WO2012017921A1 - Rfタグ、磁性体アンテナ及び当該rfタグを実装した基板、通信システム - Google Patents

Rfタグ、磁性体アンテナ及び当該rfタグを実装した基板、通信システム Download PDF

Info

Publication number
WO2012017921A1
WO2012017921A1 PCT/JP2011/067319 JP2011067319W WO2012017921A1 WO 2012017921 A1 WO2012017921 A1 WO 2012017921A1 JP 2011067319 W JP2011067319 W JP 2011067319W WO 2012017921 A1 WO2012017921 A1 WO 2012017921A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
antenna
coil
tag
magnetic antenna
Prior art date
Application number
PCT/JP2011/067319
Other languages
English (en)
French (fr)
Inventor
香嶋純
大前誠司
佐藤由郎
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to CN201180037745.XA priority Critical patent/CN103053075B/zh
Priority to KR1020137002573A priority patent/KR101898741B1/ko
Priority to US13/813,990 priority patent/US9311590B2/en
Priority to EP11814547.3A priority patent/EP2602868B1/en
Publication of WO2012017921A1 publication Critical patent/WO2012017921A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07781Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being fabricated in a winding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/162Testing a finished product, e.g. heat cycle testing of solder joints

Definitions

  • the present invention relates to a magnetic antenna and an RF tag for communicating information by using a magnetic field component, and the magnetic antenna and the RF tag have a magnetic sensitivity that improves communication sensitivity compared to the prior art.
  • a body antenna and an RF tag are examples of body antenna and an RF tag.
  • An antenna that transmits and receives electromagnetic waves using a magnetic material is a coil formed by winding a conducting wire around a core (magnetic material) and penetrating the magnetic material from the outside through the magnetic material.
  • a loop coil whose plane is parallel to the object to be identified without using a magnetic material is used as an antenna, and when the frequency becomes higher (UHF band or microwave band), the RF tag.
  • Electric field antennas dipole antennas and dielectric antennas that detect electric field components are widely used rather than detecting magnetic field components including.
  • Such a loop antenna or electric field antenna has a problem that when a metal object approaches, an image (mirror effect) is formed on the metal object and has an opposite phase to the antenna, so that the sensitivity of the antenna is lost.
  • a magnetic antenna for transmitting and receiving a magnetic field component, and an electrode material is formed in a coil shape on a core centering on the magnetic material, and an insulating layer is formed on one or both outer surfaces formed with the coiled electrode material
  • Patent Document 1 A magnetic antenna in which a conductive layer is provided on one or both outer surfaces of the insulating layer is known (Patent Document 1). The magnetic antenna maintains its characteristics as an antenna even when in contact with a metal object.
  • Patent Document 2 Japanese Patent Document 2
  • JP 2007-19891 A Japanese Patent Laid-Open No. 9-64634 JP 2003-332822 A JP 2004-206479 A
  • Patent Document 2 is intended to prevent a decrease in coil characteristics due to an increase in the resistance of the winding wire, and therefore does not describe anything about improving communication sensitivity.
  • Patent Document 3 is intended to reduce stray capacitance (parasitic capacitance) to reduce variations in characteristics or inductance due to temperature change, and does not describe anything about improving communication sensitivity. Not.
  • Patent Document 4 the purpose is to improve the communication sensitivity by increasing the area of the opening by bank winding, and there is no description about connecting a plurality of coils in parallel.
  • an object of the present invention is to obtain a magnetic antenna capable of increasing the inductance of the coil limited by the resonance frequency more than ever and improving the communication sensitivity.
  • the present invention is an RF tag mounted with IC in magnetic antenna for transmitting and receiving information using an electromagnetic induction method, the magnetic antenna to one of the magnetic core, the inductance L 1 is equation ( 1) A plurality of coils satisfying 1) are formed, and the winding method of each coil is a bank winding. The coils are connected in parallel on the electric circuit and arranged in series with the magnetic core.
  • the RF tag is characterized in that the combined inductance L 0 satisfies the relational expression (2) (Invention 1).
  • the present invention is a composite RF tag in which the RF tag according to the present invention 1 is coated with a resin (Invention 2).
  • the present invention is a magnetic antenna for use in RF tag of the present invention 1, wherein, when magnetic material antenna is mounted with IC, inductance L 1 is relation to one of the magnetic core (1) A plurality of satisfying coils are formed, and each coil is wound in a bank winding. Each coil is connected in parallel on the electric circuit and arranged in series with the magnetic core, and the combined inductance L of the magnetic antenna A magnetic antenna characterized in that 0 satisfies the relational expression (2) (Invention 3).
  • present invention is a substrate on which the RF tag according to the present invention 1 or the composite RF tag according to the present invention 2 is mounted (present invention 4).
  • the present invention is a communication system using the RF tag according to the present invention 1 or the composite RF tag according to the present invention 2 (Invention 5).
  • the magnetic antenna and the RF tag according to the present invention are magnetic antennas with improved sensitivity and can communicate over a long distance, and are suitable as a magnetic antenna for use in a 13.56 MHz RFID. is there.
  • the magnetic antenna or RF tag according to the present invention has high communication sensitivity, it can be used for various applications such as various portable devices, containers, metal parts, substrates, metal tools, dies, and the like.
  • FIG. 1 is a schematic view of a magnetic antenna according to the present invention.
  • 1 is a perspective view of a magnetic antenna according to the present invention. It is the schematic which shows the state of bank winding. It is the schematic which shows the state of the core divided
  • the magnetic antenna according to the present invention will be described.
  • FIGS. 1 and 2 are schematic views of a magnetic antenna according to the present invention.
  • the magnetic antenna (20) according to the present invention is centered on a core (3) made of a magnetic material, and an electrode material is coiled (wound) outside the core (3).
  • the basic structure is that a plurality of coils (4-1) are electrically connected in parallel, and the coils (4-1) are arranged in series on the same core (3). To do. (In FIG. 1 and FIG. 2, there are four coils. However, in the present invention, the number of coils is not limited. In addition, the coils are illustrated by solenoid windings for simplification.)
  • inductance L 1 of each coil (4-1) of the magnetic antenna is the relationship (1), it is impossible to improve the communication sensitivity.
  • more preferably 3 times or more inductance L 1 of each coil is more than twice the combined inductance L 0 of the magnetic antenna.
  • the resonance frequency of the RF tag on which the IC is mounted cannot be adjusted to the operating frequency, so that the communication sensitivity cannot be improved.
  • each coil is formed by forming an electrode material in a coil shape (winding shape) on the outside of the core, and the winding method of the coil is bank winding.
  • the parasitic capacitance does not increase even if the windings are wound in an overlapping manner, which contributes to an improvement in the sensitivity of the RF tag.
  • FIG. 3-1 is a plan view (xy plane)
  • FIG. 3-2 is a side view (yz plane).
  • the positions of through holes are shown in order from an to n.
  • FIG. 3A is a plan view, where a is the upper surface of the coil and a ′ is the lower surface of the coil. The same applies to the subsequent b, b ', c, and c', and the parenthesized portions are hidden portions.
  • 3-2 is a side view, where b is the front side of the coil and (a) is the rear side of the coil. The same applies to the subsequent f, e, f ', and e', and the parenthesized portion is a hidden portion.
  • coils are manufactured in the same order for portions not shown.
  • the positional relationship between a ', a, b, b', c ', c, d, d', ... and e ', e, f, f', ... is not limited to FIG. , E ′, e, f, f ′,...
  • the core in the present invention may have a structure in which the magnetic body constituting the core is divided by a non-magnetic body.
  • the cross-sectional state cut perpendicularly to the magnetic flux penetrating the magnetic antenna shows that the magnetic material is a non-magnetic material.
  • Any state may be used as long as it is divided, for example, the states shown in FIGS. 4 (a) to 4 (d).
  • FIG. 5 is a schematic diagram showing another aspect of the magnetic antenna according to the present invention.
  • the magnetic antenna (20) according to the present invention is centered on a core (3) made of a magnetic material.
  • the electrode material is formed in a coil shape (winding shape) on the outside (2), a plurality of coils (4-1) are electrically connected in parallel, and the coil (4-1) has the same core ( 3), an insulating layer (6) is formed on one or both outer surfaces on which the coiled electrode material is formed, and a conductive layer (7) is formed on one or both outer surfaces of the insulating layer (6).
  • FIG. 6 is a schematic diagram showing another aspect of the magnetic antenna according to the present invention.
  • the coil is shown as a solenoid winding.
  • the magnetic antenna (20) according to the present invention is centered on a core (3) made of a magnetic material.
  • the electrode material is formed in a coil shape (winding shape) on the outside (2), a plurality of coils (4-1) are electrically connected in parallel, and the coil (4-1) has the same core ( 3), an insulating layer (6) is formed on one or both outer surfaces on which the coiled electrode material is formed, and a conductive layer (7) is formed on one or both outer surfaces of the insulating layer (6).
  • a magnetic layer (5) may be provided outside the conductive layer (7).
  • the magnetic antenna according to the present invention has capacitor electrodes (11) on one or both outer surfaces of the insulating layer (6) sandwiching the upper and lower surfaces of the coil (4). You may arrange.
  • the capacitor formed on the upper surface of the insulating layer may be a capacitor formed by printing parallel electrodes or comb-shaped electrodes, and the capacitor and the coil lead terminal are further connected. You may connect in parallel or in series.
  • an insulating layer (6) is further provided on the outer surface on which the capacitor electrode (11) is disposed, and an electrode layer serving also as an IC chip connection terminal on the outer surface of the insulating layer (6).
  • a capacitor may be formed so as to form (9) and sandwich the insulating layer (6), and may be connected in parallel or in series with the IC chip connection terminal.
  • a terminal (9) to which the IC chip (10) can be connected may be formed on the upper surface of the insulating layer (6).
  • the IC chip connection terminal (9) and the coil lead terminal may be connected in parallel or in series and fired integrally.
  • Ni—Zn ferrite or the like can be used as the magnetic material of the core.
  • Ni—Zn ferrite Fe 2 O 3 45 to 49.5 mol%, NiO 9.0 to 45.0 mol%, ZnO 0.5 to 35.0 mol%, CuO 4.5 to A composition that is 15.0 mol% is preferable, and a ferrite composition that has high magnetic permeability as a material and low magnetic loss in the frequency band to be used may be selected. If a material with a magnetic permeability higher than necessary is used, the magnetic loss increases, making it unsuitable for an antenna.
