WO2009139148A1 - 複合磁性体アンテナ及びrfタグ、該複合磁性体アンテナ又はrfタグを設置した金属部品、金属工具 - Google Patents

複合磁性体アンテナ及びrfタグ、該複合磁性体アンテナ又はrfタグを設置した金属部品、金属工具 Download PDF

Info

Publication number
WO2009139148A1
WO2009139148A1 PCT/JP2009/002060 JP2009002060W WO2009139148A1 WO 2009139148 A1 WO2009139148 A1 WO 2009139148A1 JP 2009002060 W JP2009002060 W JP 2009002060W WO 2009139148 A1 WO2009139148 A1 WO 2009139148A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
tag
magnetic antenna
composite
metal
Prior art date
Application number
PCT/JP2009/002060
Other languages
English (en)
French (fr)
Inventor
香嶋純
木村哲也
土井孝紀
佐藤由郎
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to EP09746355.8A priority Critical patent/EP2280450B1/en
Priority to US12/992,197 priority patent/US8479999B2/en
Priority to CN200980116892.9A priority patent/CN102027637B/zh
Publication of WO2009139148A1 publication Critical patent/WO2009139148A1/ja
Priority to US13/842,672 priority patent/US20130206847A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core

Definitions

  • the present invention relates to a magnetic antenna for communicating information using a magnetic field component and an RF tag using the magnetic antenna, and the magnetic antenna has a metal object or a conductive portion around one end in the coil longitudinal direction. By being formed so as to be surrounded by an object, it is possible to use it with metal embedding, which cannot be used with a conventional RF tag, while maintaining sufficient communication sensitivity.
  • An antenna that transmits and receives electromagnetic waves using a magnetic material is a coil formed by winding a conducting wire around a core (magnetic material) and penetrating the magnetic material from the outside through the magnetic material.
  • RF Tag When the frequency becomes higher, in the RF tag, a planar loop coil whose plane is parallel to the object to be identified without using a magnetic material is used as an antenna, and when the frequency becomes higher (UHF band or microwave band), RF Electric field antennas (dipole antennas and dielectric antennas) that detect electric field components are widely used rather than detecting magnetic field components including tags.
  • UHF band or microwave band RF Electric field antennas (dipole antennas and dielectric antennas) that detect electric field components are widely used rather than detecting magnetic field components including tags.
  • Such a flat loop antenna and electric field antenna have a problem that when a metal object approaches, an image (mirror effect) is formed on the metal object and has an opposite phase to the antenna, so that the sensitivity of the antenna is lost.
  • a magnetic antenna for transmitting and receiving a magnetic field component in which an electrode material is formed in a coil shape on a core centering on a magnetic layer, and an insulating layer is formed on one or both outer surfaces on which the coiled electrode material is formed
  • a magnetic antenna in which a conductive layer is provided on one or both outer surfaces of the insulating layer is known (Patent Document 1).
  • the magnetic antenna maintains its characteristics as an antenna even when in contact with a metal object.
  • tags or antennas that specify the installation state of the tag or magnetic antenna (Patent Documents 2 to 4).
  • Patent Document 2 is intended to be installed on the surface of an object, and is not considered to be used by being embedded in the object.
  • an object of the present invention is to obtain a composite RF tag or a composite magnetic antenna composed of a magnetic antenna that can maintain characteristics even in a small state embedded in a small-diameter hole formed in a metal.
  • the present invention is a composite RF tag for transmitting and receiving information using an electromagnetic induction method
  • the composite RF tag includes a magnetic antenna mounted with an IC and an insulator formed around the magnetic antenna.
  • the magnetic antenna is formed such that the electrode material is coiled around a core made of a magnetic material, and the insulator is a periphery of the magnetic antenna except for one end in the coil longitudinal direction.
  • the composite RF tag is characterized in that the metal or conductive material is formed outside the insulator (Invention 1).
  • the present invention is a composite RF tag for transmitting and receiving information using an electromagnetic induction method
  • the composite RF tag includes a magnetic antenna on which an IC is mounted and an insulator formed around the magnetic antenna.
  • the magnetic antenna is formed such that the electrode material is coiled around a core made of a magnetic material and a non-magnetic material, and the insulator is a longitudinal direction of the coil of the magnetic antenna.
  • the metal object or the conductor is a composite RF tag formed on the outer side of the insulator (invention 2).
  • the inner diameter of the metal object or conductor is 1.0 times the longest length of the cross section of the magnetic antenna. This is the composite RF tag as described above (Invention 3).
  • the present invention provides the composite RF tag according to the first aspect, wherein the length of the metal or conductive material in the depth direction is 1.0 or more times the length in the longitudinal direction of the magnetic antenna. It is a tag (Invention 4).
  • the present invention also relates to a composite magnetic antenna for transmitting and receiving information using an electromagnetic induction method.
  • the composite magnetic antenna is composed of a magnetic antenna, an insulator formed around the magnetic antenna, and a metal object.
  • the magnetic antenna is formed such that the electrode material is coiled around a magnetic material or a core made of a magnetic material and a non-magnetic material, and the insulator is a coil length of the magnetic antenna. It is a magnetic antenna that is formed around the direction except one end, and the metal or conductive material is formed outside the insulator (Invention 5).
  • the present invention is a metal part provided with the composite RF tag according to any one of the first to fourth aspects of the present invention or the composite magnetic antenna according to the fifth aspect of the present invention (Invention 6).
  • present invention is a metal tool in which the composite RF tag according to any one of the present inventions 1 to 4 or the composite magnetic antenna according to the present invention 5 is installed (present invention 7).
  • the composite RF tag and composite magnetic antenna according to the present invention do not vary in communication sensitivity even when embedded in a small space hole of a metal object, and are suitable for use as an RFID of 13.56 MHz.
  • the composite RF tag and the composite magnetic antenna according to the present invention are small in size and can ignore external influences, particularly the influence of external metals or conductors. Therefore, portable devices, containers, metal parts, substrates, metal tools, It can be used in a state in which it is embedded in various uses such as a mold, a printing plate or a printing roll, a vehicle such as a bicycle or an automobile, a metal jig, a marker such as a bolt or a hammer.
  • an insulator is formed around one end of the magnetic antenna (RF tag) in which the IC is mounted except for one end in the coil longitudinal direction (open surface of the magnetic flux). It is formed outside the insulator.
  • the magnetic antenna is formed such that the electrode material is coiled around a core made of a magnetic material or a magnetic material and a non-magnetic material, and an IC is mounted on the magnetic antenna to form an RF tag.
  • the composite RF tag according to the present invention is arranged around the magnetic antenna 17 so as to surround one end in the coil longitudinal direction with a metal or conductive material 30, and further, the magnetic antenna and the metal object Alternatively, the insulating material 20 is filled between the conductive materials.
  • the cross-sectional shape of the metal or conductive material is not particularly limited, and may be any shape such as a circular shape, an elliptical shape, a triangular shape, a quadrangular shape, a pentagonal shape, a hexagonal shape, or a star shape. Also good. In view of industrial productivity, a circular shape is preferable.
  • the cross section of the magnetic antenna in the longitudinal direction of the coil has no bottom as shown in FIGS. 1B to 1D other than the cylindrical shape shown in FIG. Or a conical shape and a hemisphere at the bottom.
  • the metal or conductive material need not be formed on the entire outer surface of the insulator, and may be formed on the entire outer surface of the insulator or in a state where a gap is left.
