WO2009139219A1 - 空気流量検出器の故障判定装置および方法 - Google Patents

空気流量検出器の故障判定装置および方法 Download PDF

Info

Publication number
WO2009139219A1
WO2009139219A1 PCT/JP2009/054534 JP2009054534W WO2009139219A1 WO 2009139219 A1 WO2009139219 A1 WO 2009139219A1 JP 2009054534 W JP2009054534 W JP 2009054534W WO 2009139219 A1 WO2009139219 A1 WO 2009139219A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
flow rate
failure determination
intake
opening degree
Prior art date
Application number
PCT/JP2009/054534
Other languages
English (en)
French (fr)
Inventor
澄江 山口
五所 栄作
康次郎 堤
佐藤 大介
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP09746426A priority Critical patent/EP2290213A4/en
Publication of WO2009139219A1 publication Critical patent/WO2009139219A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the present invention relates to a failure determination device and method for an air flow detector that detects the flow rate of air flowing in an intake passage of an internal combustion engine.
  • the first calculated value of the air flow rate is calculated based on the air flow rate detected by the air flow rate detector and the engine speed, and the detected atmospheric pressure, intake pressure, intake air temperature, and engine speed are detected.
  • the second calculated value of the air flow rate is calculated based on the above, and the third calculated value of the air flow rate is calculated based on the throttle valve opening, the atmospheric pressure, the intake air temperature, and the engine speed.
  • the first to third calculated values are compared, and the air flow rate detector has failed when the first calculated value frequently differs greatly from the second and third calculated values. Is determined.
  • the conventional failure determination device uses the atmospheric pressure that does not directly represent the physical properties of the air in the intake passage to calculate the second and third calculated values. Calculation errors with respect to the flow rate are likely to occur. In that case, the accuracy of the failure determination of the air flow detector performed by comparing with the second and third calculated values decreases.
  • the present invention has been made to solve such problems, and maintains the calculation accuracy of the estimated value of the air flow rate to be compared with the detection value of the air flow rate detector, thereby improving the failure determination accuracy. It is an object of the present invention to provide a failure determination device and method for an air flow rate detector that can be improved.
  • a failure determination device for an air flow detector for detecting a flow rate of air flowing in an intake passage of an internal combustion engine, provided in the middle of the intake passage.
  • the air flow rate adjustment mechanism that adjusts the air flow rate by changing the degree of opening of the intake passage and the relationship between the pressure in the intake passage on the upstream side and the downstream side of the air flow rate adjustment mechanism Based on the result of comparison between the estimated value calculating means for calculating the estimated value, the calculated estimated value of the air flow rate, and the detected value of the air flow rate detected by the air flow rate detector, the failure of the air flow rate detector is determined.
  • a failure determination means an opening degree parameter detecting means for detecting an opening degree parameter indicating the opening degree of the intake passage, and an opening degree of the intake passage represented by the detected opening degree parameter.
  • the failure determination device for an air flow detector comprising a failure determination inhibiting means for inhibiting the failure determination of the air flow detector by the failure determining means.
  • the air flow rate adjusting mechanism is provided in the middle of the intake passage.
  • the inside of the intake passage is changed.
  • the flow rate of the flowing air is adjusted.
  • the opening degree of the intake passage is changed and the intake passage is throttled, a differential pressure is generated between the upstream side and the downstream side of the air flow rate adjusting mechanism.
  • the estimated value of the air flow rate is calculated using such a differential pressure according to the relationship between the pressure in the intake passage between the upstream side and the downstream side of the air flow rate adjustment mechanism. Therefore, this estimated value can be calculated appropriately. For this reason, it is possible to appropriately determine the failure of the air flow rate detector based on the comparison result between the calculated estimated value and the detected value of the air flow rate detected by the air flow rate detector.
  • the opening degree parameter of the air flow rate adjusting mechanism is detected, and when the opening degree of the intake passage expressed thereby is larger than a predetermined value, failure determination of the air flow rate detector is prohibited. Therefore, since the failure determination is performed only in a situation where the calculation accuracy of the estimated value of the air flow rate is estimated to be high, the determination accuracy of the failure determination can be improved.
  • the air flow rate adjustment mechanism has an adjustment valve for adjusting the air flow rate by changing the opening degree of the intake passage, and the opening degree parameter is an opening degree of the adjusting valve, and the failure determination prohibiting means Is characterized in that failure determination by the failure determination means is prohibited when the opening of the regulating valve is larger than a predetermined opening.
  • the opening degree of the intake passage is changed by the adjustment valve, the opening degree of the adjustment valve directly and well represents the opening degree of the intake passage. Therefore, the determination accuracy can be improved by prohibiting the failure determination of the air flow detector when the detected opening of the regulating valve is larger than the predetermined opening.
  • upstream intake pressure detection means for detecting the pressure in the intake passage in the vicinity of the air flow rate adjustment mechanism and upstream as upstream intake pressure, and in the intake passage in the vicinity of the air flow rate adjustment mechanism and in the downstream side
  • the failure determination prohibiting means includes: The failure determination by the failure determination means is prohibited when the pressure ratio is larger than a predetermined value.
  • the pressure ratio in the intake passage between the downstream side and the upstream side in the vicinity of the detected air flow rate adjustment mechanism is used as the opening degree parameter.
  • the larger the pressure ratio the smaller the differential pressure in the intake passage between the upstream side and the downstream side of the air flow rate adjusting mechanism. Therefore, the determination accuracy can be improved by prohibiting the failure determination of the air flow rate detector when the pressure ratio is larger than a predetermined value.
  • the flow rate of the air flowing in the intake passage which is adjusted by changing the degree of opening of the intake passage of the internal combustion engine by the air flow rate adjusting mechanism, is detected.
  • An air flow detector failure determination method an estimated value calculating step for calculating an estimated value of the air flow rate according to the relationship between the pressure in the intake passage between the upstream side and the downstream side of the air flow rate adjustment mechanism; Based on a comparison result between the calculated estimated value of the air flow rate and the detected value of the air flow rate detected by the air flow rate detector, a failure determination step for determining a failure of the air flow rate detector, and an opening degree of the intake passage are determined.
