AAAB).
 一方、溝面積あたりの溝Aの面積占有率とは、研磨面上に形成されている溝の面積あたりの溝Aの面積の割合であり、研磨面に形成される溝の面積あたりの溝Aの面積占有率は30%以上90%以下であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。また、溝面積あたりの溝Aの面積占有率は、80%以下であることがより好ましく、70%以下であることがさらに好ましい。 On the other hand, the area occupation ratio of the groove A per groove area is a ratio of the area of the groove A per area of the groove formed on the polishing surface, and the groove A per area of the groove formed on the polishing surface. Is preferably 30% or more and 90% or less, more preferably 40% or more, and further preferably 50% or more. Further, the area occupation ratio of the groove A per groove area is more preferably 80% or less, and further preferably 70% or less.
 研磨パッドの研磨層表面には、ハイドロプレーン現象を抑える為やウェハーとパッドの吸いつきを防止する為に、格子形状、ディンプル形状、スパイラル形状、同心円形状等、通常の研磨パッドがとり得る溝(グルーブ)を設けてもよく、これらの組み合わせも好ましく用いられるが、特に格子形状が好ましい。格子形状とは、線を直角に碁盤目に組み合わせた形状である。格子形状では、縦方向および横方向の溝が等間隔の場合、縦方向の溝の間隔が横方向の溝の間隔より狭い場合、横方向の溝の間隔が縦方向の溝の間隔より狭い場合など、複数の場合が考えられる。 On the polishing layer surface of the polishing pad, grooves that can be taken by normal polishing pads such as lattice shape, dimple shape, spiral shape, concentric circle shape, etc. to suppress hydroplane phenomenon and to prevent the wafer and pad from sticking ( Grooves) may be provided, and combinations thereof are also preferably used, but a lattice shape is particularly preferable. The lattice shape is a shape in which lines are combined at right angles to a grid. In the lattice shape, when the vertical and horizontal grooves are equally spaced, when the vertical groove interval is narrower than the horizontal groove interval, or when the horizontal groove interval is narrower than the vertical groove interval Multiple cases are possible.
 研磨パッドの研磨面表面に形成される溝Aは、前述の通り高い研磨レートと良好な面内均一性を与えるが、寿命終期の断面積の低減に伴うスラリーの供給および排出のバランスが悪化し、欠陥の増加に繋がる。その為、研磨面に形成される溝のうち、研磨面全体に形成される溝Aの溝長さの総計は、研磨面に形成される溝の溝長さ総計の10%以上90%以下であることが好ましく、20%以上であることがより好ましく、25%以上であることがさらに好ましく、30%以上であることが一層好ましく、35%以上であることが特に好ましい。また、研磨面に形成される溝のうち溝Aの溝長さの総計は、80%以下であることがより好ましく、70%以下であることがさらに好ましく、60%以下であることが一層好ましく、55%以下であることが特に好ましい。 The groove A formed on the polishing surface of the polishing pad provides a high polishing rate and good in-plane uniformity as described above, but the balance between supply and discharge of slurry accompanying the reduction of the cross-sectional area at the end of life deteriorates. Lead to an increase in defects. Therefore, of the grooves formed on the polishing surface, the total length of the grooves A formed on the entire polishing surface is 10% or more and 90% or less of the total groove length of the grooves formed on the polishing surface. Preferably, it is 20% or more, more preferably 25% or more, still more preferably 30% or more, and particularly preferably 35% or more. Further, the total length of the grooves A among the grooves formed on the polished surface is more preferably 80% or less, further preferably 70% or less, and further preferably 60% or less. Is particularly preferably 55% or less.
 研磨面に形成される溝Aの溝長さの総計が全ての溝の溝長さの総計に対して占める割合が前述の範囲の場合、ウェハーと研磨パッドの間で吸引力が働き、研磨レートが上昇する効果を発現する。また、研磨パッドの研磨面表面に形成される溝の形成方法において、溝Aを研磨パッドの中央に集中するように形成し、溝Bを残りの部分に形成することも可能である。研磨面が円形をなす研磨パッドの場合、溝Aは、研磨パッドの中心を通過して互いに直交する2本の直線を含む領域であって2本の直線の少なくとも一方からの距離が研磨パッドの半径の70%以下である領域に形成されていることが好ましく、60%以下である領域に形成されていればより好ましく、50%以下である領域に形成されていればさらに好ましく、40%以下である領域に形成されていれば特に好ましい。 When the ratio of the total groove length of the grooves A formed on the polishing surface to the total groove length of all the grooves is within the above range, a suction force acts between the wafer and the polishing pad, and the polishing rate Expresses the effect of rising. Further, in the method for forming a groove formed on the polishing surface of the polishing pad, it is possible to form the groove A so as to be concentrated at the center of the polishing pad and form the groove B in the remaining portion. In the case of a polishing pad having a circular polishing surface, the groove A is a region including two straight lines that pass through the center of the polishing pad and are orthogonal to each other, and the distance from at least one of the two straight lines is that of the polishing pad. It is preferably formed in a region that is 70% or less of the radius, more preferably if it is formed in a region that is 60% or less, further preferably if formed in a region that is 50% or less, and 40% or less. It is particularly preferable if it is formed in a region.
 図4は、研磨パッドの研磨面における溝Aの配置例を模式的に示す図である。図4に示す研磨パッド401において、円形をなす研磨面402には、溝A403(太線で記載)が、研磨面402の中心Oを通過する2本の直線L1、Lを含む領域であって2本の直線の少なくとも一方からの距離の最小値が半径rの1/3(約33%)以下である領域に形成されている。なお、図4に示す破線は、溝B404を示している。このように、溝の形状としてXY格子形状を適用する場合、1方向にのみ溝A403を集中させるよりも、直交する2つの方向(X方向とY方向)に溝A403を分散させたほうがより好ましい。 FIG. 4 is a diagram schematically showing an arrangement example of the grooves A on the polishing surface of the polishing pad. In the polishing pad 401 shown in FIG. 4, the groove A403 (indicated by a thick line) is an area including two straight lines L 1 and L 2 passing through the center O of the polishing surface 402 on the circular polishing surface 402. The minimum distance from at least one of the two straight lines is 1/3 (about 33%) or less of the radius r. In addition, the broken line shown in FIG. 4 has shown groove | channel B404. Thus, when the XY lattice shape is applied as the groove shape, it is more preferable to disperse the grooves A403 in two orthogonal directions (X direction and Y direction) than to concentrate the grooves A403 in only one direction. .
 溝Aと溝Bが規則的に配列されて形成される場合、例えば、図3A~図3Hのいずれかに示すような単位ユニットをもとに研磨パッドを構成することができる。ただし、溝の組み合わせとして全体の溝の本数に対する溝Aの本数の割合は例示の限りではない。 When the grooves A and B are regularly arranged, for example, a polishing pad can be configured based on a unit unit as shown in any of FIGS. 3A to 3H. However, the ratio of the number of grooves A to the total number of grooves as a combination of grooves is not limited to the example.
 溝Aおよび溝Bの溝幅は、スラリーの供給および排出が可能な断面積を有することが必要なため、0.1mm以上10mm以下であることが好ましく、0.3mm以上であることがより好ましく、0.5mm以上であることがさらに好ましい。また、溝Aおよび溝Bの溝幅は、8mm以下であることがより好ましく、5mm以下であることがさらに好ましい。 The groove widths of the groove A and the groove B are preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more, because it is necessary to have a cross-sectional area capable of supplying and discharging the slurry. More preferably, it is 0.5 mm or more. Further, the groove width of the groove A and the groove B is more preferably 8 mm or less, and further preferably 5 mm or less.
 溝Aおよび溝Bの溝深さは、スラリーの供給、排出および十分な寿命を確保する必要があるため、0.2mm以上4mm以下であることが好ましく、0.3mm以上であることがより好ましく、0.4mm以上であることがさらに好ましい。また、溝Aおよび溝Bの溝深さは、3mm以下であることがより好ましく、2mm以下であることがさらに好ましい。 The groove depths of the groove A and the groove B are preferably 0.2 mm or more and 4 mm or less, more preferably 0.3 mm or more, because it is necessary to ensure supply and discharge of slurry and a sufficient life. More preferably, it is 0.4 mm or more. Further, the groove depths of the groove A and the groove B are more preferably 3 mm or less, and further preferably 2 mm or less.
 研磨層の厚みは、研磨装置の定盤の上面から研磨ヘッドの下面までの距離より小さければよいため、4.0mm以下であることが好ましく、3.5mm以下であることがより好ましく、3.0mm以下であることがさらに好ましく、2.5mm以下であることが特に好ましい。 The thickness of the polishing layer is preferably 4.0 mm or less, more preferably 3.5 mm or less, as long as it is smaller than the distance from the upper surface of the surface plate of the polishing apparatus to the lower surface of the polishing head. It is more preferably 0 mm or less, and particularly preferably 2.5 mm or less.