  • two or more curved metal objects or conductors are formed with a gap so that the metal objects or conductors do not contact each other
  • two or more plate-shaped metal objects or conductors are A state where it is formed on an insulator so that it does not come into contact with the object or conductor, a state where a gap is partially opened, a state where a metal object or conductor is formed in a C shape when the insulator has a circular cross section
  • the cross section of the insulator is a polygonal shape such as a quadrangle, it may be in any state such as a state where a metal or conductive material is formed at each corner.
  • a metal or conductive material may be formed on the entire surface only at at least one end of the composite RF tag.
  • the inner diameter (c of FIG. 2) of the metal object or conductor is the ratio (c / a) to the longest length (a of FIG. 2) of the cross section of the magnetic antenna. )
  • the length (d in FIG. 2) of the metal or conductive material is 1.0 times or more in the ratio (d / b) to the length in the longitudinal direction of the core (b in FIG. 2). It is preferable.
  • d / b is less than 1.0, it is difficult to have sufficient sensitivity. More preferably, it is 1.2 times or more.
  • the thickness of the metal or conductive material is not particularly limited, but is preferably about 0.5 to 2.0 mm.
  • the metal object in the present invention is not particularly limited, and examples thereof include stainless steel, iron, aluminum, copper, brass and the like, which are general metal pipe materials.
  • a general conductive material such as carbon, a conductive polymer material such as polyacetylene, or a composite thereof can be used.
  • resin glass ceramics, nonmagnetic ferrite or the like may be used.
  • resin what has heat resistance, such as a polyimide, an epoxy resin, a phenol resin, is preferable.
  • glass ceramic borosilicate glass, zinc glass, lead glass or the like is preferable.
  • nonmagnetic ferrite Zn-based ferrite and the like are preferable.
  • an IC is mounted on a magnetic antenna and used as an RF tag.
  • the wiring connected to the coil lead terminal of the magnetic antenna may be extended to the outside of the composite magnetic antenna and connected to the IC chip installed outside the composite magnetic antenna.
  • FIGS. 1-10 Schematic diagrams of the magnetic antenna according to the present invention are shown in FIGS.
  • the magnetic antenna shown in FIG. 3 is formed so that the electrode material is coiled (wound) around the magnetic layer (core), and is insulated on one or both outer surfaces on which the coiled electrode material is formed.
  • the basic structure is that a layer is formed.
  • the magnetic antenna shown in FIG. 3 forms a magnetic layer 5 in which a single layer or a plurality of layers formed by mixing a mixture of magnetic powder and a binder into a sheet shape is formed.
  • Through hole 1 is opened in layer 5.
  • Electrode material is poured into each of the through holes 1, and electrode layers 2 are formed on both surfaces perpendicular to the through holes 1 so as to be connected to the through holes 1 so as to form a coil (winding shape).
  • the coil is formed so that the layer 5 has a square or rectangular core. At this time, both ends of the magnetic layer 5 forming the coil 4 are open on the magnetic circuit.
  • insulating layers 6 are formed on the upper and lower surfaces of the coil 4 on which the electrode layer is formed.
  • the obtained sheet is cut by the through-hole 1 and the coil open end face 3 so as to have a desired shape and fired integrally, or is cut by the through-hole 1 and the coil open end face 3 after the integral firing. (LTCC technology).
  • the magnetic antenna shown in FIG. 4 is formed so that the electrode material has a coil shape (winding shape) around the magnetic layer (core), and is insulated on one or both outer surfaces on which the coiled electrode material is formed.
  • the basic structure is that a conductive layer is formed on one or both outer surfaces of the insulator.
  • the magnetic antenna shown in FIG. 4 forms a magnetic layer 5 in which a single layer or a plurality of layers made of a mixture of magnetic powder mixed with a binder is formed into a sheet, and the magnetic antenna is formed.
  • Through hole 1 is opened in layer 5.
  • Electrode material is poured into each of the through holes 1, and electrode layers 2 are formed on both surfaces perpendicular to the through holes 1 so as to be connected to the through holes 1 so as to form a coil (winding shape).
  • the coil is formed so that the layer 5 has a square or rectangular core. At this time, both ends of the magnetic layer 5 forming the coil 4 are open on the magnetic circuit.
  • insulating layers 6 are formed on the upper and lower surfaces of the coil 4 on which the electrode layer is formed.
  • a conductive layer 7 is formed on one or both upper surfaces (outer surfaces) of the insulating layer 6.
  • the obtained sheet is cut by the through-hole 1 and the coil open end face 3 so as to have a desired shape and fired integrally, or is cut by the through-hole 1 and the coil open end face 3 after the integral firing. (LTCC technology).
  • the magnetic antenna shown in FIG. 5 is a magnetic antenna according to the present invention, centered on a core composed of the magnetic body 5 and the nonmagnetic body 8, and the electrode material is coiled (wound) outside the core.
  • the basic structure is to form an insulating layer on one or both outer surfaces on which the coiled electrode material is formed.
  • the core has a structure in which a magnetic material is divided into non-magnetic materials.
  • the area ratio (total magnetic material / total nonmagnetic material) of the total magnetic material and the total nonmagnetic material is preferably 1.0 or less in the cross section of the core. If the non-magnetic layer is larger than the above range, the ratio of the magnetic material in the core is reduced, which is disadvantageous for downsizing the magnetic antenna. A more preferred range is 0.5 or less, and even more preferred is 0.2 or less.
  • the ratio (S / L) of one cross-sectional area (S) of the magnetic layer forming the core of the magnetic antenna shown in FIG. 5 and the length (L) of the magnetic antenna. ) Is preferably 0.3 or less.
  • the area ratio (S / L) exceeds 0.3, it is difficult to reduce the influence of the demagnetizing field.
  • the magnetic antenna having the core shown in FIG. 5 can be manufactured, for example, by the following method.
  • a magnetic layer formed by laminating a single layer or a plurality of layers in the form of a sheet made of a mixture of magnetic powder and a binder is formed.
  • a non-magnetic layer in which a mixture of non-magnetic powder and binder is formed into a sheet or a plurality of layers is formed.
  • the magnetic layers 5 and the nonmagnetic layers 8 are alternately laminated so that the total thickness becomes a desired thickness.
  • a desired number of through holes 1 are opened in the laminated magnetic layer and nonmagnetic layer.
  • An electrode material is poured into each of the through holes.
  • the electrode layer 2 is formed on both surfaces perpendicular to the through hole so as to be connected to the through hole and have a coil shape (winding shape).
  • a coil is formed by the electrode material and the electrode layer poured into the through hole so that the magnetic layer becomes a rectangular core. At this time, both ends of the magnetic layer forming the coil are open on the magnetic circuit (3 in FIG. 4).
  • insulating layers 6 are formed on the upper and lower surfaces of the coil on which the electrode layer is formed.
  • the obtained sheet can be manufactured by cutting at the through hole and the open end face of the coil so as to have a desired shape and firing integrally, or by cutting at the through hole and the open end face of the coil after integral firing (LTCC). Technology).
  • Ni—Zn ferrite or the like can be used for the core magnetic body.
  • Ni—Zn ferrite Fe 2 O 3 45 to 49.5 mol%, NiO 9.0 to 45.0 mol%, ZnO 0.5 to 35.0 mol%, CuO 4.5 to A composition that is 15.0 mol% is preferable, and a ferrite composition that has high magnetic permeability as a material and low magnetic loss in the frequency band to be used may be selected. If a material with a magnetic permeability higher than necessary is used, the magnetic loss increases, making it unsuitable for an antenna.
  • a ferrite composition such that the permeability at 13.56 MHz is 70 to 120 for the RFID tag application and the permeability at 10 MHz is 10 to 30 for the consumer FM broadcast reception because the magnetic loss is small.