  • a ferrite composition such that the permeability at 13.56 MHz is 70 to 120 for the RFID tag application and the permeability at 10 MHz is 10 to 30 for the consumer FM broadcast reception because the magnetic loss is small.
  • the magnetic antenna according to the present invention includes a nonmagnetic ferrite material such as Zn-based ferrite, a glass-based ceramic such as borosilicate glass, zinc-based glass, or lead-based glass, or nonmagnetic ferrite and glass-based material. What mixed a suitable quantity of ceramics etc. can be used.
  • a Zn-based ferrite composition may be selected such that the volume resistivity of the sintered body is 10 8 ⁇ cm or more.
  • a composition comprising Fe 2 O 3 45 to 49.5 mol%, ZnO 17.0 to 22.0 mol%, and CuO 4.5 to 15.0 mol% is preferable.
  • the composition is such that the difference from the linear expansion coefficient of soft magnetic ferrite used as a magnetic material is within ⁇ 5 ppm / ° C.
  • the RF tag according to the present invention has an IC connected to the magnetic antenna.
  • the perspective view shown in FIG. 2 is a form in which an IC can be mounted on a magnetic antenna, but any form in which an IC installed separately from a magnetic antenna is connected by an electric circuit may be used.
  • a terminal (9) to which an IC chip (10) can be connected is formed on the upper surface of an insulating layer (6) of a magnetic antenna, and an IC chip connection terminal, a coil lead terminal, May be fired integrally by connecting them in parallel or in series.
  • the magnetic antenna having the IC chip connection terminal is provided with a through hole (1) in the insulating layer (6) on at least one surface of the coil (4) on which the electrode layer is formed. It can be obtained by pouring an electrode material into the hole (1), connecting it to both ends of the coil (4), forming a coil lead terminal and an IC chip connection terminal with the electrode material on the surface of the insulating layer, and firing them integrally.
  • Inductance L 1 coil 1 connected in parallel of the RF tag according to the present invention fulfills the following equation 1, the combined inductance L 0 is satisfies the following relational expression 2.
  • the RF tag according to the present invention is coated with a resin such as polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, acrylic, polyethylene, polypropylene, polyamide, polyacetal, polycarbonate, vinyl chloride, modified polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, etc. May be.
  • a resin such as polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, acrylic, polyethylene, polypropylene, polyamide, polyacetal, polycarbonate, vinyl chloride, modified polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, etc. May be.
  • a single layer or a magnetic layer (5) in which a mixture of magnetic powder and a binder is formed into a sheet is formed.
  • the inner coil part the part forming through holes in e, f, i, j, m, and n in FIG. 3-2
  • the outer coil part a, b, c, d in FIG. 3-2.
  • G, h, k, and l to form a magnetic layer.
  • an inner coil portion (a portion where through holes are formed in e, f, i, j, m, and n in FIG. 3-2) using the magnetic layer (5).
  • an inner coil portion (a portion where through holes are formed in e, f, i, j, m, and n in FIG. 3-2) using the magnetic layer (5).
  • a desired number of through holes (e, f, i, j, m, n) are opened in the laminated magnetic layer.
  • An electrode material is poured into each of the through holes.
  • the electrode layer (2) is formed on both surfaces perpendicular to the through hole so as to be connected to the through hole and have a coil shape (winding shape).
  • a magnetic layer is laminated on the outer part where the inner coil is manufactured, and a through hole is formed in a part corresponding to a, b, c, d, g, h, k, l, etc. in FIG. .
  • an electrode material is poured into the through holes, and electrode layers are formed so as to connect the through holes. At this time, for example, b ′ and c ′ are connected.
  • a plurality of coils (4-1 in FIG. 2) are formed by the electrode material and the electrode layer poured into the through hole so that the magnetic layer becomes a rectangular core.
  • a plurality of coils (4-1 in FIG. 2) are connected in parallel on the electric circuit. At this time, both ends of the magnetic layer forming the coils at both ends of the plurality of coils arranged in series are open on the magnetic circuit (4-2).
  • insulating layers (6) are formed on the upper and lower surfaces of the coil on which the electrode layer (2) is formed.
  • the obtained sheet is cut at the cut surface (6) along the through hole (1) and the coil open end surface (4-2) so as to have a desired shape, and is fired integrally, or the through hole after the integral firing. And can be manufactured by cutting at the coil open end face (LTCC technology).
  • the magnetic antenna having the core shown in FIG. 4 according to the present invention can be manufactured, for example, by the following method.
  • a magnetic layer formed by laminating a single layer or a plurality of layers in the form of a sheet obtained by mixing a mixture of magnetic powder and a binder is formed.
  • a non-magnetic layer in which a mixture of non-magnetic powder and binder is formed into a sheet or a plurality of layers is formed.
  • the magnetic layer (5) and the nonmagnetic layer (8) are alternately laminated so that the total thickness becomes a desired thickness.
  • a desired number of through holes (1) are opened in the laminated magnetic layer and nonmagnetic layer.
  • An electrode material is poured into each of the through holes.
  • the electrode layer (2) is formed on both surfaces perpendicular to the through hole so as to be connected to the through hole and have a coil shape (winding shape).
  • a coil is formed by the electrode material and the electrode layer poured into the through hole so that the magnetic layer becomes a rectangular core. At this time, both ends of the magnetic layer forming the coil are open on the magnetic circuit.
  • insulating layers (6) are formed on the upper and lower surfaces of the coil on which the electrode layer is formed.
  • the obtained sheet can be produced by cutting at the through hole and the coil open end face and integrally firing so as to have a desired shape, or by cutting at the through hole and the coil open end face after the integral firing.
  • the conductive layer (7) in the present invention may be formed by any means, but is preferably formed by a usual method such as printing or brushing. Or it can affix on the outer side of the insulating layer which formed the metal plate, and can also provide the same effect.
  • an Ag paste is suitable, and other metal-based conductive pastes such as other Ag-based alloy pastes can be used.
  • the thickness of the conductive layer (7) is preferably 0.001 to 0.1 mm.
  • the magnetic antenna according to the present invention is provided with a through hole in the insulating layer (6) on the lower surface of the coil (4), and an electrode material is poured into the through hole, and the coil (4).
  • the electrodes may be connected to both ends, and a substrate connection electrode (14) may be formed on the lower surface of the substrate with an electrode material and integrally fired. In that case, it can be easily bonded to a substrate of ceramic, resin or the like.
  • a composite of the above various materials, a metal-containing one, or the like can be used as the substrate.
  • the substrate on which the magnetic antenna according to the present invention is mounted is characterized in that the magnetic antenna is fixed to the surface of the substrate (15) by means such as adhesive, adhesive, or soldering.
  • a magnetic antenna is replaced with another component by means generally used when mounting a component on a multilayer wiring board by providing a substrate connection electrode or a substrate connection electrode that is not electrically connected with an electrode material. It can be mounted at the same time, and mass productivity is high.
  • the multilayer wiring board has a built-in wiring composed of conductors, which has the same effect on the antenna as metal.
  • the magnetic antenna is not affected by the metal because the magnetic antenna is structured as described above, and the wiring constituted by the conductor inside or on the surface of the multilayer wiring board or the like is not provided. Even if the substrate is formed, the characteristics are not significantly changed under the influence.
  • the IC may be connected by forming an IC chip connection terminal on the insulating layer on the upper surface as shown in FIG. 2, or the substrate connection electrode (14 on the lower surface of the magnetic antenna as shown in FIG. ) May be formed in the substrate so as to be connected to each other and connected via the in-substrate wiring. Further, it may be connected to a reader / writer via an in-substrate wiring connected to the substrate connection terminal (14) on the lower surface, and can be used as a reader / writer.
  • the magnetic antenna according to the present invention can be installed in a communication device.
  • the magnetic antenna according to the present invention can be installed in the packaging container.
  • the magnetic antenna according to the present invention can be installed on a metal part such as a tool or a bolt.
  • the magnetic antenna according to the present invention has a bank so that a parasitic capacitance is not increased when a plurality of coils formed so that an electrode material is formed in a coil shape with a single magnetic core as a center are wound in a stacked manner.
  • a plurality of coils are formed by winding, and the plurality of coils are connected in parallel on the electric circuit, and the coils are arranged in series on the shared magnetic core, thereby limiting the inductance of the coil that has been limited by the resonance frequency to be used.
  • L 1 is increased as much as possible, the inductance L 0 of the magnetic antenna was controlled to the resonance frequency, improvement in communication sensitivity can be expected.
  • the electromotive force e induced in the coil is expressed by the following formula (3) using the amount of change dI / dt of the unit time of current.
  • the resonance frequency f 0 is determined by the following equation (4).
  • the induced voltage of the tag due to the coupling between the RF tag and the reader / writer is expressed by the following formula (5) using the mutual inductance M.
  • the inductance of the tag antenna is increased, the voltage induced in the tag can be increased and the degree of coupling can be increased.
  • the combined inductance L 0 of the magnetic antenna is expressed by the following formula (6) when the inductance L 1 of each coil is equivalent.
  • the inductance L1 of one coil connected in parallel can be designed to be large.
  • the present invention while increasing the inductance L 1 of the respective coils, the combined inductance L 0 of the magnetic antenna itself by adjusted by connecting each coil to match the resonance frequency, the communication of the magnetic antenna The sensitivity could be improved.
  • the parasitic capacitance of a plurality of coils connected in parallel can be reduced, the parasitic capacitance of one coil can be reduced, thereby reducing the combined parasitic capacitance and improving the communication sensitivity. Is.
  • Designing a large Q is desirable for the resonance circuit because the power received by the coil is multiplied by Q.