 本発明において研磨パッドを構成する研磨層としては、マイクロゴムA硬度で70度以上であり、独立気泡を有する構造のものが、半導体、誘電/金属複合体および集積回路等において平坦面を形成するので好ましい。特に限定されないが、かかる構造体を形成する材料としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、ポリウレア、ポリアミド、ポリ塩化ビニル、ポリアセタール、ポリカーボネート、ポリメチルメタクリレート、ポリテトラフルオロエチレン、エポキシ樹脂、ABS樹脂、AS樹脂、フェノール樹脂、メラミン樹脂、“ネオプレン(登録商標)”ゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、シリコンゴム、フッ素ゴムおよびこれらを主成分とした樹脂等が挙げられる。これらを2種以上用いてもよい。このような樹脂においても、独立気泡径が比較的容易にコントロールできる点でポリウレタンを主成分とする素材がより好ましい。 In the present invention, the polishing layer constituting the polishing pad has a micro rubber A hardness of 70 degrees or more and a structure having closed cells to form a flat surface in a semiconductor, a dielectric / metal composite, an integrated circuit, or the like. Therefore, it is preferable. Although not particularly limited, materials for forming such a structure include polyethylene, polypropylene, polyester, polyurethane, polyurea, polyamide, polyvinyl chloride, polyacetal, polycarbonate, polymethyl methacrylate, polytetrafluoroethylene, epoxy resin, ABS resin, AS resin, phenol resin, melamine resin, “neoprene (registered trademark)” rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, silicon rubber, fluororubber, and resins mainly composed of these. Two or more of these may be used. Even in such a resin, a material mainly composed of polyurethane is more preferable in that the closed cell diameter can be controlled relatively easily.
 ポリウレタンとは、ポリイソシアネートの重付加反応または重合反応により合成される高分子である。ポリイソシアネートとして、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなど挙げることができるが、これに限定されるものではなく、これらを2種以上用いてもよい。ポリイソシアネートの反応相手として用いられる化合物は、含活性水素化合物、すなわち、二つ以上のポリヒドロキシ基、あるいはアミノ基含有化合物である。ポリヒドロキシ基含有化合物としてはポリオールが代表的であり、ポリエーテルポリオール、ポリテトラメチレンエーテルグリコール、エポキシ樹脂変性ポリオール、ポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、シリコーンポリオール等が挙げられる、これらを2種以上用いてもよい。硬度、気泡径および発泡倍率によって、ポリイソシアネートとポリオール、および触媒、発泡剤、整泡剤の組み合わせや最適量を決めることが好ましい。 Polyurethane is a polymer synthesized by polyaddition reaction or polymerization reaction of polyisocyanate. Examples of the polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate. However, the polyisocyanate is not limited thereto, and two or more of these may be used. The compound used as the reaction partner of the polyisocyanate is an active hydrogen-containing compound, that is, a compound containing two or more polyhydroxy groups or amino groups. The polyhydroxy group-containing compound is typically a polyol, and examples thereof include polyether polyol, polytetramethylene ether glycol, epoxy resin-modified polyol, polyester polyol, acrylic polyol, polybutadiene polyol, and silicone polyol. It may be used. It is preferable to determine the combination and optimum amount of polyisocyanate and polyol, catalyst, foaming agent, and foam stabilizer depending on the hardness, the cell diameter and the expansion ratio.
 これらのポリウレタン中への独立気泡の形成方法としては、ポリウレタン製造時における樹脂中への各種発泡剤の配合による化学発泡法が一般的であるが、機械的な撹拌により樹脂を発泡させたのち硬化させる方法も好ましく使用することができる。 As a method of forming closed cells in these polyurethanes, the chemical foaming method is generally used by blending various foaming agents into the resin during polyurethane production, but it is cured after foaming the resin by mechanical stirring. The method of making it can also be used preferably.
 独立気泡の平均気泡径は、パッド表面にスラリーを保持する観点から20μm以上が好ましく、30μm以上がより好ましい。一方、独立気泡の平均気泡径は、半導体基板の局所的凹凸の平坦性を確保する観点から150μm以下が好ましく、140μm以下がより好ましく、130μm以下が更に好ましい。なお、平均気泡径は、サンプル断面をキーエンス製VK-8500の超深度顕微鏡にて倍率400倍で観察したときに一視野内に観察される気泡のうち、視野端部に欠損した円状に観察される気泡を除く円状気泡に対し、画像処理装置にて断面面積から円相当径を測定し、数平均値を算出することにより求められる。 The average cell diameter of the closed cells is preferably 20 μm or more, more preferably 30 μm or more from the viewpoint of holding the slurry on the pad surface. On the other hand, the average cell diameter of closed cells is preferably 150 μm or less, more preferably 140 μm or less, and still more preferably 130 μm or less, from the viewpoint of ensuring the flatness of local irregularities of the semiconductor substrate. The average bubble diameter is observed in a circular shape that is missing at the edge of the field among the bubbles observed in one field of view when the sample cross section is observed at 400 times magnification with a VK-8500 ultra-deep microscope manufactured by Keyence. For the circular bubbles excluding the generated bubbles, the equivalent circle diameter is measured from the cross-sectional area by an image processing apparatus, and the number average value is calculated.
 本発明における研磨パッドの一実施態様として好ましいものは、ビニル化合物の重合体およびポリウレタンを含有し、独立気泡を有するパッドである。ビニル化合物からの重合体だけでは靭性と硬度を高めることはできるが、独立気泡を有する均質な研磨パッドを得ることが困難である。また、ポリウレタンは、硬度を高くすると脆くなる。ポリウレタン中にビニル化合物を含浸させることにより、独立気泡を含み、靭性と硬度の高い研磨パッドとすることができる。 A preferred embodiment of the polishing pad according to the present invention is a pad containing a polymer of a vinyl compound and polyurethane and having closed cells. Although the toughness and hardness can be increased only with the polymer from the vinyl compound, it is difficult to obtain a uniform polishing pad having closed cells. Polyurethane becomes brittle when its hardness is increased. By impregnating a polyurethane with a vinyl compound, a polishing pad containing closed cells and having high toughness and hardness can be obtained.
 ビニル化合物は、重合性の炭素-炭素二重結合を有する化合物である。具体的にはメチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、イソデシルメタクリレート、イソブチルメタクリレート、n-ラウリルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、グリシジルメタクリレート、エチレングリコールジメタクリレート、アクリル酸、メタクリル酸、フマル酸、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、フェニルマレイミド、シクロヘキシルマレイミド、イソプロピルマレイミド、アクリロニトリル、アクリルアミド、塩化ビニル、塩化ビニリデン、スチレン、α-メチルスチレン、ジビニルベンゼン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート等が挙げられる。なお、ビニル化合物として、これらを2種以上用いてもよい。 A vinyl compound is a compound having a polymerizable carbon-carbon double bond. Specifically, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, isobutyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate, 2 -Hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, acrylic acid, methacrylic acid, fumaric acid, dimethyl fumarate, diethyl fumarate, dipropyl fumarate, malein Acid, dimethyl maleate, diethyl maleate, dipropyl maleate Phenylmaleimide, cyclohexylmaleimide, isopropylmaleimide, acrylonitrile, acrylamide, vinyl chloride, vinylidene chloride, styrene, alpha-methyl styrene, divinylbenzene, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and the like. In addition, you may use 2 or more types of these as a vinyl compound.
 上述したビニル化合物の中で、CH=CRCOOR(R:メチル基またはエチル基、R:メチル基、エチル基、プロピル基またはブチル基)が好ましい。中でもメチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレートは、ポリウレタンへの独立気泡の形成が容易な点、モノマーの含浸性が良好な点、重合硬化が容易な点、重合硬化されたビニル化合物の重合体とポリウレタンを含有している発泡構造体の硬度が高く平坦化特性が良好な点で好ましい。 Among the vinyl compounds described above, CH 2 = CR 1 COOR 2 (R 1 : methyl group or ethyl group, R 2 : methyl group, ethyl group, propyl group or butyl group) is preferable. Among them, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and isobutyl methacrylate are easy to form closed cells in polyurethane, good in impregnation of monomers, easy to cure by polymerization, and vinyl compounds that have been cured by polymerization. The foamed structure containing the polymer and polyurethane is preferred because of its high hardness and good flattening characteristics.
 これらのビニル化合物の重合体を得るために好ましく用いられる重合開始剤としては、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)、アゾビスシクロヘキサンカルボニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、イソプロピルパーオキシジカーボネート等のラジカル開始剤を挙げることができる。これらを2種以上用いてもよい。また、酸化還元系の重合開始剤、例えばパーオキサイドとアミン類の組合せを使用することもできる。 Polymerization initiators preferably used for obtaining polymers of these vinyl compounds include azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), azobiscyclohexanecarbonitrile, benzoyl peroxide, lauroyl peroxide. Examples thereof include radical initiators such as oxide and isopropyl peroxydicarbonate. Two or more of these may be used. A redox polymerization initiator, for example, a combination of a peroxide and an amine can also be used.
 ビニル化合物のポリウレタン中への含浸方法としては、ビニル化合物が入った容器中にポリウレタンを浸漬する方法が挙げられる。なお、その際、含浸速度を速める目的で、加熱、加圧、減圧、撹拌、振盪、超音波振動等の処理を施すことも好ましい。 As a method for impregnating a polyurethane with a vinyl compound, a method of immersing the polyurethane in a container containing a vinyl compound can be mentioned. In this case, it is also preferable to perform treatments such as heating, pressurization, decompression, stirring, shaking, and ultrasonic vibration for the purpose of increasing the impregnation rate.