  • the magnetic antenna according to the present invention connects the IC by forming a coil lead terminal and an IC chip connection terminal with an electrode material on the outer surface of the insulating layer.
  • a through hole 1 is provided in the insulating layer 6 on at least one surface of the coil 4 on which the electrode layer is formed, and an electrode material is poured into the through hole 1 so that both ends of the coil 4 are provided.
  • a coil lead terminal and an IC chip connection terminal are formed with an electrode material on the surface of the insulating layer and integrally fired.
  • a capacitor electrode may be disposed on the outer surface of the insulating layer, and an insulating layer may be further provided on the outer surface on which the capacitor electrode is disposed.
  • a capacitor may be formed by printing parallel electrodes or comb electrodes on the outer surface of the insulating layer, and may be connected in parallel or in series with the coil lead terminal.
  • an insulating layer is further provided on the outer surface on which the capacitor electrode is disposed, and an electrode also serving as an IC chip connection terminal is formed on the outer surface of the insulating layer so that the capacitor is sandwiched between the insulating layers. And may be connected in parallel or in series with the IC chip connection terminal.
  • the magnetic antenna according to the present invention may have a terminal structure capable of connecting an IC chip to the outer surface of the insulating layer, and the IC chip connection terminal and the coil lead terminal may be connected in parallel or in series.
  • a terminal provided with a variable capacitor may be formed on the outer surface of the insulating layer, and the coil lead terminal and the coil lead terminal may be connected in parallel or in series.
  • Ni—Zn ferrite or the like can be used for the core magnetic body.
  • Ni—Zn ferrite Fe 2 O 3 45 to 49.5 mol%, NiO 9.0 to 45.0 mol%, ZnO 0.5 to 35.0 mol%, CuO 4.5 to 15
  • a composition that is 0.0 mol% is preferable, and a ferrite composition that has high magnetic permeability as a material and low magnetic loss in the frequency band to be used may be selected. If the magnetic permeability as a material is too high, the magnetic loss increases, so that it is not suitable for an antenna.
  • a ferrite composition such that the permeability at 13.56 MHz is 70 to 120 for the RFID tag application and the permeability at 10 MHz is 10 to 30 for the consumer FM broadcast reception because the magnetic loss is small.
  • the magnetic antenna according to the present invention includes a non-magnetic core material, a non-magnetic ferrite such as a Zn-based ferrite, a glass-based ceramic such as a borosilicate glass, a zinc-based glass, or a lead-based glass, or a non-magnetic ferrite and a glass-based ceramic. What mixed the proper quantity etc. can be used.
  • a Zn-based ferrite composition may be selected such that the volume resistivity of the sintered body is 10 8 ⁇ cm or more.
  • a composition comprising Fe 2 O 3 45 to 49.5 mol%, ZnO 17.0 to 22.0 mol%, and CuO 4.5 to 15.0 mol% is preferable.
  • the composition is such that the difference from the linear expansion coefficient of soft magnetic ferrite used as a magnetic material is within ⁇ 5 ppm / ° C.
  • the composite RF tag according to the present invention is arranged so that a portion other than one end in the longitudinal direction is surrounded by a conductive material or a metal material with respect to a magnetic antenna mounted with an IC manufactured by the above-described method, and the gap is filled with a resin.
  • the magnetic antenna may be resin-coated by a dip method or the like, and a metal or conductor may be applied to the dried resin-coated surface using a paste or the like.
  • the composite RF tag according to the present invention can be embedded in a recess having a predetermined shape such as a metal part or a metal tool.
  • a concave portion having a predetermined shape may be formed in advance on an object on which an antenna or tag such as a metal part or metal tool is to be installed.
  • the composite RF tag according to the present invention is preferably installed so that the longitudinal direction of the coil (magnetic flux release surface) is perpendicular to the reader.
  • the magnetic antenna according to the present invention is formed so that the outer periphery is surrounded by a metal or conductive material, and there is no characteristic deviation such as a resonance frequency when embedding in a metal object, thereby minimizing the influence of communication sensitivity due to changes in the usage environment. Can be suppressed.
  • Ni—Zn—Cu ferrite calcined powder with a permeability of 100 at 13.56 MHz after sintering at 900 ° C. Fe 2 O 3 48.5 mol%, NiO 25 mol%, ZnO 16 mol%, CuO 10.5 mol%) 100 parts by weight, butyral resin 8 parts by weight, plasticizer 5 parts by weight, and solvent 80 parts by weight were mixed in a ball mill to produce a slurry.
  • the resulting slurry was formed into a sheet by a doctor blade on a PET film so as to have a 150 mm square and a thickness of 0.1 mm upon sintering.
  • borosilicate glass SiO 2 86-89 wt%, B 2 O 3 7-10 wt%, K 2 O 0.5-7 wt%
  • 8 parts by weight of butyral resin 5 parts by weight of plasticizer Part by weight and 80 parts by weight of solvent were mixed with a ball mill to produce a slurry.
  • the resulting slurry was formed into a sheet by a doctor blade on a PET film with a 150 mm square so that the thickness during sintering was 0.05 mm.
  • Zn—Cu ferrite calcined powder Fe 2 O 3 48.5 mol%, ZnO 41 mol%, CuO 10.5 mol%) 100 parts by weight, butyral resin 8 parts by weight, plastic A slurry was prepared by mixing 5 parts by weight of the agent and 80 parts by weight of the solvent with a ball mill. The resulting slurry was formed into a sheet with the same size and thickness as the magnetic layer on a PET film with a doctor blade.
  • a through-hole 1 is formed in the magnetic layer green sheet, and the Ag paste is filled therein, and the Ag paste is printed on both sides perpendicular to the through-hole 1 to laminate 10 sheets. Then, a coil was formed.
  • green sheets for the insulating layer 6 are laminated on the upper and lower surfaces of the coil 4.
  • the laminated green sheets are pressure-bonded together, cut at the through-hole and the coil open end face 3, and integrally fired at 900 ° C. for 2 hours to obtain a magnetic material having a width of 10 mm ⁇ length of 3 mm and a coil winding number of 23 turns.
  • An antenna 1 was produced. (In the figure, the number of coil turns is simplified. In addition, the number of laminated magnetic layers is represented by three layers for simplification of the figure. The same applies to the other figures below.)
  • an RF tag IC is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel with the IC so that the resonance frequency is adjusted to 13.56 MHz in a state surrounded by metal or conductive material.
  • An RF tag was used.
  • the obtained RF tag is put into a metal tube (stainless steel) having an outer diameter of 6 mm, an inner diameter of 5 mm, and a length of 15 mm.
  • a metal tube stainless steel
  • One end of the magnetic antenna is placed on the metal tube so that the center overlaps, and the gap is filled with epoxy resin.
  • the other was formed by covering with a metal plate (stainless steel).
  • the ratio (c / a) of the inner diameter of the metal tube (c in FIG. 2) to the longest length (a in FIG. 2) of the cross section of the magnetic antenna is 1.4 times.
  • the ratio (d / b) of the length (d in FIG. 2) to the length (b in FIG. 2) in the longitudinal direction of the magnetic antenna was 1.5 times.
  • the resonance frequency was defined as the peak frequency of the impedance measured with an impedance analyzer 4291A manufactured by Agilent Technologies, Inc.
  • the communication distance is the metal or conductive material of the RF tag produced from the pen tip of the pen-type reader / writer (product name TR3-PA001 / TR3-M001B, manufactured by Takaya Co., Ltd.) that is less affected by external metal objects.
  • the distance between the antenna and the RF tag at a position as far away as possible at 13.56 MHz was defined as the communication distance.
  • RF tag 2 comparative example An IC was mounted on the magnetic antenna manufactured in the same manner as in Example 1, and the resonance frequency was adjusted to 13.56 MHz in the same state to obtain an RF tag. The obtained RF tag was coated with an epoxy resin and evaluated so that it could be installed on the SUS block in the same manner as the RF tag 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