  • An opening degree parameter detecting step for detecting the opening degree parameter to be expressed, and when the opening degree of the intake passage represented by the detected opening degree parameter is larger than a predetermined value , Failure determination method of an air flow detector comprising a failure determination prohibition step of prohibiting the failure determination of the air flow detector according to the failure determination step, is provided.
  • the air flow rate adjustment mechanism has an adjustment valve for adjusting the air flow rate by changing the opening degree of the intake passage, and the opening degree parameter is an opening degree of the adjusting valve, and the failure determination prohibiting step Includes prohibiting failure determination in the failure determination step when the opening of the regulating valve is larger than a predetermined opening.
  • an upstream intake pressure detecting step for detecting the pressure in the intake passage on the upstream side in the vicinity of the air flow rate adjusting mechanism as an upstream intake pressure, and in the intake passage in the vicinity of the air flow rate adjusting mechanism and on the downstream side
  • a downstream intake pressure detecting step for detecting the pressure as the downstream intake pressure, and the opening degree parameter is a pressure ratio between the detected downstream intake pressure and the upstream intake pressure
  • the failure determination prohibiting step includes: In addition, when the pressure ratio is larger than a predetermined value, the failure determination by the failure determination step is prohibited.
  • FIG. 1 is a diagram schematically showing a failure determination device according to an embodiment of the present invention together with an internal combustion engine. It is a block diagram which shows schematic structure of a failure determination apparatus. It is a flowchart which shows the failure determination process of an airflow sensor. It is a subroutine which shows the determination process which determines satisfaction of the execution conditions of failure determination. It is a subroutine which shows the calculation process of the estimated value of an air flow rate. It is a figure which shows an example of the map used for calculation of a basic value. It is a figure which shows an example of the table used for calculation of an intake pressure correction term. It is a figure which shows an example of the table used for calculation of an intake air temperature correction term.
  • FIG. 1 shows a schematic configuration of an internal combustion engine 3 provided with an air flow sensor 22 as an air flow rate detector to which the present invention is applied
  • FIG. 2 shows a schematic configuration of a failure determination device 1.
  • the failure determination device 1 includes an ECU 2 (see FIG. 2).
  • the ECU 2 executes various controls of an internal combustion engine (hereinafter referred to as “engine”) 3 and also causes a failure of the air flow sensor 22 as will be described later. Execute the judgment process.
  • engine internal combustion engine
  • the engine 3 is a four-cylinder diesel engine mounted on a vehicle (not shown), and includes four sets of cylinders 3a and pistons 3b (only one set is shown), a crankshaft 3c, and the like.
  • the engine 3 is provided with a crank angle sensor 20 and a water temperature sensor 21.
  • the crank angle sensor 20 includes a magnet rotor and an MRE pickup, and outputs a CRK signal, which is a pulse signal, to the ECU 2 as the crankshaft 3c rotates.
  • the CRK signal is output every predetermined crank angle (for example, 30 °), and the ECU 2 calculates the engine speed (hereinafter referred to as “engine speed”) NE of the engine 3 based on the CRK signal.
  • the water temperature sensor 21 is composed of, for example, a thermistor, and detects the engine water temperature TW, which is the temperature of the cooling water circulating in the cylinder block of the engine 3, and outputs a detection signal representing it to the ECU 2.
  • each cylinder 3a of the engine 3 is provided with a fuel injection valve 4 (only one is shown), and each fuel injection valve 4 is electrically connected to the ECU 2.
  • the valve opening time and the valve opening timing of the fuel injection valve 4 are controlled by the ECU 2, thereby controlling the fuel injection amount and the fuel injection timing.
  • an airflow sensor 22 a turbocharger 6, an intake air temperature sensor 23, an upstream intake pressure sensor 24, an intake throttle valve mechanism 7, a downstream intake pressure sensor 25, and the like are sequentially arranged from the upstream side. Is provided.
  • the air flow sensor 22 is composed of a hot-wire air flow meter, detects the flow rate of air passing through an intake throttle valve 7a described later, and outputs a detection signal representing it to the ECU 2.
  • the air flow rate detection value GAIR is calculated as a mass flow rate.
  • the turbocharger 6 includes a compressor blade 6a provided on the downstream side of the air flow sensor 22 in the intake passage 5, a turbine blade 6b provided in the middle of the exhaust passage 9, and rotating integrally with the compressor blade 6a.
  • Variable vanes 6c (only two are shown), a vane actuator 6d for driving the variable vanes 6c, and the like.
  • the compressor blade 6 a integrated with the turbine blade 6 b rotates to pressurize the air in the intake passage 5 and perform a supercharging operation. Is done.
  • the variable vane 6c is for changing the supercharging pressure generated in the turbocharger 6, and is rotatably attached to a wall portion of a housing (not shown) that houses the turbine blade 6b.
  • the variable vane 6c is mechanically coupled to a vane actuator 6d connected to the ECU 2.
  • the ECU 2 changes the rotational speed of the turbine blade 6b, that is, the rotational speed of the compressor blade 6a by changing the opening of the variable vane 6c via the vane actuator 6d and changing the amount of exhaust gas blown to the turbine blade 6b. , Thereby controlling the supercharging pressure.
  • the intake throttle valve mechanism 7 includes an intake throttle valve 7a and an ISV actuator 7b for driving the intake throttle valve 7a.
  • the intake throttle valve 7 a is rotatably provided in the intake passage 5.
  • the ISV actuator 7b is a combination of a motor and a reduction gear mechanism (both not shown), and is electrically connected to the ECU 2.
  • the ECU 2 controls the opening degree of the intake throttle valve 7a via the ISV actuator 7b.
  • the flow rate of the air flowing through the intake passage 5 is adjusted by changing the degree of opening of the intake passage 5 by the intake throttle valve 7a.
  • the intake air temperature sensor 23 and the upstream intake pressure sensor 24 are provided immediately upstream of the intake throttle valve 7 a in the intake passage 5, and the downstream intake pressure sensor 25 is connected to the intake throttle valve 7 a in the intake passage 5. Immediately downstream.
  • the intake air temperature sensor 23 detects the temperature (hereinafter referred to as “intake air temperature”) T21 of the air flowing through the intake passage 5, and outputs a detection signal representing it to the ECU 2.
  • the upstream side intake pressure sensor 24 is constituted by a semiconductor pressure sensor, and detects the pressure in the intake passage 5 slightly upstream of the intake throttle valve 7a (hereinafter referred to as “upstream side intake pressure”) P21 as an absolute pressure. Then, a detection signal representing it is output to the ECU 2.
  • downstream side intake pressure sensor 25 is composed of a semiconductor pressure sensor similar to the upstream side intake pressure sensor 24, and is slightly in the intake throttle valve 7a, and the pressure in the intake passage 5 on the downstream side (hereinafter referred to as "downstream side intake pressure").
  • P22 is detected as an absolute pressure, and a detection signal representing it is output to the ECU 2.
  • an intake throttle valve opening sensor 26 is provided in the vicinity of the intake throttle valve 7a in the intake passage 5.
  • the intake throttle valve opening sensor 26 detects the opening TH of the intake throttle valve 7a (hereinafter referred to as “intake throttle valve opening”) TH, and outputs a detection signal indicating it to the ECU 2.
  • the engine 3 is provided with an EGR device 8.