 ビニル化合物のポリウレタン中への含浸量は、使用するビニル化合物およびポリウレタンの種類や、製造される研磨パッドの特性により定められるべきものであり、一概にはいえないが、例えば、重合硬化した発泡構造体中のビニル化合物から得られる重合体とポリウレタンの含有比率が重量比で30/70~80/20であることが好ましい。ビニル化合物から得られる重合体の含有比率が重量比で30/70以上であれば、研磨パッドの硬度を十分高くすることができる。また、含有比率が80/20以下であれば、研磨層の弾力性を十分高くすることができる。 The amount of vinyl compound impregnated in polyurethane should be determined by the type of vinyl compound and polyurethane used and the characteristics of the polishing pad to be produced. The content ratio of the polymer obtained from the vinyl compound in the body and the polyurethane is preferably 30/70 to 80/20 by weight. If the content ratio of the polymer obtained from the vinyl compound is 30/70 or more by weight, the hardness of the polishing pad can be sufficiently increased. Further, if the content ratio is 80/20 or less, the elasticity of the polishing layer can be sufficiently increased.
 なお、ポリウレタン中の重合硬化したビニル化合物から得られる重合体およびポリウレタンの含有率は、熱分解ガスクロマトグラフィ/質量分析手法により測定することができる。本手法で使用できる装置としては、熱分解装置としてダブルショットパイロライザー“PY-2010D”(フロンティア・ラボ社製)を、ガスクロマトグラフ・質量分析装置として、“TRIO-1”(VG社製)を挙げることができる。 In addition, the polymer and polyurethane content obtained from the polymerized and cured vinyl compound in polyurethane can be measured by a pyrolysis gas chromatography / mass spectrometry method. As an apparatus that can be used in this method, a double shot pyrolyzer “PY-2010D” (manufactured by Frontier Laboratories) is used as a thermal decomposition apparatus, and “TRIO-1” (manufactured by VG) is used as a gas chromatograph / mass spectrometer. Can be mentioned.
 本発明において、半導体基板の局所的凹凸の平坦性の観点から、ビニル化合物から得られる重合体の相とポリウレタンの相とが分離されずに含有されていることが好ましい。このことを定量的に表現すると、「スポットの大きさが50μmの顕微赤外分光装置で研磨パッドを観察したときの赤外スペクトルが、ビニル化合物から重合される重合体の赤外吸収ピークとポリウレタンの赤外吸収ピークを有しており、色々な箇所の赤外スペクトルがほぼ同一である」、となる。ここで使用される顕微赤外分光装置として、SPECTRA-TEC社製のIRμsを挙げることができる。 In the present invention, from the viewpoint of flatness of local irregularities of the semiconductor substrate, it is preferable that the polymer phase obtained from the vinyl compound and the polyurethane phase are contained without being separated. This can be expressed quantitatively as follows: “The infrared spectrum when the polishing pad is observed with a micro-infrared spectrometer having a spot size of 50 μm is an infrared absorption peak of a polymer polymerized from a vinyl compound and polyurethane. And the infrared spectra at various locations are almost the same. " As a micro infrared spectroscope used here, IRμs manufactured by SPECTRA-TEC can be mentioned.
 研磨パッドは、特性改良を目的として、研磨剤、帯電防止剤、潤滑剤、安定剤、染料等の各種添加剤を含有してもよい。 The polishing pad may contain various additives such as an abrasive, an antistatic agent, a lubricant, a stabilizer, and a dye for the purpose of improving characteristics.
 本発明において、研磨層のマイクロゴムA硬度は、高分子計器(株)製マイクロゴム硬度計MD-1で評価した値をさす。マイクロゴムA硬度計MD-1は、従来の硬度計では測定が困難であった薄物・小物の硬さ測定を可能にするものである。マイクロゴムA硬度計MD-1は、スプリング式ゴム硬度計(デュロメータ)A型の約1/5の縮小モデルとして、設計・製作されているため、スプリング式硬度計A型の硬度と一致した測定値が得られる。通常の研磨パッドは、研磨層または硬質層の厚みが5mmを切るので、スプリング式ゴム硬度計A型では評価できない。そこで、本発明において、研磨層のマイクロゴムA硬度は、前記マイクロゴムMD-1で評価する。 In the present invention, the micro rubber A hardness of the polishing layer is a value evaluated by a micro rubber hardness meter MD-1 manufactured by Kobunshi Keiki Co., Ltd. The micro rubber A hardness meter MD-1 makes it possible to measure the hardness of thin and small objects, which are difficult to measure with a conventional hardness meter. The micro rubber A hardness tester MD-1 is designed and manufactured as a reduced model of about 1/5 of the spring type rubber hardness tester (durometer) A type. Therefore, the measurement conforms to the hardness of the spring type hardness tester A type. A value is obtained. A normal polishing pad cannot be evaluated with a spring type rubber hardness tester A type because the thickness of the polishing layer or hard layer is less than 5 mm. Therefore, in the present invention, the micro rubber A hardness of the polishing layer is evaluated by the micro rubber MD-1.
 本発明において、研磨層の硬度は、半導体基板の局所的凹凸の平坦性の観点から、マイクロゴムA硬度で70度以上が好ましく、80度以上がより好ましい。 In the present invention, the hardness of the polishing layer is preferably 70 degrees or more, more preferably 80 degrees or more in terms of micro rubber A hardness, from the viewpoint of the flatness of local irregularities of the semiconductor substrate.
 本発明において、研磨層の密度は、局所的な平坦性不良やグローバル段差を低減する観点から、0.3g/cm以上が好ましく、0.6g/cm以上がより好ましく、0.65g/cm以上がさらに好ましい。一方、研磨層の密度は、スクラッチを低減する観点から、1.1g/cm以下が好ましく、0.9g/cm以下がより好ましく、0.85g/cm以下がさらに好ましい。なお、本発明における研磨層の密度は、ハーバード型ピクノメーター(JIS R-3503基準)を用い、水を媒体に測定した値である。 In the present invention, the density of the polishing layer is preferably 0.3 g / cm 3 or more, more preferably 0.6 g / cm 3 or more, and 0.65 g / cm 3 from the viewpoint of reducing local flatness defects and global steps. More preferably, it is cm 3 or more. On the other hand, the density of the polishing layer, from the viewpoint of reducing scratches, preferably 1.1 g / cm 3 or less, more preferably 0.9g / cm 3, 0.85g / cm 3 or less is more preferred. The density of the polishing layer in the present invention is a value measured using a Harvard pycnometer (JIS R-3503 standard) and water as a medium.
 本発明における研磨パッドは、面内均一性を良好にする観点から、体積弾性率が40MPa以上でかつ引っ張り弾性率が1MPa以上20MPa以下のクッション層を有することが好ましい。体積弾性率は、あらかじめ体積を測定した被測定物に等方的な印加圧力を加えてその体積変化を測定し、この測定結果に基づいて、体積弾性率=印加圧力/(体積変化/元の体積)により算出される。本発明においては、23℃においてサンプルに0.04~0.14MPaの圧力を加えた時の体積弾性率を言う。 The polishing pad in the present invention preferably has a cushion layer having a bulk modulus of 40 MPa or more and a tensile modulus of 1 MPa or more and 20 MPa or less from the viewpoint of improving in-plane uniformity. The volume elastic modulus is measured by applying an isotropic applied pressure to an object whose volume has been measured in advance and measuring the volume change. Based on the measurement result, the volume elastic modulus = applied pressure / (volume change / original Volume). In the present invention, it means the bulk modulus when a pressure of 0.04 to 0.14 MPa is applied to a sample at 23 ° C.
 本発明における体積弾性率は、以下の方法により測定する。内容積が約40mLのステンレス製の測定セルに、試料片と23℃の水を入れ、容量0.5mLの硼珪酸ガラス製メスピペット(最小目盛り0.005mL)を装着する。別に、圧力容器としてポリ塩化ビニル樹脂製の管(内径90mmφ×2000mm、肉厚5mm)を使用して、その中に上記試料片を入れた測定セルを入れ、圧力Pで窒素加圧し、体積変化V1を測定する。続いて、試料片を測定セルに入れないで、圧力Pで窒素加圧し、体積変化V0を測定する。圧力PをΔV/Vi=(V1-V0)/Viで除した値を試料の体積弾性率として算出する。 The bulk modulus in the present invention is measured by the following method. A sample piece and water at 23 ° C. are placed in a stainless steel measuring cell having an internal volume of about 40 mL, and a 0.5 mL borosilicate glass pipette (minimum scale 0.005 mL) is attached. Separately, a tube made of polyvinyl chloride resin (inner diameter 90 mmφ × 2000 mm, wall thickness 5 mm) is used as a pressure vessel, and the measurement cell in which the above sample piece is placed is placed therein. V1 is measured. Subsequently, without putting the sample piece into the measurement cell, nitrogen is pressurized with the pressure P and the volume change V0 is measured. A value obtained by dividing the pressure P by ΔV / Vi = (V1−V0) / Vi is calculated as the bulk modulus of the sample.