  • the fluctuation in communication sensitivity due to frequency deviation increases due to fluctuation due to variations in the external environment and IC. Therefore, it may be designed so as to satisfy the following formula (7).
  • Ni—Zn—Cu ferrite calcined powder Fe 2 O 3 48.5 mol%, NiO 25 mol
  • magnetic permeability as a material at 13.56 MHz becomes 100 after sintering at 900 ° C. %, ZnO 16 mol%, CuO 10.5 mol%)
  • butyral resin 8 parts by weight plasticizer 5 parts by weight and solvent 80 parts by weight were mixed in a ball mill to produce a slurry.
  • the resulting slurry was formed into a sheet by a doctor blade on a PET film so as to have a 150 mm square and a thickness of 0.1 mm upon sintering.
  • Zn—Cu ferrite calcined powder (Fe 2 O 3 48.5 mol%, ZnO 41 mol%, CuO 10.5 mol%) 100 parts by weight, butyral resin 8 parts by weight Part, 5 parts by weight of plasticizer and 80 parts by weight of solvent were mixed with a ball mill to produce a slurry. The resulting slurry was formed into a sheet with the same size and thickness as the magnetic layer on a PET film with a doctor blade.
  • a through hole is formed in the green sheet for the magnetic layer (5), and the Ag paste is filled therein, and the Ag paste is printed on both sides perpendicular to the through hole.
  • the coils were stacked so that each coil was bank-wound, and five coils were connected in parallel.
  • the insulating layer (6) green sheet was laminated on the upper and lower surfaces of the coil (4-1), and the insulating layer green sheet printed with the conductive layer (7) with Ag paste was laminated on one surface.
  • the laminated green sheets are pressure-bonded together, cut at the through hole and coil open end face (4-2), and fired integrally at 900 ° C. for 2 hours.
  • the number of turns of a size of 30 mm wide ⁇ 4 mm long is 23 turns.
  • a magnetic antenna 1 in which five coils were connected in parallel was prepared. (In the figure, the number of coil turns is shown in a simplified manner. In addition, the number of laminated magnetic layers is simplified. The same applies to the other figures below.)
  • an RF tag IC (IC capacitance: 23.5 pF) is connected to both ends of the coil of the magnetic antenna 1, and a capacitor is connected in parallel with the IC to adjust the resonance frequency to 13.56 MHz.
  • IC capacitance: 23.5 pF IC capacitance: 23.5 pF
  • the resonance frequency was determined by connecting a 1-turn coil to Agilent Technologies Inc. impedance analyzer E4991A, coupling this with an RF tag, and taking the peak frequency of the measured impedance as the resonance frequency.
  • the combined inductance and the combined parasitic capacitance of the magnetic antenna were measured using an impedance analyzer E4991A.
  • the inductance of each coil was measured for only one coil by cutting a wiring connecting a plurality of manufactured coils in parallel.
  • the communication distance is determined by fixing the antenna of a reader / writer (product name: TR3-A201 / TR3-C201, manufactured by Takaya Co., Ltd.) with an output of 100 mW horizontally, and the longitudinal direction of the RF tag above it is perpendicular to the antenna.
  • TR3-A201 / TR3-C201 manufactured by Takaya Co., Ltd.
  • Ni—Zn—Cu ferrite calcined powder Fe 2 O 3 48.5 mol%, NiO 25 mol
  • magnetic permeability as a material at 13.56 MHz becomes 100 after sintering at 900 ° C. %, ZnO 16 mol%, CuO 10.5 mol%)
  • butyral resin 8 parts by weight, plasticizer 5 parts by weight and solvent 80 parts by weight were mixed in a ball mill to produce a slurry.
  • the resulting slurry was formed into a sheet by a doctor blade on a PET film so as to have a 150 mm square and a thickness of 0.1 mm upon sintering.
  • nonmagnetic layer (8) 100 parts by weight of borosilicate glass (SiO 2 86-89 wt%, B 2 O 3 7-10 wt%, K 2 O 0.5-7 wt%), butyral resin 8 parts by weight, plastic A slurry was prepared by mixing 5 parts by weight of the agent and 80 parts by weight of the solvent with a ball mill. The resulting slurry was formed into a sheet of 150 mm square on a PET film with a doctor blade so that the thickness upon sintering was 0.05 mm.
  • borosilicate glass SiO 2 86-89 wt%, B 2 O 3 7-10 wt%, K 2 O 0.5-7 wt%
  • plastic A slurry was prepared by mixing 5 parts by weight of the agent and 80 parts by weight of the solvent with a ball mill. The resulting slurry was formed into a sheet of 150 mm square on a PET film with a doctor blade so that the thickness upon sintering was 0.05 mm.
  • Zn—Cu ferrite calcined powder (Fe 2 O 3 48.5 mol%, ZnO 41 mol%, CuO 10.5 mol%) 100 parts by weight, butyral resin 8 parts by weight Part, 5 parts by weight of plasticizer and 80 parts by weight of solvent were mixed with a ball mill to produce a slurry. The resulting slurry was formed into a sheet with the same size and thickness as the magnetic layer on a PET film with a doctor blade.
  • a magnetic layer (5) green sheet and a non-magnetic layer (8) green sheet are laminated, one by one, and each sheet is pressure bonded.
  • through-hole (1) is opened and filled with Ag paste, and 10 sheets of Ag paste are printed on both sides perpendicular to the through-hole (1), and each coil is wound in a bank.
  • a coil (4) was formed.
  • green sheets for insulating layer (6) are laminated on the upper and lower surfaces of coil (4), and conductive layer (7) is printed on one side with Ag paste. Sheets were laminated.
  • the laminated green sheets are pressure-bonded together, cut at the through hole and coil open end face (4-2), and fired integrally at 900 ° C. for 2 hours.
  • the number of turns of a size of 30 mm wide ⁇ 4 mm long is 23 turns.
  • a magnetic antenna 2 in which five coils were connected in parallel was prepared.
  • an RF tag IC was connected, a capacitor was connected in parallel with the IC, and the resonance frequency was adjusted to 13.56 MHz to produce an RF tag.
  • the distance which communicates with the reader / writer of 100 mW output was measured.
  • Magnetic antenna 3 A glass ceramic paste was printed at a thickness of 0.02 mm on a green sheet for a magnetic layer (5) produced in the same manner as the magnetic antenna 1, and 10 layers were laminated.
  • a coil (4) was formed by winding.
  • a green sheet for the insulating layer (6) formed by printing the conductive layer (7) with Ag paste on one surface of the coil (4) was laminated.
  • a through hole is formed so as to connect to both ends of the coil, an Ag paste is filled therein, and an IC chip connection for connecting the coil lead terminal and the IC to the surface layer perpendicular to the through hole (1)
  • the shape to be the terminal (9) was printed with Ag paste, and a green sheet for the insulating layer (6) was laminated.
  • the above green sheets are pressure-bonded together, cut at the through hole (1) and the coil open end face (4-2), and integrally fired at 900 ° C. for 2 hours to wind a coil with a size of 10 mm wide ⁇ 3 mm long
  • a magnetic antenna 3 having several 23 turns was prepared.
  • An RF tag IC is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel with the IC to adjust the resonance frequency to 13.56 MHz.
  • An RF tag is created, and communication is performed using a reader / writer with an output of 100 mW. The distance to be measured.
  • the magnetic antenna 3 had a communication distance of 12.7 cm.
  • the communication distance when attaching the metal plate was 10.5 cm.
  • Magnetic antenna 4 A green sheet for the magnetic layer (5) and a glass ceramic green sheet for the nonmagnetic layer (8) produced in the same manner as the magnetic antenna 1 were formed in the same thickness of 0.1 mm, respectively. The obtained sheets were each cut to a width of 0.1 mm using a ceramic green sheet laminate cutting machine (G-CUT manufactured by UHT Corporation). Next, as shown in FIG. 4B, the magnetic layer and the nonmagnetic layer were arranged in a single sheet so as to be in order, and were pressure-bonded. 10 sheets of the obtained sheet are stacked in the vertical direction so that the magnetic layer and the nonmagnetic layer are in order, and prepared to be pressure-bonded. Through holes (1) are opened in each sheet, and an Ag paste is formed therein. 10 and Ag paste was printed on both sides perpendicular to the through-hole (1) and laminated, and each coil was turned into a bank to form a coil (4).
  • G-CUT ceramic green sheet laminate cutting machine
  • An insulating layer was formed on the obtained coil in the same manner as the magnetic antenna 1 to obtain a magnetic antenna 4.
  • Magnetic antenna 5 A green sheet for the magnetic layer (5) and a glass ceramic green sheet for the nonmagnetic layer (8) produced in the same manner as the magnetic antenna 1 were formed in the same thickness of 0.1 mm, respectively.
  • the obtained sheets were each cut at a width of 0.1 mm using a ceramic green sheet laminate cutting machine (G-CUT / UHT).
  • G-CUT / UHT ceramic green sheet laminate cutting machine
  • the magnetic layer and the nonmagnetic layer were arranged in a single sheet so as to be in order, and were pressure-bonded.
  • the obtained sheets and 10 glass-ceramic ceramic green sheets are alternately stacked and prepared so that they can be pressure-bonded.
  • Through holes (1) are opened in each sheet, and Ag paste is filled therein.
  • 10 sheets of Ag paste were printed on both surfaces perpendicular to the through hole (1) and laminated, and each coil was wound in a bank to form a coil (4).
  • An insulating layer was formed on the obtained coil in the same manner as the magnetic antenna 1 to obtain a magnetic antenna 5.
  • a rod-like magnetic material for the magnetic layer (5) was produced using the slurry produced in the same manner as the magnetic antenna 1.
  • the rod-shaped magnetic bodies prepared as shown in FIG. 4D were arranged in a container, and a nonmagnetic glass ceramic slurry was poured into a sheet having a thickness of 1 mm.
  • the obtained sheet and 10 glass ceramic green sheets were stacked and prepared for pressure bonding.
  • through holes (1) were opened in each sheet, and Ag paste was filled therein.
  • Ten sheets of Ag paste were printed on both surfaces perpendicular to the through hole (1) and laminated, and each coil was bank-wound to form a coil (4).
  • An insulating layer was formed on the obtained coil in the same manner as the magnetic antenna 1 to obtain a magnetic antenna 6.
  • Magnetic antenna 7 comparative example Manufactured in the same manner as the magnetic antenna 1 except that one coil having 23 turns can be formed.
  • the communication distance with a 100 mW reader / writer was 6.0 cm.
  • Magnetic antenna 8 reference example It was manufactured in the same manner as the magnetic antenna 1 except that the coil was wound by solenoid winding.
  • the parasitic capacitance of one coil was 4.5 pF.
  • Table 1 shows the characteristics of the obtained magnetic antenna.
  • any of the magnetic antennas according to the present invention can adjust the resonance frequency even if the inductance of the coil is designed to be large, and when the core is divided by a non-magnetic material, the effective magnetic permeability is high, and the miniaturization and communication are possible. It was confirmed that the antenna has both improved sensitivity.
  • the parasitic capacitance of one coil can be reduced, and communication sensitivity can be improved.
  • the length of the winding can be shortened, which is advantageous for downsizing.
  • the magnetic antenna or RF tag according to the present invention has high communication sensitivity, it can be used for various applications such as various portable devices, containers, metal parts, substrates, metal tools, dies, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本発明は、磁界成分を利用して情報を通信するための磁性体アンテナに関するものであり、該磁性体アンテナは、小型化と通信感度の向上を両立させた磁性体アンテナ又はRFタグである。すなわち、電磁誘導方式を利用し情報を送受信するための磁性体アンテナにICを実装したRFタグであり、前記磁性体アンテナは一つの磁性体コアに、インダクタンスLが特定の関係式を満たすコイルを巻線を重ねて巻く際に寄生容量が大きくならないようにバンク巻きで複数個形成し、前記各コイルは電気回路上並列に接続し、且つ、磁性体コアに直列に配置しており、磁性体アンテナの合成インダクタンスLが特定の関係式を満たすことを特徴とするRFタグである。