  • This EGR device 8 recirculates a part of the exhaust gas discharged from the cylinder 3a to the exhaust passage 9 to the intake passage 5 side, and an EGR passage 8a connected between the intake passage 5 and the exhaust passage 9,
  • the EGR passage 8a is configured by an EGR control valve 8b that opens and closes.
  • One end of the EGR passage 8 a opens to the upstream side of the turbine blade 6 b of the exhaust passage 9, and the other end opens to the downstream side of the downstream intake pressure sensor 25 of the intake passage 5.
  • the EGR control valve 8b is composed of a linear solenoid valve whose lift changes linearly between a maximum value and a minimum value, and is electrically connected to the ECU 2.
  • the ECU 2 controls the recirculation amount of exhaust gas, that is, the EGR amount, by changing the opening degree of the EGR passage 8a via the EGR control valve 8b.
  • an EGR valve opening sensor 27 is provided in the vicinity of the EGR control valve 8b in the EGR passage 8a.
  • the EGR valve opening degree sensor 27 detects the opening degree (hereinafter referred to as “EGR valve opening degree”) LEGR of the EGR control valve 8b, and outputs a detection signal representing it to the ECU 2.
  • the ECU 2 is composed of a microcomputer (not shown) composed of a CPU, RAM, ROM, I / O interface, etc., and according to the detection signals from the various sensors 20 to 27 described above, The operation state of the engine 3 is determined, and various control processes such as an EGR control process are executed according to the determined operation state, and a failure determination process for the airflow sensor 22 is executed as will be described later.
  • the ECU 2 corresponds to estimated value calculation means, failure determination means, opening degree parameter detection means, and failure determination prohibition means.
  • FIG. 3 is a flowchart showing a failure determination process of the airflow sensor 22. This process is executed every predetermined time (for example, 10 msec). In this process, first, in step 1 (illustrated as “S1”, the same applies hereinafter), it is determined whether or not the execution condition flag F_CHECK is “1”. The execution condition flag F_CHECK is set to “1” when the execution condition for determining the failure of the airflow sensor 22 is satisfied.
  • FIG. 4 shows a subroutine of determination processing for determining whether or not the failure determination execution condition is satisfied.
  • step 21 it is determined whether or not the engine 3 is being started.
  • the execution condition flag F_CHECK is set to indicate that the execution condition for failure determination is not satisfied. It is set to “0” (step 29), and this process ends.
  • step 21 when the determination result in step 21 is NO, the pressure ratio (hereinafter simply referred to as “pressure ratio”) P22 / P21 between the downstream intake pressure P22 and the upstream intake pressure P21 is a predetermined value PREF (for example, 0.9). It is determined whether or not the following is true (step 22). When the determination result is NO and the pressure ratio P22 / P21 is larger than the predetermined value PREF, the differential pressure between the upstream intake pressure P21 and the downstream intake pressure 22 is small, so the failure determination execution condition is not satisfied. Then, the step 29 is executed.
  • PREF for example, 0.9
  • step 23 it is determined whether or not the change amount ⁇ TH of the intake throttle valve opening TH is equal to or less than a predetermined value THREF (for example, 20%) (step 23).
  • THREF for example, 20%
  • This amount of change ⁇ TH is an absolute value of the difference between the intake throttle valve opening TH when the determination result of step 22 changes from NO to YES and the current intake throttle valve opening TH.
  • the determination result is NO, the amount of change in the opening of the intake throttle valve 7a is large and the air flow rate is likely to be unstable. Therefore, the step 29 is executed assuming that the condition for executing the failure determination is not satisfied.
  • step 24 it is determined whether or not the time count TM of a timer (not shown) is equal to or longer than a predetermined time TMREF (eg, 0.3 sec) (step 24). This timer is started when the determination result in step 22 changes from NO to YES, and measures the elapsed time thereafter.
  • TMREF a predetermined time
  • step 29 is executed assuming that the condition for executing the failure determination is not satisfied.
  • the determination result in step 24 is YES, it is determined whether or not the engine speed NE is not less than a lower limit value NEL (for example, 550 rpm) and not more than an upper limit value NEH (for example, 4000 rpm) (step 25).
  • NEL for example, 550 rpm
  • NEH for example, 4000 rpm
  • step 26 it is determined whether or not the change amount ⁇ EGR of the EGR valve opening degree LEGR is equal to or less than a predetermined value EGRREF (step 26).
  • This change amount ⁇ EGR is an absolute value of the difference between the EGR valve opening degree LEGR and the current EGR valve opening degree LEGR when the determination result of step 22 changes from NO to YES.
  • the determination result is NO, the amount of EGR varies greatly, and the air flow rate is likely to become unstable. Accordingly, step 29 is executed assuming that the failure determination execution condition is not satisfied.
  • step 27 it is determined whether or not the engine water temperature TW is equal to or higher than a predetermined temperature TWJUD (step 27). If this determination result is NO, the engine 3 is in a warm-up state, and the step 29 is executed assuming that the condition for executing the failure determination is not satisfied.
  • step 27 determines whether the failure determination execution condition is satisfied. If the determination result in step 27 is YES, it is determined that the failure determination execution condition is satisfied, and the execution condition flag F_CHECK is set to “1” to indicate that condition (step 28), and this process ends. .
  • step 2 when the determination result of step 1 is NO and the failure determination execution condition is not satisfied, the present process is terminated as it is.
  • step 2 an estimated value GAIREST of the air flow compared with the air flow detection value GAIR detected by the air flow sensor 22 is calculated (step 2).
  • FIG. 5 shows a subroutine for calculating the estimated value GAIREST.
  • the basic value GABASE of the estimated value of the air flow rate is calculated by searching the map shown in FIG. 6 according to the intake throttle valve opening TH and the pressure ratio P22 / P21.
  • the estimated value of the air flow rate is calculated according to the following equation (1) using the upstream side intake pressure P21, the intake air temperature T21, and the pressure ratio P22 / P21 as already proposed by the present applicant in Japanese Patent Application Laid-Open No. 2007-205298. be able to.
  • R is a gas constant
  • is a specific heat ratio between upstream air and downstream air in the vicinity of the intake throttle valve 7a.
  • Aisv is an effective opening area of the intake throttle valve 7a, and is calculated according to the intake throttle valve opening TH.
  • the above-mentioned basic value GABASE is the same as the pressure ratio P22 / P21 and the intake throttle valve opening TH when the upstream intake pressure P21 and the intake air temperature T21 are assumed to be the predetermined reference values CP and CT, respectively, in the equation (1).
  • This map corresponds to the corresponding air flow rate, and the above map is obtained by storing these relationships in advance through experiments, for example.
  • the intake pressure correction coefficient KP is calculated by searching the table shown in FIG. 7 according to the upstream intake pressure P21 (step 32).
  • the intake pressure correction coefficient KP is used to correct the basic value GABASE obtained by assuming the upstream intake pressure P21 as the reference value CP in the above equation (1) according to the actual upstream intake pressure P21. is there. Therefore, in this table, the intake pressure correction coefficient KP is set to a value of 1 when the upstream intake pressure P21 is the reference value CP, and is set to a larger value as the upstream intake pressure P21 is larger. For example, it is obtained in advance by experiments.