 本発明において、クッション層の体積弾性率は40MPa以上が好ましい。体積弾性率を40MPa以上とすることにより、半導体基板全面の面内均一性を向上させることができる。また、研磨パッドの表面と裏面を貫通する孔に流れ込むスラリーや水がクッション層に含浸しにくく、クッション特性を維持できる。 In the present invention, the volume elastic modulus of the cushion layer is preferably 40 MPa or more. By setting the bulk modulus to 40 MPa or more, the in-plane uniformity of the entire surface of the semiconductor substrate can be improved. Moreover, it is difficult to impregnate the cushion layer with slurry or water that flows into the holes penetrating the front and back surfaces of the polishing pad, and cushion characteristics can be maintained.
 本発明における引張り弾性率は、ダンベル形状にして引張り応力を加え、引張り歪み(=引張り長さ変化/元の長さ)が0.01から0.03までの範囲で引張り応力を測定し、この測定結果に基づいて、引張り弾性率=((引張り歪みが0.03時の引張り応力)-(引張り歪みが0.01時の引張り応力))/0.02で算出される。引張り応力の測定装置として、オリエンテック社製テンシロン万能試験機RTM-100などが上げられる。引張り応力の測定条件は、試験速度が5cm/分であり、試験片形状が幅5mmで試料長50mmのダンベル形状である。 In the present invention, the tensile modulus is measured by applying a tensile stress in a dumbbell shape and measuring the tensile stress in a range of tensile strain (= change in tensile length / original length) from 0.01 to 0.03. Based on the measurement results, the tensile elastic modulus = ((tensile stress when the tensile strain is 0.03) − (tensile stress when the tensile strain is 0.01)) / 0.02. An example of a tensile stress measuring device is Tensilon Universal Tester RTM-100 manufactured by Orientec. The measurement conditions of the tensile stress are a dumbbell shape in which the test speed is 5 cm / min, the test piece shape is 5 mm wide, and the sample length is 50 mm.
 本発明において、クッション層の引張り弾性率は、半導体基板全面の面内均一性の観点から、1MPa以上が好ましく、1.2MPa以上がより好ましい。また、クッション層の引張り弾性率は、20MPa以下が好ましく、10MPa以下がより好ましい。 In the present invention, the tensile elastic modulus of the cushion layer is preferably 1 MPa or more, and more preferably 1.2 MPa or more, from the viewpoint of in-plane uniformity over the entire surface of the semiconductor substrate. Further, the tensile elastic modulus of the cushion layer is preferably 20 MPa or less, and more preferably 10 MPa or less.
 この様なクッション層としては、天然ゴム、ニトリルゴム、“ネオプレン(登録商標)”ゴム、ポリブタジエンゴム、熱硬化ポリウレタンゴム、熱可塑性ポリウレタンゴム、シリコンゴムなどの無発泡のエラストマを挙げることができるが、これらに限定されるわけではない。クッション層の厚みは、0.1~2mmの範囲が好ましい。クッション層の厚みは、半導体基板全面の面内均一性の観点からは、0.2mm以上が好ましく、0.3mm以上がより好ましい。また、クッション層の厚みは、局所平坦性の観点からは2mm以下が好ましく、1.75mm以下がより好ましい。 Examples of such a cushion layer include non-foamed elastomers such as natural rubber, nitrile rubber, “neoprene (registered trademark)” rubber, polybutadiene rubber, thermosetting polyurethane rubber, thermoplastic polyurethane rubber, and silicon rubber. However, it is not limited to these. The thickness of the cushion layer is preferably in the range of 0.1 to 2 mm. The thickness of the cushion layer is preferably 0.2 mm or more and more preferably 0.3 mm or more from the viewpoint of in-plane uniformity over the entire surface of the semiconductor substrate. In addition, the thickness of the cushion layer is preferably 2 mm or less, more preferably 1.75 mm or less from the viewpoint of local flatness.
 研磨層とクッション層を貼り合わせる手段としては、例えば両面テープあるいは接着剤が挙げられる。 Examples of means for attaching the polishing layer and the cushion layer include a double-sided tape or an adhesive.
 両面テープは、不織布やフィルムなどの基材の両面に接着層を設けた一般的な構成を有する。また、本発明の研磨パッドは、クッションシートのプラテンと接着する面に両面テープが設けられていてもよい。このような両面テープとしては、上述と同様に基材の両面に接着層を設けた一般的な構成を有するものを用いることができる。基材としては、例えば不織布やフィルム等が挙げられる。研磨パッドの使用後のプラテンからの剥離を考慮すれば、基材にフィルムを用いることが好ましい。 The double-sided tape has a general configuration in which an adhesive layer is provided on both sides of a base material such as a nonwoven fabric or a film. Moreover, the polishing pad of this invention may be provided with the double-sided tape on the surface which adhere | attaches the platen of a cushion sheet. As such a double-sided tape, a tape having a general configuration in which an adhesive layer is provided on both surfaces of a substrate as described above can be used. As a base material, a nonwoven fabric, a film, etc. are mentioned, for example. In consideration of peeling from the platen after use of the polishing pad, it is preferable to use a film for the substrate.
 また、接着層の組成としては、例えば、ゴム系接着剤やアクリル系接着剤等が挙げられる。金属イオンの含有量を考慮すると、アクリル系接着剤は、金属イオン含有量が少ないため好ましい。また、クッションシートとプラテンは組成が異なることが多く、両面テープの各接着層の組成を異なるものとし、クッションシート、及びプラテンへの接着力を適正化することも可能である。 Also, examples of the composition of the adhesive layer include rubber adhesives and acrylic adhesives. Considering the content of metal ions, an acrylic adhesive is preferable because the metal ion content is low. Also, the cushion sheet and the platen often have different compositions, and the composition of each adhesive layer of the double-sided tape can be made different to optimize the adhesive force to the cushion sheet and the platen.
 本発明において研磨される被研磨材としては、例えば半導体ウェハーの上に形成された絶縁層または金属配線の表面が挙げられる。絶縁層としては、金属配線の層間絶縁膜や金属配線の下層絶縁膜や素子分離に使用されるシャロートレンチアイソレーションを挙げることができる。金属配線としては、アルミ、タングステン、銅等を挙げることができ、構造的にダマシン、デュアルダマシン、プラグなどがある。銅を金属配線とした場合には、窒化珪素等のバリアメタルも研磨対象となる。絶縁膜は、現在酸化シリコンが主流であるが、低誘電率絶縁膜も用いられる。被研磨材は、半導体ウェハー以外に磁気ヘッド、ハードディスク、サファイヤ等の研磨に用いることもできる。 Examples of the material to be polished in the present invention include the surface of an insulating layer or metal wiring formed on a semiconductor wafer. Examples of the insulating layer include an interlayer insulating film of metal wiring, a lower insulating film of metal wiring, and shallow trench isolation used for element isolation. Examples of the metal wiring include aluminum, tungsten, and copper, and structurally include damascene, dual damascene, and plug. When copper is used as the metal wiring, a barrier metal such as silicon nitride is also subject to polishing. As the insulating film, silicon oxide is currently mainstream, but a low dielectric constant insulating film is also used. The material to be polished can be used for polishing a magnetic head, hard disk, sapphire, etc. in addition to a semiconductor wafer.
 本発明の研磨方法は、ガラス、半導体、誘電/金属複合体および集積回路等に平坦面を形成するために好適に使用される。 The polishing method of the present invention is suitably used for forming a flat surface on glass, semiconductors, dielectric / metal composites, integrated circuits and the like.
 以下、実施例によって本発明の詳細を説明する。しかし、本実施例により本発明が限定して解釈されるわけではない。なお、測定は以下のとおりに行った。 Hereinafter, the details of the present invention will be described by way of examples. However, the present invention is not limited to the examples. The measurement was performed as follows.
<傾斜角度測定>
 研磨層表面に溝を形成した研磨パッドを溝深さ方向にスライスし、溝の断面をキーエンス製VK-8500の超深度顕微鏡にて観察して研磨面と研磨面と連続する側面の成す角度を測定した。研磨パッドが円形の場合は、研磨パッド中心から50mm、150mmおよび250mmの位置から最も近い溝を測定し、この3点の平均を傾斜角度とした。また、研磨パッドが円形でない場合は、シートの対角線の交点から一方の端部に向けて50mm、150mmおよび250mmの位置から最も近い溝を測定し、この3点の平均を傾斜角度とした。
<Inclination angle measurement>
A polishing pad with grooves formed on the polishing layer surface is sliced in the groove depth direction, and the cross section of the grooves is observed with an ultra-deep microscope of Keyence VK-8500 to determine the angle between the polishing surface and the side surface continuous with the polishing surface. It was measured. When the polishing pad was circular, the groove closest to the position of 50 mm, 150 mm and 250 mm from the center of the polishing pad was measured, and the average of these three points was taken as the inclination angle. When the polishing pad was not circular, the groove closest to the 50 mm, 150 mm, and 250 mm positions was measured from the intersection of the diagonal lines of the sheet toward one end, and the average of these three points was taken as the inclination angle.