Description

RFタグ、磁性体アンテナ及び当該RFタグを実装した基板、通信システム
 本発明は、磁界成分を利用して情報を通信するための磁性体アンテナ及びRFタグに関するものであり、該磁性体アンテナ及びRFタグは、従来技術に比べて通信感度の向上を実現させた磁性体アンテナ及びRFタグである。
 磁性体を使用し電磁波を送受信するアンテナ(以下、「磁性体アンテナ」という)は、コア(磁性体)に導線を巻き線してコイルを作り、外部から飛来する磁界成分を磁性体に貫通させコイルに誘導させて電圧(または電流)に変換するアンテナであり、小型ラジオやTVには広く利用されてきた。また、近年、普及してきたRFタグと呼ばれる非接触型の物体識別装置に利用されている。
 周波数がより高くなると、RFタグにおいては、磁性体を使用せず識別対象物と平面が平行になるループコイルがアンテナとして使用され、さらに周波数が高くなると(UHF帯やマイクロ波帯)、RFタグを含めて磁界成分を検出するよりも、電界成分を検出する電界アンテナ(ダイポールアンテナや誘電体アンテナ)が広く使用されている。
 このようなループアンテナや電界アンテナは、金属物が接近すると、金属物にイメージ(ミラー効果)ができて、アンテナと逆位相になるために、アンテナの感度が失われるという問題が生じる。
 一方、磁界成分を送受信するための磁性体アンテナであって、磁性体を中心とするコアに電極材料をコイル状に形成し、コイル状の電極材料を形成した一方又は両方の外側面に絶縁層を形成し、前記絶縁層の一方又は両方の外側面に導電層を設けた磁性体アンテナが知られている(特許文献1)。該磁性体アンテナは、金属物に接触した場合であっても、アンテナとしての特性が維持されるものである。
 また、一つのコアに複数のコイルを形成して、並列に結線してアンテナとすることが知られている(特許文献2)。
 また、形状の小型化を測るため重ね巻きをする際、通常のソレノイドコイル巻きよりバンク巻きにすることでコイルの寄生容量の増大を最小限にとどめることが出来ることが知られている(特許文献3~4)。
特開2007-19891号公報 特開平9-64634号公報 特開2003-332822号公報 特開2004-206479号公報
 前記特許文献1記載の方法では、サイズに制限がある条件下においてさらに長い交信距離を得ることが困難である。
 また、前記特許文献2記載では、巻線の抵抗の増加によるコイル特性の低下を防止する目的であるので、通信感度を向上させることに関しては何ら記載されていない。
 また、前記特許文献3記載では、浮遊容量(寄生容量)を減少させて特性のバラつきあるいは温度変化に伴うインダクタンスの変化を減少させることが目的であり、通信感度を向上させることに関しては何ら記載されていない。
 また、前記特許文献4記載では、バンク巻きによって開口部分の面積を大きくして、通信感度を向上させることが目的であり、複数個のコイルを並列に接続することに関しては何ら記載されていない。
 そこで、本発明は、共振周波数により制限されるコイルのインダクタンスをこれまで以上に大きくすることができ、通信感度を向上させた磁性体アンテナを得ることを目的とする。
 前記技術的課題は、次の通りの本発明によって達成できる。
 即ち、本発明は、電磁誘導方式を利用し情報を送受信するための磁性体アンテナにICを実装したRFタグであり、前記磁性体アンテナは一つの磁性体コアに、インダクタンスLが関係式(1)を満たすコイルを複数個形成するとともに各コイルの巻き方をバンク巻きとし、前記各コイルは電気回路上並列に接続し、且つ、磁性体コアに直列に配置しており、磁性体アンテナの合成インダクタンスLが関係式(2)を満たすことを特徴とするRFタグである(本発明1)。
<関係式(1)>
 ≧ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
(L:コイル1個のインダクタンス)
<関係式(2)>
 ≦ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
(L:磁性体アンテナの合成インダクタンス)
 また、本発明は、本発明1記載のRFタグを樹脂で被覆した複合RFタグである(本発明2)。
 また、本発明は、本発明1記載のRFタグに用いる磁性体アンテナであって、該磁性体アンテナはICを実装した際に、一つの磁性体コアにインダクタンスLが関係式(1)を満たすコイルを複数個形成するとともに各コイルの巻き方をバンク巻きとし、前記各コイルは電気回路上並列に接続し、且つ、磁性体コアに直列に配置しており、磁性体アンテナの合成インダクタンスLが関係式(2)を満たすことを特徴とする磁性体アンテナである(本発明3)。
<関係式(1)>
 ≧ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
(L:コイル1個のインダクタンス)
<関係式(2)>
 ≦ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
(L:磁性体アンテナの合成インダクタンス)
 また、本発明は、本発明1記載のRFタグ又は本発明2記載の複合RFタグを実装した基板である(本発明4)。
 また、本発明は、本発明1記載のRFタグ又は本発明2記載の複合RFタグを用いた通信システムである(本発明5)。
 本発明に係る磁性体アンテナ及びRFタグは、より感度が向上した磁性体アンテナであって、長い距離であっても通信が可能であり、13.56MHzのRFID用途などの磁性体アンテナとして好適である。
 本発明に係る磁性体アンテナ又はRFタグは、高い通信感度を有するので、各種携帯機器、容器、金属部品、基板、金属製工具、金型等の各種用途に用いることができる。
本発明に係る磁性体アンテナの概略図である。 本発明に係る磁性体アンテナの斜視図である。 バンク巻きの状態を示す概略図である。 本発明における非磁性体で分割されたコアの状態を示す概略図である。 本発明に係る磁性体アンテナの別の態様を示す概略図である。 本発明に係る磁性体アンテナの別の態様を示す概略図である。 本発明に係る磁性体アンテナの積層構造を示す概念図である。 本発明に係る磁性体アンテナの積層構造を示す概念図である。 本発明に係る磁性体アンテナを基板に実装した場合の概念図である。
 本発明に係る磁性体アンテナについて述べる。
 本発明に係る磁性体アンテナの概略図を図1及び図2に示す。図1及び図2に示すとおり、本発明に係る磁性体アンテナ(20)は、磁性体からなるコア(3)を中心とし、コア(3)の外側に電極材料をコイル状(巻き線状)となるように形成し、複数のコイル(4-1)が電気的に並列に接続され、且つ、コイル(4-1)は同一コア(3)に直列に配置されていることを基本構造とする。(図1及び図2では4個のコイルとなっているが、本発明において、コイルの数が限定されるものではない。また、簡略化のためコイルはソレノイド巻きで図示してある。)
 本発明に係る磁性体アンテナの各コイル(4-1)のインダクタンスLは、磁性体アンテナにICを実装した際に、下記関係式(1)を満たすものである。
<関係式(1)>
 ≧ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
 磁性体アンテナの各コイル(4-1)のインダクタンスLが前記関係式(1)を満たさなければ、通信感度を向上させることができない。好ましくは、各コイルのインダクタンスLが磁性体アンテナの合成インダクタンスLの2倍以上であることが好ましく、より好ましくは3倍以上である。
 本発明に係る磁性体アンテナの合成インダクタンスLは、磁性体アンテナにICを実装した際に、下記関係式(2)を満たすものである。
<関係式(2)>
≦1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
 磁性体アンテナの合成インダクタンスLが前記関係式(2)を満たさなければ、ICを実装したRFタグの共振周波数を動作周波数に調整できないため、通信感度を向上させることができない。
 本発明においては、各コイルはコアの外側に電極材料をコイル状(巻き線状)となるように形成するものであり、コイルの巻き方をバンク巻きとする。バンク巻きとすることによって、巻線を重ねて巻いても寄生容量が大きくならず、RFタグの感度向上に寄与するものである。
 バンク巻きの巻き方の例について図3に示す。図3のうち、図3-1が平面図(xy面)であり、図3-2が側面図(yz面)である。スルーホールの位置を順に、a~nまで図示する。図3-1は平面図であり、aがコイルの上面、a’がコイルの下面となる。以降の、b、b’、c、c’についても同様であり、括弧書きしたものが隠れた部分となる。図3-2は側面図であり、bがコイル手前側、(a)がコイル後方側となる。以降の、f、e、f’、e’についても同様であり、括弧書きしたものが隠れた部分となる。コイルとしては、a’、a、b、b’、c’、c、d、d’、e’、e、f、f’、g’、g、h、h’、i’、i、j、j’、k’、k、l、l’、m’、m、n、n’の順番でコイル状としていく。以降、図示していない部分についても同様の順序でコイルを作製する。a’、a、b、b’、c’、c、d、d’、・・・とe’、e、f、f’、・・・の位置関係は図3に限定されることはなく、e’、e、f、f’、・・・が外側でも良い。
 また、本発明におけるコアは、図4に示すとおり、コアを構成する磁性体が非磁性体によって分割された構造となっていても良い。
 本発明に係る磁性体アンテナにおいて、非磁性体で磁性体コアを分割する場合には、当該磁性体アンテナを貫通する磁束に対して垂直に切断した断面の状態が、磁性体が非磁性体によって分割された状態であればいかなる状態となっても良く、例えば、図4(a)~(d)に示す状態である。
 本発明に係る磁性体アンテナの別の態様を示す概略図を図5に示す。(簡略化のためコイルはソレノイド巻きで図示してある。)図5に示すとおり、本発明に係る磁性体アンテナ(20)は、磁性体からなるコア(3)を中心とし、コア(3)の外側に電極材料をコイル状(巻き線状)となるように形成し(2)、複数のコイル(4-1)が電気的に並列に接続され、コイル(4-1)は同一コア(3)に直列に配置され、コイル状の電極材料を形成した一方又は両方の外側面に絶縁層(6)を形成し、前記絶縁層(6)の一方又は両方の外側面に導電層(7)を設けることを基本構造としてもよい。導電層(7)を形成することによって、磁性体アンテナに金属物が近づいても磁性体アンテナの特性変化が小さくなり、共振周波数の変化を小さくすることができる。
 本発明に係る磁性体アンテナの別の態様を示す概略図を図6に示す。(簡略化のためコイルはソレノイド巻きで図示してある。)図6に示すとおり、本発明に係る磁性体アンテナ(20)は、磁性体からなるコア(3)を中心とし、コア(3)の外側に電極材料をコイル状(巻き線状)となるように形成し(2)、複数のコイル(4-1)が電気的に並列に接続され、コイル(4-1)は同一コア(3)に直列に配置され、コイル状の電極材料を形成した一方又は両方の外側面に絶縁層(6)を形成し、前記絶縁層(6)の一方又は両方の外側面に導電層(7)を設け、更に、導電層(7)の外側に磁性層(5)を設けても良い。磁性層(5)を形成することによって、金属が接近したときの磁性体アンテナの特性変化がより小さくなり、共振周波数の変動を低減できる。なお、導電層(7)を除いた積層構造としてもよい。
 また、本発明に係る磁性体アンテナは、図7の概念図に示すように、コイル(4)の上下面を挟み込んだ絶縁層(6)の一方あるいは両方の外側面にコンデンサー電極(11)を配置してもよい。
 なお、図7の概念図に示した磁性体アンテナは、絶縁層の上面に形成するコンデンサーを、平行電極若しくはくし型電極を印刷してコンデンサーとしてもよく、更に、該コンデンサーとコイルリード端子とを並列もしくは直列に接続してもよい。