  • the intake air temperature correction coefficient KT is calculated by searching the table shown in FIG. 8 according to the intake air temperature T21 (step 33).
  • the intake air temperature correction coefficient KT is for correcting the basic value GABASE obtained by assuming the intake air temperature T21 as the reference value CT in the above equation (1) according to the actual intake air temperature T21. Therefore, in this table, the intake air temperature correction coefficient KT is set to the value 1 when the intake air temperature T21 is the reference value CT, and increases linearly toward the value 1 when the intake air temperature T21 is lower than the reference value CT. However, when the value is higher than the reference value CT, the value decreases linearly from the value 1, and is obtained in advance by experiments, for example.
  • step 3 following step 2 the upper limit value GALMT is calculated according to the following equation (2) using the estimated value GAIREST of the air flow rate calculated as described above.
  • GALTH GAIREST ⁇ A1 + B1 (2)
  • A1 and B1 are constants.
  • the lower limit value GALMTL GAIREST ⁇ A2 + B2 (3)
  • A2 and B2 are constants, and are set to values smaller than the above-described constants A1 and B1.
  • step 5 it is determined whether or not the detected value GAIR of the air flow rate is equal to or higher than the lower limit value GALML (step 5).
  • the determination result is NO, assuming that the detected value GAIR of the air flow rate is greatly deviated toward the lower limit value GALML with respect to the estimated value GAIREST, the process proceeds to step 6 and the counter value CNTL of the counter (not shown) is incremented. Then, go to Step 7.
  • step 7 it is determined whether or not the counter value CNTL is larger than the predetermined value CNTREF.
  • this determination result is YES, that is, when the state in which the detected value GAIR of the air flow rate is greatly deviated to the lower limit value GALML side with respect to the estimated value GAIREST has occurred a predetermined number of times, the air flow sensor 22 has exceeded the lower limit value GALML In this case, the LOW-side failure determination flag F_AFMNGL is set to “1” (step 8), and then this processing is terminated.
  • step 7 when the determination result in step 7 is NO, it is determined that the airflow sensor 22 is normal, and in order to indicate that, the failure determination flag F_AFMNG is set to “0” (step 9), and this process is terminated. To do.
  • step 10 If the determination result in step 5 is YES and the air flow rate detection value GAIR is equal to or greater than the lower limit value GALML, it is determined whether or not the air flow rate detection value GAIR is equal to or less than the upper limit value GALMTH (step 10). When the determination result is YES and the detected value GAIR of the air flow rate is between the lower limit value GALMTL and the upper limit value GALMH, it is determined that the air flow sensor 22 is normal and the step 9 is executed.
  • step 10 when the determination result in step 10 is NO, the detected value GAIR of the air flow rate is greatly deviated toward the upper limit value GALMT with respect to the estimated value GAIREST, and the process proceeds to step 11 and a counter (not shown) is counted. After incrementing the value CNTH, the process proceeds to step 12.
  • step 12 it is determined whether or not the counter value CNTH is larger than the predetermined value CNTREF.
  • the determination result is YES, that is, when the state where the detected value GAIR of the air flow rate is greatly deviated to the upper limit value GALMT side with respect to the estimated value GAIREST has occurred a predetermined number of times, the air flow sensor 22 exceeds the upper limit value GALMTH In this case, the high-side failure determination flag F_AFMNGH is set to “1” (step 13), and then this processing is terminated.
  • step 12 when the determination result in step 12 is NO, it is determined that the airflow sensor 22 is normal, and in order to indicate that, the failure determination flag F_AFMNG is set to “0” (step 9), and this process ends. To do.
  • the air flow sensor 22 is determined to be abnormal by calculating an estimated value GABASE of the air flow rate and comparing the detected value GAIR of the air flow rate with the estimated value GABASE.
  • the estimated value GAIREST of the air flow rate is calculated using the pressure ratio P22 / P21 between the downstream intake pressure P22 and the upstream intake pressure P21, the estimated value GAIREST can be appropriately calculated.
  • the failure of the air flow sensor 22 can be appropriately determined.
  • the failure determination of the air flow sensor 22 is prohibited when the pressure ratio P22 / P21 is larger than the predetermined value PREF (step 22: NO in FIG. 4), only in a situation where the calculation accuracy of the estimated air flow rate value GAIREST is high. By performing the failure determination, the determination accuracy can be improved.
  • the basic value GABASE calculated from the map according to the pressure ratio P22 / P21 and the intake throttle valve opening TH is added to the upstream intake pressure P21 and the intake air temperature T21. Since the estimated value GAIREST of the air flow rate is calculated by multiplying the correction coefficients KP and KT calculated from the respective maps, the above equation (1) is directly used according to the pressure ratio P22 / P21 and the like. Compared with the case where the estimated value GAIREST is calculated, the calculation load can be reduced.
  • the failure of the airflow sensor 22 is determined separately based on the upper limit value GALMTH and the lower limit value GALML, respectively, the failure mode, i.e., on which side of the upper limit value GALMTH side or the lower limit value GALMTL side the failure has occurred. Can be identified.
  • the opening degree parameter is an example of the pressure ratio P22 / P21 between the downstream side intake pressure P22 and the upstream side intake pressure P21.
  • the present invention is not limited to this, and other appropriate parameters can be used. It is.
  • the intake throttle valve opening TH may be used instead of or in combination with the pressure ratio P22 / P21. In this case, the failure determination of the air flow sensor 22 is performed when the intake throttle valve opening TH is greater than a predetermined opening. It is prohibited when it is too big.
  • the temperature upstream of the intake throttle valve 7a is used as the intake air temperature used to calculate the estimated air flow rate value GAIREST.
  • the temperature downstream of the intake throttle valve 7a may be used. Good.
  • the air flow sensor 22 is configured by a hot-wire air flow meter.
  • the air flow detector to which the present invention is applied is not limited to this, as long as it detects the air flow rate in the intake passage. Good.
  • a Karman vortex air flow meter or a movable plate air flow meter may be used as the air flow rate detector.
  • the embodiment is an example in which the rotary intake throttle valve mechanism 7 is used as the air flow rate adjusting mechanism, but the air flow rate adjusting mechanism is not limited to this, and the air flow rate of a shutter or the like can be adjusted. I just need it.
  • the failure determination apparatus and method of the air flow detector according to the present invention maintains the calculation accuracy of the estimated value of the air flow compared with the detection value of the air flow detector, thereby determining the failure. It can be used for various internal combustion engines to improve accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 空気流量検出器の検出値と比較される空気流量の推定値の算出精度を維持し、それにより、故障の判定精度を向上させることができる空気流量検出器の故障判定装置を提供する。この空気流量検出器22の故障判定装置1は、空気流量調整機構7の上流側と下流側との吸気通路5内の圧力の関係に応じて、空気流量の推定値GAIRESTを算出し、このようにして算出された空気流量の推定値GAIRESTと、空気流量検出器によって検出された空気流量の検出値GAIRとの比較結果に基づき、空気流量検出器の故障を判定する。また、吸気通路5の開放度合いを表す開放度合いパラメータを検出するとともに、検出された開放度合いパラメータにより表される吸気通路5の開放度合いが所定値よりも大きいときに、故障判定手段による空気流量検出器の故障判定を禁止する。