 本発明は、磁界成分を利用して情報を通信するための複合磁性体アンテナ及びそれを用いた複合RFタグに関するものであり、従来のRFタグでは利用できなかった金属埋め込みでの利用を、十分な通信感度を保ったままで可能とするものである。  電磁誘導方式を利用し情報を送受信するための複合RFタグであり、該複合RFタグはICを実装した磁性体アンテナと該磁性体アンテナの周囲に形成された絶縁物と金属物又は導電物とからなり、前記磁性体アンテナは磁性体からなるコアを中心として電極材料がコイル状となるように形成され、前記絶縁物は磁性体アンテナのコイル長手方向の一端を除く周囲に形成され、前記金属物又は導電物は前記絶縁物の外側に形成されている複合RFタグである。

Description

複合磁性体アンテナ及びRFタグ、該複合磁性体アンテナ又はRFタグを設置した金属部品、金属工具
 本発明は、磁界成分を利用して情報を通信するための磁性体アンテナ及びそれを用いたRFタグに関するものであり、該磁性体アンテナは、コイル長手方向の一端を除く周囲を金属物あるいは導電物で囲まれるように形成することにより、従来のRFタグでは利用できなかった金属埋め込みでの利用を、十分な通信感度を保ったままで可能とするものである。
 磁性体を使用し電磁波を送受信するアンテナ(以下、「磁性体アンテナ」という)は、コア(磁性体)に導線を巻き線してコイルを作り、外部から飛来する磁界成分を磁性体に貫通させコイルに誘導させて電圧(または電流)に変換するアンテナであり、小型ラジオやTVには広く利用されてきた。また、近年、普及してきたRFタグと呼ばれる非接触型の物体識別装置に利用されている。
 周波数がより高くなると、RFタグにおいては、磁性体を使用せず識別対象物と平面が平行になる平面ループコイルがアンテナとして使用され、さらに周波数が高くなると(UHF帯やマイクロ波帯)、RFタグを含めて磁界成分を検出するよりも、電界成分を検出する電界アンテナ(ダイポールアンテナや誘電体アンテナ)が広く使用されている。
 このような平面ループアンテナや電界アンテナは、金属物が接近すると、金属物にイメージ(ミラー効果)ができて、アンテナと逆位相になるために、アンテナの感度が失われるという問題が生じる。
 一方、磁界成分を送受信するための磁性体アンテナであって、磁性層を中心とするコアに電極材料をコイル状に形成し、コイル状の電極材料を形成した一方又は両方の外側面に絶縁層を形成し、前記絶縁層の一方又は両方の外側面に導電層を設けた磁性体アンテナが知られている(特許文献1)。該磁性体アンテナは、金属物に接触した場合であっても、アンテナとしての特性が維持されるものである。また、タグ又は磁性体アンテナの設置状態を特定したタグ又はアンテナが知られている(特許文献2~4)。
特開2007-19891号公報 特開2002-207980号公報 特開2004-362342号公報 特開2005-198255号公報
 前記特許文献1記載の方法では、特定方向への金属貼り付け用途への対策は考えられているが、金属部品や金属工具などに埋め込んだ場合、十分な感度を維持することができない。
 また、前記特許文献2記載の方法では、対象物の表面に設置することを目的としており、対象物中に埋め込んで使用することは考慮されていない。
 また、前記特許文献3及び4記載の方法では、磁性体アンテナの周辺を磁性体で被覆することが記載されているが、フェライト材を被覆することで感度向上させることを目的としたもので、外部周辺の金属あるいは導体の影響を解決できるものではない。
 そこで、本発明は、小型で金属に開けた小径の穴に埋め込んだ状態でも、特性が維持できる磁性体アンテナからなる複合RFタグあるいは複合磁性体アンテナを得ることを目的とする。
 前記技術的課題は、次の通りの本発明によって達成できる。
 即ち、本発明は、電磁誘導方式を利用し情報を送受信するための複合RFタグであり、該複合RFタグはICを実装した磁性体アンテナと該磁性体アンテナの周囲に形成された絶縁物と金属物又は導電物とからなり、前記磁性体アンテナは磁性体からなるコアを中心として電極材料がコイル状となるように形成され、前記絶縁物は磁性体アンテナのコイル長手方向の一端を除く周囲に形成され、前記金属物又は導電物は前記絶縁物の外側に形成されていることを特徴とする複合RFタグである(本発明1)。
 また、本発明は、電磁誘導方式を利用し情報を送受信するための複合RFタグであり、該複合RFタグはICを実装した磁性体アンテナと該磁性体アンテナの周囲に形成された絶縁物と金属物又は導電物とからなり、前記磁性体アンテナは磁性体と非磁性体とからなるコアを中心として電極材料がコイル状となるように形成され、前記絶縁物は磁性体アンテナのコイル長手方向の一端を除く周囲に形成され、前記金属物又は導電物は前記絶縁物の外側に形成されている複合RFタグである(本発明2)。
 また、本発明は、本発明1記載の複合RFタグにおいて、前記金属物又は導電物の形状が円形の場合、金属物又は導電物の内径が磁性体アンテナ断面の最長長さの1.0倍以上である複合RFタグである(本発明3)。
 また、本発明は、本発明1記載の複合RFタグにおいて、前記金属物又は導電物の深さ方向の長さが、磁性体アンテナの長手方向の長さの1.0倍以上である複合RFタグである(本発明4)。
 また、本発明は、電磁誘導方式を利用し情報を送受信するための複合磁性体アンテナであり、該複合磁性体アンテナは磁性体アンテナと該磁性体アンテナの周囲に形成された絶縁物と金属物又は導電物とからなり、前記磁性体アンテナは磁性体又は磁性体と非磁性体とからなるコアを中心として電極材料がコイル状となるように形成され、前記絶縁物は磁性体アンテナのコイル長手方向の一端を除く周囲に形成され、前記金属物又は導電物は前記絶縁物の外側に形成されている磁性体アンテナである(本発明5)。
 また、本発明は、本発明1~4の何れかに記載の複合RFタグ又は本発明5記載の複合磁性体アンテナを設置した金属部品である(本発明6)。
 また、本発明は、本発明1~4の何れかに記載の複合RFタグ又は本発明5記載の複合磁性体アンテナを設置した金属工具である(本発明7)。
 本発明に係る複合RFタグ及び複合磁性体アンテナは、金属物の小スペースの穴などに埋め込んだ状態でも通信感度の変動がなく、13.56MHzのRFID用途として好適である。
 本発明に係る複合RFタグおよび複合磁性体アンテナは、小型であり、かつ外部影響、特に外部の金属あるいは導体の影響を無視できるので、携帯機器、容器、金属部品、基板、金属製工具、各種金型、印刷版や印刷ロール、自転車や自動車などの車両、金属製冶具、ボルト、鋲などのマーカー等の各種用途に埋め込んだ状態で用いることができる。
本発明に係る複合RFタグの概念図である。 本発明に係る複合RFタグの断面図である。 本発明における磁性体アンテナの概念図である。 本発明における磁性体アンテナの概念図である。 本発明における磁性体アンテナの概念図である。 本発明における磁性体アンテナのコイル部分の積層構成図である。
符号の説明
 1:スルーホール
 2:電極層(コイル電極)
 3:コイル開放端面
 4:コイル
 5:磁性層
 6:絶縁層
 7:導電層
 8:非磁性層
 17:磁性体アンテナ
 20:絶縁物
 30:金属物又は導電物
 a:磁性体アンテナの最長径
 b:金属物又は導電物の内径
 c:磁性体アンテナの長手方向の長さ
 d:金属物又は導電物の深さ方向の長さ
 まず、本発明に係る複合RFタグについて述べる。
 本発明に係る複合RFタグは、ICを実装した磁性体アンテナ(RFタグ)のコイル長手方向(磁束の開放面)の一端を除く周囲に絶縁物が形成され、さらに、金属物又は導電物が前記絶縁物の外側に形成されているものである。磁性体アンテナは磁性体又は磁性体と非磁性体とからなるコアを中心として電極材料がコイル状となるように形成されており、当該磁性体アンテナにICを実装してRFタグとする。
 本発明に係る複合RFタグの概略図を図1(a)~(d)、図2に示す。
 図に示すとおり、本発明に係る複合RFタグは、磁性体アンテナ17の周囲にコイル長手方向の一端以外を金属物又は導電物30で囲むように配置し、さらに、磁性体アンテナと前記金属物又は導電物との間を絶縁物質20で充填した構造となっている。