 また、図8の概念図に示すように、コンデンサー電極(11)を配置した外側面にさらに絶縁層(6)を設け、該絶縁層(6)の外側面にICチップ接続端子を兼ねる電極層(9)を形成して該絶縁層(6)を挟みこむようにコンデンサーを形成し、ICチップ接続端子と並列もしくは直列に接続してもよい。
 また、本発明に係る磁性体アンテナは、図2に示すように絶縁層(6)上面にICチップ(10)が接続できる端子(9)を形成すればよい。なお、ICチップ接続端子(9)とコイルリード端子とを並列若しくは直列に接続し一体焼成してもよい。
 本発明に係る磁性体アンテナは、コアの磁性材料に、Ni-Zn系フェライトなどを用いることができる。Ni-Zn系フェライトを使用する場合は、Fe 45~49.5モル%、NiO 9.0~45.0モル%、ZnO 0.5~35.0モル%、CuO 4.5~15.0モル%であるような組成が好ましく、使用する周波数帯で材料としての透磁率が高く、磁性損失が低くなるようなフェライト組成を選択すると良い。必要以上に高い透磁率の材料にすると磁性損失が増えるのでアンテナに適さなくなる。
 例えば、RFIDタグ用途では13.56MHzでの透磁率が70~120、民生FM放送受信用途では100MHzでの透磁率が10~30になるようなフェライト組成を選択すると磁性損失が少ないので好ましい。
 本発明に係る磁性体アンテナは、コアの非磁性材料に、Zn系フェライトなどの非磁性フェライト、ホウケイ酸系ガラス、亜鉛系ガラス又は鉛系ガラス等のガラス系セラミック、あるいは非磁性フェライトとガラス系セラミックを適量混合したものなどを用いることができる。
 非磁性フェライトに使用するフェライト粉末には、焼結体の体積固有抵抗が10Ωcm以上になるようなZn系フェライト組成を選択するとよい。Fe 45~49.5モル%、ZnO 17.0~22.0モル%、CuO 4.5~15.0モル%である組成が好ましい。
 ガラス系セラミックの場合、使用するガラス系セラミック粉末には、線膨張係数が使用する磁性体の線膨張係数と大きく異ならない組成を選択するとよい。具体的には磁性体として用いる軟磁性フェライトの線膨張係数との差が±5ppm/℃以内の組成である。
 次に、本発明に係るRFタグについて述べる。
 本発明に係るRFタグは、前記磁性体アンテナにICを接続したものである。図2に示す斜視図は、磁性体アンテナにICを実装できる形態であるが、磁性体アンテナと別に設置したICとを電気回路で接続した形態のいずれであってもよい。
 本発明に係るRFタグは、図2に示すように磁性体アンテナの絶縁層(6)上面にICチップ(10)が接続できる端子(9)を形成し、ICチップ接続端子とコイルリード端子とを並列若しくは直列に接続し一体焼成してもよい。
 前記ICチップ接続端子を形成した磁性体アンテナは、図2に示すとおり、電極層を形成したコイル(4)の少なくとも一方の面の絶縁層(6)にスルーホール(1)を設け、このスルーホール(1)に電極材料を流し込み、コイル(4)の両端と接続し、該絶縁層の表面に電極材料でコイルリード端子とICチップ接続端子を形成して一体焼成して得ることができる。
 本発明に係るRFタグの並列に接続するコイル1個のインダクタンスLは下記関係式1を満たすとともに、合成インダクタンスLは下記関係式2を満たす。
<関係式(1)>
 ≧ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
<関係式(2)>
 ≦ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
 本発明に係るRFタグは、ポリスチレン、アクリルニトリルスチレン、アクリルニトリルブタジェンスチレン、アクリル、ポリエチレン、ポリプロピレン、ポリアミド、ポリアセタール、ポリカーボネート、塩化ビニール、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド等の樹脂によって被覆されていても良い。
 次に、本発明に係る磁性体アンテナの製造方法について述べる。
 まず、磁性粉末及びバインダーを混合した混合物をシート状にした単層あるいは複数の層を積層した磁性層(5)を形成する。その際、内側のコイル部分(図3-2のe、f、i、j、m、nにスルーホールを形成する部分)と外側のコイル部分(図3-2のa、b、c、d、g、h、k、lにスルーホールを形成する部分)とに分けて磁性層を形成する。
 次に、図3-2に示すように、前記磁性層(5)を用いて内側のコイル部分(図3-2のe、f、i、j、m、nにスルーホールを形成する部分)が所望の厚さとなるように積層する。
 次いで、図3-1に示すように、積層した磁性層に所望の数のスルーホール(e、f、i、j、m、n)を開ける。前記スルーホールのそれぞれに電極材料を流し込む。また、スルーホールと直角になる両面に、スルーホールと接続してコイル状(巻き線状)となるように電極層(2)を形成する。
 更に、前記内側のコイルを作製しした外側部分に磁性層を積層し、図3-2のa、b、c、d、g、h、k、l等に相当する部分にスルーホールを形成する。前記と同様にして、スルーホールに電極材料を流し込むとともに、各スルーホールを接続するように電極層を形成する。その際、例えば、b‘とc’とが接続されるようにする。
 スルーホールに流し込んだ電極材料と電極層によって、磁性層が長方形のコアとなるように複数個のコイル(図2の4-1)を形成する。そして、複数個のコイル(図2の4-1)が電気回路上並列となるように接続する。このとき、複数個が直列に配置されたコイルの両端のコイルを形成する磁性層の両端が磁性回路上開放となる構成となる(4-2)。
 次いで、図2に示すように電極層(2)形成したコイルの上下面に絶縁層(6)を形成する。
 得られたシートを、所望の形状となるように、スルーホール(1)とコイル開放端面(4-2)に沿って切断面(6)で切断して一体焼成する、又は一体焼成後にスルーホールとコイル開放端面で切断することによって製造することができる(LTCC技術)。
 本発明に係る図4に示すコアを有する磁性体アンテナは、例えば、以下の方法によって製造することができる。
 まず、磁性粉末及びバインダーを混合した混合物をシート状にした単層あるいは複数の層を積層した磁性層を形成する。
 別に、非磁性粉末及びバインダーを混合した混合物をシート状にした単層あるいは複数の層を積層した非磁性層を形成する。
 次に、図4(a)に示すように、磁性層(5)と非磁性層(8)とを交互に、全体の厚みが所望の厚さとなるように積層する。
 次いで、積層した磁性層及び非磁性層に所望の数のスルーホール(1)を開ける。前記スルーホールのそれぞれに電極材料を流し込む。また、スルーホールと直角になる両面に、スルーホールと接続してコイル状(巻き線状)となるように電極層(2)を形成する。スルーホールに流し込んだ電極材料と電極層によって、磁性層が長方形のコアとなるようにコイルを形成する。このとき、コイルを形成する磁性層の両端が磁性回路上開放となる構成となる。
 次いで、図2に示すように電極層を形成したコイルの上下面に絶縁層(6)を形成する。
 得られたシートを、所望の形状となるように、スルーホールとコイル開放端面で切断して一体焼成する、又は一体焼成後にスルーホールとコイル開放端面で切断することによって製造することができる。
 本発明における導電層(7)はどのような手段で形成されても良いが、例えば、印刷、刷毛塗り等の通常の方法で形成することが好ましい。あるいは、金属板を形成した絶縁層の外側に貼り付けて同様の効果を付与することも出来る。
 導電層を形成する材料、また、スルーホールに流し込む電極材料としては、Agペーストが適しており、その他のAg系合金ペースト等、金属系導電性ペーストを使用することができる。
 絶縁層の外側に形成する場合、導電層(7)の膜厚は0.001~0.1mmが好ましい。
 本発明に係る磁性体アンテナは、図9の概念図に示すように、コイル(4)の下面の絶縁層(6)にスルーホールを設け、そのスルーホールに電極材料を流し込み、コイル(4)両端と接続し、その下表面に電極材料で基板接続用電極(14)を形成して一体焼成してもよい。その場合、セラミック、樹脂等の基板に容易に接合することができる。なお、基板としては前記各種材料を複合化したもの、金属を含有するもの等を用いることができる。
 また、本発明に係る磁性体アンテナを実装した基板は、接着剤、粘着剤、又ははんだ付け等の手段で基板(15)の表面に磁性体アンテナが固定されることを特徴とするものである。本発明では、電極材料で基板接続用電極や電気的につながっていない基板接続用電極を設けることにより多層配線基板へ部品を実装する際に一般に使用される手段で、磁性体アンテナを他の部品と同時に実装することができ、量産性が高い。
 多層配線基板では導体で構成された配線が内蔵されており、アンテナに対して金属と同じ影響を与える。本発明に係る磁性体アンテナを実装した基板では、磁性体アンテナが前述したような構造であるため金属の影響を受けることがなく、多層配線基板などの内部又は表面に導体で構成された配線が形成された基板であっても、その影響を受けて特性が著しく変化してしまうことがない。
 ICは、前記図2に示すように、上面の絶縁層上にICチップ接続端子を形成して接続しても良いし、図8に示すように、磁性体アンテナの下面の基板接続電極(14)に接続するように基板内に配線を形成して、基板内配線を介して接続しても良い。また、下面の基板接続端子(14)に接続された基板内配線を介して、リーダライタと接続しても良く、リーダライタとして使用できる。
 また、本発明においては、通信機器に本発明に係る磁性体アンテナを設置することができる。
 また、本発明においては、包装容器に本発明に係る磁性体アンテナを設置することができる。
 また、本発明においては、工具やボルトなどの金属部品に本発明に係る磁性体アンテナを設置することができる。
<作用>
 本発明に係る磁性体アンテナは、一つの磁性体コアを中心として電極材料がコイル状となるように形成された複数のコイルを、巻線を重ねて巻く際に寄生容量が大きくならないようにバンク巻きでコイルを複数個形成し、その複数個のコイルを電気回路上並列に接続し、コイルは共有する磁性体コアに直列配置することで、使用する共振周波数に制限を受けていたコイルのインダクタンスLを可能な限り大きくし、磁性体アンテナのインダクタンスLは共振周波数に制御したので、通信感度の向上が期待できる。
 コイルに誘起される起電力eは電流の単位時間の変化量dI/dtを用いて、下記式(3)で表される。
<式(3)>
e=―L(dI/dt)
 従って、コイルのインダクタンスLが大きければ誘起される起電力も大きくなる。
 一般に、13.56MHzのRFID用途などの磁性体アンテナにおいては、共振周波数fが下記式(4)で決定される。
<式(4)>
=1/2π(L×C)
 そのため、実装するICの容量やアンテナ自体の寄生容量のために、コイルのインダクタンスLをある制限の値以下にしなければならないという制限があった。
 一方、RFタグとリーダ/ライタとの結合によるタグの誘起電圧は、相互インダクタンスMを用いて下記式(5)で示される。
<式(5)>
e=-M(dI/dt)=k((L)^(1/2))×(dI/dt)
:リーダ/ライタのアンテナのインダクタンス
:タグのアンテナのインダクタンス
 そこで、タグのアンテナのインダクタンスを大きくすれば、タグに誘起させる電圧を大きくすることができ、結合度をあげることができる。
 本発明では複数のコイルを並列で接続するので、磁性体アンテナの合成インダクタンスLは、各コイルのインダクタンスLが等価である場合、下記式(6)のとおりとなる。
<式(6)>
=L(コイル1個分)/コイルの個数
 よって、コイルの個数を増やしていけば、それに伴って並列に接続された一個のコイルのインダクタンスLを大きく設計することができる。
 本発明においては、各コイルのインダクタンスLを大きくする一方で、磁性体アンテナ自体の合成インダクタンスLは共振周波数に適合するように各コイルを接続して調整したことによって、磁性体アンテナの通信感度を向上させることができたものである。