Description

空気流量検出器の故障判定装置および方法
 本発明は、内燃機関の吸気通路内を流れる空気の流量を検出する空気流量検出器の故障判定装置および方法に関する。
 従来のこの種の故障判定装置として、例えば特許文献1に開示されたものが知られている。この故障判定装置では、空気流量検出器で検出された空気流量およびエンジン回転数に基づいて、空気流量の第1算出値を算出し、検出された大気圧、吸気圧、吸気温およびエンジン回転数に基づいて、空気流量の第2算出値を算出するとともに、スロットル弁開度、大気圧、吸気温およびエンジン回転数に基づいて、空気流量の第3算出値を算出する。そして、これらの第1~第3の算出値を比較し、第1算出値が、第2および第3算出値に対して大きく異なる状態が頻発したときに、空気流量検出器が故障していると判定する。
 以上のように、従来の故障判定装置では、第2および第3算出値を算出するのに、吸気通路内の空気の物性を直接的に表さない大気圧を用いているので、実際の空気流量に対する算出誤差が生じやすい。その場合には、第2および第3算出値と比較することによって行われる空気流量検出器の故障判定の精度が低下する。
 本発明は、このような課題を解決するためになされたものであり、空気流量検出器の検出値と比較される空気流量の推定値の算出精度を維持し、それにより、故障の判定精度を向上させることができる空気流量検出器の故障判定装置および方法を提供することを目的とする。
特開平11-324783号公報
 上記の目的を達成するため、本発明の第1の態様においては、内燃機関の吸気通路内を流れる空気の流量を検出する空気流量検出器の故障判定装置であって、吸気通路の途中に設けられ、吸気通路の開放度合いを変更することによって、空気流量を調整する空気流量調整機構と、空気流量調整機構の上流側と下流側との吸気通路内の圧力の関係に応じて、空気流量の推定値を算出する推定値算出手段と、算出された空気流量の推定値と、空気流量検出器によって検出された空気流量の検出値との比較結果に基づき、空気流量検出器の故障を判定する故障判定手段と、吸気通路の開放度合いを表す開放度合いパラメータを検出する開放度合いパラメータ検出手段と、検出された開放度合いパラメータにより表される吸気通路の開放度合いが所定値よりも大きいときに、故障判定手段による空気流量検出器の故障判定を禁止する故障判定禁止手段と、を備える空気流量検出器の故障判定装置が提供される。
 この空気流量検出器の故障判定装置によれば、吸気通路の途中に空気流量調整機構が設けられており、この空気流量調整機構により、吸気通路の開放度合いを変更することによって、吸気通路内を流れる空気の流量が調整される。吸気通路の開放度合いが変更され、吸気通路が絞られると、空気流量調整機構の上流側と下流側との差圧が生じる。本発明の故障判定装置によれば、空気流量調整機構の上流側と下流側との吸気通路内の圧力の関係に応じ、このような差圧を利用して、空気流量の推定値を算出するので、この推定値を適切に算出することができる。このため、算出された推定値と、空気流量検出器によって検出された空気流量の検出値との比較結果に基づいて、空気流量検出器の故障を適切に判定することができる。
 また、上述したように、空気流量の推定値は、差圧を利用して算出されるので、吸気通路の開放度合いが大きい場合、差圧が小さくなることによって、推定値の算出精度は低下しやすい。本発明によれば、空気流量調整機構の開放度合いパラメータを検出するとともに、それにより表される吸気通路の開放度合いが所定値よりも大きいときに、空気流量検出器の故障判定を禁止する。したがって、空気流量の推定値の算出精度が高いと推定される状況においてのみ故障判定を行うので、故障判定の判定精度を向上させることができる。
 好ましくは、空気流量調整機構は、吸気通路の開放度合いを変更することにより、空気流量を調整するための調整弁を有し、開放度合いパラメータは、調整弁の開度であり、故障判定禁止手段は、調整弁の開度が所定開度よりも大きいときに、故障判定手段による故障判定を禁止することを特徴とする。
 この好ましい構成の態様によれば、吸気通路の開放度合いを調整弁で変更するため、この調整弁の開度は、吸気通路の開放度合いをダイレクトに良好に表す。したがって、検出された調整弁の開度が所定開度よりも大きいときに空気流量検出器の故障判定を禁止することによって、その判定精度を向上させることができる。
 好ましくは、空気流量調整機構の近傍でかつ上流側における吸気通路内の圧力を上流側吸気圧として検出する上流側吸気圧検出手段と、空気流量調整機構の近傍でかつ下流側における吸気通路内の圧力を下流側吸気圧として検出する下流側吸気圧検出手段と、をさらに備え、開放度合いパラメータは、検出された下流側吸気圧と上流側吸気圧との圧力比であり、故障判定禁止手段は、圧力比が所定値よりも大きいときに、故障判定手段による故障判定を禁止することを特徴とする。
 この好ましい構成の態様によれば、開放度合いパラメータとして、検出された空気流量調整機構の近傍における、下流側と上流側との吸気通路内の圧力比が用いられる。この圧力比が大きいほど、空気流量調整機構の上流側と下流側との吸気通路内の差圧がより小さいことを表す。したがって、圧力比が所定値よりも大きいときに空気流量検出器の故障判定を禁止することによって、その判定精度を向上させることができる。
 前記目的を達成するために、本発明の第2の態様においては、内燃機関の吸気通路の開放度合いを空気流量調整機構により変更することによって調整された、吸気通路内を流れる空気の流量を検出する空気流量検出器の故障判定方法であって、空気流量調整機構の上流側と下流側との吸気通路内の圧力の関係に応じて、空気流量の推定値を算出する推定値算出ステップと、算出された空気流量の推定値と、空気流量検出器によって検出された空気流量の検出値との比較結果に基づき、空気流量検出器の故障を判定する故障判定ステップと、吸気通路の開放度合いを表す開放度合いパラメータを検出する開放度合いパラメータ検出ステップと、検出された開放度合いパラメータにより表される吸気通路の開放度合いが所定値よりも大きいときに、故障判定ステップによる空気流量検出器の故障判定を禁止する故障判定禁止ステップと、を備える空気流量検出器の故障判定方法が提供される。
 本発明の上記の第2の態様の構成によれば、前述した第1の態様と同様の効果が得られる。
 好ましくは、空気流量調整機構は、吸気通路の開放度合いを変更することにより、空気流量を調整するための調整弁を有し、開放度合いパラメータは、調整弁の開度であり、故障判定禁止ステップは、調整弁の開度が所定開度よりも大きいときに、故障判定ステップによる故障判定を禁止することを含むことを特徴とする。
 好ましくは、空気流量調整機構の近傍でかつ上流側における吸気通路内の圧力を上流側吸気圧として検出する上流側吸気圧検出ステップと、空気流量調整機構の近傍でかつ下流側における吸気通路内の圧力を下流側吸気圧として検出する下流側吸気圧検出ステップと、をさらに備え、開放度合いパラメータは、検出された下流側吸気圧と上流側吸気圧との圧力比であり、故障判定禁止ステップは、圧力比が所定値よりも大きいときに、故障判定ステップによる故障判定を禁止することを含むことを特徴とする。
 これらの好ましい態様によれば、第1の態様の対応する好ましい態様と同様の効果をそれぞれ得ることができる。
本発明の実施形態による故障判定装置を内燃機関とともに概略的に示す図である。 故障判定装置の概略構成を示すブロック図である。 エアフローセンサの故障判定処理を示すフローチャートである。 故障判定の実行条件の成立を判定する判定処理を示すサブルーチンである。 空気流量の推定値の算出処理を示すサブルーチンである。 基本値の算出に用いるマップの一例を示す図である。 吸気圧補正項の算出に用いるテーブルの一例を示す図である。 吸気温補正項の算出に用いるテーブルの一例を示す図である。
 以下、図面を参照しながら、本発明の好ましい実施形態を詳細に説明する。図1は、本発明を適用した、空気流量検出器としてのエアフローセンサ22を備えた内燃機関3の概略構成を示し、図2は、故障判定装置1の概略構成を示している。故障判定装置1は、ECU2を備えており(図2参照)、このECU2は、後述するように、内燃機関(以下「エンジン」という)3の各種の制御を実行するとともに、エアフローセンサ22の故障判定処理を実行する。
 エンジン3は、図示しない車両に搭載された4気筒型ディーゼルエンジンであり、4組の気筒3aおよびピストン3b(1組のみ図示)と、クランクシャフト3cなどを備えている。このエンジン3には、クランク角センサ20および水温センサ21が設けられている。
 クランク角センサ20は、マグネットロータおよびMREピックアップで構成されており、クランクシャフト3cの回転に伴い、パルス信号であるCRK信号をECU2に出力する。このCRK信号は、所定クランク角(例えば30゜)ごとに出力され、ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。
 また、水温センサ21は、例えばサーミスタなどで構成され、エンジン3のシリンダブロック内を循環する冷却水の温度であるエンジン水温TWを検出し、それを表す検出信号を、ECU2に出力する。
 また、エンジン3の各気筒3aには、燃料噴射弁4が設けられており(1つのみ図示)、各燃料噴射弁4は、ECU2に電気的に接続されている。燃料噴射弁4の開弁時間および開弁タイミングは、ECU2によって制御され、それにより、燃料噴射量および燃料噴射タイミングが制御される。