 本発明において金属物あるいは導電物の断面形状は、特に限定されるものではなく、円形、楕円形、三角形状、四角形、五角形、六角形などの多角形状、星形などのいずれの形状であっても良い。工業的な生産性を考慮すれば円形が好ましい。
 また、金属物あるいは導電物において、磁性体アンテナのコイル長手方向の断面形状は図1(a)に示した円筒形以外にも図1(b)~(d)に示すような底がないものや円錐形、底が半球であってもよい。
 なお、金属物又は導電物は絶縁物の外側全面に形成される必要はなく、絶縁物の外側全面に形成した状態及び隙間が空いた状態であっても良い。例えば、二つ以上の湾曲した金属物又は導電物を互いの金属物又は導電物が接触しないように隙間を空けて形成した状態、二つ以上の板状の金属物又は導電物を互いの金属物又は導電物が接触しないように絶縁物上に形成した状態、部分的に隙間を開けた状態、絶縁物の断面を円状とした場合に金属物又は導電物をC字状に形成した状態、絶縁物の断面を四角形などの多角形状とした場合に各角部に金属物又は導電物を形成した状態等のいずれの状態であってもよい。また、前記隙間が空いた状態であっても、複合RFタグの少なくともいずれか一方の端部のみ金属物又は導電物が全面に形成された状態となってもよい。
 本発明において、金属物又は導電物の形状が円形の場合、金属物又は導電物の内径(図2のc)は磁性体アンテナ断面の最長長さ(図2のa)に対する比(c/a)が1.0倍以上であることが必要であるが、1.1倍以上が好ましい。より好ましくは1.3倍以上である。
 また、金属物又は導電物の深さ方向の長さ(図2のd)は、コアの長手方向の長さ(図2のb)に対する比(d/b)が1.0倍以上であることが好ましい。前記d/bが1.0未満の場合には十分な感度を有することが困難となる。より好ましくは、1.2倍以上である。
 また、金属物又は導電物の厚さは特に限定されるものではないが、0.5~2.0mm程度が好ましい。
 本発明における金属物としては、特に限定されるものではないが、一般的な金属製のパイプ材料である、ステンレス、鉄、アルミニウム、銅、真ちゅうなどがあげられる。導電物としては、カーボンなどの一般的な導電性材料やポリアセチレンなどの導電性高分子材料又はそれらの複合体が利用できる。
 本発明における絶縁物としては、樹脂、ガラスセラミックス、非磁性フェライトなどを用いればよい。樹脂としては、ポリイミド、エポキシ樹脂、フェノール樹脂などの耐熱性を有するものが好ましい。ガラスセラミックスとしては、ホウケイ酸系ガラス、亜鉛系ガラス又は鉛系ガラス等が好ましい。非磁性フェライトとしては、Zn系フェライトなどが好ましい。また、樹脂、ガラスセラミックス及び非磁性フェライトの2種以上を混合して用いてもよい。
 本発明においては磁性体アンテナにICを実装してRFタグとして用いるものである。一方、ICを実装しない場合でも、アンテナとして用いることが可能である。また、複合磁性アンテナに対して、磁性体アンテナのコイルリード端子に接続する配線を複合磁性体アンテナの外側まで延長し、複合磁性体アンテナの外部に設置したICチップと接続してもよい。
 次に、本発明における磁性体アンテナについて述べる。
 本発明における磁性体アンテナの概略図を図3~図5に示す。
 図3に示す磁性体アンテナは、磁性層(コア)を中心として電極材料がコイル状(巻き線状)となるように形成され、コイル状の電極材料を形成した一方又は両方の外側面に絶縁層を形成したことを基本構造とするものである。
 本発明において、図3に示す磁性体アンテナは、図6に示すように磁性粉末をバインダーと混合した混合物をシート状にした単層あるいは複数の層を積層した磁性層5を形成し、該磁性層5にスルーホール1を開ける。前記スルーホール1のそれぞれに電極材料を流し込み、且つ、スルーホール1と直角になる両面に、スルーホール1と接続してコイル状(巻き線状)となるように電極層2を形成し、磁性層5が角型あるいは長方形のコアとなるようにコイルを形成する。このとき、コイル4を形成する磁性層5の両端が磁性回路上開放となる構成となる。
 次いで、電極層を形成したコイル4の上下面に絶縁層6を形成する。
 得られたシートを、所望の形状となるように、スルーホール1とコイル開放端面3で切断して一体焼成する、又は一体焼成後にスルーホール1とコイル開放端面3で切断することによって製造することができる(LTCC技術)。
 図4に示す磁性体アンテナは、磁性層(コア)を中心として電極材料がコイル状(巻き線状)となるように形成され、コイル状の電極材料を形成した一方又は両方の外側面に絶縁物を形成し、前記絶縁物の一方又は両方の外側面に導電層を設けたことを基本構造とするものである
 本発明において、図4に示す磁性体アンテナは、図6に示すように磁性粉末をバインダーと混合した混合物をシート状にした単層あるいは複数の層を積層した磁性層5を形成し、該磁性層5にスルーホール1を開ける。前記スルーホール1のそれぞれに電極材料を流し込み、且つ、スルーホール1と直角になる両面に、スルーホール1と接続してコイル状(巻き線状)となるように電極層2を形成し、磁性層5が角型あるいは長方形のコアとなるようにコイルを形成する。このとき、コイル4を形成する磁性層5の両端が磁性回路上開放となる構成となる。
 次いで、電極層を形成したコイル4の上下面に絶縁層6を形成する。
 さらに、前記絶縁層6の一方あるいは両方の上面(外側面)に導電層7を形成する。
 得られたシートを、所望の形状となるように、スルーホール1とコイル開放端面3で切断して一体焼成する、又は一体焼成後にスルーホール1とコイル開放端面3で切断することによって製造することができる(LTCC技術)。
 図5に示す磁性体アンテナは、本発明に係る磁性体アンテナは、磁性体5と非磁性体8とからなるコアを中心とし、コアの外側に電極材料をコイル状(巻き線状)となるように形成し、コイル状の電極材料を形成した一方又は両方の外側面に絶縁層を形成することを基本構造とする。前記コアは、磁性体が非磁性体に分割された構造となっている。
 なお、図5に示す磁性体アンテナにおいて、前記コアの断面において、全磁性体と全非磁性体との面積の比(全磁性体/全非磁性体)が1.0以下が好ましい。非磁性層が前記範囲を超えて大きい場合には、コア内の磁性体の比率が低下するため、磁性体アンテナの小型化には不利である。より好ましい範囲は0.5以下、さらに好ましくは0.2以下である。
 なお、図5に示す磁性体アンテナにおいて、図5に示す磁性体アンテナのコアを形成する磁性層の一つの断面積(S)と磁性体アンテナの長さ(L)との比(S/L)は、0.3以下が好ましい。前記面積比(S/L)が0.3を超える場合、反磁界の影響を低減することが困難となる。
 本発明において、図5に示すコアを有する磁性体アンテナは、例えば、以下の方法によって製造することができる。
 まず、磁性粉末及びバインダーを混合した混合物をシート状にした単層あるいは複数の層を積層した磁性層を形成する。
 別に、非磁性粉末及びバインダーを混合した混合物をシート状にした単層あるいは複数の層を積層した非磁性層を形成する。
 次に、図6に示すように、磁性層5と非磁性層8とを交互に、全体の厚みが所望の厚さとなるように積層する。
 次いで、積層した磁性層及び非磁性層に所望の数のスルーホール1を開ける。前記スルーホールのそれぞれに電極材料を流し込む。また、スルーホールと直角になる両面に、スルーホールと接続してコイル状(巻き線状)となるように電極層2を形成する。スルーホールに流し込んだ電極材料と電極層によって、磁性層が長方形のコアとなるようにコイルを形成する。このとき、コイルを形成する磁性層の両端が磁性回路上開放となる構成となる(図4の3)。
 次いで、図5に示すように電極層を形成したコイルの上下面に絶縁層6を形成する。
 得られたシートを、所望の形状となるように、スルーホールとコイル開放端面で切断して一体焼成する、又は一体焼成後にスルーホールとコイル開放端面で切断することによって製造することができる(LTCC技術)。
 本発明における磁性体アンテナは、コアの磁性体に、Ni-Zn系フェライトなどを用いることができる。Ni-Zn系フェライトを使用する場合は、Fe 45~49.5モル%、NiO 9.0~45.0モル%、ZnO 0.5~35.0モル%、CuO 4.5~15.0モル%であるような組成が好ましく、使用する周波数帯で材料としての透磁率が高く、磁性損失が低くなるようなフェライト組成を選択すると良い。必要以上に高い透磁率の材料にすると磁性損失が増えるのでアンテナに適さなくなる。
 例えば、RFIDタグ用途では13.56MHzでの透磁率が70~120、民生FM放送受信用途では100MHzでの透磁率が10~30になるようなフェライト組成を選択すると磁性損失が少ないので好ましい。
 また、本発明における磁性体アンテナは、絶縁層の外側面に電極材料でコイルリード端子とICチップ接続端子を形成してICを接続する。
 前記ICチップ接続端子を形成した磁性体アンテナは、電極層を形成したコイル4の少なくとも一方の面の絶縁層6にスルーホール1を設け、このスルーホール1に電極材料を流し込み、コイル4の両端と接続し、該絶縁層の表面に電極材料でコイルリード端子とICチップ接続端子を形成して一体焼成して得ることができる。
 また、本発明における磁性体アンテナは、絶縁層の外側面にコンデンサー電極を配置し、コンデンサー電極を配置した外側面にさらに絶縁層を設けてもよい。
 また、本発明における磁性体アンテナは、絶縁層の外側面に平行電極若しくはくし型電極を印刷してコンデンサーを形成し、コイルリード端子と並列もしくは直列に接続してもよい。
 また、本発明における磁性体アンテナは、コンデンサー電極を配置した外側面にさらに絶縁層を設け、該絶縁層の外側面にICチップ接続端子を兼ねる電極を形成して該絶縁層を挟みこむようにコンデンサーを形成し、ICチップ接続端子と並列もしくは直列に接続してもよい。
 また、本発明における磁性体アンテナは、絶縁層の外側面にICチップが接続できる端子構造を有し、ICチップ接続端子とコイルリード端子とを並列若しくは直列に接続してもよい。
 また、本発明における磁性体アンテナは、絶縁層の外側面に可変コンデンサーを設ける端子を形成し、コイルリード端子とコイルリード端子とを並列若しくは直列に接続してもよい。
 本発明における磁性体アンテナは、コアの磁性体にNi-Zn系フェライトなどを用いることができる。Ni-Zn系フェライトを使用する場合、Fe 45~49.5モル%、NiO 9.0~45.0モル%、ZnO 0.5~35.0モル%、CuO 4.5~15.0モル%であるような組成が好ましく、使用する周波数帯で材料としての透磁率が高く、磁性損失が低くなるようなフェライト組成を選択すると良い。材料としての透磁率があまり高すぎると磁性損失が増えるのでアンテナに適さなくなる。
 例えば、RFIDタグ用途では13.56MHzでの透磁率が70~120、民生FM放送受信用途では100MHzでの透磁率が10~30になるようなフェライト組成を選択すると磁性損失が少ないので好ましい。
 本発明における磁性体アンテナは、コアの非磁性体に、Zn系フェライトなどの非磁性フェライト、ホウケイ酸系ガラス、亜鉛系ガラス又は鉛系ガラス等のガラス系セラミック、あるいは非磁性フェライトとガラス系セラミックを適量混合したものなどを用いることができる。
 非磁性フェライトに使用するフェライト粉末には、焼結体の体積固有抵抗が10Ωcm以上になるようなZn系フェライト組成を選択するとよい。Fe 45~49.5モル%、ZnO 17.0~22.0モル%、CuO 4.5~15.0モル%である組成が好ましい。
 ガラス系セラミックの場合、使用するガラス系セラミック粉末には、線膨張係数が使用する磁性体の線膨張係数と大きく異ならない組成を選択するとよい。具体的には磁性体として用いる軟磁性フェライトの線膨張係数との差が±5ppm/℃以内の組成である。
 次に、本発明に係る複合RFタグの製造方法について述べる。
 本発明に係る複合RFタグは、前述した方法によって作製したICを実装した磁性体アンテナに対して、長手方向の一端以外を導電物あるいは金属物で取り囲むように配置し、空隙を樹脂で埋めて形成してすることができる。また、磁性体アンテナをディップ法などで樹脂コートし、乾燥させた樹脂コート表面に金属あるいは導体をペーストなどを用いて塗布してもよい。
 本発明に係る複合RFタグは、金属部品、金属工具等の所定の形状の凹部に埋め込むことができる。あらかじめ、金属部品、金属工具などのアンテナ又はタグを設置したい対象物に所定の形状の凹部を形成しておけばよい。
 なお、本発明に係る複合RFタグはリーダに対してコイルの長手方向(磁束の開放面)が垂直になるように設置することが好ましい。
<作用>
 本発明に係る磁性体アンテナは、外周を金属物もしくは導電物で囲むように形成することで金属物に埋め込む際に共振周波数などの特性ズレがなく使用環境の変化による通信感度の影響を最小限に抑えることができる。
 以下に添付図面を参照しながら、発明の実施の形態に基づいて本発明を詳細に説明する。
[RFタグ1]
 磁性層用として、900℃焼結後に13.56MHzでの材料としての透磁率が100になるNi-Zn-Cuフェライト仮焼粉(Fe 48.5モル%、NiO 25モル%、ZnO 16モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に150mm角で、焼結時の厚みが0.1mmになるようにシート成型した。
 非磁性層用として、ホウケイ酸ガラス(SiO 86~89wt%、B 7~10wt%、KO 0.5~7wt%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に150mm角で、焼結時の厚みがそれぞれ、0.05mmになるようにシート成型した。
 また、絶縁層用として同様に、Zn-Cuフェライト仮焼粉(Fe 48.5モル%、ZnO 41モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に磁性層と同様のサイズと厚みでシート成型した。
 次に、図6に示すように、磁性層用グリーンシートにスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して10枚積層し、コイルを形成した。
 次に、図5に示すように、絶縁層6用グリーンシートをコイル4の上下面に積層する。
 積層したグリーンシートをまとめて加圧接着させ、スルーホールとコイル開放端面3で切断し、900℃で2時間、一体焼成して、横10mm×縦3mmのサイズのコイル巻き数23ターンの磁性体アンテナ1を作製した。(図ではコイル巻き数を簡略している。また、磁性層の積層枚数は図の簡略化のため3層で表している。以下の他の図についても同様である。)
 さらに、該磁性体アンテナのコイル両端にRFタグ用ICを接続し、ICと並列にコンデンサーを接続して金属物あるいは導電物に囲まれた状態で共振周波数を13.56MHzになるよう調整してRFタグとした。
 得られたRFタグを外径6mm、内径5mm、長さ15mmの金属管(ステンレス)に入れ込み磁性体アンテナの一端を金属管の淵に合わせて中心が重なるよう配置し空隙をエポキシ樹脂で充填し、他方を金属板(ステンレス)でふたをして形成した。
 このときの金属管の内径(図2のc)の磁性体アンテナ断面の最長長さ(図2のa)に対する比(c/a)は1.4倍であり、金属管の深さ方向の長さ(図2のd)の磁性体アンテナの長手方向の長さ(図2のb)に対する比(d/b)が1.5倍であった。
 高さ5cmの5cm角SUSブロックに開けた内径6mm、深さ15mmの凹部に、前記複合RFタグを設置する前後で、以下の測定を行った。
[共振周波数の測定と調整方法]
 共振周波数は、アジレントテクノロジー株式会社製インピーダンスアナライザー4291Aで測定されるインピーダンスのピーク周波数をもって共振周波数とした。
[通信距離の測定方法]
 通信距離は、外部金属物の影響が少ないペン型のリーダ/ライタ(株式会社タカヤ製、製品名TR3-PA001/TR3-M001B)のアンテナのペン先を、作製したRFタグの金属物あるいは導電物に覆われていない一端を向け、13.56MHzで通信が可能な限り離れた位置の時のアンテナとRFタグの距離を通信距離とした。
[RFタグ2 比較例]
 実施例1と同様に製造した磁性体アンテナにそのままICを実装し、そのままの状態で共振周波数が13.56MHzに調整しRFタグとした。得られたRFタグを前記SUSブロックにRFタグ1と同様に設置できるよう、エポキシ樹脂で被覆して評価した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、金属物で被覆しない複合RFタグでは、金属物に埋め込んだ場合に通信できなかった。

Claims (7)

  1.  電磁誘導方式を利用し情報を送受信するための複合RFタグであり、該複合RFタグはICを実装した磁性体アンテナと該磁性体アンテナの周囲に形成された絶縁物と金属物又は導電物とからなり、前記磁性体アンテナは磁性体からなるコアを中心として電極材料がコイル状となるように形成され、前記絶縁物は磁性体アンテナのコイル長手方向の一端を除く周囲に形成され、前記金属物又は導電物は前記絶縁物の外側に形成されていることを特徴とする複合RFタグ。
  2.  電磁誘導方式を利用し情報を送受信するための複合RFタグであり、該複合RFタグはICを実装した磁性体アンテナと該磁性体アンテナの周囲に形成された絶縁物と金属物又は導電物とからなり、前記磁性体アンテナは磁性体と非磁性体とからなるコアを中心として電極材料がコイル状となるように形成され、前記絶縁物は磁性体アンテナのコイル長手方向の一端を除く周囲に形成され、前記金属物又は導電物は前記絶縁物の外側に形成されている複合RFタグ。
  3.  請求項1記載の複合RFタグにおいて、前記金属物又は導電物の形状が円形の場合、金属物又は導電物の内径が磁性体アンテナ断面の最長長さの1.0倍以上である複合RFタグ。
  4.  請求項1記載の複合RFタグにおいて、前記金属物又は導電物の深さ方向の長さが、磁性体アンテナの長手方向の長さの1.0倍以上である複合RFタグ。
  5.  電磁誘導方式を利用し情報を送受信するための複合磁性体アンテナであり、該複合磁性体アンテナは磁性体アンテナと該磁性体アンテナの周囲に形成された絶縁物と金属物又は導電物とからなり、前記磁性体アンテナは磁性体又は磁性体と非磁性体とからなるコアを中心として電極材料がコイル状となるように形成され、前記絶縁物は磁性体アンテナのコイル長手方向の一端を除く周囲に形成され、前記金属物又は導電物は前記絶縁物の外側に形成されている複合磁性体アンテナ。
  6.  請求項1~4の何れかに記載の複合RFタグ又は請求項5記載の複合磁性体アンテナを設置した金属部品。
  7.  請求項1~4の何れかに記載の複合RFタグ又は請求項5記載の複合磁性体アンテナを設置した金属工具。
PCT/JP2009/002060 2008-05-13 2009-05-12 複合磁性体アンテナ及びrfタグ、該複合磁性体アンテナ又はrfタグを設置した金属部品、金属工具 WO2009139148A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09746355.8A EP2280450B1 (en) 2008-05-13 2009-05-12 Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
US12/992,197 US8479999B2 (en) 2008-05-13 2009-05-12 Composite magnetic antenna and RF tag, and metal part and metal tool on which the composite magnetic antenna or RF tag is installed
CN200980116892.9A CN102027637B (zh) 2008-05-13 2009-05-12 复合磁性体天线和rf标签、设置有该复合磁性体天线或rf标签的金属部件、金属工具
US13/842,672 US20130206847A1 (en) 2008-05-13 2013-03-15 Composite magnetic antenna and rf tag, and metal part and metal tool on which the composite magnetic antenna or rf tag is installed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008126504A JP5239499B2 (ja) 2008-05-13 2008-05-13 複合磁性体アンテナ及びrfタグ、該複合磁性体アンテナ又はrfタグを設置した金属部品、金属工具
JP2008-126504 2008-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/842,672 Division US20130206847A1 (en) 2008-05-13 2013-03-15 Composite magnetic antenna and rf tag, and metal part and metal tool on which the composite magnetic antenna or rf tag is installed

Publications (1)

Publication Number Publication Date
WO2009139148A1 true WO2009139148A1 (ja) 2009-11-19

Family

ID=41318523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002060 WO2009139148A1 (ja) 2008-05-13 2009-05-12 複合磁性体アンテナ及びrfタグ、該複合磁性体アンテナ又はrfタグを設置した金属部品、金属工具

Country Status (7)

Country Link
US (2) US8479999B2 (ja)
EP (1) EP2280450B1 (ja)
JP (1) JP5239499B2 (ja)
KR (1) KR101593252B1 (ja)
CN (1) CN102027637B (ja)
TW (1) TWI520430B (ja)
WO (1) WO2009139148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013556A1 (en) * 2010-10-12 2016-01-14 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113751A1 (ja) * 2009-03-31 2010-10-07 戸田工業株式会社 複合rfタグ、該複合rfタグを設置した工具
JP5404573B2 (ja) * 2010-09-27 2014-02-05 株式会社東芝 無線電力伝送装置および無線電力受信装置
JP5780298B2 (ja) * 2011-04-18 2015-09-16 株式会社村田製作所 アンテナ装置および通信端末装置
US9898698B2 (en) 2011-07-01 2018-02-20 The Boeing Company Production tool having RFID device mounted within a dielectric inclusion
CN102354813A (zh) * 2011-09-23 2012-02-15 深圳市江波龙电子有限公司 一种通信天线及其制造方法、应用终端
TWI506854B (zh) * 2011-09-28 2015-11-01 Hon Hai Prec Ind Co Ltd 天線及其製造方法
WO2013161608A1 (ja) * 2012-04-27 2013-10-31 株式会社村田製作所 コイルアンテナおよび通信端末装置
KR102067839B1 (ko) * 2012-06-30 2020-01-17 더 보잉 컴파니 유전체 함유물 내에 장착된 알에프아이디 장치를 갖춘 제조 도구
WO2014141906A1 (ja) * 2013-03-15 2014-09-18 株式会社日立システムズ 積層コイルアンテナを備えた小型icタグ及びその製法
US9721200B2 (en) * 2013-11-18 2017-08-01 Composecure, L.L.C. Card with metal layer and an antenna
US9306283B2 (en) * 2014-01-24 2016-04-05 Sony Corporation Antenna device and method for increasing loop antenna communication range
JP6364906B2 (ja) * 2014-04-15 2018-08-01 スミダコーポレーション株式会社 アンテナ装置およびアンテナ装置の製造方法
EP3146476A4 (en) 2014-05-22 2017-12-13 Composecure LLC Transaction and id cards having selected texture and coloring
US10783422B2 (en) 2014-11-03 2020-09-22 Composecure, Llc Ceramic-containing and ceramic composite transaction cards
KR102052765B1 (ko) * 2014-11-21 2019-12-09 삼성전기주식회사 페라이트 및 이를 적용한 칩 전자부품
JP6274135B2 (ja) * 2015-03-12 2018-02-07 株式会社村田製作所 コイルモジュール
EP3324650B1 (en) * 2016-11-18 2019-02-27 GN Hearing A/S Antenna embedded into a multi-layered printed circuit board.
US11238328B2 (en) 2017-12-20 2022-02-01 Aichi Steel Corporation Magnetic marker and magnetic marker system
US11978061B2 (en) 2022-01-04 2024-05-07 Robert Bosch Gmbh Casting embedded hardware encryption

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207980A (ja) 2001-01-09 2002-07-26 Denso Corp 金属貼付用idタグ
JP2003046321A (ja) * 2001-08-01 2003-02-14 Mitsubishi Materials Corp 磁芯部材及びそれを用いたrfid用タグ
JP2004200829A (ja) * 2002-12-17 2004-07-15 Furukawa Electric Co Ltd:The Rfidタグ
JP2004362342A (ja) 2003-06-05 2004-12-24 Toppan Printing Co Ltd 非接触式電子タグ
JP2005198255A (ja) 2003-12-11 2005-07-21 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、キーレスエントリーシステム、rfidシステム
JP2007019891A (ja) 2005-07-07 2007-01-25 Toda Kogyo Corp 磁性体アンテナ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP473898A0 (en) * 1998-07-20 1998-08-13 Integrated Silicon Design Pty Ltd Metal screened electronic labelling system
US6486853B2 (en) * 2000-05-18 2002-11-26 Matsushita Electric Industrial Co., Ltd. Chip antenna, radio communications terminal and radio communications system using the same and method for production of the same
JP3711026B2 (ja) * 2000-07-17 2005-10-26 株式会社ハネックス Rfidタグの設置構造及びrfidタグの設置方法及びrfidタグの通信方法
JP4092680B2 (ja) * 2001-09-07 2008-05-28 三菱マテリアル株式会社 Rfid用タグの設置構造及び該タグを備えたrfidシステム
DE10206676A1 (de) 2002-02-18 2003-08-28 Giesecke & Devrient Gmbh Mit einem Transponder betätigbare Schaltvorrichtung
US7098858B2 (en) * 2002-09-25 2006-08-29 Halliburton Energy Services, Inc. Ruggedized multi-layer printed circuit board based downhole antenna
JP4477961B2 (ja) * 2004-07-28 2010-06-09 株式会社日立製作所 Icタグ付きボルト
JP2006202319A (ja) * 2004-12-21 2006-08-03 Digital Information Technologies Kk タグ保持体
US8072387B2 (en) * 2005-07-07 2011-12-06 Toda Kogyo Corporation Magnetic antenna and board mounted with the same
US7705733B2 (en) * 2006-01-06 2010-04-27 Warsaw Orthopedic, Inc. Coiled RFID tag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207980A (ja) 2001-01-09 2002-07-26 Denso Corp 金属貼付用idタグ
JP2003046321A (ja) * 2001-08-01 2003-02-14 Mitsubishi Materials Corp 磁芯部材及びそれを用いたrfid用タグ
JP2004200829A (ja) * 2002-12-17 2004-07-15 Furukawa Electric Co Ltd:The Rfidタグ
JP2004362342A (ja) 2003-06-05 2004-12-24 Toppan Printing Co Ltd 非接触式電子タグ
JP2005198255A (ja) 2003-12-11 2005-07-21 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、キーレスエントリーシステム、rfidシステム
JP2007019891A (ja) 2005-07-07 2007-01-25 Toda Kogyo Corp 磁性体アンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2280450A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013556A1 (en) * 2010-10-12 2016-01-14 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9705192B2 (en) * 2010-10-12 2017-07-11 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus

Also Published As

Publication number Publication date
KR20110015415A (ko) 2011-02-15
EP2280450B1 (en) 2017-11-08
JP2009278292A (ja) 2009-11-26
TWI520430B (zh) 2016-02-01
CN102027637B (zh) 2016-03-16
CN102027637A (zh) 2011-04-20
EP2280450A4 (en) 2014-05-07
KR101593252B1 (ko) 2016-02-12
US20110101113A1 (en) 2011-05-05
TW201006034A (en) 2010-02-01
US8479999B2 (en) 2013-07-09
JP5239499B2 (ja) 2013-07-17
EP2280450A1 (en) 2011-02-02
US20130206847A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5239499B2 (ja) 複合磁性体アンテナ及びrfタグ、該複合磁性体アンテナ又はrfタグを設置した金属部品、金属工具
WO2010113751A1 (ja) 複合rfタグ、該複合rfタグを設置した工具
TWI483472B (zh) A magnetic antenna, a substrate on which the magnetic antenna is mounted, and a radio frequency tag
JP5634717B2 (ja) 磁性体アンテナ及びrfタグ並びに該rfタグを実装した基板
JP4821965B2 (ja) 磁性体アンテナ
WO2012017921A1 (ja) Rfタグ、磁性体アンテナ及び当該rfタグを実装した基板、通信システム
EP1944827B1 (en) Board mounted with a magnetic antenna
WO2007007639A1 (ja) 磁性体アンテナ
CN110214396B (zh) 电子器件、天线和rf标签
JP2007028114A (ja) 磁性体アンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116892.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107025212

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009746355

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009746355

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12992197

Country of ref document: US