 一般的に、巻数を増やしていくと寄生容量が大きくなることが知られている。また、複数個のコイルを並列に接続することで、複数個のコイルの寄生容量の総和が合成の寄生容量となる。
<式(7)>
=C(コイル1個分)×コイルの個数
 ここで、合成の寄生容量が大きくなれば、関係式(2)を満たす合成のインダクタンスの上限が小さくなってしまうので、交信感度を向上させるのには不都合となってしまう。
 本発明では、並列で接続する複数個のコイルの寄生容量を小さく出来るため、1個のコイルの寄生容量を小さくすることで、合成の寄生容量を小さくし、交信感度を向上させることができたものである。
 特許文献2に記載されているとおり、並列に接続された隣あうコイル同士が結合すれば式(4)よりも合成インダクタンスは大きくなり、回路のQも大きくなる。
 Qを大きく設計することは、共振回路としてはコイルで受けた電力をQ倍するので望ましいが、必要以上に大きく取ると外部環境やIC等バラつきによる変動で周波数ズレによる交信感度の変動が大きくなってしまうので、下記式(7)となるように設計すればよい。
<式(7)>
Q=13.56MHz/(利用する帯域)
 以下に添付図面を参照しながら、発明の実施の形態に基づいて本発明を詳細に説明するが、本発明は以下の実施例に限定されない。
[磁性体アンテナ1]
 磁性層(5)用として、900℃焼結後に13.56MHzでの材料としての透磁率が100になるNi-Zn-Cuフェライト仮焼粉(Fe 48.5モル%、NiO 25モル%、ZnO 16モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に150mm角で、焼結時の厚みが0.1mmになるようにシート成型した。
 また、絶縁層(6)用として同様に、Zn-Cuフェライト仮焼粉(Fe 48.5モル%、ZnO 41モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に磁性層と同様のサイズと厚みでシート成型した。
 次に、図3に示すように、磁性層(5)用グリーンシートにスルーホールを開けその中にAgペーストを充填して、かつスルーホールと直角になる両面にAgペーストを印刷して10枚積層し、各コイルがバンク巻きとなり、5つのコイルが並列に結線されるよう形成した。
 次に、絶縁層(6)用グリーンシートをコイル(4-1)の上下面に積層し、一方の面にはAgペーストで導電層(7)を印刷した絶縁層用グリーンシートを積層した。
 積層したグリーンシートをまとめて加圧接着させ、スルーホールとコイル開放端面(4-2)で切断し、900℃で2時間、一体焼成して、横30mm×縦4mmのサイズの巻き数23ターンのコイルが5個並列に結線されている磁性体アンテナ1を作成した。(図ではコイル巻き数は簡略化して示している。また、磁性層の積層枚数は簡略化している。以下の他の図についても同様である。)
 さらに、該磁性体アンテナ1のコイル両端にRFタグ用IC(ICの容量:23.5pF)を接続してさらにICと並列にコンデンサーを接続して共振周波数を13.56MHzに調整してRFタグを作製し、出力100mWのリーダ/ライタで交信する距離を測定した。
 各測定方法を以下にまとめる。
[共振周波数の測定と調整方法]
 共振周波数は、アジレントテクノロジー株式会社インピーダンスアナライザーE4991Aに1ターンコイルを接続し、これとRFタグを結合させ、測定されるインピーダンスのピーク周波数をもって共振周波数とした。
 磁性体アンテナの合成インダクタンスと合成の寄生容量はアジレントテクノロジー株式会社インピーダンスアナライザーE4991Aを用いて測定した。また、各コイルのインダクタンスは、作製した複数のコイルを並列につなぐ配線を切って、1つのコイルのみについて測定した。
[交信距離の測定方法]
 交信距離は、出力100mWのリーダ/ライタ(株式会社タカヤ製、製品名TR3-A201/TR3-C201)のアンテナを水平に固定し、その上方にRFタグの長手方向をアンテナに対して垂直に位置させて、13.56MHzで交信が可能な限り高い位置の時のアンテナとRFタグの垂直方向の距離を交信距離とした。
[磁性体アンテナ2]
 磁性層(5)用として、900℃焼結後に13.56MHzでの材料としての透磁率が100になるNi-Zn-Cuフェライト仮焼粉(Fe 48.5モル%、NiO 25モル%、ZnO 16モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に150mm角で、焼結時の厚みが0.1mmになるようにシート成型した。
 非磁性層(8)用として、ホウケイ酸ガラス(SiO 86~89wt%、B 7~10wt%、KO 0.5~7wt%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に150mm角で、焼結時の厚みが0.05mmになるようにシート成型した。
 また、絶縁層(6)用として同様に、Zn-Cuフェライト仮焼粉(Fe 48.5モル%、ZnO 41モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に磁性層と同様のサイズと厚みでシート成型した。
 次に、図3(a)に示すように、磁性層(5)用グリーンシートと非磁性層(8)用グリーンシートを積層させたシート、各1枚ずつを加圧接着し、1枚のシートとしてから、スルーホール(1)を開けその中にAgペーストを充填して、かつスルーホール(1)と直角になる両面にAgペーストを印刷して10枚積層し、各コイルをバンク巻きとし、コイル(4)を形成した。
 次に、図2に示すように、絶縁層(6)用グリーンシートをコイル(4)の上下面に積層し、一方の面にはAgペーストで導電層(7)を印刷した絶縁層用グリーンシートを積層した。
 積層したグリーンシートをまとめて加圧接着させ、スルーホールとコイル開放端面(4-2)で切断し、900℃で2時間、一体焼成して、横30mm×縦4mmのサイズの巻き数23ターンのコイルが5個並列に結線されている磁性体アンテナ2を作成した。
 磁性体アンテナ1と同様にして、RFタグ用ICを接続し、さらにICと並列にコンデンサーを接続し共振周波数を13.56MHzに調整してRFタグを作製した。得られたRFタグについて、出力100mWのリーダ/ライタで交信する距離を測定した。
[磁性体アンテナ3]
 磁性体アンテナ1と同様に製造した磁性層(5)用グリーンシートにガラスセラミックのペーストを0.02mmの厚みで印刷し、10層積層した。
 上記磁性層(5)用グリーンシートにスルーホール(1)を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して積層し、各コイルをバンク巻きとし、コイル(4)を形成した。
 次に、コイル(4)の一方の面に、Agペーストで導電層(7)を印刷し構成した絶縁層(6)用グリーンシートを積層した。もう一方の面にはコイルの両端に接続するようスルーホールを開けその中にAgペーストを充填して、かつスルーホール(1)と直角になる表層にコイルリード端子とICを接続するICチップ接続端子(9)となる形状をAgペーストで印刷し絶縁層(6)用グリーンシートを積層した。以上のグリーンシートをまとめて加圧接着させ、スルーホール(1)とコイル開放端面(4-2)で切断し、900℃で2時間、一体焼成して横10mm×縦3mmのサイズのコイル巻き数23ターンの磁性体アンテナ3を作成した。
 該磁性体アンテナのコイル両端にRFタグ用ICを接続してさらにICと並列にコンデンサーを接続して共振周波数を13.56MHzに調整してRFタグを作成し、出力100mWのリーダ/ライタで交信する距離を測定した。
 その結果、磁性体アンテナ3は12.7cmの通信距離だった。金属板貼付時の交信距離は10.5cmだった。
[磁性体アンテナ4]
 磁性体アンテナ1と同様に製造した磁性層(5)用グリーンシートと非磁性層(8)用のガラスセラミックのグリーンシートを、それぞれ同様の厚み0.1mmで成膜した。得られたシートをそれぞれ0.1mm幅でセラミックグリーンシート積層体切断機(UHT株式会社製G-CUT)を用いて切断した。次いで、図4(b)に示すように磁性層と非磁性層が順番になるように1枚のシート状に並べて加圧接着した。得られたシートを縦方向にも磁性層と非磁性層が順番になるよう10枚積み重ねて加圧接着できるよう準備し、一つ一つのシートにスルーホール(1)を開けその中にAgペーストを充填して、かつスルーホール(1)と直角になる両面にAgペーストを印刷して10枚積層し、各コイルをバンク巻きとし、コイル(4)を形成した。
 得られたコイルに、磁性体アンテナ1と同様にして絶縁層を形成して磁性体アンテナ4とした。
[磁性体アンテナ5]
 磁性体アンテナ1と同様に製造した磁性層(5)用グリーンシートと非磁性層(8)用のガラスセラミックのグリーンシートを、それぞれ同様の厚み0.1mmで成膜した。得られたシートをそれぞれ0.1mm幅でセラミックグリーンシート積層体切断機(G-CUT/UHT)を用いて切断した。次いで、図4(c)に示すように磁性層と非磁性層が順番になるように1枚のシート状に並べて加圧接着した。得られたシートとガラスセラセラミックのグリーンシートを交互に10枚ずつ積み重ねて加圧接着できるよう準備し、一つ一つのシートにスルーホール(1)を開けその中にAgペーストを充填して、かつスルーホール(1)と直角になる両面にAgペーストを印刷して10枚積層し、各コイルをバンク巻きとし、コイル(4)を形成した。
 得られたコイルに、磁性体アンテナ1と同様にして絶縁層を形成して磁性体アンテナ5とした。
[磁性体アンテナ6]
 磁性体アンテナ1と同様に製造したスラリーを用いて、磁性層(5)用の棒状の磁性体を作製した。図4(d)に示すように作成した棒状の磁性体を容器内に並べ、非磁性ガラスセラミックのスラリーを流し込み厚み1mmのシートを作製した。得られたシートとガラスセラミックのグリーンシート10枚積み重ねて加圧接着できるよう準備し、図4に示すように、一つ一つのシートにスルーホール(1)を開けその中にAgペーストを充填して、かつスルーホール(1)と直角になる両面にAgペーストを印刷して10枚積層し、各コイルをバンク巻きとし、コイル(4)を形成した。
 得られたコイルに、磁性体アンテナ1と同様にして絶縁層を形成して磁性体アンテナ6とした。
[磁性体アンテナ7 比較例]
 巻き数が23ターンのコイルが1個形成できるようにした以外は、前記磁性体アンテナ1と同様に製造した。100mWのリーダ/ライタで交信する距離は6.0cmであった。
[磁性体アンテナ8 参考例]
 コイルの巻き方をソレノイド巻きで作製した以外は前記磁性体アンテナ1と同様に製造した。1個のコイルの寄生容量は4.5pFであった。
 得られた磁性体アンテナの諸特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る磁性体アンテナはいずれも、コイルのインダクタンスを大きく設計しても共振周波数の調整が可能であり、コアを非磁性体で分割した場合は実効の透磁率が高く、小型化と通信感度の向上を両立させたアンテナであることが確認された。
 また、ソレノイド巻きと比較すると、1個のコイルの寄生容量を小さくすることが出来て、交信感度の向上を図ることが出来る。バンク巻きにすることで、巻線の長さを短くすることが出来るので、小型化に有利である。
 本発明に係る磁性体アンテナ又はRFタグは、高い通信感度を有するので、各種携帯機器、容器、金属部品、基板、金属製工具、金型等の各種用途に用いることができる。
 1:スルーホール
 2:電極層(コイル電極)
 3:コア
 4:コイル
 4-1:コイルの最小単位
 4-2:コイル開放端面
 5:磁性層
 6:絶縁層
 7:導電層
 8:非磁性層
 9:IC接続用電極層(端子)
 10:IC
 11:コンデンサー電極
 12:コンデンサー
 14:基板接続用電極層
 15:基板
 20:磁性体アンテナ

Claims (5)

  1.  電磁誘導方式を利用し情報を送受信するための磁性体アンテナにICを実装したRFタグであり、前記磁性体アンテナは一つの磁性体コアに、インダクタンスLが関係式(1)を満たすコイルを複数個形成するとともに各コイルの巻き方をバンク巻きとし、前記各コイルは電気回路上並列に接続し、且つ、磁性体コアに直列に配置しており、磁性体アンテナの合成インダクタンスLが関係式(2)を満たすことを特徴とするRFタグ。
    <関係式(1)>
     ≧ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
    (L:コイル1個のインダクタンス)
    <関係式(2)>
     ≦ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
    (L:磁性体アンテナの合成インダクタンス)
  2.  請求項1記載のRFタグを樹脂で被覆した複合RFタグ。
  3.  請求項1記載のRFタグに用いる磁性体アンテナであって、該磁性体アンテナはICを実装した際に、一つの磁性体コアにインダクタンスLが関係式(1)を満たすコイルを複数個形成するとともに各コイルの巻き方をバンク巻きとし、前記各コイルは電気回路上並列に接続し、且つ、磁性体コアに直列に配置しており、磁性体アンテナの合成インダクタンスLが関係式(2)を満たすことを特徴とする磁性体アンテナ。
    <関係式(1)>
     ≧ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
    (L:コイル1個のインダクタンス)
    <関係式(2)>
     ≦ 1/(4π×(動作周波数)×(IC容量+アンテナの寄生容量))
    (L:磁性体アンテナの合成インダクタンス)
  4.  請求項1記載のRFタグ又は請求項2記載の複合RFタグを実装した基板。
  5.  請求項1記載のRFタグ又は請求項2記載の複合RFタグを用いた通信システム。
PCT/JP2011/067319 2010-08-04 2011-07-28 Rfタグ、磁性体アンテナ及び当該rfタグを実装した基板、通信システム WO2012017921A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180037745.XA CN103053075B (zh) 2010-08-04 2011-07-28 Rf标签、磁性体天线和安装有该rf标签的基板、通信系统
KR1020137002573A KR101898741B1 (ko) 2010-08-04 2011-07-28 Rf 태그, 자성체 안테나 및 그 rf 태그를 실장한 기판, 통신 시스템
US13/813,990 US9311590B2 (en) 2010-08-04 2011-07-28 RF tag, magnetic antenna, board mounted with the RF tag, and communication system
EP11814547.3A EP2602868B1 (en) 2010-08-04 2011-07-28 Rf tag, magnetic antenna, substrate with the rf tag mounted thereon, and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-175468 2010-08-04
JP2010175468A JP5403279B2 (ja) 2010-08-04 2010-08-04 Rfタグの製造方法、磁性体アンテナの製造方法及び当該rfタグを実装した基板、通信システム

Publications (1)

Publication Number Publication Date
WO2012017921A1 true WO2012017921A1 (ja) 2012-02-09

Family

ID=45559422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067319 WO2012017921A1 (ja) 2010-08-04 2011-07-28 Rfタグ、磁性体アンテナ及び当該rfタグを実装した基板、通信システム

Country Status (7)

Country Link
US (1) US9311590B2 (ja)
EP (1) EP2602868B1 (ja)
JP (1) JP5403279B2 (ja)
KR (1) KR101898741B1 (ja)
CN (1) CN103053075B (ja)
TW (1) TWI539382B (ja)
WO (1) WO2012017921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176383A1 (en) * 2012-05-09 2014-06-26 Murata Manufacturing Co., Ltd. Coil antenna device and antenna module
US11201407B2 (en) 2017-09-04 2021-12-14 Sony Semiconductor Solutions Corporation Antenna apparatus and communication apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301529B (zh) * 2009-01-30 2013-12-04 户田工业株式会社 磁性体天线和rf标签以及安装有该rf标签的基板
WO2011118379A1 (ja) * 2010-03-24 2011-09-29 株式会社村田製作所 Rfidシステム
US11197374B2 (en) 2012-09-11 2021-12-07 Ferric Inc. Integrated switched inductor power converter having first and second powertrain phases
US11058001B2 (en) * 2012-09-11 2021-07-06 Ferric Inc. Integrated circuit with laminated magnetic core inductor and magnetic flux closure layer
US11064610B2 (en) 2012-09-11 2021-07-13 Ferric Inc. Laminated magnetic core inductor with insulating and interface layers
US11116081B2 (en) 2012-09-11 2021-09-07 Ferric Inc. Laminated magnetic core inductor with magnetic flux closure path parallel to easy axes of magnetization of magnetic layers
RU2650083C2 (ru) * 2012-11-15 2018-04-06 СМК-ЛОГОМОТИОН Корпорейшн Излучатель нестационарного магнитного поля, его соединение в системе и способ модуляции данных
US11302469B2 (en) 2014-06-23 2022-04-12 Ferric Inc. Method for fabricating inductors with deposition-induced magnetically-anisotropic cores
US10476162B2 (en) 2016-09-21 2019-11-12 Wits Co., Ltd. Wireless communication antenna and mobile device including the same
CN108022751B (zh) * 2016-10-31 2022-01-11 北京北方华创微电子装备有限公司 磁性薄膜叠层的沉积方法、磁性薄膜叠层及微电感器件
KR102001432B1 (ko) * 2016-11-25 2019-08-06 주식회사 아모센스 비접촉식 전자결제용 안테나코어 및 이를 포함하는 비접촉식전자결제모듈
KR20180090078A (ko) * 2017-02-02 2018-08-10 삼성전기주식회사 무선 통신 안테나
KR102284906B1 (ko) * 2017-03-07 2021-08-04 주식회사 위츠 자성체의 제조 방법 및 이를 포함하는 무선 통신 안테나의 제조 방법
TWI647620B (zh) * 2017-06-22 2019-01-11 恩旭有限公司 微型化的無線射頻識別標籤
EP3474378B1 (en) * 2017-10-23 2021-03-17 Premo, S.A. Antenna for low frequency communication within a vehicle environment and low frequency communication system
WO2019146237A1 (ja) * 2018-01-23 2019-08-01 株式会社村田製作所 Rfidタグ、rfidタグを備えた物品、および物品の製造方法
CN112103059B (zh) * 2020-09-15 2022-02-22 横店集团东磁股份有限公司 一种薄膜功率电感器的制作方法以及薄膜功率电感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964634A (ja) 1995-08-22 1997-03-07 Mitsubishi Materials Corp トランスポンダ用アンテナ
JP2003332822A (ja) 2002-05-14 2003-11-21 Sumida Technologies Inc アンテナ用コイル
JP2004206479A (ja) 2002-12-25 2004-07-22 Seiko Epson Corp 非接触タグ
JP2005033278A (ja) * 2003-07-07 2005-02-03 Sanyo Electric Co Ltd アンテナおよびその製造方法
JP2007019891A (ja) 2005-07-07 2007-01-25 Toda Kogyo Corp 磁性体アンテナ
JP2007222235A (ja) * 2006-02-21 2007-09-06 Sumida Corporation 近接物検出センサー及び金属球検出センサー
JP2007295360A (ja) * 2006-04-26 2007-11-08 Nec Tokin Corp コイルアンテナ
JP2009017593A (ja) * 2003-12-26 2009-01-22 Toda Kogyo Corp 磁界アンテナ、それを用いて構成したワイヤレスシステムおよび通信システム
WO2010087413A1 (ja) * 2009-01-30 2010-08-05 戸田工業株式会社 磁性体アンテナ及びrfタグ並びに該rfタグを実装した基板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105802A (ja) * 1998-09-29 2000-04-11 Toshiba Chem Corp 非接触データキャリア用アンテナ磁芯及び非接触データキャリア用アンテナ並びに非接触データキャリア
JP2001028037A (ja) * 1999-07-14 2001-01-30 Hitachi Maxell Ltd 非接触情報媒体およびこれを用いた通信システム
US6563474B2 (en) * 2000-12-21 2003-05-13 Lear Corporation Remote access device having multiple inductive coil antenna
JP3852778B2 (ja) 2004-02-18 2006-12-06 スミダコーポレーション株式会社 コイル、該コイルを用いたアンテナおよびトランス
EP1727236B1 (en) * 2004-03-12 2010-08-11 Sumida Corporation Three-axis antenna and receiving device
US7242359B2 (en) * 2004-08-18 2007-07-10 Microsoft Corporation Parallel loop antennas for a mobile electronic device
JP4793584B2 (ja) 2007-01-10 2011-10-12 戸田工業株式会社 磁性体アンテナを実装した基板
JP3933191B1 (ja) * 2006-03-13 2007-06-20 株式会社村田製作所 携帯電子機器
EP2023275B1 (en) 2006-06-01 2011-04-27 Murata Manufacturing Co. Ltd. Radio frequency ic device and composite component for radio frequency ic device
WO2008111330A1 (ja) 2007-03-09 2008-09-18 Murata Manufacturing Co., Ltd. 基板実装用アンテナコイルおよびアンテナ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964634A (ja) 1995-08-22 1997-03-07 Mitsubishi Materials Corp トランスポンダ用アンテナ
JP2003332822A (ja) 2002-05-14 2003-11-21 Sumida Technologies Inc アンテナ用コイル
JP2004206479A (ja) 2002-12-25 2004-07-22 Seiko Epson Corp 非接触タグ
JP2005033278A (ja) * 2003-07-07 2005-02-03 Sanyo Electric Co Ltd アンテナおよびその製造方法
JP2009017593A (ja) * 2003-12-26 2009-01-22 Toda Kogyo Corp 磁界アンテナ、それを用いて構成したワイヤレスシステムおよび通信システム
JP2007019891A (ja) 2005-07-07 2007-01-25 Toda Kogyo Corp 磁性体アンテナ
JP2007222235A (ja) * 2006-02-21 2007-09-06 Sumida Corporation 近接物検出センサー及び金属球検出センサー
JP2007295360A (ja) * 2006-04-26 2007-11-08 Nec Tokin Corp コイルアンテナ
WO2010087413A1 (ja) * 2009-01-30 2010-08-05 戸田工業株式会社 磁性体アンテナ及びrfタグ並びに該rfタグを実装した基板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176383A1 (en) * 2012-05-09 2014-06-26 Murata Manufacturing Co., Ltd. Coil antenna device and antenna module
CN106486779A (zh) * 2012-05-09 2017-03-08 株式会社村田制作所 线圈天线元件以及天线模块
GB2516130B (en) * 2012-05-09 2018-05-23 Murata Manufacturing Co Coil antenna device and antenna module
US10170836B2 (en) * 2012-05-09 2019-01-01 Murata Manufacturing Co., Ltd. Coil antenna device and antenna module
US11201407B2 (en) 2017-09-04 2021-12-14 Sony Semiconductor Solutions Corporation Antenna apparatus and communication apparatus

Also Published As

Publication number Publication date
US20130206845A1 (en) 2013-08-15
JP5403279B2 (ja) 2014-01-29
EP2602868A4 (en) 2014-08-06
JP2012039242A (ja) 2012-02-23
CN103053075B (zh) 2015-02-25
EP2602868B1 (en) 2020-09-02
CN103053075A (zh) 2013-04-17
US9311590B2 (en) 2016-04-12
TWI539382B (zh) 2016-06-21
TW201229919A (en) 2012-07-16
KR101898741B1 (ko) 2018-09-13
EP2602868A1 (en) 2013-06-12
KR20130142991A (ko) 2013-12-30

Similar Documents

Publication Publication Date Title
JP5403279B2 (ja) Rfタグの製造方法、磁性体アンテナの製造方法及び当該rfタグを実装した基板、通信システム
JP5634717B2 (ja) 磁性体アンテナ及びrfタグ並びに該rfタグを実装した基板
JP5354188B2 (ja) 磁性体アンテナ、該磁性体アンテナを実装した基板及びrfタグ
EP1944827B1 (en) Board mounted with a magnetic antenna
US8072387B2 (en) Magnetic antenna and board mounted with the same
WO2010113751A1 (ja) 複合rfタグ、該複合rfタグを設置した工具
WO2009139148A1 (ja) 複合磁性体アンテナ及びrfタグ、該複合磁性体アンテナ又はrfタグを設置した金属部品、金属工具
CN110214396B (zh) 电子器件、天线和rf标签

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037745.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137002573

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011814547

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13813990

Country of ref document: US