 一方、エンジン3の吸気通路5には、上流側から順に、エアフローセンサ22、ターボチャージャ6、吸気温センサ23、上流側吸気圧センサ24、吸気絞り弁機構7および下流側吸気圧センサ25などが設けられている。
 エアフローセンサ22は、熱線式エアフローメータで構成されており、後述する吸気絞り弁7aを通過する空気の流量を検出し、それを表す検出信号をECU2に出力する。なお、この空気流量の検出値GAIRは、質量流量として算出される。
 また、ターボチャージャ6は、吸気通路5のエアフローセンサ22よりも下流側に設けられたコンプレッサブレード6aと、排気通路9の途中に設けられ、コンプレッサブレード6aと一体に回転するタービンブレード6bと、複数の可変ベーン6c(2つのみ図示)と、可変ベーン6cを駆動するベーンアクチュエータ6dなどを備えている。
 このターボチャージャ6では、排気通路9を流れる排ガスによってタービンブレード6bが回転駆動されると、これと一体のコンプレッサブレード6aが回転することにより、吸気通路5内の空気が加圧され、過給動作が行われる。
 また、可変ベーン6cは、ターボチャージャ6で発生する過給圧を変化させるためのものであり、タービンブレード6bを収容するハウジング(図示せず)の壁部に回動自在に取り付けられている。可変ベーン6cは、ECU2に接続されたベーンアクチュエータ6dに機械的に連結されている。ECU2は、ベーンアクチュエータ6dを介して可変ベーン6cの開度を変化させ、タービンブレード6bに吹き付けられる排ガス量を変化させることによって、タービンブレード6bの回転速度、すなわちコンプレッサブレード6aの回転速度を変化させ、それにより、過給圧を制御する。
 一方、吸気絞り弁機構7は、吸気絞り弁7aおよびこれを駆動するISVアクチュエータ7bなどを備えている。吸気絞り弁7aは、吸気通路5内に回動自在に設けられている。ISVアクチュエータ7bは、モータに減速ギヤ機構(いずれも図示せず)を組み合わせたものであり、ECU2に電気的に接続されている。ECU2は、ISVアクチュエータ7bを介して吸気絞り弁7aの開度を制御する。以上により、吸気通路5の開放度合いが吸気絞り弁7aで変更されることによって、吸気通路5内を流れる空気の流量が調整される。
 また、吸気温センサ23および上流側吸気圧センサ24は、吸気通路5の吸気絞り弁7aのすぐ上流側に設けられており、下流側吸気圧センサ25は、吸気通路5の吸気絞り弁7aのすぐ下流側に設けられている。
 吸気温センサ23は、吸気通路5内を流れる空気の温度(以下「吸気温」という)T21を検出し、それを表す検出信号をECU2に出力する。また、上流側吸気圧センサ24は、半導体圧力センサで構成され、吸気絞り弁7aの若干、上流側における吸気通路5内の圧力(以下「上流側吸気圧」という)P21を、絶対圧として検出し、それを表す検出信号をECU2に出力する。
 さらに、下流側吸気圧センサ25は、上流側吸気圧センサ24と同様の半導体圧力センサで構成され、吸気絞り弁7aの若干、下流側における吸気通路5内の圧力(以下「下流側吸気圧」という)P22を、絶対圧として検出し、それを表す検出信号をECU2に出力する。
 一方、吸気通路5の吸気絞り弁7aの近傍には、吸気絞り弁開度センサ26が設けられている。この吸気絞り弁開度センサ26は、吸気絞り弁7aの開度(以下「吸気絞り弁開度」という)THを検出し、それを表す検出信号をECU2に出力する。
 また、エンジン3には、EGR装置8が設けられている。このEGR装置8は、気筒3aから排気通路9に排出された排ガスの一部を吸気通路5側に還流するものであり、吸気通路5および排気通路9の間に接続されたEGR通路8aと、このEGR通路8aを開閉するEGR制御弁8bなどで構成されている。EGR通路8aの一端は、排気通路9のタービンブレード6bよりも上流側に開口し、他端は、吸気通路5の下流側吸気圧センサ25よりも下流側に開口している。
 EGR制御弁8bは、そのリフトが最大値と最小値との間でリニアに変化するリニア電磁弁で構成され、ECU2に電気的に接続されている。ECU2は、EGR制御弁8bを介して、EGR通路8aの開度を変化させることにより、排ガスの還流量すなわちEGR量を制御する。また、EGR通路8aのEGR制御弁8bの近傍には、EGR弁開度センサ27が設けられている。EGR弁開度センサ27は、EGR制御弁8bの開度(以下「EGR弁開度」という)LEGRを検出し、それを表す検出信号をECU2に出力する。
 一方、ECU2は、CPU、RAM、ROMおよびI/Oインターフェースなどから成るマイクロコンピュータ(いずれも図示せず)で構成されており、前述した各種のセンサ20~27からの検出信号などに応じて、エンジン3の運転状態を判別し、判別した運転状態に応じて、EGR制御処理などの各種の制御処理を実行するとともに、後述するように、エアフローセンサ22の故障判定処理を実行する。なお、本実施形態では、ECU2が、推定値算出手段、故障判定手段、開放度合いパラメータ検出手段および故障判定禁止手段に相当する。
 図3は、このエアフローセンサ22の故障判定処理を示すフローチャートである。本処理は、所定時間(例えば10msec)ごとに実行される。本処理では、まず、ステップ1(「S1」と図示。以下同じ)において、実行条件フラグF_CHECKが「1」であるか否かを判別する。この実行条件フラグF_CHECKは、エアフローセンサ22の故障判定の実行条件が成立しているときに「1」にセットされるものである。
 図4は、この故障判定の実行条件が成立しているか否かを判定する判定処理のサブルーチンを示している。本処理では、まず、ステップ21において、エンジン3が始動中であるか否かを判別する。この判別結果がYESで、エンジン3が始動中であるときには、空気流量が不安定になりやすいため、故障判定の実行条件が成立していないとして、そのことを表すために、実行条件フラグF_CHECKを「0」にセットし(ステップ29)、本処理を終了する。
 一方、ステップ21の判別結果がNOのときには、下流側吸気圧P22と上流側吸気圧P21との圧力比(以下、単に「圧力比」という)P22/P21が所定値PREF(例えば0.9)以下であるか否かを判別する(ステップ22)。この判別結果がNOで、圧力比P22/P21が所定値PREFよりも大きいときには、上流側吸気圧P21と下流側吸気圧22との差圧が小さいため、故障判定の実行条件が成立していないとして、前記ステップ29を実行する。
 また、ステップ22の判別結果がYESのときには、吸気絞り弁開度THの変化量ΔTHが所定値THREF(例えば20%)以下である否かを判別する(ステップ23)。この変化量ΔTHは、ステップ22の判別結果がNOからYESに変化したときの吸気絞り弁開度THと今回の吸気絞り弁開度THとの差の絶対値である。この判別結果がNOのときには、吸気絞り弁7aの開度の変化量が大きく、空気流量が不安定になりやすいため、故障判定の実行条件が成立していないとして、前記ステップ29を実行する。
 一方、ステップ23の判別結果がYESのときには、タイマ(図示せず)の計時時間TMが所定時間TMREF(例えば0.3sec)以上であるか否かを判別する(ステップ24)。このタイマは、ステップ22の判別結果がNOからYESに変化したときにスタートされ、その後の経過時間を計時するものである。
 この判別結果がNOで、圧力比P22/P21が所定値PREF以下になった後、所定時間が経過していないときには、吸気絞り弁7aの上流側と下流側との差圧が十分に安定していないおそれがあるため、故障判定の実行条件が成立していないとして、前記ステップ29を実行する。一方、ステップ24の判別結果がYESのときには、エンジン回転数NEが下限値NEL(例えば550rpm)以上でかつ上限値NEH(例えば4000rpm)以下であるか否かを判別する(ステップ25)。この判別結果がNOのときには、エンジン回転数NEが故障判定に適した回転領域になく、故障判定の実行条件が成立していないとして、前記ステップ29を実行する。
 一方、ステップ25の判別結果がYESのときには、EGR弁開度LEGRの変化量ΔEGRが所定値EGRREF以下であるか否かを判別する(ステップ26)。この変化量ΔEGRは、前記ステップ22の判別結果がNOからYESに変化したときのEGR弁開度LEGRと今回のEGR弁開度LEGRとの差の絶対値である。この判別結果がNOのときには、EGR量の変動が大きく、それに伴って空気流量が不安定になりやすいため、故障判定の実行条件が成立していないとして、前記ステップ29を実行する。
 また、ステップ26の判別結果がYESのときには、エンジン水温TWが所定温度TWJUD以上であるか否かを判別する(ステップ27)。この判別結果がNOのときには、エンジン3が暖機状態にあり、故障判定の実行条件が成立していないとして、前記ステップ29を実行する。
 一方、ステップ27の判別結果がYESのときには、故障判定の実行条件が成立したとして、そのことを表すために、実行条件フラグF_CHECKを「1」にセットし(ステップ28)、本処理を終了する。
 図3に戻り、前記ステップ1の判別結果がNOで、故障判定の実行条件が成立していないときには、そのまま本処理を終了する。一方、ステップ1の判別結果がYESのときには、エアフローセンサ22による空気流量の検出値GAIRと比較される空気流量の推定値GAIRESTを算出する(ステップ2)。