<平均研磨レート測定および面内均一性>
 アプライドマテリアルズ(株)製のMirra 3400を用いて、所定の研磨条件で終点検出を行いながら研磨を行った。研磨特性としての平均研磨レートは、8インチウェハーの最外周10mmを除外した研磨レート(nm/分)を測定した。研磨レートの標準偏差を、研磨レートの最大値と最小値の差で除した値を面内均一性とした。
<Average polishing rate measurement and in-plane uniformity>
Polishing was performed while detecting the end point under predetermined polishing conditions using a Mirror 3400 manufactured by Applied Materials. As the average polishing rate as the polishing characteristics, the polishing rate (nm / min) excluding the outermost periphery 10 mm of the 8-inch wafer was measured. The value obtained by dividing the standard deviation of the polishing rate by the difference between the maximum value and the minimum value of the polishing rate was defined as in-plane uniformity.
<欠陥評価>
 エンハンス処理として、研磨したウェハーを0.5重量%のふっ酸に10分間浸漬して水洗後、1.0重量%のアンモニア溶液と1.0重量%の過酸化水素水の混合溶液にて洗浄し、水洗乾燥した。洗浄したウェハーについて、KLA-Tencor(株)製のSP-1を用いて、0.155μm以上のディフェクト数を計数した。
<Defect evaluation>
As an enhancement treatment, the polished wafer is immersed in 0.5 wt% hydrofluoric acid for 10 minutes, washed with water, and then washed with a mixed solution of 1.0 wt% ammonia solution and 1.0 wt% hydrogen peroxide solution. And washed with water and dried. For the cleaned wafer, the number of defects of 0.155 μm or more was counted using SP-1 manufactured by KLA-Tencor.
<パッド研削速度>
 研磨前後の溝深さをミツトヨ(株)製デプスゲージ(デジマチックタイプ)を用いて測定し、溝の減少した値を評価中のディスク使用時間で除した値を、パッド研削速度とした。
<Pad grinding speed>
The groove depth before and after polishing was measured by using a depth gauge (Digimatic type) manufactured by Mitutoyo Corporation, and the value obtained by dividing the groove reduction value by the disk usage time during evaluation was taken as the pad grinding speed.
<溝Aの本数の割合>
 研磨面表面に溝を形成した研磨パッドを溝と並行にスライスし、溝Aおよび溝Bの本数を計測した。さらに、溝Aと溝Bの配列(断面図:図3)および溝Aと溝Bの配列例(パターン図:図4)から、溝Aと溝Bの本数の総和にて、溝Aの本数を除して溝Aの本数の割合とした。以下に算出式を記載した。
 溝Aの本数の割合=溝Aの数/(溝Aの数+溝Bの数)×100(%)
<Ratio of the number of grooves A>
A polishing pad having grooves formed on the surface of the polishing surface was sliced in parallel with the grooves, and the number of grooves A and grooves B was measured. Furthermore, from the arrangement of the grooves A and B (cross-sectional view: FIG. 3) and the arrangement example of the grooves A and B (pattern diagram: FIG. 4), the total number of the grooves A and B is the number of the grooves A. Was taken as the ratio of the number of grooves A. The calculation formula is described below.
Ratio of number of grooves A = number of grooves A / (number of grooves A + number of grooves B) × 100 (%)
 以下、実施例1~11、比較例1~3を説明する。 Hereinafter, Examples 1 to 11 and Comparative Examples 1 to 3 will be described.
(実施例1)
 ポリプロピレングリコール30重量部と、ジフェニルメタンジイソシアネート40重量部と、水0.5重量部とトリエチルアミン0.3重量部と、シリコン整泡剤1.7重量部と、オクチル酸スズ0.09重量部とをRIM成型機で混合して、金型に吐出して加圧成型を行い、厚み2.6mmの独立気泡の発泡ポリウレタンシート(マイクロゴムA硬度:42度、密度:0.76g/cm、独立気泡の平均気泡径:34μm)を作製した。
Example 1
30 parts by weight of polypropylene glycol, 40 parts by weight of diphenylmethane diisocyanate, 0.5 parts by weight of water, 0.3 parts by weight of triethylamine, 1.7 parts by weight of a silicon foam stabilizer, and 0.09 parts by weight of tin octylate Mixing with a RIM molding machine, discharging into a mold and performing pressure molding, a foamed polyurethane sheet having a thickness of 2.6 mm (micro rubber A hardness: 42 degrees, density: 0.76 g / cm 3 , independent An average bubble diameter of bubbles was 34 μm).
 前記発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.2重量部を添加したメチルメタクリレートに60分間浸漬した。次に前記発泡ポリウレタンシートを、ポリビニルアルコール“CP”(重合度:約500、ナカライテスク(株)製)15重量部、エチルアルコール(試薬特級、片山化学(株)製)35重量部、水50重量部からなる溶液中に浸漬後乾燥することにより、前記発泡ポリウレタンシート表層をポリビニルアルコールで被覆した。 The foamed polyurethane sheet was immersed in methyl methacrylate to which 0.2 part by weight of azobisisobutyronitrile was added for 60 minutes. Next, 15 parts by weight of polyvinyl alcohol “CP” (degree of polymerization: about 500, manufactured by Nacalai Tesque), 35 parts by weight of ethyl alcohol (special grade reagent, manufactured by Katayama Chemical), water 50 The foamed polyurethane sheet surface layer was coated with polyvinyl alcohol by being immersed in a solution consisting of parts by weight and then dried.
 次に前記発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、65℃で6時間、120℃で3時間加熱することにより重合硬化させた。ガラス板間から離型し水洗した後、50℃で真空乾燥を行った。このようにして得られた硬質発泡シートを厚み2.00mmにスライス加工することにより研磨層を作製した。研磨層中のメチルメタクリレート含有率は66重量%であった。また研磨層のD硬度は54度、密度は0.81g/cm、独立気泡の平均気泡径は45μmであった。 Next, the foamed polyurethane sheet was sandwiched between two glass plates via a vinyl chloride gasket and polymerized and cured by heating at 65 ° C. for 6 hours and at 120 ° C. for 3 hours. After releasing from between the glass plates and washing with water, vacuum drying was performed at 50 ° C. A polishing layer was prepared by slicing the hard foam sheet thus obtained to a thickness of 2.00 mm. The methyl methacrylate content in the polishing layer was 66% by weight. The D hardness of the polishing layer was 54 degrees, the density was 0.81 g / cm 3 , and the average cell diameter of closed cells was 45 μm.
 得られた硬質発泡シートを両面研削して、厚みが2mmの研磨層を作製した。 The obtained hard foam sheet was ground on both sides to prepare a polishing layer having a thickness of 2 mm.
 上記方法により得られた研磨層に、クッション層として日本マタイ(株)製の熱可塑性ポリウレタンのマイクロゴムA硬度90度の0.3mm品(体積弾性率=65MPa、引っ張り弾性率=4MPa)を、ロールコーターを用いて三井化学ポリウレタン(株)製MA-6203接着層を介して積層し、さらに裏面に裏面テープとして積水化学工業(株)製両面テープ5604TDMを貼り合わせた。 To the polishing layer obtained by the above method, a 0.3 mm product (volume elastic modulus = 65 MPa, tensile elastic modulus = 4 MPa) of 90 degree hardness of micro rubber A of thermoplastic polyurethane manufactured by Nippon Matai Co., Ltd. as a cushion layer, Using a roll coater, lamination was performed through an MA-6203 adhesive layer manufactured by Mitsui Chemicals Polyurethane Co., Ltd., and a double-sided tape 5604TDM manufactured by Sekisui Chemical Co., Ltd. was bonded to the back surface as a back tape.
 溝幅3.0mm、溝ピッチ15mm、傾斜角度θAが135度の断面形状V字、溝深さ1.5mmの溝Aと、溝幅1.5mm、溝ピッチ15mm、溝深さ1.5mmの矩形断面(傾斜角度θB=90度)の溝Bとを交互に繰り返し(以下、パターンAという)、XY格子状に形成して研磨パッドとした。溝Aの単位ユニットあたりの溝面積率は24.9%、溝面積あたりの溝Aの面積占有率は73.7%であった。 Groove A with a groove width of 3.0 mm, a groove pitch of 15 mm, a cross-sectional shape V-shaped with a tilt angle θ A of 135 degrees, a groove depth of 1.5 mm, a groove width of 1.5 mm, a groove pitch of 15 mm, and a groove depth of 1.5 mm The groove B having a rectangular cross section (inclination angle θ B = 90 degrees) was alternately repeated (hereinafter referred to as pattern A), and formed into an XY lattice shape to obtain a polishing pad. The groove area ratio per unit unit of the groove A was 24.9%, and the area occupation ratio of the groove A per groove area was 73.7%.
 上記方法により得られた研磨パッドを、研磨機(アプライドマテリアルズ(株)製“Mirra 3400”)の定盤に貼り付けた。酸化膜の8インチウェハーをリテナーリング圧力=41kPa(6psi)、インナーチューブ圧力=28kPa(4psi)、メンブレン圧力=28kPa(4psi)、プラテン回転数=76rpm、研磨ヘッド回転数=75rpmとし、スラリー(キャボット社製、SS-25)を150mL/分の流量で流し、Saesol製ドレッサーで荷重17.6N(4lbf)、研磨時間1分、研磨開始から30秒間インサイチュードレッシングをして100枚を研磨した。100枚目の酸化膜の平均研磨レートは202nm/分、面内均一性は11.8%であった。 The polishing pad obtained by the above method was attached to a surface plate of a polishing machine (“Mirra 3400” manufactured by Applied Materials Co., Ltd.). An 8-inch wafer of oxide film is set to retainer ring pressure = 41 kPa (6 psi), inner tube pressure = 28 kPa (4 psi), membrane pressure = 28 kPa (4 psi), platen rotation speed = 76 rpm, polishing head rotation speed = 75 rpm, and slurry (cabot SS-25) was supplied at a flow rate of 150 mL / min, and 100 sheets were polished with a Saesol dresser with a load of 17.6 N (4 lbf), a polishing time of 1 minute, and in-situ dressing for 30 seconds from the start of polishing. The average polishing rate of the 100th oxide film was 202 nm / min, and the in-plane uniformity was 11.8%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは331個と非常に良好であった。また、研磨中のパッド研削速度は1.01μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was very good at 331. The pad grinding rate during polishing was 1.01 μm / min.
(実施例2)
 研磨表面の溝を、溝幅3.0mm、溝ピッチ15mm、傾斜角度θAが135度のV字形断面、溝深さ1.5mmの溝Aと、溝幅1.5mm、溝ピッチ15mm、溝深さ1.5mmの矩形断面の溝Bとで構成し、溝A1本と溝B2本の組み合わせを繰り返して(以下、パターンBという)、研磨パッドの研磨面中心からパッド半径の全領域にわたってXY格子状に形成した以外は、実施例1と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は20.7%、溝面積あたりの溝Aの面積占有率は60.9%であった。平均研磨レートは197nm/分、面内均一性は9.0%であった。
(Example 2)
A groove on the polished surface is a V-shaped cross section having a groove width of 3.0 mm, a groove pitch of 15 mm, an inclination angle θ A of 135 degrees, a groove depth of 1.5 mm, a groove width of 1.5 mm, a groove pitch of 15 mm, and a groove. It is composed of a rectangular cross-section groove B having a depth of 1.5 mm, and a combination of one groove A and two grooves B (hereinafter referred to as pattern B) is repeated over the entire area of the pad radius from the center of the polishing surface of the polishing pad. Polishing was carried out in the same manner as in Example 1 except that a lattice shape was formed. The groove area ratio per unit unit of the groove A was 20.7%, and the area occupation ratio of the groove A per groove area was 60.9%. The average polishing rate was 197 nm / min, and the in-plane uniformity was 9.0%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは211個と良好であった。また、研磨中のパッド研削速度は1.21μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was as good as 211. The pad grinding rate during polishing was 1.21 μm / min.
(実施例3)
 研磨層表面に溝幅3.0mm、溝ピッチ15mm、傾斜角度θAが135度のV字形断面、溝深さ1.5mmの溝Aを、研磨面の中心を通過して互いに直交する2本の直線を含む領域であって、少なくとも一方の直線からの距離が研磨面の半径の32%以下の領域にXY格子状に形成し、溝幅1.5mm、溝ピッチ15mm、溝深さ1.5mmの矩形断面の溝Bを、直径からの距離が半径の32%を越えた領域にXY格子状に形成して研磨パッドとした(以下、パターンCという)以外は、実施例1と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は23.1%、溝面積あたりの溝Aの面積占有率は67.7%であった。溝の配置図を図4に示した。平均研磨レートは196nm/分、面内均一性は10.9%であった。
(Example 3)
Two grooves A having a groove width of 3.0 mm, a groove pitch of 15 mm, an inclination angle θ A of 135 degrees and a groove depth of 1.5 mm on the surface of the polishing layer passing through the center of the polishing surface and perpendicular to each other. Are formed in an XY lattice shape in a region where the distance from at least one of the straight lines is 32% or less of the radius of the polished surface, and the groove width is 1.5 mm, the groove pitch is 15 mm, and the groove depth is 1. A groove B having a rectangular cross section of 5 mm was formed in an XY lattice shape in a region where the distance from the diameter exceeded 32% of the radius to form a polishing pad (hereinafter referred to as pattern C), and was the same as in Example 1. And polished. The groove area ratio per unit unit of the groove A was 23.1%, and the area occupation ratio of the groove A per groove area was 67.7%. The layout of the grooves is shown in FIG. The average polishing rate was 196 nm / min, and the in-plane uniformity was 10.9%.
 研磨したウェハーについて前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは142個と非常に良好であった。また、研磨中のパッド研削速度は1.34μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was 142, which was very good. The pad grinding rate during polishing was 1.34 μm / min.
(実施例4)
 研磨層表面の溝Aの傾斜角度θAが120度の台形断面とした以外は実施例1と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は16.5%、溝面積あたりの溝Aの面積占有率は54.8%であった。平均研磨レートは199nm/分、面内均一性は6.0%であった。
(Example 4)
Polishing was performed in the same manner as in Example 1 except that the trapezoidal cross section with the inclination angle θ A of the groove A on the polishing layer surface being 120 degrees. The groove area ratio per unit unit of the groove A was 16.5%, and the area occupation ratio of the groove A per groove area was 54.8%. The average polishing rate was 199 nm / min, and the in-plane uniformity was 6.0%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは155個と非常に良好であった。また、研磨中のパッド研削速度は1.14μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was very good at 155. The pad grinding rate during polishing was 1.14 μm / min.
(実施例5)
 研磨層表面の溝Aの傾斜角度θAが123度の台形断面とした以外は実施例4と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は28.3%、溝面積あたりの溝Aの面積占有率は73.6%であった。平均研磨レートは203nm/分、面内均一性は8.4%であった。
(Example 5)
Polishing was performed in the same manner as in Example 4 except that the trapezoidal cross section with the inclination angle θ A of the groove A on the polishing layer surface being 123 degrees was used. The groove area ratio per unit unit of the groove A was 28.3%, and the area occupation ratio of the groove A per groove area was 73.6%. The average polishing rate was 203 nm / min, and the in-plane uniformity was 8.4%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは141個と非常に良好であった。また、研磨中のパッド研削速度は1.32μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, 141 defects were found to be very good. The pad grinding rate during polishing was 1.32 μm / min.
(実施例6)
 研磨層表面の溝Bの傾斜角度θBが85度の台形断面とした以外は実施例4と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は30.2%、溝面積あたりの溝Aの面積占有率は68.9%であった。平均研磨レートは201nm/分、面内均一性は9.1%であった。
(Example 6)
Polishing was performed in the same manner as in Example 4 except that the trapezoidal cross section with the inclination angle θ B of the groove B on the surface of the polishing layer was 85 degrees. The groove area ratio per unit unit of the groove A was 30.2%, and the area occupation ratio of the groove A per groove area was 68.9%. The average polishing rate was 201 nm / min, and the in-plane uniformity was 9.1%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは139個と非常に良好であった。また、研磨中のパッド研削速度は1.11μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was very good at 139. The pad grinding rate during polishing was 1.11 μm / min.
(実施例7)
 研磨層表面の溝Aを傾斜角度θAが120度のV字形断面、溝Bを傾斜角度θBが85度の台形断面とした以外は実施例3と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は16.5%、溝面積あたりの溝Aの面積占有率は54.8%であった。平均研磨レートは200nm/分、面内均一性は9.8%であった。
(Example 7)
Polishing was performed in the same manner as in Example 3 except that the groove A on the surface of the polishing layer had a V-shaped cross section with an inclination angle θ A of 120 degrees and the groove B had a trapezoidal cross section with an inclination angle θ B of 85 degrees. The groove area ratio per unit unit of the groove A was 16.5%, and the area occupation ratio of the groove A per groove area was 54.8%. The average polishing rate was 200 nm / min, and the in-plane uniformity was 9.8%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは211個と非常に良好であった。また、研磨中のパッド研削速度は1.33μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, 211 defects were found to be very good. The pad grinding rate during polishing was 1.33 μm / min.
(実施例8)
 研磨層表面の溝Aを傾斜角度θAが120度のV字形断面、溝Bを傾斜角度θBが95度の台形断面とした以外は実施例3と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は18.4%、溝面積あたりの溝Aの面積占有率は49.0%であった。平均研磨レートは209nm/分、面内均一性は10.1%であった。
(Example 8)
Polishing was performed in the same manner as in Example 3 except that the groove A on the surface of the polishing layer had a V-shaped cross section with an inclination angle θ A of 120 degrees, and the groove B had a trapezoidal cross section with an inclination angle θ B of 95 degrees. The groove area ratio per unit unit of the groove A was 18.4%, and the area occupation ratio of the groove A per groove area was 49.0%. The average polishing rate was 209 nm / min, and the in-plane uniformity was 10.1%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは109個と非常に良好であった。また、研磨中のパッド研削速度は1.30μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, 109 defects were found to be very good. The pad grinding rate during polishing was 1.30 μm / min.
(実施例9)
 研磨層表面の溝Aを傾斜角度θAが150度のV字形断面とした以外は実施例3と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は34.6%、溝面積あたりの溝Aの面積占有率は78.4%であった。平均研磨レートは200nm/分、面内均一性は9.9%であった。
Example 9
Polishing was performed in the same manner as in Example 3 except that the groove A on the surface of the polishing layer had a V-shaped cross section with an inclination angle θ A of 150 degrees. The groove area ratio per unit unit of the groove A was 34.6%, and the area occupation ratio of the groove A per groove area was 78.4%. The average polishing rate was 200 nm / min, and the in-plane uniformity was 9.9%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは111個と非常に良好であった。また、研磨中のパッド研削速度は1.41μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was 111, which was very good. The pad grinding rate during polishing was 1.41 μm / min.
(実施例10)
 研磨層表面の溝Aを傾斜角度θAが150度のV字形断面、溝Bを傾斜角度θBが85度の台形断面とした以外は実施例3と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は34.6%、溝面積あたりの溝Aの面積占有率は78.4%であった。平均研磨レートは206nm/分、面内均一性は10.0%であった。
(Example 10)
Polishing was performed in the same manner as in Example 3 except that the groove A on the surface of the polishing layer had a V-shaped cross section with an inclination angle θ A of 150 degrees, and the groove B had a trapezoidal cross section with an inclination angle θ B of 85 degrees. The groove area ratio per unit unit of the groove A was 34.6%, and the area occupation ratio of the groove A per groove area was 78.4%. The average polishing rate was 206 nm / min, and the in-plane uniformity was 10.0%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは153個と非常に良好であった。また、研磨中のパッド研削速度は1.44μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was very good at 153. The pad grinding rate during polishing was 1.44 μm / min.
(実施例11)
 研磨層表面の溝Aを傾斜角度θAが150度のV字形断面、溝Bを傾斜角度θBが95度の台形断面とした以外は実施例3と同様にして研磨した。溝Aの単位ユニットあたりの溝面積率は36.5%、溝面積あたりの溝Aの面積占有率は74.3%であった。平均研磨レートは200nm/分、面内均一性は10.1%であった。
(Example 11)
Polishing was performed in the same manner as in Example 3 except that the groove A on the surface of the polishing layer had a V-shaped cross section with an inclination angle θ A of 150 degrees and the groove B had a trapezoidal cross section with an inclination angle θ B of 95 degrees. The groove area ratio per unit unit of the groove A was 36.5%, and the area occupation ratio of the groove A per groove area was 74.3%. The average polishing rate was 200 nm / min, and the in-plane uniformity was 10.1%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは134個と非常に良好であった。また、研磨中のパッド研削速度は1.40μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, 134 defects were found to be very good. The pad grinding rate during polishing was 1.40 μm / min.
(比較例1)
 研磨層表面の溝を溝幅1.5mm、溝ピッチ15mm、溝深さ1.5mmの矩形断面のみとした以外は実施例1と同様にして研磨した。平均研磨レートは180nm/分、面内均一性は12.2%であった。
(Comparative Example 1)
Polishing was performed in the same manner as in Example 1 except that the groove on the surface of the polishing layer had only a rectangular cross section having a groove width of 1.5 mm, a groove pitch of 15 mm, and a groove depth of 1.5 mm. The average polishing rate was 180 nm / min, and the in-plane uniformity was 12.2%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは583個と良好であった。また、研磨中のパッド研削速度は1.13μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was as good as 583. The pad grinding rate during polishing was 1.13 μm / min.
(比較例2)
 研磨層表面の溝を、溝幅3.0mm、溝ピッチ15mm、溝深さ1.5mm、傾斜角度135度のV字形断面のみとした以外は実施例1と同様にして研磨した。平均研磨レートは217nm/分、面内均一性は21.1%であった。
(Comparative Example 2)
The groove on the surface of the polishing layer was polished in the same manner as in Example 1 except that only the V-shaped cross section having a groove width of 3.0 mm, a groove pitch of 15 mm, a groove depth of 1.5 mm, and an inclination angle of 135 degrees was used. The average polishing rate was 217 nm / min, and the in-plane uniformity was 21.1%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは297個と非常に良好であった。また、研磨中のパッド研削速度は1.73μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, the number of defects was very good at 297. The pad grinding rate during polishing was 1.73 μm / min.
(比較例3)
 研磨層を1.0mmとし表面の溝を、溝幅1.0mm、溝ピッチ15mm、溝深さ0.5mm、傾斜角度135度のV字形断面のみとした以外は実施例1と同様にして研磨した。平均研磨レートは205nm/分、面内均一性は18.3%であった。
(Comparative Example 3)
Polishing was performed in the same manner as in Example 1 except that the polishing layer was 1.0 mm, and the grooves on the surface were only a V-shaped cross section having a groove width of 1.0 mm, a groove pitch of 15 mm, a groove depth of 0.5 mm, and an inclination angle of 135 degrees. did. The average polishing rate was 205 nm / min, and the in-plane uniformity was 18.3%.
 研磨したウェハーについて、前記欠陥評価方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは1521個と多かった。また、研磨中のパッド研削速度は1.68μm/分であった。 When the polished wafer was counted for defects of 0.155 μm or more by the defect evaluation method, there were as many as 1521 defects. The pad grinding rate during polishing was 1.68 μm / min.
 以上説明した実施例1~11、比較例1~3で得られた結果を表1に示す。 Table 1 shows the results obtained in Examples 1 to 11 and Comparative Examples 1 to 3 described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1、402 研磨面
 2、13 側面
 3、4、6、7、8、10、12、14 底面
 5 凹部
 9、11、13 斜面
 101、102、103、104、403 溝A
 201、202、203、204、205、206、404 溝B
 301、302、303、304、305、306、307、308、309 単位ユニット
 401 研磨パッド
1, 402 Polishing surface 2, 13 Side surface 3, 4, 6, 7, 8, 10, 12, 14 Bottom surface 5 Recessed portion 9, 11, 13 Slope 101, 102, 103, 104, 403 Groove A
201, 202, 203, 204, 205, 206, 404 Groove B
301, 302, 303, 304, 305, 306, 307, 308, 309 Unit unit 401 Polishing pad

Claims (7)

  1.  少なくとも研磨層を有する化学機械研磨用の研磨パッドであって、
     前記研磨層の研磨面に第1の溝および第2の溝を有し、
     前記第1および第2の溝は、それぞれの溝幅方向の縁端部に前記研磨面と連続する側面を有し、
     前記第1の溝は、少なくとも一方の溝幅方向の縁端部において、前記研磨面と該研磨面に連続する側面とのなす角度が105度より大きく150度以下であり、
     前記第2の溝は、溝幅方向の2つの縁端部の両方において、前記研磨面と該研磨面に連続する側面とのなす角度が60度以上105度以下であることを特徴とする研磨パッド。
    A polishing pad for chemical mechanical polishing having at least a polishing layer,
    Having a first groove and a second groove on the polishing surface of the polishing layer;
    The first and second grooves have side surfaces that are continuous with the polishing surface at edge portions in the respective groove width directions,
    In the first groove, at least one edge in the groove width direction, an angle formed by the polishing surface and a side surface continuous with the polishing surface is greater than 105 degrees and 150 degrees or less.
    The polishing is characterized in that the second groove has an angle formed by the polishing surface and a side surface continuous to the polishing surface in both of two edge portions in the groove width direction of 60 degrees or more and 105 degrees or less. pad.
  2.  前記第2の溝が底面を有することを特徴とする請求項1に記載の研磨パッド。 The polishing pad according to claim 1, wherein the second groove has a bottom surface.
  3.  単位ユニットあたりの溝面積率が5%以上50%以下であり、かつ溝面積あたりの第1の溝の面積占有率が30%以上90%以下であることを特徴とする請求項2に記載の研磨パッド。 The groove area ratio per unit unit is 5% or more and 50% or less, and the area occupation ratio of the first groove per groove area is 30% or more and 90% or less. Polishing pad.
  4.  前記第1および第2の溝が格子状に形成されることを特徴とする請求項1~3のいずれかに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 3, wherein the first and second grooves are formed in a lattice shape.
  5.  前記研磨面に形成される前記第1の溝の溝長さの総計が、前記研磨面に形成される溝の溝長さの総計の10%以上90%以下であることを特徴とする請求項4に記載の研磨パッド。 The total groove length of the first groove formed on the polishing surface is 10% or more and 90% or less of the total groove length of the groove formed on the polishing surface. 5. The polishing pad according to 4.
  6.  前記研磨面は円形をなし、前記研磨面に形成される前記第1の溝が、前記研磨面の中心を通過して互いに直交する2本の直線を含む領域であって、前記2本の直線の少なくとも一方からの距離が前記研磨面の半径の70%以下の領域内に形成されていることを特徴とする請求項4または5に記載の研磨パッド。 The polishing surface is circular, and the first groove formed in the polishing surface is a region including two straight lines that pass through the center of the polishing surface and are orthogonal to each other, and the two straight lines 6. The polishing pad according to claim 4, wherein the polishing pad is formed in a region whose distance from at least one of the polishing surfaces is 70% or less of a radius of the polishing surface.
  7.  前記第1の溝は、溝幅方向の2つの両縁端部の両方において、前記研磨面と該研磨面に連続する側面とのなす角度が105度より大きく150度以下であることを特徴とする請求項4~6のいずれかに記載の研磨パッド。 The first groove is characterized in that an angle formed by the polishing surface and a side surface continuous to the polishing surface is greater than 105 degrees and 150 degrees or less at both of the two edge portions in the groove width direction. The polishing pad according to any one of claims 4 to 6.
PCT/JP2012/073538 2011-09-15 2012-09-13 Polishing pad WO2013039181A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201400614RA SG11201400614RA (en) 2011-09-15 2012-09-13 Polishing pad
KR1020147008470A KR20140062095A (en) 2011-09-15 2012-09-13 Polishing pad
CN201280044813.XA CN103782372A (en) 2011-09-15 2012-09-13 Polishing pad
US14/344,988 US20140378035A1 (en) 2011-09-15 2012-09-13 Polishing pad
EP12832538.8A EP2757578A4 (en) 2011-09-15 2012-09-13 Polishing pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011201350 2011-09-15
JP2011-201350 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039181A1 true WO2013039181A1 (en) 2013-03-21

Family

ID=47883398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073538 WO2013039181A1 (en) 2011-09-15 2012-09-13 Polishing pad

Country Status (8)

Country Link
US (1) US20140378035A1 (en)
EP (1) EP2757578A4 (en)
JP (1) JPWO2013039181A1 (en)
KR (1) KR20140062095A (en)
CN (1) CN103782372A (en)
SG (1) SG11201400614RA (en)
TW (1) TW201318766A (en)
WO (1) WO2013039181A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098480A (en) * 2017-12-05 2019-06-24 日本電気硝子株式会社 Polishing pad
JP2021502266A (en) * 2018-02-05 2021-01-28 エスケイ・シルトロン・カンパニー・リミテッド Polishing pad for wafer polishing equipment and its manufacturing method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648718A (en) * 2011-07-15 2014-03-19 东丽株式会社 Polishing pad
KR20140037891A (en) * 2011-07-15 2014-03-27 도레이 카부시키가이샤 Polishing pad
JP2016047566A (en) * 2014-08-27 2016-04-07 株式会社フジミインコーポレーテッド Polishing pad
CN104493689B (en) * 2014-12-16 2017-01-11 天津大学 Double-disc straight-groove grinding disc for surfaces of cylindrical parts
CN104493684B (en) * 2014-12-16 2016-10-05 天津大学 A kind of cylindrical component milling apparatus and workpiece propulsion plant thereof and Ginding process
US10875146B2 (en) * 2016-03-24 2020-12-29 Rohm And Haas Electronic Materials Cmp Holdings Debris-removal groove for CMP polishing pad
US10777418B2 (en) * 2017-06-14 2020-09-15 Rohm And Haas Electronic Materials Cmp Holdings, I Biased pulse CMP groove pattern
US10857647B2 (en) 2017-06-14 2020-12-08 Rohm And Haas Electronic Materials Cmp Holdings High-rate CMP polishing method
US10857648B2 (en) 2017-06-14 2020-12-08 Rohm And Haas Electronic Materials Cmp Holdings Trapezoidal CMP groove pattern
US10861702B2 (en) 2017-06-14 2020-12-08 Rohm And Haas Electronic Materials Cmp Holdings Controlled residence CMP polishing method
US10586708B2 (en) 2017-06-14 2020-03-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Uniform CMP polishing method
US11685013B2 (en) * 2018-01-24 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing pad for chemical mechanical planarization
US11878388B2 (en) * 2018-06-15 2024-01-23 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing pad, polishing apparatus and method of manufacturing semiconductor package using the same
CN113165141A (en) * 2018-11-29 2021-07-23 株式会社大辉 Polishing pad and method for manufacturing the same
US20220202258A1 (en) * 2020-12-30 2022-06-30 Shawn Gregory Matthews Cutting board with a narrow deep juice groove centered in a shallow wide juice groove
CN114043380B (en) * 2021-11-18 2022-11-29 北京烁科精微电子装备有限公司 Grinding pad and grinding device with same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286218A (en) * 1999-03-30 2000-10-13 Nikon Corp Polishing member, polishing equipment and polishing method
JP2001212752A (en) 2000-02-02 2001-08-07 Nikon Corp Polishing body, polishing device, semiconductor device manufacturing method and semiconductor device
JP2003511848A (en) * 1999-09-30 2003-03-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluid distribution fixed polishing polished pad
JP2004186392A (en) 2002-12-03 2004-07-02 Toshiba Ceramics Co Ltd Polishing cloth
JP2006165323A (en) * 2004-12-08 2006-06-22 Seiko Epson Corp Polishing cloth for cmp processing, cmp device, and method for manufacturing semiconductor device
JP2009082995A (en) * 2007-09-27 2009-04-23 Covalent Materials Corp Lapping polishing cloth, and method of lapping silicon electrode for plasma etching device
JP2010045306A (en) 2008-08-18 2010-02-25 Kuraray Co Ltd Polishing pad
JP2010528885A (en) * 2007-06-08 2010-08-26 アプライド マテリアルズ インコーポレイテッド Thin polishing pad with window and molding process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749714B1 (en) * 1999-03-30 2004-06-15 Nikon Corporation Polishing body, polisher, polishing method, and method for producing semiconductor device
KR100387954B1 (en) * 1999-10-12 2003-06-19 (주) 휴네텍 Conditioner for polishing pad and method of manufacturing the same
JP2006026844A (en) * 2004-07-20 2006-02-02 Fujitsu Ltd Polishing pad, polishing device provided with it and sticking device
US20070202780A1 (en) * 2006-02-24 2007-08-30 Chung-Ching Feng Polishing pad having a surface texture and method and apparatus for fabricating the same
US8002611B2 (en) * 2006-12-27 2011-08-23 Texas Instruments Incorporated Chemical mechanical polishing pad having improved groove pattern
TWM352127U (en) * 2008-08-29 2009-03-01 Bestac Advanced Material Co Ltd Polishing pad
JPWO2012111502A1 (en) * 2011-02-15 2014-07-03 東レ株式会社 Polishing pad
KR20140037891A (en) * 2011-07-15 2014-03-27 도레이 카부시키가이샤 Polishing pad
CN103648718A (en) * 2011-07-15 2014-03-19 东丽株式会社 Polishing pad
SG11201400637XA (en) * 2011-09-16 2014-05-29 Toray Industries Polishing pad

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286218A (en) * 1999-03-30 2000-10-13 Nikon Corp Polishing member, polishing equipment and polishing method
JP2003511848A (en) * 1999-09-30 2003-03-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluid distribution fixed polishing polished pad
JP2001212752A (en) 2000-02-02 2001-08-07 Nikon Corp Polishing body, polishing device, semiconductor device manufacturing method and semiconductor device
JP2004186392A (en) 2002-12-03 2004-07-02 Toshiba Ceramics Co Ltd Polishing cloth
JP2006165323A (en) * 2004-12-08 2006-06-22 Seiko Epson Corp Polishing cloth for cmp processing, cmp device, and method for manufacturing semiconductor device
JP2010528885A (en) * 2007-06-08 2010-08-26 アプライド マテリアルズ インコーポレイテッド Thin polishing pad with window and molding process
JP2009082995A (en) * 2007-09-27 2009-04-23 Covalent Materials Corp Lapping polishing cloth, and method of lapping silicon electrode for plasma etching device
JP2010045306A (en) 2008-08-18 2010-02-25 Kuraray Co Ltd Polishing pad

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757578A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098480A (en) * 2017-12-05 2019-06-24 日本電気硝子株式会社 Polishing pad
JP7087365B2 (en) 2017-12-05 2022-06-21 日本電気硝子株式会社 Polishing pad
JP2021502266A (en) * 2018-02-05 2021-01-28 エスケイ・シルトロン・カンパニー・リミテッド Polishing pad for wafer polishing equipment and its manufacturing method
US11534889B2 (en) 2018-02-05 2022-12-27 Sk Siltron Co., Ltd. Polishing pad for wafer polishing apparatus and manufacturing method therefor

Also Published As

Publication number Publication date
CN103782372A (en) 2014-05-07
KR20140062095A (en) 2014-05-22
TW201318766A (en) 2013-05-16
SG11201400614RA (en) 2014-09-26
JPWO2013039181A1 (en) 2015-03-26
EP2757578A1 (en) 2014-07-23
US20140378035A1 (en) 2014-12-25
EP2757578A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2013039181A1 (en) Polishing pad
WO2013039203A1 (en) Polishing pad
WO2012111502A1 (en) Polishing pad
WO2013011921A1 (en) Polishing pad
JP2006339570A (en) Polishing pad and polishing apparatus
JP2013018056A (en) Polishing pad
WO2013103142A1 (en) Polishing pad
JP2006339573A (en) Polishing pad and polishing unit
WO2013011922A1 (en) Polishing pad
WO2013129426A1 (en) Polishing pad
JP2006035367A (en) Polishing pad and polishing device
JP2004119657A (en) Grinding pad, grinding device and grinding method employing it
JP2015196234A (en) Abrasive pad
JP2011200984A (en) Polishing pad
JP5454153B2 (en) Polishing method and semiconductor device manufacturing method
JP2014188647A (en) Polishing pad
JP2007150337A (en) Polishing method
JP2007116194A (en) Polishing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012542716

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008470

Country of ref document: KR

Kind code of ref document: A