 図5は、この推定値GAIRESTの算出処理のサブルーチンを示している。本処理では、まず、ステップ31において、吸気絞り弁開度THおよび圧力比P22/P21に応じ、図6に示すマップを検索することによって、空気流量の推定値の基本値GABASEを算出する。
 空気流量の推定値は、本出願人が特開2007-205298号ですでに提案したとおり、上流側吸気圧P21、吸気温T21および圧力比P22/P21を用い、次式(1)に従って算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Rは気体定数であり、κは、吸気絞り弁7aの近傍における上流側空気と下流側空気との比熱比である。また、Aisvは、吸気絞り弁7aの有効開口面積であり、吸気絞り弁開度THに応じて算出される。上述した基本値GABASEは、この式(1)において、上流側吸気圧P21および吸気温T21をそれぞれ所定の基準値CP,CTと仮定したときの圧力比P22/P21および吸気絞り弁開度THに応じた空気流量に相当しており、上記マップは、これらの関係を例えば実験によってあらかじめ求め、記憶したものである。
 次に、上流側吸気圧P21に応じ、図7に示すテーブルを検索することによって、吸気圧補正係数KPを算出する(ステップ32)。この吸気圧補正係数KPは、上記式(1)において上流側吸気圧P21を基準値CPと仮定して求めた基本値GABASEを、実際の上流側吸気圧P21に応じて補正するためのものである。このため、このテーブルでは、吸気圧補正係数KPは、上流側吸気圧P21が基準値CPのときに値1に設定されるとともに、上流側吸気圧P21が大きいほど、より大きな値に設定されており、例えば実験によってあらかじめ求められている。
 次いで、吸気温T21に応じ、図8に示すテーブルを検索することによって、吸気温補正係数KTを算出する(ステップ33)。この吸気温補正係数KTは、上記式(1)において吸気温T21を基準値CTと仮定して求めた基本値GABASEを、実際の吸気温T21に応じて補正するためのものである。このため、このテーブルでは、吸気温補正係数KTは、吸気温T21が基準値CTのときに値1に設定され、吸気温T21が基準値CTよりも低いときには、値1に向かってリニアに増加し、基準値CTよりも高いときには、値1からリニアに減少しており、例えば実験によってあらかじめ求められている。
 そして、基本値GABASEに吸気圧補正係数KPおよび吸気温補正係数KTを乗算することによって、空気流量の推定値GAIRESTを算出し(ステップ34)、本処理を終了する。
 図3に戻り、ステップ2に続くステップ3では、上述したようにして算出した空気流量の推定値GAIRESTを用い、次式(2)に従って、その上限値GALMTHを算出する。
 GALMTH=GAIREST×A1+B1   ・・・(2)
 ここで、A1およびB1は定数である。
 次に、空気流量の推定値GAIRESTを用い、次式(3)に従って、その下限値GALMTLを算出する(ステップ4)。
 GALMTL=GAIREST×A2+B2   ・・・(3)
 ここで、A2およびB2は、定数であり、上述した定数A1,B1よりも小さな値に設定されている。
 次いで、空気流量の検出値GAIRが下限値GALMTL以上であるか否かを判別する(ステップ5)。この判別結果がNOのときには、空気流量の検出値GAIRが推定値GAIRESTに対して下限値GALMTL側に大きく乖離しているとして、ステップ6に進み、カウンタ(図示せず)のカウンタ値CNTLをインクリメントした後、ステップ7に進む。
 このステップ7では、カウンタ値CNTLが所定値CNTREFよりも大きいか否かを判別する。この判別結果がYESのとき、すなわち空気流量の検出値GAIRが推定値GAIRESTに対して下限値GALMTL側に大きく乖離した状態が所定回数、発生したときには、エアフローセンサ22が下限値GALMTLを超えた状態で故障していると判定し、そのことを表すために、LOW側故障判定フラグF_AFMNGLを「1」にセットした(ステップ8)後、本処理を終了する。
  一方、ステップ7の判別結果がNOのときには、エアフローセンサ22が正常であると判定し、そのことを表すために、故障判定フラグF_AFMNGを「0」にセットし(ステップ9)、本処理を終了する。
 また、前記ステップ5の判別結果がYESで、空気流量の検出値GAIRが下限値GALMTL以上のときには、空気流量の検出値GAIRが上限値GALMTH以下であるか否かを判別する(ステップ10)。この判別結果がYESで、空気流量の検出値GAIRが下限値GALMTLと上限値GALMTHとの間にあるときには、エアフローセンサ22が正常であるとして、前記ステップ9を実行する。
 一方、ステップ10の判別結果がNOのときには、空気流量の検出値GAIRが推定値GAIRESTに対して上限値GALMTH側に大きく乖離しているとして、ステップ11に進み、カウンタ(図示せず)のカウンタ値CNTHをインクリメントした後、ステップ12に進む。
 このステップ12では、カウンタ値CNTHが前記所定値CNTREFよりも大きいか否かを判別する。この判別結果がYESのとき、すなわち空気流量の検出値GAIRが推定値GAIRESTに対して上限値GALMTH側に大きく乖離した状態が所定回数、発生したときには、エアフローセンサ22が上限値GALMTHを超えた状態で故障していると判定し、そのことを表すために、HIGH側故障判定フラグF_AFMNGHを「1」にセットした(ステップ13)後、本処理を終了する。
 一方、ステップ12の判別結果がNOのときには、エアフローセンサ22が正常であると判定し、そのことを表すために、故障判定フラグF_AFMNGを「0」にセットし(ステップ9)、本処理を終了する。
 以上のように、本実施形態によれば、下流側吸気圧P22と上流側吸気圧P21との圧力比P22/P21、吸気絞り開度TH、上流側吸気圧P21および吸気温T21に応じて、空気流量の推定値GABASEを算出し、空気流量の検出値GAIRをこの推定値GABASEと比較することによって、エアフローセンサ22の異常判定を行う。
 このように、下流側吸気圧P22と上流側吸気圧P21との圧力比P22/P21を利用して空気流量の推定値GAIRESTを算出するので、この推定値GAIRESTを適切に算出することができる結果、エアフローセンサ22の故障を適切に判定することができる。
 また、圧力比P22/P21が所定値PREFよりも大きいときにエアフローセンサ22の故障判定を禁止する(図4のステップ22:NO)ので、空気流量の推定値GAIRESTの算出精度が高い状況においてのみ故障判定を行うことによって、その判定精度を向上させることができる。
 さらに、空気流量の推定値GABASEを算出する際に、圧力比P22/P21および吸気絞り弁開度THに応じてマップから算出した基本値GABASEに、上流側吸気圧P21および吸気温T21に応じてそれぞれのマップから算出した補正係数KP,KTを乗算することによって、空気流量の推定値GAIRESTを算出するので、圧力比P22/P21などに応じて前記式(1)を直接、用いて空気流量の推定値GAIRESTを算出する場合と比較して、演算の負荷を軽減することができる。
 また、上限値GALMTHおよび下限値GALMTLにそれぞれ基づいて別個にエアフローセンサ22の故障を判定するので、故障の態様、すなわち上限値GALMTH側または下限値GALMTL側のいずれの側で故障が生じているかを識別することができる。
 なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態は、開放度合いパラメータが、下流側吸気圧P22と上流側吸気圧P21との圧力比P22/P21の例であるが、これに限らず、他の適当なパラメータを用いることが可能である。例えば、圧力比P22/P21に代えて、またはこれとともに吸気絞り弁開度THを用いてもよく、その場合には、エアフローセンサ22の故障判定は、吸気絞り弁開度THが所定開度よりも大きいときに禁止される。
 また、実施形態では、空気流量の推定値GAIRESTの算出に用いられる吸気温として、吸気絞り弁7aよりも上流側の温度を用いているが、吸気絞り弁7aの下流側の温度を用いてもよい。
 さらに、実施形態では、エアフローセンサ22が熱線式エアフローメータで構成されているが、本発明が適用される空気流量検出器はこれに限らず、吸気通路内の空気流量を検出するものであればよい。例えば、空気流量検出器として、カルマン渦流式のエアフローメータや可動プレート式のエアフローメータを用いてもよい。また、実施形態は、空気流量調整機構として、回動式の吸気絞り弁機構7を用いた例であるが、空気流量調整機構はこれに限らず、シャッタなどの空気流量を調整可能なものであればよい。
 また、実施形態は、本発明を車両に搭載されたディーゼルエンジンに適用した例であるが、本発明は、これに限らず、ディーゼルエンジン以外のガソリンエンジンなどの各種のエンジンに適用してもよく、また、車両用以外のエンジン、例えば、クランク軸を鉛直に配置した船外機などのような船舶推進機用エンジンにも適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
産業上の利用の可能性
 以上のように、本発明に係る空気流量検出器の故障判定装置および方法は、空気流量検出器の検出値と比較される空気流量の推定値の算出精度を維持し、それにより、故障の判定精度を向上させるものとして、各種の内燃機関に用いることができる。

Claims (6)

  1.  内燃機関の吸気通路内を流れる空気の流量を検出する空気流量検出器の故障判定装置であって、
     前記吸気通路の途中に設けられ、当該吸気通路の開放度合いを変更することによって、前記空気流量を調整する空気流量調整機構と、
     当該空気流量調整機構の上流側と下流側との前記吸気通路内の圧力の関係に応じて、前記空気流量の推定値を算出する推定値算出手段と、
     当該算出された空気流量の推定値と、前記空気流量検出器によって検出された空気流量の検出値との比較結果に基づき、前記空気流量検出器の故障を判定する故障判定手段と、
     前記吸気通路の開放度合いを表す開放度合いパラメータを検出する開放度合いパラメータ検出手段と、
     当該検出された開放度合いパラメータにより表される前記吸気通路の開放度合いが所定値よりも大きいときに、前記故障判定手段による前記空気流量検出器の故障判定を禁止する故障判定禁止手段と、
     を備えることを特徴とする空気流量検出器の故障判定装置。
  2.  前記空気流量調整機構は、前記吸気通路の開放度合いを変更することにより、前記空気流量を調整するための調整弁を有し、
     前記開放度合いパラメータは、前記調整弁の開度であり、
     前記故障判定禁止手段は、前記調整弁の開度が所定開度よりも大きいときに、前記故障判定手段による故障判定を禁止することを特徴とする、請求項1に記載の空気流量検出器の故障判定装置。
  3.  前記空気流量調整機構の近傍でかつ上流側における前記吸気通路内の圧力を上流側吸気圧として検出する上流側吸気圧検出手段と、
     前記空気流量調整機構の近傍でかつ下流側における前記吸気通路内の圧力を下流側吸気圧として検出する下流側吸気圧検出手段と、をさらに備え、
     前記開放度合いパラメータは、前記検出された前記下流側吸気圧と前記上流側吸気圧との圧力比であり、
     前記故障判定禁止手段は、当該圧力比が所定値よりも大きいときに、前記故障判定手段による故障判定を禁止することを特徴とする、請求項1または2に記載の空気流量検出器の故障判定装置。
  4.  内燃機関の吸気通路の開放度合いを空気流量調整機構により変更することによって調整された、前記吸気通路内を流れる空気の流量を検出する空気流量検出器の故障判定方法であって、
     前記空気流量調整機構の上流側と下流側との前記吸気通路内の圧力の関係に応じて、前記空気流量の推定値を算出する推定値算出ステップと、
     当該算出された空気流量の推定値と、前記空気流量検出器によって検出された空気流量の検出値との比較結果に基づき、前記空気流量検出器の故障を判定する故障判定ステップと、
     前記吸気通路の開放度合いを表す開放度合いパラメータを検出する開放度合いパラメータ検出ステップと、
     当該検出された開放度合いパラメータにより表される前記吸気通路の開放度合いが所定値よりも大きいときに、前記故障判定ステップによる前記空気流量検出器の故障判定を禁止する故障判定禁止ステップと、
     を備えることを特徴とする空気流量検出器の故障判定方法。
  5.  前記空気流量調整機構は、前記吸気通路の開放度合いを変更することにより、前記空気流量を調整するための調整弁を有し、
     前記開放度合いパラメータは、前記調整弁の開度であり、
     前記故障判定禁止ステップは、前記調整弁の開度が所定開度よりも大きいときに、前記故障判定ステップによる故障判定を禁止することを含む、請求項4に記載の空気流量検出器の故障判定方法。
  6.  前記空気流量調整機構の近傍でかつ上流側における前記吸気通路内の圧力を上流側吸気圧として検出する上流側吸気圧検出ステップと、
     前記空気流量調整機構の近傍でかつ下流側における前記吸気通路内の圧力を下流側吸気圧として検出する下流側吸気圧検出ステップと、をさらに備え、
     前記開放度合いパラメータは、前記検出された前記下流側吸気圧と前記上流側吸気圧との圧力比であり、
     前記故障判定禁止ステップは、当該圧力比が所定値よりも大きいときに、前記故障判定ステップによる故障判定を禁止することを含む、請求項4または5に記載の空気流量検出器の故障判定方法。
PCT/JP2009/054534 2008-05-16 2009-03-10 空気流量検出器の故障判定装置および方法 WO2009139219A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09746426A EP2290213A4 (en) 2008-05-16 2009-03-10 ERROR DETERMINATION DEVICE FOR A AIR MASS FLOW DETECTOR AND METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-129034 2008-05-16
JP2008129034A JP2009275643A (ja) 2008-05-16 2008-05-16 空気流量検出器の故障判定装置

Publications (1)

Publication Number Publication Date
WO2009139219A1 true WO2009139219A1 (ja) 2009-11-19

Family

ID=41318592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054534 WO2009139219A1 (ja) 2008-05-16 2009-03-10 空気流量検出器の故障判定装置および方法

Country Status (3)

Country Link
EP (1) EP2290213A4 (ja)
JP (1) JP2009275643A (ja)
WO (1) WO2009139219A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994465B2 (ja) * 2012-08-06 2016-09-21 三菱自動車工業株式会社 エンジンの制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040737A (ja) * 1983-08-12 1985-03-04 Mikuni Kogyo Co Ltd 電子制御内燃機関の吸気量制御装置
JPH0674076A (ja) * 1992-07-03 1994-03-15 Honda Motor Co Ltd 内燃機関の吸入空気量算出方法
JPH11324783A (ja) 1998-05-13 1999-11-26 Hitachi Ltd 内燃機関の燃料制御装置および制御方法
JP2006132498A (ja) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd 内燃機関の流量算出装置
JP2007205298A (ja) 2006-02-03 2007-08-16 Honda Motor Co Ltd 空気流量検出器の故障判定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953933C1 (de) * 1999-11-10 2001-02-15 Daimler Chrysler Ag Verfahren und Vorrichtung zur Einstellung einer Brennkraftmaschine mit variabler Ventilsteuerung
JP2004092614A (ja) * 2002-09-04 2004-03-25 Honda Motor Co Ltd エアフローセンサ故障判定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040737A (ja) * 1983-08-12 1985-03-04 Mikuni Kogyo Co Ltd 電子制御内燃機関の吸気量制御装置
JPH0674076A (ja) * 1992-07-03 1994-03-15 Honda Motor Co Ltd 内燃機関の吸入空気量算出方法
JPH11324783A (ja) 1998-05-13 1999-11-26 Hitachi Ltd 内燃機関の燃料制御装置および制御方法
JP2006132498A (ja) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd 内燃機関の流量算出装置
JP2007205298A (ja) 2006-02-03 2007-08-16 Honda Motor Co Ltd 空気流量検出器の故障判定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2290213A4 *

Also Published As

Publication number Publication date
JP2009275643A (ja) 2009-11-26
EP2290213A1 (en) 2011-03-02
EP2290213A4 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4184398B2 (ja) ブローバイガス還流装置の異常判定装置
JP5246284B2 (ja) 内燃機関の制御装置
JP4610495B2 (ja) Pcv系の異常判定装置
WO2011099173A1 (ja) ターボチャージャ付きエンジンの制御装置
US9057320B2 (en) Control device and control method for an internal combustion engine
JP6245221B2 (ja) 内燃機関の制御装置
US7905135B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
US20140325982A1 (en) Wastegate valve control device for internal combustion engine and wastegate valve control method for internal combustion engine
JP4495204B2 (ja) Egr装置の異常判定装置
JP2005220888A (ja) 過給機付き内燃機関の過給圧推定装置
JP4501834B2 (ja) エンジンの燃料制御装置
EP2010777A1 (en) Control apparatus and control method for internal combustion engine having centrifugal compressor
JP4404846B2 (ja) インタークーラの異常判定装置
JP4238597B2 (ja) 内燃機関の状態検出装置
JP4613121B2 (ja) 内燃機関の吸気量検出装置
JP6860313B2 (ja) エンジンの制御方法、及び、エンジン
US9447722B2 (en) Electric actuator current control responsive to temperature
JP4466449B2 (ja) 過給機付きエンジンの制御装置
CN108026840B (zh) 内燃机的控制装置以及内燃机的控制方法
US20180266341A1 (en) Control device of internal-combustion engine
JP5420473B2 (ja) 内燃機関の制御装置
JP4415509B2 (ja) 内燃機関の制御装置
JP5116870B1 (ja) 内燃機関の大気圧推定制御装置および大気圧推定方法
JP4818344B2 (ja) 内燃機関の過給圧制御装置
JP2011144763A (ja) 内燃機関用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009746426

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE