WO2009139121A1 - 電子部品 - Google Patents

電子部品 Download PDF

Info

Publication number
WO2009139121A1
WO2009139121A1 PCT/JP2009/001900 JP2009001900W WO2009139121A1 WO 2009139121 A1 WO2009139121 A1 WO 2009139121A1 JP 2009001900 W JP2009001900 W JP 2009001900W WO 2009139121 A1 WO2009139121 A1 WO 2009139121A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
wiring pattern
insulating resin
ceramic substrate
resin sheet
Prior art date
Application number
PCT/JP2009/001900
Other languages
English (en)
French (fr)
Inventor
祥剛 林
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2009139121A1 publication Critical patent/WO2009139121A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • H05K3/4605Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated made from inorganic insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1572Processing both sides of a PCB by the same process; Providing a similar arrangement of components on both sides; Making interlayer connections from two sides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/462Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electronic component having a component built-in structure in which different materials of a ceramic substrate and a resin material are laminated, and a method for manufacturing the same.
  • Electronic component modules on which electronic components, mainly semiconductor chips, are mounted greatly contribute to miniaturization, thinning, and high performance of information communication devices, office electronic devices, household electronic devices, medical electronic devices, etc. is doing.
  • the wiring pitch of the wiring board for mounting the electronic component electrode pitch and electronic components is progressing more and more.
  • the following processing is performed.
  • BGA All grid array
  • LGA Land grid array
  • a resin substrate is often used for this mother substrate.
  • resin boards or ceramic boards from various viewpoints such as wiring rules for electronic parts and mother boards, required board area and thickness, and heat dissipation of electronic parts. Is selected and used.
  • the thermal expansion coefficients of the ceramic substrate and the mother substrate are greatly different, so that a large stress is applied to the secondary mounting portion, for example, a crack is generated in a solder ball of BGA mounting An electrical connection failure such as occurrence may occur.
  • the resin layer is formed on the surface of the interposer substrate or the surface of the module substrate made of a ceramic material and mounted on the mother substrate.
  • Patent Document 1 there is no warp on the secondary mounting surface in the state of the heterogeneous stacked connection structure of the ceramic substrate and the resin substrate before the secondary mounting on the mother substrate. Desired.
  • the ceramic substrate is inherently high in rigidity and hardly generates warpage in the heterogeneous laminated connection structure with the resin substrate, but often contains stress inherently because the warpage hardly occurs. When this internal stress increases, it often causes various problems such as breakage such as chipping and cracking of the ceramic substrate all at once.
  • Patent Document 1 in a heterogeneous laminated connection structure of a ceramic substrate and a resin substrate, a method is proposed in which stress relaxation is achieved by connecting resin surfaces by a structure in which a resin layer is formed on the ceramic substrate. Has been.
  • an insulating resin sheet 335 in which a mounting ceramic substrate 333 in which circuit components 311b and 311c are mounted on a wiring pattern 302a of a ceramic substrate 301 and a via-hole conductor 334 made of a conductive resin composition are formed.
  • a transfer sheet 325 in which a wiring pattern 324 of a transfer forming material is formed on a carrier layer 323 of the transfer forming material is prepared.
  • the mounting ceramic substrate 333, the insulating resin sheet 335, and the transfer sheet 325 are aligned and laminated so that the via hole conductor 334 electrically connects the wiring pattern 302a of the ceramic substrate and the wiring pattern 324 of the transfer forming material.
  • a body 300 is formed (see FIG. 15A).
  • a laminate 300 corresponding to a single piece of electronic component obtained from an electronic component base material before cutting hereinafter simply referred to as “electronic component base material”
  • the insulating resin sheet 335 is thermally cured to integrate the laminated body 300 by pressurizing and heating the above-described laminated body with a hot press apparatus.
  • 356 is a metal plate
  • 352 is a cushioning material
  • 354 is a heater
  • 353 is a heating plate of a hot press machine.
  • the carrier layer 323 of the transfer sheet 325 is peeled off. (See FIG. 15E), the electronic component base material 343 (see FIG. 16) is produced.
  • the electronic component base material 343 is cut along a cutting line 355 shown in FIG.
  • FIGS. 17A and 17B due to the difference in thermal expansion coefficient between the ceramic substrate 301 and the insulating resin sheet 335, the transfer sheet 325, or the resin multilayer substrate when the pressure is heated.
  • distortion of the via-hole conductor 334 in this specification, examples of “distortion” include bending and inclination of the via-hole conductor
  • misalignment with the wiring pattern 324 provide a highly reliable connection. I could't.
  • FIG. 17A is a diagram schematically showing a cross section of the electronic component base material 343, and FIG. 17B shows the wiring pattern 302a and the via-hole conductor 334 in FIG. It is the schematic seen from the wiring pattern 324 (illustration omitted) side.
  • FIG. 16 is an exaggerated view of the state of warping in the electronic component base material 343 for explanation.
  • the present invention has been made in view of the above-described problems of conventional electronic components, and its main object is distortion of via-hole conductors 334 caused by the heterogeneous multilayer structure of electronic components including a ceramic substrate, and warpage of electronic components. It is an object of the present invention to provide an electronic component capable of suppressing the occurrence of at least one of the above and improving the reliability of electrical connection of secondary mounting of the electronic component to the mother board.
  • the first aspect of the present invention is A ceramic substrate having a first wiring pattern; A first insulating resin sheet layer having a via-hole conductor containing a conductive resin composition bonded to the first main surface of the ceramic substrate; A second wiring pattern bonded to the first insulating resin sheet layer and electrically connected to the first wiring pattern by the via-hole conductor, or a resin multilayer substrate layer having the second wiring pattern
  • An electronic component comprising a second insulating resin sheet layer bonded to a second main surface of the ceramic substrate.
  • the second aspect of the present invention The electronic component according to the first aspect of the present invention, wherein a ratio of a length to a diameter of the via-hole conductor (length / diameter) is in a range of 1.5 or more and 6 or less.
  • the third aspect of the present invention Mounted on the first wiring pattern in a state of being incorporated in the first or second insulating resin sheet layer on at least one of the first main surface and the second main surface of the ceramic substrate.
  • the electronic component according to the first or second aspect of the present invention further comprising a circuit component.
  • the fourth aspect of the present invention is The electronic component according to the third aspect of the present invention, wherein the circuit component includes a semiconductor element.
  • the fifth aspect of the present invention provides The second insulating resin sheet layer has a via-hole conductor containing the conductive resin composition, A third wiring pattern adhered to the second insulating resin sheet layer, a resin multilayer substrate layer having the third wiring pattern, or a conductive film layer, The first wiring pattern of the ceramic substrate layer and the third wiring pattern or the conductive film layer are electrically connected by the via-hole conductor according to any one of the first to fourth aspects of the present invention. It is an electronic component.
  • the sixth aspect of the present invention provides The electronic component according to the fifth aspect of the present invention, wherein a circuit component is mounted on the third wiring pattern.
  • the seventh aspect of the present invention The thickness of the first insulating resin sheet layer and the thickness of the second insulating resin sheet layer are the same as or greater than the thickness of the ceramic substrate, It is an electronic component of the present invention.
  • the eighth aspect of the present invention (A) a ceramic substrate; (b) an uncured insulating resin sheet having a via-hole conductor filled with a conductive resin composition in a via hole; (c) a transfer sheet having a predetermined wiring pattern; a resin multilayer substrate; Alternatively, a laminate is formed by laminating a metal foil, A ceramic plate is disposed on each of the upper surface side and the lower surface side of the laminate, and the uncured insulating resin sheet is cured by pressure and heating, and the laminate is integrated. This is a method for manufacturing an electronic component.
  • the ninth aspect of the present invention provides The electronic component manufacturing method according to the eighth aspect of the present invention, wherein the integrated laminate is divided into predetermined dimensions to obtain an electronic component.
  • the tenth aspect of the present invention is In the lamination step of the laminate, Laminating the insulating resin sheet on the first main surface of the ceramic substrate; It is the manufacturing method of the electronic component according to the eighth or ninth aspect of the present invention, wherein a second insulating resin sheet is laminated on the second main surface of the ceramic substrate.
  • the eleventh aspect of the present invention is The method for producing an electronic component according to any one of the eighth to tenth aspects, wherein a circuit component is mounted on the ceramic substrate.
  • the twelfth aspect of the present invention is The present invention according to any one of the eighth to eleventh aspects, wherein the resin multilayer substrate is a flexible substrate using at least one film base material selected from polyimide, aramid, PET, PPS, PEN, and Teflon (registered trademark). It is a manufacturing method of the electronic component.
  • the thirteenth aspect of the present invention is The method for producing an electronic component according to any one of the eighth to twelfth aspects, wherein the insulating resin sheet is a mixture containing 50% to 75% volume of an inorganic filler and a thermosetting resin.
  • the inorganic filler includes at least one inorganic filler selected from Al 2 O 3 , SiO 2 , MgO, BN, and AlN.
  • Invention 1 of an electronic component manufacturing method has a circuit component (for example, 111b in FIG. 1 (b)) on a wiring pattern (for example, 102a in FIG. 1 (a)) on at least one main surface. , 111c) to prepare a ceramic substrate (for example, 104 in FIG. 1B), Uncured insulating resin sheets A and B having via-hole conductors (for example, 134 in FIG. 1 (g)) formed by filling via holes (for example, 133 in FIG. 1 (f)) with a conductive resin composition. (For example, preparing the steps 135a and 135b in FIG. 1H); A transfer forming material (for example, 125 in FIG.
  • a second transfer forming material for example, the transfer forming material 125 in FIG. 1 used in place of the metal foil 141 in FIG. 1 used in place of the metal foil 141 in FIG. 1
  • a resin multilayer substrate having a wiring pattern for example, used in place of the metal foil 141 in FIG. 1.
  • the transfer forming material for example, 125 in FIG.
  • a ceramic base for example, 151 in FIG. 1 (j) is disposed on the upper and lower surfaces of the laminated body (for example, 145 in FIG. 1 (j)) laminated by the above process, and the uncured insulation is heated under pressure.
  • the carrier layer (for example, 123 in FIG. 1 (l)) of the transfer forming material is removed, and a wiring pattern (for example, 124 in FIG. 1 (l)) embedded in the insulating resin sheet is formed by transfer.
  • the insulating base is simply disposed on the upper and lower surfaces of the laminated body without adding a special process.
  • a highly reliable electronic component in which distortion of the via-hole conductor formed in the resin sheet and warpage of the electronic component hardly occur can be easily created.
  • the invention 2 (mainly see FIGS. 1 and 3) of the method of manufacturing an electronic component has a circuit component (for example, FIG. 1 (for example, FIG. 1 (a)) on a wiring pattern (for example, 102a in FIG. b) preparing a ceramic substrate (for example, 104 in FIG. 1B) on which 111b and 111c) are mounted; Uncured insulating resin sheets A and B having via-hole conductors (for example, 134 in FIG. 1 (g)) formed by filling via holes (for example, 133 in FIG. 1 (f)) with a conductive resin composition. (For example, preparing the steps 135a and 135b in FIG.
  • Preparing a first and second resin multilayer substrate having a wiring pattern and / or a metal foil for example, 141 in FIG. 1 (i)); (Ai) The first resin multilayer substrate having the second wiring pattern (for example, 126 in FIG. 3A), (ai) The uncured insulating resin sheet A (for example, FIG. 3 ( a) 135a), (a-iii) the ceramic substrate (for example, 104 in FIG. 3 (a)), (a-iv) the uncured insulating resin sheet B (for example, 135b in FIG. 3 (a)) And (av) a second resin multilayer substrate having a third wiring pattern (for example, 126 in FIG. 3 (a) used in place of 141 in FIG.
  • the same effects as those of the electronic component manufacturing method of the invention 1 can be obtained.
  • the second aspect by using a multilayer flexible substrate instead of the wiring transfer pattern, the occurrence of warpage can be further suppressed and the wiring capacity can be improved as compared with the configuration of the first aspect. Does not disturb the degree.
  • the metal foil is used in (av), and the wiring pattern is formed by processing the metal foil of the electronic component base material.
  • the wiring pattern is formed by processing the metal foil of the electronic component base material.
  • the circuit component is built in the insulating resin sheet bonded to both surfaces of the ceramic substrate, and the circuit component is further mounted on the wiring pattern formed on the insulating resin sheet.
  • the electronic component is a three-dimensionally mounted component.
  • the method for manufacturing an electronic component according to the second aspect of the invention is a configuration in which the second resin multilayer substrate is used in (av), and the second resin multilayer substrate of the electronic component base material (for example, FIG. 3).
  • 3A includes a step (for example, see FIG. 4B) of mounting circuit components on the third wiring pattern in FIG. 3A 126) used instead of 141 in FIG. According to this configuration, the same effects as those of the electronic component manufacturing method of the invention can be obtained.
  • the resin multilayer substrate is preferably a flexible substrate using at least one film base material selected from polyimide, aramid, PET, PPS, PEN, and Teflon (registered trademark).
  • the resin multilayer substrate is laminated on both sides of the ceramic substrate. As a result, the influence of the resin multilayer substrate on one side on the warp of the electronic component can be minimized.
  • the insulating resin sheet is made of a mixture containing 50% to 75% by volume inorganic filler and a thermosetting resin.
  • mixing the inorganic filler has an effect of reducing the thermal expansion coefficient of the insulating resin sheet, which is one of the causes of internal stress in the heterogeneous laminated structure.
  • the blending ratio is 75% by volume or more, the amount of liquid is too small with respect to the amount of powder, making it difficult to form a sheet.
  • it is 50% by volume or less, it becomes difficult to obtain effects such as reduction in thermal expansion and improvement in heat dissipation due to the mixing of the inorganic filler.
  • the compounding ratio of the inorganic filler is preferably large.
  • the inorganic filler contains at least one inorganic filler selected from Al 2 O 3 , SiO 2 , MgO, BN, and AlN.
  • thermosetting resin contains at least one thermosetting resin selected from an epoxy resin, a phenol resin, and a cyanate resin.
  • thermosetting resins selected from an epoxy resin, a phenol resin, and a cyanate resin.
  • the conductive resin composition includes metal particles including at least one metal selected from gold, silver, copper, and nickel as a conductive component, and includes an epoxy resin as a resin component.
  • the metal has a low electrical resistance, and the epoxy resin is excellent in heat resistance and electrical insulation.
  • metal particles coated with silver on the surface using copper powder as a core material are suitable because they have both the characteristics of copper powder that has high mechanical strength and is inexpensive and silver powder that is resistant to oxidation and low resistance.
  • the ceramic substrate layer having the first wiring pattern (for example, 104 in FIG. 1 and 104 in FIG. 3) and the first main surface of the ceramic substrate layer are bonded and electrically conductive.
  • Insulating resin sheet layer for example, 135a in FIG. 1, FIG. 3, 131a in FIG. 6) having via-hole conductors (for example, 134 in FIG. 1, FIG. 3, FIG. 6) made of a conductive resin composition, and the above insulation
  • a second wiring pattern (for example, 124 in FIG. 1) bonded to the conductive resin sheet layer and electrically connected to the first wiring pattern by the via-hole conductor, or a resin multilayer having a second wiring pattern
  • a substrate layer for example, 126 in FIG. 3) and an insulating resin sheet layer (for example, 135b in FIGS. 1, 3 and 131b in FIG. 6) adhered to the second main surface of the ceramic substrate were provided. Is.
  • the insulating resin sheet layers are formed on both sides of the ceramic substrate layer, the stress balance can be achieved, and the warpage caused by the lamination of different materials can be suppressed, and the highly reliable electronic component for secondary mounting. Can be obtained.
  • the invention of the electronic component is mounted on the first wiring pattern in a state of being embedded in the insulating resin sheet layer on both the first main surface and the second main surface of the ceramic substrate layer.
  • the circuit components for example, 111a and 112 in FIG. 3 similar to the circuit components (11a and 111c in FIG. 3) may be further provided.
  • the stress balance mismatch caused by the difference in the configuration of the built-in circuit components can be easily matched by changing the thickness of the insulating resin sheet layer bonded to both sides of the ceramic substrate layer. It is possible to obtain an electronic component without warping without necessarily having a completely symmetrical structure.
  • the circuit component includes a semiconductor chip.
  • a bare chip semiconductor or a semiconductor package in which external electrodes with fine pitches are formed is mounted, the electrical connection of the bare chip semiconductor or semiconductor package mounting due to warpage hardly occurs.
  • an insulating resin sheet layer (for example, 135b in FIGS. 1 and 3) that has a via-hole conductor made of a conductive resin composition that is bonded to the second main surface of the ceramic substrate layer.
  • a third wiring pattern (for example, 142 in FIG. 4) bonded to the insulating resin sheet layer or a second resin multilayer substrate layer (for example, 141 in FIG. 3) having the third wiring pattern. 3 used in place of FIG. 3 or a conductive film layer (for example, metal foil 141 of FIG. 3), and the first of the ceramic substrate layers is formed by the via-hole conductor (for example, 134 of FIGS. 1, 3, and 4).
  • the wiring pattern (for example, 102a and 102b in FIGS. 1, 3, and 4) and the third wiring pattern or the conductive film layer may be electrically connected.
  • a magnetic shield effect can be obtained by arranging the via-hole conductor around the built-in circuit component and connecting it to the ground.
  • circuit components for example, 113, 114a and 114b in FIG. 4
  • third wiring pattern for example, 142 in FIG. 4
  • Electronic components are mounted with high density components.
  • an uncured thermosetting resin sheet having a via-hole conductor filled with a conductive resin paste and a wiring pattern formed on both surfaces of a ceramic substrate on which circuit components are mounted.
  • a ceramic base is disposed on the upper and lower surfaces of the laminated body and heated under pressure, thereby It is possible to suppress the distortion of the via-hole conductor and the warp of the electronic component due to the different types of lamination.
  • the distortion caused by the difference in the thermal expansion coefficient between the ceramic substrate and the resin / metal material generated during heating can be suppressed by placing a ceramic base on both surfaces of the laminate and applying pressure. That is, according to the above configuration, the thermal expansion of the resin / metal material sandwiched between the ceramic bases can be suppressed, and the wiring pattern and the via hole conductor formed in the insulating resin sheet are not distorted. Does not cause a shift in the connection position.
  • a stress symmetric structure that is, a stress balanced structure
  • the occurrence of warpage can be controlled.
  • This manufacturing method simplifies the process because it can be heated and pressurized with circuit components mounted on both sides of the ceramic substrate.
  • the present invention exerts an effect that it is possible to provide an electronic component that can improve the reliability of the electrical connection of the secondary mounting of the electronic component to the mother board.
  • 101 is a 0.5 mm thick 6-layer ceramic substrate, non-shrinkable LTCC (low temperature co-fired ceramics), 102a and 102b are wiring patterns of the ceramic substrate 101, and a paste mainly composed of an Ag material.
  • the thickness is 20 ⁇ m formed by printing / firing.
  • the main surface on the side where the wiring pattern 102a is formed is an example of the first main surface of the present invention
  • the main surface on the side where the wiring pattern 102b is formed is an example of the second main surface of the present invention.
  • the wiring patterns 102a and 102b are an example of the first wiring pattern of the present invention.
  • 111a, 111b, and 111c are circuit components, which are chip components such as resistors, capacitors, and inductors, and 112 is a semiconductor element, which includes a semiconductor chip, a semiconductor package, and the like.
  • the transfer forming material 125 on which the wiring pattern is formed is a transfer forming material in which the wiring pattern 124 is formed on the carrier layer 123, and is an example of the transfer sheet of the present invention.
  • Reference numeral 132 denotes a protective film having a thickness of 0.02 mm, which is PPS (polyphenylene sulfide), but PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or the like may be used.
  • 133 is a via hole having a diameter of 0.16 mm
  • 134 is a via hole conductor made of a conductive resin composition
  • 141 is a metal foil.
  • Reference numeral 135 denotes an insulating resin sheet on which a via-hole conductor is formed.
  • 151 is a ceramic base having a thickness of 2 mm
  • 152 is a cushioning material having a thickness of 2 mm
  • 154 is a heater
  • 153 is a heating plate of a hot press apparatus.
  • Reference numeral 143 denotes an electronic component base material before cutting the electronic component
  • 155 denotes a division processing line indicating a cutting position for obtaining an electronic component piece from the electronic component base material 143
  • 147 denotes the present invention. It is an electronic component.
  • the insulating resin sheet 131 is a mixture containing 50% to 75% by volume of an inorganic filler and a thermosetting resin.
  • the inorganic filler includes at least one inorganic filler selected from Al 2 O 3 , SiO 2 , MgO, BN, and AlN.
  • the thermosetting resin includes at least one thermosetting resin selected from an epoxy resin, a phenol resin, and a cyanate resin.
  • the conductive resin composition constituting the via-hole conductor 134 includes metal particles including at least one metal selected from gold, silver, copper, and nickel as a conductive component, and includes an epoxy resin as a resin component. .
  • metal particles including at least one metal selected from gold, silver, copper, and nickel as a conductive component, and includes an epoxy resin as a resin component.
  • the circuit components 111a, 111b, and 111c and the semiconductor element 112 are mounted on the wiring patterns 102a and 102b of the ceramic substrate 101.
  • the metal foil 122 of the transfer forming material 121 is processed to prepare a transfer forming material 125 on which a wiring pattern 124 is formed.
  • the protective film 132 is bonded to both surfaces of the insulating resin sheet 131, the via hole 133 is opened, and the conductive resin composition is filled therein to fill the via hole conductor 134. Then, the protective film 132 is removed to prepare an insulating resin sheet 135 on which the via-hole conductor 134 is formed.
  • the mounting ceramic substrate 104 on which circuit components are mounted, insulating resin sheets 135a and 135b having via-hole conductors, a transfer forming material 125 on which a wiring pattern is formed, and a metal foil 141 are stacked in the order shown in FIG.
  • one main surface of the ceramic substrate 101 (first of the present invention) is formed by a via-hole conductor 134 formed in the insulating resin sheet 135a (which is an example of the insulating resin sheet of the present invention).
  • the wiring pattern 102a formed on the main surface) and the wiring pattern 124 of the transfer forming material are aligned so as to be electrically connected.
  • the other main surface of the ceramic substrate 101 (the second main surface of the present invention) is formed by the via-hole conductor 134 formed in the insulating resin sheet 135b (which is an example of the second insulating resin sheet of the present invention).
  • the wiring pattern 102b formed in (an example) and the metal foil 141 are aligned and stacked so as to be electrically connected.
  • the mounting ceramic substrate 104 on which circuit components are mounted the insulating resin sheets 135a and 135b having via-hole conductors, the transfer forming material 125 on which the wiring pattern is formed, and the metal foil 141 are laminated.
  • the ceramic base 151 and the cushioning material 152 are disposed on the upper and lower surfaces of the laminated body 145. Then, the laminated body 145 is pressurized and heated by the heating plate 153 of the hot press device, whereby the insulating resin sheet 131 is thermoset to integrate the laminated body 145.
  • FIG. 1 (k) shows a laminated body 145 integrated by pressurization and heating.
  • the carrier layer 123 of the transfer forming material is removed from the laminate 145.
  • a large number of electronic components manufactured by the processes of FIGS. 1A to 1L are generally taken from a large-sized electronic component base material.
  • the electronic component base material 143 shown in FIG. 1 (m) is obtained.
  • the electronic parts of the present invention are manufactured as individual electronic parts 147 by dividing them into pieces by cutting lines 155.
  • the circuit components 111a to 111c and 112 are mounted on both surfaces of the ceramic substrate 101 and are incorporated in the insulating resin sheets 135a and 135b.
  • the present invention is not limited to this, and it may be mounted on only one side of the ceramic substrate 101, or may be a built-in component on a ceramic substrate formed of a thick film or a thin film.
  • the insulating resin sheet bonded to the other main surface of the ceramic substrate may not necessarily include the via-hole conductor 134 but may simply include a component.
  • the above manufacturing method distortion caused by the difference in thermal expansion coefficient between the ceramic substrate 101 and the resin material generated during heating can be suppressed by placing the ceramic base 151 on both sides with the ceramic substrate 101 as a core and applying pressure. . That is, according to the above configuration, the thermal expansion of the resin / metal material sandwiched between the ceramic bases 151 can be suppressed, and the via hole conductor 134 formed in the insulating resin sheet 131 is not distorted. The effect of preventing the displacement of the connection position between the via-hole conductor and the wiring pattern is exhibited. This point will be further described in detail in the fifth embodiment.
  • the stress symmetric structure can be easily realized by changing the thickness of the insulating resin sheet 131 bonded to both surfaces of the ceramic substrate 101 according to the configuration of the electronic component, the occurrence of warpage of the electronic component can be controlled.
  • the circuit component can be heated and pressed in a state where the circuit component is mounted on both surfaces of the ceramic substrate 101, the process of mounting the component after pressurization and heating can be omitted, and the process can be simplified.
  • the transfer pattern used in the first embodiment is formed with a wiring pattern (an example of the second wiring pattern of the present invention).
  • a resin multilayer substrate 126 an example of a resin multilayer layer having the second wiring pattern of the present invention is used.
  • 104 is a ceramic substrate on which circuit components are mounted, 135a and 135b are insulating resin sheets on which via-hole conductors are formed, and the respective components and manufacturing processes are the same as those in the first embodiment.
  • 126 is a resin multilayer substrate having wiring patterns 128a and 128b, and 141 is a metal foil.
  • a mounting ceramic substrate 104 on which circuit components are mounted insulating resin sheets 135a and 135b having via-hole conductors, a resin multilayer substrate 126 having a wiring pattern, and a metal foil 141, Laminate in the order shown in the figure.
  • the via hole conductor 134 aligns the wiring pattern 102a formed on one main surface of the ceramic substrate 101 and the wiring pattern 128b of the resin multilayer substrate 126 so as to be electrically connected.
  • the wiring pattern 102b formed on the other main surface of the ceramic substrate 101 and the metal foil 141 are aligned and laminated so as to be electrically connected.
  • the ceramic base 151 and the cushioning material 152 are disposed on the lower surface.
  • the laminated body 146 is pressurized and heated with the heating plate 153 of a hot press apparatus, the insulating resin sheet 131 is thermoset, and the laminated body 146 is integrated.
  • FIG. 3C shows a laminate 146 integrated by pressurization and heating.
  • the electronic component base material of the present invention is manufactured by dividing the large-sized electronic component base material into individual pieces in the same manner as in the first embodiment.
  • the circuit components 111a to 111c and 112 are mounted on both surfaces of the ceramic substrate 101 and are incorporated in the insulating resin sheets 135a and 135b.
  • the present invention is not limited to this, and it may be mounted on only one side of the ceramic substrate 101, or may be a built-in component on a ceramic substrate formed of a thick film or a thin film.
  • the insulating resin sheet bonded to the other main surface of the ceramic substrate may not necessarily include the via-hole conductor 134 but may simply include a component.
  • the resin multilayer substrate 126 is used instead of the transfer pattern (wiring pattern 124) which is a single-layer wiring layer, so that the wiring capacity is high and the design is high. An electronic component that does not impede the degree of freedom is obtained.
  • a flexible substrate (thickness 0.015 mm to 0 mm) using a film base material having a thickness of 0.005 mm to 0.05 mm such as polyimide, aramid, PET, PPS, PEN, or Teflon (registered trademark). .1 mm), warpage can be further reduced.
  • the main difference between the present embodiment and the second embodiment is that the metal foil 141 of the electronic component base material created in the above embodiment is subjected to a patterning process to form a wiring pattern 142 (first embodiment of the present invention).
  • 3 is an example of the wiring pattern 3), and circuit components and the like are mounted thereon.
  • 142 is a wiring pattern obtained by processing a metal foil 141, 114a and 114b are circuit components, and 112 and 113 are semiconductor elements, specifically, a semiconductor chip or a semiconductor package.
  • the wiring pattern 142 is formed by patterning the metal foil 141 of the electronic component base material manufactured in the second embodiment.
  • a semiconductor element 113 such as a semiconductor chip or a semiconductor package and circuit components 114a and 114b are mounted on the wiring pattern 142.
  • a large-sized electronic component base material which is a large number, is divided and separated into individual pieces to produce the electronic component of the present invention.
  • the electronic component base material described in the first embodiment may be used as the electronic component base material.
  • the wiring pattern 142 is formed by patterning the metal foil 141.
  • the present invention is not limited to this.
  • the wiring pattern 124 by the transfer forming material 125 is transferred or the resin multilayer substrate 126 is bonded. Then, circuit components may be mounted on the wiring pattern.
  • circuit components are stacked and mounted in multiple stages, an electronic component with a high mounting density can be obtained, which is advantageous for downsizing of components. It is.
  • the manufacturing method is basically the same as that of the above-described embodiment in that the insulating resin sheets 131a and 131b are laminated on both sides of the ceramic substrate 101 as a core and the ceramic base 151 is pressurized and heated from both sides. is there.
  • 101 is a ceramic substrate
  • 102a and 102b are wiring patterns of the ceramic substrate 101
  • 111a, 111b and 111c are circuit components, specifically chip components such as resistors, capacitors and inductors.
  • Reference numeral 112 denotes a semiconductor element, specifically a semiconductor chip or a semiconductor package.
  • Reference numeral 124 denotes a wiring pattern of the transfer forming material
  • 127 denotes a core material of the resin multilayer substrate
  • 128a and 128b denote wiring patterns of the resin multilayer substrate 126.
  • 131a and 131b are insulating resin sheets
  • 134 is a via-hole conductor made of a conductive resin composition
  • 141 is a metal foil.
  • metal foil 141 instead of the metal foil 141, a metal thin film formed by sputtering, vapor deposition, or the like, a metal thick film formed by plating, or a printing paste containing conductive particles may be used.
  • An example of the electronic component of the present invention shown in FIG. 5 is (a) a via-hole conductor 134 made of a conductive resin composition bonded to the first main surface of the ceramic substrate 101 having the first wiring patterns 102 and 102b. (B) a wiring pattern 124 bonded to the insulating resin sheet 131a and electrically connected to the first wiring pattern 102a by a via-hole conductor 134; and (c) a ceramic.
  • a circuit component 111a and a semiconductor element 112 such as a semiconductor chip or a semiconductor package are mounted on the second main surface of the substrate 101, and an insulating resin sheet 131b is bonded to the circuit component 111a and the semiconductor chip or semiconductor package.
  • the semiconductor element 112 is built in the insulating resin sheet 131b.
  • the warpage of the electronic component due to the lamination of different materials is balanced with the stress because the insulating resin sheets 131a and 131b are formed on both surfaces of the ceramic substrate, so that the secondary mounting reliability without warping can be achieved. High electronic parts can be obtained.
  • the stress balance can be easily adjusted by changing the thickness of the insulating resin sheets 131a and 131b bonded to both surfaces of the ceramic substrate. Matching is possible. Therefore, an electronic component without warping can be obtained without necessarily having a completely symmetrical structure.
  • FIG. 6 An example of the electronic component of the present invention shown in FIG. 6 is different from FIG. 5 in that the circuit components 111b and 111c are mounted on the first main surface of the ceramic substrate and incorporated in the insulating resin sheet. It is.
  • the insulating resin sheet bonded to the first main surface of the ceramic substrate has not only a simple stress relieving function at the time of secondary mounting on the mother substrate (not shown), but also as a layer containing components. As a result, high-density electronic components can be obtained.
  • the metal foil 141 is further bonded to the insulating resin sheet 131b that is bonded to the second main surface of the ceramic substrate 101 and contains the circuit component 111a and the like, and the via-hole conductor 134 is connected to the circuit.
  • the component 111a and the semiconductor element 112 such as a semiconductor chip or a semiconductor package so as to surround the component 111a and connecting it to the ground, it has a magnetic shield function.
  • FIGS. 9 to 12 An example of the electronic component of the present invention shown in FIGS. 9 to 12 is different from the above electronic component in that a resin multilayer substrate 126 is used instead of the wiring pattern 124 constituting the electronic component described in FIGS. .
  • 127 is a core material of the resin multilayer substrate 126, preferably a flexible substrate using at least one film base material selected from polyimide, aramid, PET, PPS, PEN and Teflon (registered trademark).
  • the resin multilayer substrate 126 is used instead of the transfer pattern (wiring pattern 124) that is a single-layer wiring layer, an electronic component that has high wiring capacity and does not hinder the design freedom is obtained. It is done.
  • the resin multilayer substrate 126 is illustrated as a two-layer substrate, but is not particularly limited thereto.
  • the via hole conductor 134 is described as being used for the purpose of magnetic shielding.
  • the via hole conductor 134 is not limited to this and may also serve as a signal line.
  • the wiring pattern has been described in the case where the wiring pattern 142 is formed by patterning the metal foil 141.
  • the present invention is not limited to this. A configuration in which 126 is pasted may be used.
  • a resin multilayer substrate is used on the secondary mounting surface side to the mother substrate, but a configuration by wiring pattern transfer may be used. Furthermore, the circuit component mounting on the ceramic substrate may be a mounting form on one side.
  • the electronic component used here is not limited to the manufacturing method of the first embodiment, and any method may be used as long as it is a manufacturing method of the present invention.
  • a wiring pattern 124 for evaluating the electrical connectivity of the via-hole conductor 134 formed on the insulating resin sheet 131 and wiring patterns 102a and 102b for mounting circuit components are formed.
  • a ceramic substrate 103 having a wiring pattern composed of four layers having a size of 100 ⁇ 100 mm and a thickness of 0.4 mm is prepared.
  • a semiconductor element 112 such as a semiconductor chip or a semiconductor package is flip-chip mounted on the wiring pattern of the ceramic substrate 103 shown in FIG. 1B by means of ACF, NCF, SBB or the like.
  • the cream solder paste is supplied by means such as screen printing, dispensing, etc., the circuit components 111a, 111b, 111c are mounted, and reflow is performed to prepare the mounting ceramic substrate 104 on which the circuit components are mounted.
  • SnSb solder having a melting point higher than that of Sn—Ag—Cu solder is used so that a short circuit does not occur due to remelting of the solder in the reflow process during secondary mounting. It is preferable to use a high temperature type cream solder, a melting point shift type solder, or a conductive adhesive.
  • the circuit component may be mounted on only one side of the ceramic substrate.
  • FIG. 1C shows a carrier copper foil having a thickness of 0.07 mm, and a copper foil 122 having a thickness of 0.012 mm is laminated on the carrier layer 123 of the transfer forming material via nickel plating as a release layer. It is a transfer forming material 121 (Furukawa Circuit Foil Co., Ltd. F-DP).
  • the transfer forming material may be produced by forming a resist pattern opposite to the wiring pattern 124 on the copper foil of the carrier layer 123, forming the wiring pattern 124 by plating, and then removing the resist.
  • insulating resin sheet 135 filled with conductive paste As shown in FIGS. 1E to 1H, first, an insulating resin sheet made of a mixture of an inorganic filler and a thermosetting resin was produced. That is, a mixture containing 35% by volume of epoxy resin (Epicure YH-306 made by oil-based shell epoxy) and 65% by volume of alumina filler (AS-40 made by Showa Denko) was stirred for 10 minutes, and this mixture was thickened by the doctor blade method A 0.1 mm insulating resin sheet material (not shown) was produced.
  • epoxy resin Epicure YH-306 made by oil-based shell epoxy
  • AS-40 65% by volume of alumina filler
  • the conductive resin paste used here is 85% by weight of spherical copper particles, 3% by weight of bisphenol A type epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.) as a resin component, and a glycidyl ester epoxy resin. 9% by weight (Toto Kasei “YD-171”) and 3% by weight of an amine adduct curing agent (“MY-24” manufactured by Ajinomoto Co., Inc.) as a curing agent were kneaded and adjusted using a three-roll.
  • bisphenol A type epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.)
  • a glycidyl ester epoxy resin 9% by weight (Toto Kasei “YD-171”) and 3% by weight of an amine adduct curing agent (“MY-24” manufactured by Ajinomoto Co., Inc.) as a curing agent were kneaded and adjusted using a
  • a cavity for embedding the circuit component in the insulating resin sheet may be processed according to the situation such as the size of the circuit component incorporated.
  • laminate 145 As shown in FIG. 1I, the transfer forming material 125 prepared in the above process, the insulating resin sheet 135a on which the via-hole conductor 134 is formed, the mounting ceramic substrate 104 on which circuit components are mounted, and the via-hole conductor are formed. Insulating resin sheet 135b and metal foil 141 made of copper foil having a thickness of 0.035 mm are laminated in this order.
  • the wiring pattern 102a formed on one main surface of the ceramic substrate, the wiring pattern 124 of the transfer forming material, and the other main surface of the ceramic substrate are formed by via-hole conductors 134 formed on the insulating resin sheet.
  • a laminated body 145 is prepared in which the wiring pattern 102b and the metal foil 141 made of copper foil are aligned so as to be electrically connected.
  • the carrier layer 123 of the transfer forming material was peeled off to produce an electronic component base material used in the present embodiment.
  • 154 is a heater for heating. Pressurization heating was performed using a hot press machine, the heating temperature was 200 ° C., the pressure was 3 MPa, and the pressure heating time was 2 hours.
  • the epoxy resin contained in the insulating resin sheet and the via hole conductor is also completely cured, and the wiring patterns 102a and 102b of the ceramic substrate, the wiring pattern 124 of the transfer forming material, and the metal foil 141 are passed through the via hole conductor formed in the insulating resin sheet. Was electrically connected.
  • the above-described cushioning material 152 is intended to equalize the pressure by absorbing the parallelism and flatness of the heating plate of the hot press.
  • the ceramic bases 151 are disposed on the upper and lower surfaces of the laminate 145, and the upper and lower resin materials and metal materials are placed on the ceramic base 151 using the ceramic substrate 101 as a core.
  • the elongation of the resin or metal material can be suppressed by the ceramic base 151 even when heated.
  • FIGS. 2 (a) and 2 (b) the inclination (distortion) of the via-hole conductor is suppressed, and no displacement occurs.
  • 2A is a cross-sectional view of the via-hole conductor 134
  • FIG. 2B is a top view thereof.
  • the structure is close to a symmetrical structure, and the ceramic base 151 suppresses the elongation of the insulating resin sheet layer when pressurized and heated. Therefore, the warpage is very small at 0 to 0.7 mm in the size of 100 ⁇ 100 m.
  • 13 (a) to 13 (e) are schematic diagrams for explaining the mechanism of the inclination (distortion) of the via-hole conductor in the conventional electronic component manufacturing method.
  • the configuration of the laminate 500 in FIG. 13A is basically the same as that of the laminate 300 shown in FIG. 15 except that a resin multilayer substrate 126 is used instead of the transfer sheet 325 having a wiring pattern. .
  • the circuit component 311b and the like are not shown.
  • FIG. 13A shows a state in which metal plates 356 are disposed on the upper and lower surfaces of the laminate 500.
  • FIG. 13 (b) is a diagram schematically showing the state of thermal expansion of each part when the pressure heating treatment is started on the laminated body 500.
  • the thermal expansion amount is exaggerated for the sake of explanation.
  • the extension of the metal plate 356 is large (see the arrow 510 in the figure), and the resin multilayer substrate 126 extends following the extension of the metal plate 356 (see the arrow 511a in the figure).
  • the ceramic substrate 301 hardly extends (see arrow 512a in the figure). Due to the difference in elongation, the via-hole conductors 334 at both ends are inclined.
  • the pressurizing and heating process further proceeds and the heating temperature rises to 200 ° C.
  • the via-hole conductor 334 is cured at around 100 ° C., but the resin component of the insulating resin sheet 335 further flows in the peripheral direction, further bending the via-hole conductor 334 (see arrow 513a in the same figure). .
  • the “deviation amount” ⁇ L due to the inclination of the via-hole conductor 334 exceeds the extension amount of the metal plate 356.
  • the shift amount ⁇ L is 0.1 to 0.3 mm.
  • the insulating resin sheet 335 containing a filler such as silica is hardened by being held at 200 ° C., and after hardening, it becomes a composite cured product of the resin containing the filler and has a smaller thermal expansion coefficient than that of the resin.
  • FIG. 13D shows a state in which the metal plate 356 is removed after the laminated body 500 is held at 200 ° C. for a predetermined time (see FIG. 13C).
  • FIG. 13E shows the electronic component 501 cooled from 200 ° C. to room temperature.
  • the ceramic substrate 301 slightly contracts (see arrow 512b in the figure).
  • the insulating resin sheet 335 contracts greatly when returning to room temperature (see arrow 513b in the figure), but as described above, the coefficient of thermal expansion is smaller after curing than before curing. It cannot return to the size.
  • the resin multilayer substrate 126 contracts following the insulating resin sheet 335. Since the via-hole conductor 334 also follows the contraction of the insulating resin sheet 335, the inclination becomes slightly gentle, but the position shift at the contact portion with the wiring pattern 128b (electrode) remains.
  • the electronic component warps when cooled to room temperature.
  • FIGS. 14 (a) to 14 (e) are schematic diagrams for explaining the reason why distortion of the via-hole conductor hardly occurs in the method for manufacturing an electronic component of the present invention.
  • the 14A is basically the same as the laminate 146 shown in FIG. 3 except that the resin multilayer substrate 126 is used instead of the metal foil 141.
  • the laminate 146 shown in FIG. The circuit component 111a and the like are not shown.
  • FIG. 14A shows a state in which the ceramic board 151 is disposed on the upper and lower surfaces of the laminate 550.
  • FIG. 14 (b) is a diagram schematically showing the state of thermal expansion of each part when the pressure heating treatment is started on the laminated body 550.
  • the thermal expansion amount is exaggerated for the sake of explanation.
  • the thermal expansion amount of the ceramic base 151 is small (see the arrow 510a in the figure), and the resin multilayer substrate 126 is pressed by the ceramic base 151, so that the elongation is suppressed (same as the figure). (See arrow 561a in the figure).
  • the thermal expansion amount of the ceramic substrate 101 is small (see the arrow 562a in the figure), the overall elongation amount is almost the same, and the via-hole conductor 134 is not inclined, so that the contact portion with the wiring pattern 128b (electrode) is not contacted. Misalignment does not occur.
  • the pressurization heating process further proceeds and the heating temperature rises to 200 ° C.
  • the via-hole conductor is cured at around 100 ° C.
  • the resin components of the insulating resin sheets 135a and 135b further flow in the peripheral direction, and push the middle part (see the arrow 571a in the figure) more than the both end parts (see the arrow 570a in the figure) of the via-hole conductor 134. Although it is going to bend, it is only about to bend (illustration omitted). Even at this stage, no displacement occurs at the contact portion with the wiring pattern 128b (electrode).
  • FIG. 14D shows a state in which the ceramic base 151 is removed after the laminated body 550 is held at 200 ° C. for a predetermined time (see FIG. 14C).
  • FIG. 14 (e) shows the electronic component 551 cooled from 200 ° C. to room temperature.
  • the ceramic substrate 101 and the resin multilayer substrate 126 are slightly contracted (see arrows 562b and 561b in the figure).
  • the insulating resin sheets 135a and 135b are slightly shrunk near the resin multilayer substrate (see the arrow 570b in the figure), and contracted to a greater extent at the distance (see the arrow 571b in the figure).
  • the bending of the via-hole conductor 134 that occurs in FIG. 14C is eliminated.
  • the electronic component as a comparative example was produced by dividing an electronic component base material having a size of 100 ⁇ 100 m obtained by the conventional manufacturing method described in FIG. 15 into individual pieces of 20 ⁇ 20 mm by dicing.
  • the evaluation method uses an electronic component mounting apparatus in which the electronic components of the present invention are secondarily mounted and an electronic component mounting apparatus of a comparative example, 50 pieces each, and a liquid bath thermal shock test (after immersion in a thermostatic bath at ⁇ 55 ° C. for 5 minutes). (Immersion in a 125 ° C. constant temperature bath for 5 minutes) was performed 1000 times, and the electrical connection resistance between the via-hole conductor and the secondary mounting portion was measured.
  • the via hole conductor itself failed in 18 samples, and the secondary mounting electrical connection failure occurred in 42 samples.
  • the defect of the via-hole conductor itself is a defect in which the via-hole conductor 334 is bent as shown in FIG. 17 so that the compressed state of the via-hole conductor becomes insufficient and the resistance value of the via-hole conductor itself increases.
  • the ceramic base 151 is disposed on the upper and lower surfaces of the laminate 145 using the ceramic substrate 101 as a core, and is heated under pressure.
  • the structure in which the insulating resin sheet layers 135a and 135b are laminated on both surfaces of the ceramic substrate 101 can improve the stress balance, suppress the occurrence of warpage of the electronic component 147, can be mounted on the mother substrate, and can be secondarily mounted. Improved reliability of electrical connection after the next mounting.
  • the difference between the present embodiment and the fifth embodiment is that the diameters and lengths of the via-hole conductors 134 and 334 (see FIGS. 1 and 18) have various values as shown in Table 1. This is the point of making and evaluating an electronic component changed to.
  • Table 1 shows that the ratio of the length to the diameter of the via-hole conductors 134 and 334 (length ( ⁇ m) / diameter ( ⁇ m): hereinafter simply referred to as aspect ratio) is in the range of 1 to 6.
  • the combination of the length and diameter of the via-hole conductor in the electronic component manufactured as described above is shown.
  • the length of the via-hole conductor was expressed as being the same as the thickness of the insulating resin sheet layer.
  • the leftmost column in Table 1 shows that the via hole conductor diameters (100, 150, 180, 200, 250 ( ⁇ m)) are set in five ways. Furthermore, the right column shows the thickness of the insulating resin sheet layer.
  • the column of the fifth column from the left in Table 1 shows the insulating resin sheet layer set to have an aspect ratio of 2 in combination with the five diameters of the via hole conductors in the leftmost column.
  • Five thicknesses 200, 300, 360, 400, 500 ( ⁇ m) are shown. The same applies to the other columns.
  • Table 2 shows the evaluation result of the electronic component mounting apparatus in which the electronic component created using the manufacturing method of the first embodiment is secondarily mounted
  • Table 3 shows the evaluation result of the electronic component mounting apparatus of the comparative example. Show. A circle indicates that there was no problem in the reliability of the electrical connection, and a cross indicates that there was a problem.
  • Table 1 and Table 2 how to read Table 1 and Table 2 is explained.
  • Table 1 among samples having an aspect ratio of 4 (see the third column from the right end), a sample in which the diameter of the via-hole conductor is set to 150 ⁇ m has a corresponding insulating resin sheet layer thickness of 600 ⁇ m. It turns out that it is.
  • the evaluation result of the sample is shown in Table 2 because a circle (the second circle from the top of the column with an aspect ratio of 4) is entered in the corresponding position of the third column from the right end. It turns out that there was no problem in reliability.
  • the blank column indicates that the evaluation confirmation test was not performed, but it can be presumed that all the blank columns are also marked with ⁇ as judged from the above confirmation results.
  • the length of the via-hole conductor is increased and the aspect ratio is increased.
  • the step of placing the ceramic base 151 on the upper and lower surfaces of the laminated body 145 using the ceramic substrate 101 as a core and pressurizing and heating is adopted. As a result, defects or misalignment of the via-hole conductor itself are reduced, and the special effect of greatly improving the reliability of electrical connection is exhibited.
  • the ceramic substrate 101 (having a thickness of t3) is used as a core, and a first insulating resin sheet layer (having a thickness of t1) (see 135a in FIG. 1 (i)) and a second insulating property are formed on both sides thereof.
  • a first insulating resin sheet layer (having a thickness of t1) (see 135a in FIG. 1 (i)) and a second insulating property are formed on both sides thereof.
  • the resin sheet layer is laminated (thickness is t2) (see 135b in FIG. 1 (i)) (for example, see 135a and 135b in FIG. 1 (i))
  • the stress balance Therefore, the warpage of the electronic component is reduced, and the secondary mounting property to the mother board and the electrical connection reliability after the secondary mounting are improved.
  • insulating resin sheets are laminated on both surfaces of a ceramic substrate, and ceramic plates are arranged from the upper and lower surfaces of the laminate using the ceramic substrate as a core.
  • the case where pressure heating is performed has been described.
  • the present invention is not limited to this.
  • the insulating resin sheet may be laminated only on one side of the ceramic substrate.
  • the electronic component may be warped, but the distortion of the via-hole conductor is suppressed, so that the entire component exhibits the effect of improving the reliability of electrical connection as compared with the conventional case.
  • the electronic component manufacturing method of the present invention includes a cutting step in which a laminated body is integrated and then cut into a predetermined size to obtain a plurality of electronic components.
  • the present invention is not limited to this.
  • the present invention can be applied to a configuration in which electronic parts are manufactured one by one without a cutting step.
  • the present invention is not limited to this, and for example, a configuration in which a resin multilayer substrate layer having a third wiring pattern is stacked on the second insulating resin sheet layer may be used.
  • the circuit component is incorporated in either the first or second insulating resin sheet layer.
  • the circuit component is incorporated in the second insulating resin sheet layer.
  • the case has been described (see FIG. 5).
  • the present invention is not limited to this.
  • a circuit component may be built in the first insulating resin sheet layer and electrically connected to the first wiring pattern formed on the ceramic substrate.
  • the wiring pattern on the secondary mounting surface is a transfer pattern, but a multilayer flexible substrate may be used. Further, the circuit component mounting surface may be one side.
  • the electronic component according to the present invention is formed on the upper and lower surfaces of the laminate when the laminate of the base material in which the insulating resin sheet and the wiring pattern are formed on both surfaces of the ceramic substrate is pressed and heated.
  • the ceramic base By disposing the ceramic base, there is an effect that the distortion of the via-hole conductor and the warp of the electronic component due to the different laminated structure are reduced, and the electrical connection reliability of the secondary mounting is improved.
  • An electronic component and a method for manufacturing the electronic component according to the present invention provide an electronic component that has excellent impact resistance, high inner via connection, and high electrical connection reliability for secondary mounting in a heterogeneous laminated structure including a ceramic substrate. It is useful as an electronic component having a component built-in structure in which different materials of a ceramic substrate and a resin material are laminated, a manufacturing method thereof, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 セラミック基板を含む積層構成において、耐衝撃性に優れ、インナービアおよび二次実装の電気接続信頼性の高い電子部品を実現する。  本発明の電子部品は、第1の配線パターンを有するセラミック基板103と、セラミック基板の第1の主面に接着された、導電性樹脂組成物を含むビアホール導体134を有した第1の絶縁性樹脂シート層135aと、第1の絶縁性樹脂シート層に接着された、ビアホール導体により第1の配線パターンと電気的に接続された第2の配線パターンを有する樹脂多層基板層126と、セラミック基板の第2の主面に接着された第2の絶縁性樹脂シート層135bとを備える。

Description

電子部品
 本発明は、セラミック基板と樹脂材料との異種材料を積層した部品内蔵構造を有する電子部品とその製造方法に関する。
 半導体チップを中心とする電子部品が実装された電子部品モジュールは、情報通信機器、事務用電子機器、家庭用電子機器、医療用電子機器などの、小型化、薄型化、高性能化に大きく寄与している。特に、情報通信機器の分野での小型化、薄型化の要求に対し、半導体チップ等の電子部品の実装密度をより高めるために、電子部品の電極ピッチおよび電子部品を実装する配線基板の配線ルールの微細化が益々進んでいる。
 最近では、配線基板の表面に電子部品を実装する従来の2次元的な実装だけでなく、配線基板に電子部品を内蔵し、実装面積を大幅に縮小し、小型高密度化を図る3次元的な実装方法を用いた部品内蔵モジュールの開発も盛んに行われている。
 また、半導体チップ等の電子部品をパソコンや携帯電話等の電子機器のマザー基板に実装する場合、要求される精度が異なる配線ルール間での相互調整が必要となる。
 即ち、微細な(高精度が要求される)配線ルールが適用される電子部品と、それに対して比較的粗な(高精度が要求されない)配線ルールが適用されるマザー基板との間で、双方の配線ルールの調整を図るために、例えば、以下の様な処理が為されている。
 例えば、インターポーザー基板やモジュール基板と呼ばれる配線基板に電子部品を実装した後、半田ボールを用いたBGA(Ball grid array)実装や電極部半田印刷によるLGA(Land grid array)実装によってマザー基板に二次実装するといった段階的な実装形態が採られることが多い。
 このマザー基板には通常、樹脂基板が使用されることが多い。これに対して、インターポーザー基板やモジュール基板には、電子部品およびマザー基板の配線ルール、必要とされる基板の面積や厚さ、および電子部品の放熱性等さまざまな観点から樹脂基板もしくはセラミック基板が選択されて用いられている。
 ここでインターポーザー基板やモジュール基板としてセラミック基板を用いた場合、セラミック基板とマザー基板との熱膨張係数が大きく異なるため、二次実装部分に大きな応力がかかり、例えばBGA実装の半田ボールにクラックが発生する等の電気接続不良が発生することがあった。この様な異種材料を用いることに起因する不良発生に対し、セラミック材料で構成されるインターポーザー基板の表面またはモジュール基板の表面であって、マザー基板上へ実装される側の面に、樹脂層を形成することで応力を緩和させ不良発生を防ぐ方法(特許文献1)が提案されている。
特開2003-124435号公報
 しかし、特許文献1に開示されている方法には、マザー基板への二次実装する前のセラミック基板と樹脂基板との異種積層接続構造の状態において、二次実装する面に反りがないことが求められる。
 ところで、本来、セラミック基板は剛性が高く樹脂基板との異種積層接続構造において反りの発生は少ないが、反りが発生しにくい分、応力を内在的に含んでいることが多い。この内部応力が大きくなると、例えば一気にセラミック基板の欠け、割れ等の破損に繋がるといった様々な問題の原因となることが多かった。
 そこで、セラミック基板と樹脂基板との異種積層接続構造において、特許文献1に開示されているように、セラミック基板に樹脂層を形成する構造によって、樹脂面同士の接続により応力緩和をする方法が提案されている。
 しかし、セラミック基板に直接樹脂層を形成する積層構造では、BGA実装やLGA実装のように極小的なグリッドパターン接続ではなく全面接着となるため、熱膨張係数の差によって大きな反りが発生することでマザー基板への二次実装性を著しく損なうことになる。セラミック基板の厚さと樹脂層の厚さの関係によっても、異種積層構造に起因する内部応力や反りは変化しやすいため、従来のどのような異種積層構造においても、マザー基板への二次実装の信頼性を高いものにすることは非常に困難であった。
 以下に、図15(a)~図15(e)と図16と図17を用いて従来の電子部品の製造方法と、その電子部品について説明する。
 図15(a)において、セラミック基板301の配線パターン302aに回路部品311bと311cを実装した実装セラミック基板333と、導電性樹脂組成物にて構成されるビアホール導体334を形成した絶縁性樹脂シート335と、転写形成材のキャリア層323上に転写形成材の配線パターン324が形成された転写シート325を準備する。
 ビアホール導体334で、セラミック基板の配線パターン302aと転写形成材の配線パターン324を電気接続するように、実装セラミック基板333と絶縁性樹脂シート335と転写シート325との位置合わせを行い積層し、積層体300を形成する(図15(a)参照)。尚、図中では、説明を簡単にするために、後述する切断前の電子部品母材(以下、単に「電子部品母材」と呼ぶ)から得られる一個片の電子部品に対応する積層体300を示している。
 図15(b)~図15(e)に示す様に、上述の積層体を熱プレス装置にて加圧加熱することで、絶縁性樹脂シート335を熱硬化して積層体300を一体化する。356は金属プレート、352はクッション材、354はヒーター、353は熱プレス機の加熱プレートである。
 更に、その後、セラミック基板301の配線パターン302b上に回路部品311aと半導体チップまたは半導体パッケージなどの半導体素子312を実装した後(図15(d)参照)、転写シート325のキャリア層323を剥離して(図15(e)参照)、電子部品母材343(図16参照)を作製する。
 電子部品母材343を、図16に示す切断ライン355に沿って切断して個片に分割することで電子部品を作製する。
 しかし、加圧加熱する際にセラミック基板301と絶縁性樹脂シート335や転写シート325あるいは樹脂多層基板との異種積層構造による熱膨張係数の差によって、図17(a)、(b)に示す様にビアホール導体334の歪み(本明細書では、「歪み」の例として、ビアホール導体の曲がり、傾斜などを含む)が発生し、配線パターン324との位置合わせずれにより、信頼性の高い接続を得ることができなかった。ここで、図17(a)は、電子部品母材343の断面を模式的に示した図であり、図17(b)は、図17(a)の配線パターン302aと、ビアホール導体334を、配線パターン324(図示省略)側から見た概略図である。
 また、異種積層構造による熱膨張係数の差によって反りの発生も大きく、電子部品母材343において、100×100mmサイズで5~8mm程度の反りが発生していた。尚、図16は、電子部品母材343における反りの状態を説明のために誇張して示した図である。
 本発明は、従来の電子部品の上記課題に鑑みてなされたものであり、その主な目的は、セラミック基板を含む電子部品の異種積層構造に起因するビアホール導体334の歪み、及び電子部品の反りの少なくとも何れか一方の発生を抑制し、電子部品のマザー基板への二次実装の電気的接続の信頼性を向上させる事が出来る電子部品を提供することである。
 第1の本発明は、
 第1の配線パターンを有するセラミック基板と、
 前記セラミック基板の第1の主面に接着された、導電性樹脂組成物を含むビアホール導体を有した第1の絶縁性樹脂シート層と、
 前記第1の絶縁性樹脂シート層に接着された、前記ビアホール導体により前記第1の配線パターンと電気的に接続された第2の配線パターンまたは、前記第2の配線パターンを有する樹脂多層基板層と、
 前記セラミック基板の第2の主面に接着された第2の絶縁性樹脂シート層とを備えた、電子部品である。
 また、第2の本発明は、
 前記ビアホール導体の径に対する長さの比(長さ/径)が、1.5以上で6以下の範囲内にある、上記第1の本発明の電子部品である。
 また、第3の本発明は、
 前記セラミック基板の前記第1の主面および前記第2の主面の少なくとも一方に、前記第1又は第2の絶縁性樹脂シート層に内蔵された状態で、前記第1の配線パターンに実装された回路部品をさらに備えた、上記第1または2の本発明の電子部品である。
 また、第4の本発明は、
 前記回路部品が半導体素子を含む、上記第3の本発明の電子部品である。
 また、第5の本発明は、
 前記第2の絶縁性樹脂シート層は、前記導電性樹脂組成物を含むビアホール導体を有しており、
 前記第2の絶縁性樹脂シート層に接着された第3の配線パターンまたは、前記第3の配線パターンを有した樹脂多層基板層または、導電性膜層を備え、
 前記ビアホール導体によって前記セラミック基板層の前記第1の配線パターンと、前記第3の配線パターンまたは前記導電性膜層とが電気的に接続された、上記第1~4の何れかの本発明の電子部品である。
 また、第6の本発明は、
 前記第3の配線パターンに、回路部品を実装した、上記第5の本発明の電子部品である。
 また、第7の本発明は、
 前記第1の絶縁性樹脂シート層の厚み、及び前記第2の絶縁性樹脂シート層の厚みは、前記セラミック基板の厚みと同一又はそれ以上の厚みである、上記第1~6の何れかの本発明の電子部品である。
 また、第8の本発明は、
 (a)セラミック基板と、(b)ビアホールに導電性樹脂組成物を充填したビアホール導体を有した未硬化の絶縁性樹脂シートと、(c)所定の配線パターンを有する転写シート、樹脂多層基板、または、金属箔とを積層して積層体を形成し、
 前記積層体の上面側と下面側にそれぞれセラミック板を配置し、加圧加熱して前記未硬化の絶縁性樹脂シートを硬化させ、前記積層体を一体化する、
ことを特徴とする電子部品の製造方法である。
 また、第9の本発明は、
 前記一体化された積層体を所定寸法に分割して電子部品を得る、上記第8の本発明の電子部品の製造方法である。
 また、第10の本発明は、
 前記積層体の積層工程では、
 前記セラミック基板の第1の主面に前記絶縁性樹脂シートを積層し、
 前記セラミック基板の第2の主面に第2の絶縁性樹脂シートを積層する、上記第8又は9の本発明の電子部品の製造方法である。
 また、第11の本発明は、
 前記セラミックス基板には、回路部品が実装されている上記第8~10の何れかの本発明の電子部品の製造方法である。
 また、第12の本発明は、
 前記樹脂多層基板が、ポリイミド、アラミド、PET、PPS、PEN、及びテフロン(登録商標)から選ばれる少なくとも一つのフィルムベース材を用いたフレキ基板である、上記第8~11の何れかの本発明の電子部品の製造方法である。
 また、第13の本発明は、
 前記絶縁性樹脂シートが、無機フィラーを50%体積~75%体積と熱硬化性樹脂とを含む混合物である、上記第8~12の何れかの本発明の電子部品の製造方法である。
 また、第14の本発明は、
 前記無機フィラーが、Al23、SiO2、MgO、BNおよびAlNから選ばれる少なくとも一つの無機フィラーを含む、上記第13の本発明の電子部品の製造方法である。
 更に、以下に本発明を説明する。
 電子部品の製造方法の発明1(主として図1参照)は、少なくとも一方の主面の配線パターン(例えば、図1(a)の102a)上に、回路部品(例えば、図1(b)の111b、111c)を実装したセラミック基板(例えば、図1(b)の104)を準備する工程と、
 ビアホール(例えば、図1(f)の133)に導電性樹脂組成物を充填してなる、ビアホール導体(例えば、図1(g)の134)を有した未硬化の絶縁性樹脂シートAおよびB(例えば、図1(h)の135a、135b)を準備する工程と、
 キャリア層(例えば、図1(c)の123)と、配線パターン(例えば、図1(d)の124)の少なくとも2層からなる転写形成材(例えば、図1(d)の125)を準備する工程と、
 第2の転写形成材(例えば、図1の金属箔141に代えて用いる図1の転写形成材125)または、配線パターンを有した樹脂多層基板(例えば、図1の金属箔141に代えて用いる図3の樹脂多層基板126)または、金属箔(例えば、図1(i)の141)を準備する工程と、
 (a-i)前記転写形成材(例えば、図1(i)の125)、(a-ii)前記未硬化の絶縁性樹脂シートA(例えば、図1(i)の135a)、(a-iii)前記セラミック基板(例えば、図1(i)の104)、(a-iv)前記未硬化の絶縁性樹脂シートB(例えば、図1(i)の135b)、および、(a-v)第2の転写形成材または、配線パターンを有した樹脂多層基板または、金属箔を順次積層し、前記ビアホール導体(例えば、図1(g)の134)によって、(b-i)前記セラミック基板の一方の主面の配線パターン(例えば、図1(i)の102a)と、(b-ii)前記転写形成材の配線パターン(例えば、図1(i)の124)と、(b-iii)前記セラミック基板の他方の主面の配線パターン(例えば、図1(i)の102b)と、(b-iv)前記第2の転写形成材、または、配線パターンを有した樹脂多層基板、または、上記金属箔が電気的に接続されるように位置合わせして積層する工程と、
 前記工程により積層された積層体(例えば、図1(j)の145)の上下面にセラミックベース(例えば、図1(j)の151)を配置し、加圧加熱して前記未硬化の絶縁性樹脂シートAおよびBを硬化させ、前記積層体(例えば、図1(j)の145)を一体化する工程と、
 前記転写形成材のキャリア層(例えば、図1(l)の123)を除去し、前記絶縁樹脂シートに埋め込まれた配線パターン(例えば、図1(l)の124)を転写形成し電子部品母材を作製する工程と、
 前記電子部品母材を分割し電子部品を作製する工程とを含むものである。
 この構成によると、前記積層体を加圧加熱して前記絶縁樹脂シートを硬化する際に、積層体の上下面にセラミックベースを配置しておくだけで、特別な工程を加えることなく、前記絶縁樹脂シート内に形成したビアホール導体の歪み、及び電子部品の反りが発生しにくい高信頼性の電子部品を簡単に作成することができる。
 また、ビアホール導体の歪み、及び電子部品の反りが発生しにくいことから、多数個取り用の電子部品母材として一括形成できる。よって、作製時間の大幅な増加なく、電子部品を作製することができる。
 また、電子部品の製造方法の発明2(主として図1,3参照)は、少なくとも一方の主面の配線パターン(例えば、図1(a)の102a)上に、回路部品(例えば、図1(b)の111b、111c)を実装したセラミック基板(例えば、図1(b)の104)を準備する工程と、
 ビアホール(例えば、図1(f)の133)に導電性樹脂組成物を充填してなる、ビアホール導体(例えば、図1(g)の134)を有した未硬化の絶縁性樹脂シートAおよびB(例えば、図1(h)の135a、135b)を準備する工程と、
 配線パターンを有した第1、第2の樹脂多層基板及び/又は、金属箔(例えば、図1(i)の141)を準備する工程と、
 (a-i)前記第2配線パターンを有する第1の樹脂多層基板(例えば、図3(a)の126)、(a-ii)前記未硬化の絶縁性樹脂シートA(例えば、図3(a)の135a)、(a-iii)前記セラミック基板(例えば、図3(a)の104)、(a-iv)前記未硬化の絶縁性樹脂シートB(例えば、図3(a)の135b)、および(a-v)第3の配線パターンを有する第2の樹脂多層基板(例えば、図3(a)の141に代えて用いる図3(a)の126)または、金属箔を順次積層し、前記ビアホール導体によって、(b-i)前記セラミック基板の一方の主面の配線パターン(例えば、図3(a)の102a)と、(b-ii)前記樹脂多層基板の配線パターン(例えば、図3(a)の128b)と、(b-iii)前記セラミック基板の他方の主面の配線パターン(図3(a)の102b)と、(b-iv)上記第2の樹脂多層基板または、上記金属箔が電気的に接続されるように位置合わせして積層する工程と、
 前記工程により積層された積層体(例えば、図3(b)の146)の上下面にセラミックベース(例えば、図3(b)の151)を配置し、上記積層体(例えば、図3(b)の146)を一体化し電子部品母材を作製する工程と、
 前記記電子部品母材を分割し電子部品を作製する工程とを含むものである。
 この発明2の構成においても、上記発明1の電子部品の製造方法と同様の効果が得られる。また、発明2では、配線転写パターンに代えて多層フレキ基板を用いていることにより、発明1の構成に比べて、更に反りの発生を抑制出来て配線収容性を高めることができるので設計の自由度を妨げることはない。
 また、上記発明1又は発明2の電子部品の製造方法は、上記(a-v)では金属箔を用いる構成であり、上記電子部品母材の上記金属箔を加工して配線パターンを形成する工程(例えば、図4(a)参照)と、上記金属箔を加工した配線パターン上に回路部品を実装する工程(例えば、図4(b)参照)と、を含むものである。
 この構成によると前記セラミック基板の両面に接着された前記絶縁性樹脂シートに回路部品を内蔵したうえ、さらに前記絶縁性樹脂シートの上に形成された配線パターンに回路部品を実装することで、回路部品が高密度に三次元実装された電子部品となる。
 また、上記発明2の電子部品の製造方法は、上記(a-v)では第2の樹脂多層基板を用いる構成であり、上記電子部品母材の前記第2の樹脂多層基板(例えば、図3(a)の141に代えて用いる図3(a)の126)の第3の配線パターン上に回路部品を実装する工程(例えば、図4(b)参照)を含むものである。この構成によると上記発明の電子部品の製造方法と同じ効果を得ることができる。
 具体的には、上記樹脂多層基板がポリイミド、アラミド、PET、PPS、PEN、テフロン(登録商標)から選ばれる少なくとも一つのフィルムベース材を用いたフレキ基板であることが好ましい。
 この構成によれば、上記セラミック基板の両面に積層される上記絶縁性樹脂シートによる、電子部品の反り緩和構造の効果に加えて、上記樹脂多層基板が上記セラミック基板の両側に積層されていることにより、片側の樹脂多層基板が電子部品の反りに与える影響を最小限に抑えることが可能となる。
 具体的には、上記絶縁性樹脂シートが、無機フィラー50%体積~75%体積%と熱硬化性樹脂とを含む混合物からなるものである。
 この構成によると、無機フィラーを混合することで、異種積層構造における内部応力の原因の一つである絶縁性樹脂シートの熱膨張係数を小さくする効果がある。
 また配合比について、75体積%以上であると、粉体量に対し、液体量が少なすぎ、シート化が難しくなる。一方、50体積%以下であると、無機フィラーを混合したことによる熱膨張の低減や放熱性の向上等の効果が得られ難くなる。加圧加熱して半導体チップ等の回路部品を絶縁性樹脂シートに内蔵する時に、回路部品に損傷を与えない粘度であれば、無機フィラーの配合率は大きい方が好ましい。
 具体的には、上記無機フィラーが、Al23、SiO2、MgO、BNおよびAlNから選ばれる少なくとも一つの無機フィラーを含むものである。これらの無機フィラーを用いることで、絶縁性樹脂シートの放熱性が高くなり、熱膨張係数が小さいという効果がある。
 具体的には、上記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂およびシアネート樹脂から選ばれる少なくとも一つの熱硬化性樹脂を含むものである。これらの樹脂は多種多様な種類が市販されており、これらの樹脂を用いることで耐熱性や電気的絶縁性に優れたものとなる。
 具体的には、上記導電性樹脂組成物が、金、銀、銅、およびニッケルから選ばれる少なくとも一つの金属を含む金属粒子を導電性成分として含み、かつ、エポキシ樹脂を樹脂成分として含むものである。上記金属は電気抵抗が低く、また、エポキシ樹脂は耐熱性や電気絶縁性に優れている。特に、銅粉をコア材として、表面に銀でコートした金属粒子は、機械的強度が強く安価である銅粉と、酸化しにくく低抵抗である銀粉の両方の特性を併せ持ち、好適である。
 次に、電子部品の発明は、第1の配線パターンを有したセラミック基板層(例えば、図1の104、図3の104)と、上記セラミック基板層の第1の主面に接着され、導電性樹脂組成物からなるビアホール導体(例えば、図1、図3、図6の134)を有した絶縁性樹脂シート層(例えば、図1、図3の135a、図6の131a)と、上記絶縁性樹脂シート層に接着され、上記ビアホール導体により上記第1の配線パターンと電気的に接続される第2の配線パターン(例えば、図1の124)または、第2の配線パターンを有した樹脂多層基板層(例えば、図3の126)と、上記セラミック基板の第2の主面に接着される絶縁性樹脂シート層(例えば、図1、図3の135b、図6の131b)とを備えたものである。
 この構成によると、セラミック基板層の両面に絶縁性樹脂シート層を形成しているため応力バランスがとれ、異種材料の積層に起因する反りを抑制出来て、二次実装の信頼性の高い電子部品を得ることができる。
 また、セラミック基板層の第1の主面に、絶縁性樹脂シート層を介して接着される第2の配線パターンを積層した場合と、第2の配線パターンを有した樹脂多層基板層を積層した場合とによって生じる応力バランスの不整合を、セラミック基板層の両面に接着される絶縁性樹脂シート層の厚みを変えることで容易に応力バランスの整合をとることが可能であり、必ずしも完全な対称構造としなくても反りのない電子部品を得ることが出来る。
 また、電子部品の発明は、上記セラミック基板層の第1の主面および第2の主面の両面に、上記絶縁性樹脂シート層に内蔵した状態で、上記第1の配線パターンに実装されている回路部品(図3の11a、111c)と同様の回路部品(例えば、図3の111a、112)をさらに備えたものでもよい。
 この構成においてセラミック基板層の両面に回路部品を実装した形態では対称構造に近くなり応力バランスがとれ易くなるため好ましい。
 また、この構造においても内蔵回路部品の構成の相違に起因する応力バランスの不整合を、セラミック基板層の両面に接着される絶縁性樹脂シート層の厚みを変えることで容易に応力バランスの整合をとることが可能であり、必ずしも完全な対称構造としなくても反りのない電子部品を得ることが出来る。
 具体的には、上記回路部品が半導体チップを含むものである。特に、微細なピッチの外部電極が形成されたベアチップ半導体もしくは半導体パッケージが実装されている場合において、反りに起因するベアチップ半導体もしくは半導体パッケージ実装の電気接続の悪化が起こりにくい。
 また、電子部品の発明は、上記セラミック基板層の第2の主面に接着され、導電性樹脂組成物からなるビアホール導体を有した絶縁性樹脂シート層(例えば、図1,図3の135b)と、上記絶縁性樹脂シート層に接着される第3の配線パターン(例えば、図4の142)または、第3の配線パターンを有した第2の樹脂多層基板層(例えば、図3の141に代えて用いる図3の126)または、導電性膜層(例えば、図3の金属箔141)を備え、上記ビアホール導体(例えば、図1,3,4の134)によって上記セラミック基板層の第1の配線パターン(例えば、図1、3、4の102a、102b)と、上記第3の配線パターンまたは導電性膜層とが電気的に接続されたものでもよい。
 この構成において上記ビアホール導体を、内蔵された回路部品の周辺に配置してグランドに接続することによって磁気シールド効果を得ることができる。
 また、第3の配線パターン(例えば、図4の142)または、第3の配線パターンを有した樹脂多層基板上にさらに回路部品(例えば、図4の113,114a、114b)を実装することにより高密度に部品実装された電子部品となる。
 上記発明によれば、例えば、回路部品が実装されたセラミック基板の両面に、導電性樹脂ペーストが充填されたビアホール導体を有した未硬化の熱硬化性樹脂シートと、配線パターンが形成された転写シートまたは樹脂多層基板または金属箔のいずれかを積層した積層体を加圧加熱して一体化する際に、積層体の上下面にセラミックベースを配置して加圧加熱することで、電子部品の異種積層に起因するビアホール導体の歪み、および、電子部品の反りの発生を抑制することができる。
 即ち、加熱時に発生するセラミック基板と樹脂・金属材料の熱膨張係数の差によって生ずる歪みを、セラミック基板をコアとして積層体の両面にセラミックベースを配して圧力をかけることで抑制できる。つまり、上記構成によれば、セラミックベースの間に挟まれた樹脂・金属材料の熱膨張を抑制することができ、絶縁性樹脂シートに形成されたビアホール導体の歪みを生じさせず、配線パターンとの接続位置のずれを発生させない。
 また、セラミック基板の両面に接着される絶縁性樹脂シートの厚みを電子部品構成に応じて変えることで、応力対称構造(即ち、応力バランスがとれた構造)を容易に実現できるため、電子部品の反りの発生を制御できる。
 この製造方法によればセラミック基板の両面に回路部品を実装した状態で加熱加圧できるため工程を単純化できる。
 また、電子部品内のビアホール導体の歪みおよび、電子部品の反りを低減することで、マザー基板への二次実装性、そして二次実装後の電気接続信頼性および耐落下衝撃信頼性を高めることができる。
 本発明は、電子部品のマザー基板への二次実装の電気的接続の信頼性を向上させることが出来る電子部品を提供出来るという効果を発揮する。
(a)~(m):本発明の第1の実施の形態における電子部品の製造方法の工程を示す工程断面図 (a)本発明の第1~4の実施の形態におけるビアホール導体の状態を示す断面図、(b)本発明の第1~4の実施の形態におけるビアホール導体の状態を示す平面図 (a)~(c):本発明の第2の実施の形態における電子部品の製造方法示す工程断面図 (a)と(b):本発明の第3の実施の形態における電子部品の製造方法示す工程断面図 本発明の第4の実施の形態における電子部品の断面図 本発明の第4の実施の形態における電子部品の断面図 本発明の第4の実施の形態における電子部品の断面図 本発明の第4の実施の形態における電子部品の断面図 本発明の第4の実施の形態における電子部品の断面図 本発明の第4の実施の形態における電子部品の断面図 本発明の第4の実施の形態における電子部品の断面図 本発明の第4の実施の形態における電子部品の断面図 (a)~(e):従来の電子部品の製造方法における、ビアホール導体の傾斜(歪み)の発生メカニズム等を説明するための模式図 (a)~(e):本発明の電子部品の製造方法において、ビアホール導体の傾斜(歪み)が発生し難い理由等を説明するための模式図 (a)~(e):従来の電子部品の製造方法の工程を示す工程断面図 従来の電子部品母材を示す断面図 (a)従来の電子部品のビアホール導体の傾斜による位置ずれの状態を示す断面図、(b)従来の電子部品のビアホール導体の傾斜による位置ずれの状態を示す平面図 従来の電子部品の断面図
 以下、本発明の実施の形態について、図1~図18を用いて説明する。
 (第1の実施の形態)
 本発明の電子部品の製造方法の一実施の形態として、第1の実施の形態の電子部品の製造方法を図1(a)~図1(m)の模式的な工程断面図を参照して説明する。尚、本発明の電子部品の一実施の形態についても同時に説明する。
 図1において、101は厚み0.5mmの6層セラミック基板で無収縮のLTCC(low temperature co-fired ceramics)、102a・102bはセラミック基板101の配線パターンでAg材料を主成分としたペーストにて印刷・焼成形成され厚みは20μmである。
 尚、セラミック基板101の主面の内、配線パターン102aが形成されている側の主面が、本発明の第1の主面の一例であり、配線パターン102bが形成されている側の主面が、本発明の第2の主面の一例である。また、配線パターン102a,102bが、本発明の第1の配線パターンの一例である。
 111a・111b・111cは、回路部品で抵抗、コンデンサ、インダクタなどのチップ部品であり、112は半導体素子であり、半導体チップ、半導体パッケージ等が含まれる。
 124は転写形成材に形成された厚み0.012mmのCu箔(図1(c)の122参照)からなる配線パターンであり、123は転写形成材のキャリア層で厚み0.07mmのCu箔または樹脂フィルムである。配線パターンが形成された転写形成材125は、キャリア層123上に配線パターン124が形成された転写形成材であり、本発明の転写シートの一例である。
 131は厚み0.5mmの絶縁性樹脂シートであり、それに内蔵される部品厚みに応じて、シートの厚みは調整される。132は厚み0.02mmの保護フィルムでPPS(ポリフェニレンサルファイド)であるが、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)などを用いても良い。
 133は直径0.16mmのビアホール、134は導電性樹脂組成物からなるビアホール導体、141は金属箔である。135は、ビアホール導体が形成された絶縁性樹脂シートである。
 151は厚み2mmのセラミックベース、152は厚み2mmのクッション材、154はヒーター、153は熱プレス装置の加熱プレートである。
 143は、電子部品を切断する前の電子部品母材であり、155は、電子部品母材143から電子部品の個片を得るための切断位置を示す分割加工ラインであり、147は本発明の電子部品である。
 絶縁性樹脂シート131は、無機フィラー50体積%~75体積%と熱硬化性樹脂とを含む混合物である。ここで無機フィラーは、Al23、SiO2、MgO、BNおよびAlNから選ばれる少なくとも一つの無機フィラーを含む。また、熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂およびシアネート樹脂から選ばれる少なくとも一つの熱硬化性樹脂を含む。
 さらに、ビアホール導体134を構成する導電性樹脂組成物は、金、銀、銅、およびニッケルから選ばれる少なくとも一つの金属を含む金属粒子を導電性成分として含み、かつ、エポキシ樹脂を樹脂成分として含む。このような構成は、以下に記載の第2~第6の実施の形態においても同様である。
 次に、本実施の形態の製造方法を各工程毎に説明する。
 図1(a)と図1(b)の工程で、セラミック基板101の配線パターン102a・102b上に回路部品111a・111b・111cおよび半導体素子112を実装する。
 図1(c)と図1(d)の工程で、転写形成材121の金属箔122を加工して、配線パターン124が形成された転写形成材125を用意する。
 図1(e)~図1(h)の工程で、絶縁性樹脂シート131の両面に保護フィルム132を貼り合わせ、ビアホール133を開口し、そこに導電性樹脂組成物を充填してビアホール導体134を形成し、保護フィルム132を除去してビアホール導体134が形成された絶縁性樹脂シート135を用意する。
 図1(i)の工程で、回路部品が実装された実装セラミック基板104と、ビアホール導体を備えた絶縁性樹脂シート135a、135bと、配線パターンが形成された転写形成材125、および金属箔141を、同図に示す順番で積層する。それらを積層する際には、絶縁性樹脂シート135a(本発明の絶縁性樹脂シートの一例である)に形成されたビアホール導体134によって、セラミック基板101の一方の主面(本発明の第1の主面の一例である)に形成された配線パターン102aと、転写形成材の配線パターン124とが、電気的に接続されるように位置合わせする。また、絶縁性樹脂シート135b(本発明の第2の絶縁性樹脂シートの一例である)に形成されたビアホール導体134によって、セラミック基板101の他方の主面(本発明の第2の主面の一例である)に形成された配線パターン102bと、金属箔141とが電気的に接続されるように位置合わせして積層する。
 図1(j)の工程で、回路部品が実装された実装セラミック基板104、ビアホール導体を備えた絶縁性樹脂シート135a、135b、配線パターンが形成された転写形成材125および金属箔141が積層された積層体145の上下面に、セラミックベース151とクッション材152とを配置する。そして、熱プレス装置の加熱プレート153にて積層体145を加圧加熱することで、絶縁性樹脂シート131を熱硬化して積層体145を一体化する。
 図1(k)は、加圧加熱して一体化された積層体145を示している。
 図1(l)の工程で、積層体145から、転写形成材のキャリア層123を除去する。
 図1(a)~図1(l)の工程によって製作される電子部品は、実際の製造方法としては、大判の電子部品母材から多数個取りされるのが一般的であり、転写形成材のキャリア層123を除去した段階(図1(l)参照)で、図1(m)に示す電子部品母材143が得られる。切断ライン155で分割して、個片化し、一つ一つの電子部品147として、本発明の電子部品が作製される。
 尚、第1の実施の形態では、回路部品111a~111c、112を、セラミック基板101の両面に実装し、且つ絶縁性樹脂シート135a,135bに内蔵している。しかし、それに限定されず、セラミック基板101の何れかの片面のみの実装でも良く、さらには厚膜または薄膜で形成されるセラミック基板上への作り込み部品でも良い。
 また、セラミック基板の他方の主面に接着される絶縁性樹脂シートには、必ずしもビアホール導体134を形成することなく部品を内蔵するだけでも良い。
 上記の製造方法により、加熱時に発生するセラミック基板101と樹脂材料の熱膨張係数の差によって生ずる歪みを、セラミック基板101をコアとして両面にセラミックベース151を配して圧力をかけることで、抑制出来る。つまり、上記構成によれば、セラミックベース151の間に挟まれた樹脂・金属材料の熱膨張を抑制することができ、絶縁性樹脂シート131に形成されたビアホール導体134に歪みを生じさせないため、ビアホール導体と配線パターンとの接続位置のずれを発生させないという効果を発揮する。この点については、更に、実施の形態5にて詳細に説明する。
 また、セラミック基板101の両面に接着される絶縁性樹脂シート131の厚みを、電子部品構成に応じて変えることで、応力対称構造が容易に実現できるため、電子部品の反りの発生を制御できる。
 また、セラミック基板101の両面に回路部品を実装した状態で加熱加圧できることで、加圧加熱後に部品を実装する工程を省略でき工程を単純化できる。
 また、電子部品内のビアホール導体134の歪みおよび、電子部品の反りを低減することで、マザー基板の二次実装性、そして二次実装後の電気接続信頼性および耐落下衝撃信頼性を高めることができる。
 (第2の実施の形態)
 本発明の電子部品の製造方法の一実施の形態として、第2の実施の形態の電子部品の製造方法を図3(a)~図3(c)の模式的な工程断面図を参照して説明する。尚、本発明の電子部品の一実施の形態についても同時に説明する。
 本実施の形態と上記第1の実施の形態との主な相違点は、上記実施の形態で用いた、配線パターン(本発明の第2の配線パターンの一例である)が形成された転写形成材125に代えて、樹脂多層基板126(本発明の第2の配線パターンを有する樹脂多層層の一例である)を用いた点である。
 図3において、104は回路部品が実装されたセラミック基板、135a・135bはビアホール導体が形成された絶縁性樹脂シートであり、それぞれの構成要素および製造工程は、第1の実施の形態と同様である。126は、配線パターン128a,128bを有する樹脂多層基板であり、141は金属箔である。
 図3(a)の工程で、回路部品が実装された実装セラミック基板104と、ビアホール導体を備えた絶縁性樹脂シート135a・135bと、配線パターンを有する樹脂多層基板126、および金属箔141を、同図に示す順番で積層する。それらを積層する際には、ビアホール導体134によって、セラミック基板101の一方の主面に形成された配線パターン102aと、樹脂多層基板126の配線パターン128bとが電気的に接続されるように位置合わせし、且つ、セラミック基板101の他方の主面に形成された配線パターン102bと金属箔141とが電気的に接続されるように位置合わせして積層する。
 図3(b)の工程で、回路部品が実装された実装セラミック基板104、ビアホール導体を備えた絶縁性樹脂シート135a・135b、樹脂多層基板126および金属箔141が積層された積層体146の上下面に、セラミックベース151とクッション材152とを配置する。そして、熱プレス装置の加熱プレート153にて積層体146を加圧加熱することで、絶縁性樹脂シート131を熱硬化して積層体146を一体化する。
 ここで、154は、加熱するためのヒーターである。図3(c)は加圧加熱して一体化された積層体146である。図3では個片で示しているが実施の形態1と同様に、多数個取りの大判である電子部品母材を分割し、個片化することにより、本発明の電子部品を作製する。
 尚、第2の実施の形態では、回路部品111a~111c、112を、セラミック基板101の両面に実装し、且つ絶縁性樹脂シート135a,135bに内蔵している。しかし、それに限定されず、セラミック基板101の何れかの片面のみの実装でも良く、さらには厚膜または薄膜で形成されるセラミック基板上への作り込み部品でも良い。
 また、セラミック基板の他方の主面に接着される絶縁性樹脂シートには、必ずしもビアホール導体134を形成することなく部品を内蔵するだけでも良い。
 第2の実施の形態では、第1の実施の形態における効果に加え、単層配線層である転写パターン(配線パターン124)に代わり樹脂多層基板126を用いているので、配線収容性が高く設計の自由度を妨げることのない電子部品が得られる。
 また、樹脂多層基板126として、ポリイミド、アラミド、PET、PPS、PENまたはテフロン(登録商標)などの、厚み0.005mmから0.05mmのフィルムベース材を用いたフレキ基板(厚み0.015mmから0.1mm)を用いることで、より反りを小さく出来る。
 (第3の実施の形態)
 本発明の電子部品の製造方法の一実施の形態として、第3の実施の形態の電子部品の製造方法を図4(a)と図4(b)の模式的な工程断面図を参照して説明する。尚、本発明の電子部品の一実施の形態についても同時に説明する。
 本実施の形態と上記第2の実施の形態との主な相違点は、上記実施の形態で作成した電子部品母材の金属箔141をパターンニング処理して、配線パターン142(本発明の第3の配線パターンの一例である)を形成し、その上に回路部品等を実装する点である。
 図4において、142は金属箔141を加工した配線パターン、114a・114bは回路部品、112と113は、半導体素子であり、具体的には半導体チップまたは半導体パッケージである。
 図4(a)の工程にて、第2の実施の形態で作製された電子部品母材の金属箔141をパターンニングして、配線パターン142を形成する。
 次に、図4(b)の工程にて、配線パターン142上に半導体チップまたは半導体パッケージなどの半導体素子113および回路部品114a・114bを実装する。
 さらに多数個取りの大判である電子部品母材を分割し、個片化して本発明の電子部品を作製する。
 尚、電子部品母材として第1の実施の形態で説明した電子部品母材を用いても良い。
 また、金属箔141をパターン加工して配線パターン142を形成したが、これに限らず例えば、加圧加熱する際に、転写形成材125による配線パターン124を転写し、または樹脂多層基板126を接着してその配線パターン上に回路部品を実装しても良い。
 第3の実施の形態では、第2の実施の形態における効果に加え、さらに回路部品が多段に積層されて実装されているため実装密度の高い電子部品が得られるので、部品の小型化に優位である。
 (第4の実施の形態)
 本発明の電子部品の一実施の形態として、第4の実施の形態の電子部品を、図5ないし図12の模式的な断面図を参照して説明する。
 尚、本実施の形態では、上記実施の形態で説明した電子部品の変形例を中心に説明するものである。また、その製造方法は、セラミック基板101をコアとして、その両側に絶縁性樹脂シート131a,131bを積層し、セラミックベース151で両側から加圧加熱する点において基本的に上記実施の形態と同じである。
 図5ないし図12において、101はセラミック基板、102aと102bはセラミック基板101の配線パターン、111a・111b・111cは回路部品であり具体的には抵抗、コンデンサ、インダクタなどのチップ部品である。また、112は、半導体素子であり、具体的には半導体チップまたは半導体パッケージ等である。また、124は転写形成材の配線パターン、127は樹脂多層基板のコア材、128a・128bは樹脂多層基板126の配線パターンである。また、131a・131bは絶縁性樹脂シート、134は導電性樹脂組成物からなるビアホール導体、141は金属箔である。
 尚、金属箔141に代わり、スパッター、蒸着等で形成される金属薄膜や、メッキで形成される金属厚膜または導電性粒子を含んだ印刷ペーストで形成しても良い。
 図5に示す本発明の電子部品の一例は、(a)第1の配線パターン102,102bを有するセラミック基板101の第1の主面に接着された、導電性樹脂組成物からなるビアホール導体134を有した絶縁性樹脂シート131aと、(b)その絶縁性樹脂シート131aに接着された、ビアホール導体134により第1の配線パターン102aと電気的に接続された配線パターン124と、(c)セラミック基板101の第2の主面に回路部品111aおよび半導体チップまたは半導体パッケージなどの半導体素子112が実装されると共に、絶縁性樹脂シート131bが接着されており、回路部品111aおよび半導体チップまたは半導体パッケージなどの半導体素子112が絶縁性樹脂シート131bに内蔵された構成である。
 この構成によると、異種材料の積層に起因する電子部品の反りを、セラミック基板の両面に絶縁性樹脂シート131a,131bを形成しているため応力バランスがとれ、反りのない二次実装信頼性の高い電子部品が得られる。
 また、回路部品を実装することでより複雑な応力が発生しやすい構造であっても、セラミック基板の両面に接着される絶縁性樹脂シート131a,131bの厚みを変えることで、容易に応力バランスの整合をとることが可能である。よって、必ずしも完全な対称構造としなくても反りのない電子部品が得られる。
 図6に示す本発明の電子部品の一例は、セラミック基板の第1の主面にも回路部品111b,111cを実装して、絶縁樹脂シートに内蔵した点が、図5との主な相違点である。
 この構成により、セラミック基板の第1の主面に接着される絶縁樹脂シートが、マザー基板(図示省略)への二次実装時の単なる応力緩和機能を有するだけでなく、部品を内蔵する層としての役割も果たし、高密度実装の電子部品が得られる。
 図7および図8に示す本発明の電子部品の一例は、上記図5,6で説明した構成に、金属箔141及び、ビアホール導体134を備えた点が主な相違点である。
 即ち、同図に示す構成例では、セラミック基板101の第2の主面に接着され回路部品111a等が内蔵される絶縁樹脂シート131bに、さらに金属箔141を接着するとともに、ビアホール導体134を回路部品111aおよび半導体チップまたは半導体パッケージなどの半導体素子112を囲むように形成してグランドに接続することで、磁気シールド機能を有する。
 図9ないし図12に示す本発明の電子部品の一例は、図5ないし図8で説明した電子部品を構成する配線パターン124に代わり樹脂多層基板126を用いた点で、上記電子部品と相違する。
 127は樹脂多層基板126のコア材で、好ましくはポリイミド、アラミド、PET、PPS、PENおよびテフロン(登録商標)から選ばれる少なくとも一つのフィルムベース材を用いたフレキ基板である。
 上記電子部品の構成では、単層配線層である転写パターン(配線パターン124)に代わり樹脂多層基板126を用いているので、配線収容性が高く設計の自由度を妨げることのない電子部品が得られる。
 また、樹脂多層基板126としてポリイミド、アラミド、PET、PPS、PENおよびテフロン(登録商標)などのフィルムベース材を用いたフレキ基板を用いることでより反りを小さく出来る。
 また、上記実施の形態では、樹脂多層基板126は2層基板として図示されているが特にこれに限定されるものではない。
 尚、図7,8では、ビアホール導体134は磁気シールド目的に使用する場合について説明したが、これに限定されず信号線としての機能も兼ねても良い。
 また、上記実施の形態では、配線パターンは金属箔141をパターン加工して配線パターン142を形成する場合について説明したが、これに限定されるものではなく配線パターンを転写したり、あるいは樹脂多層基板126を貼り付けた構成でも良い。
 また、上記実施の形態では、マザー基板への二次実装面側には樹脂多層基板を用いているが配線パターン転写による構成でも良い。さらには、セラミック基板への回路部品実装は片面への実装形態でも良い。
 また、上記実施の形態の電子部品では、回路部品が多段に積層されて実装されているため実装密度の高い電子部品が得られ、部品の小型化に優位である。
 以下、実施例により本発明をさらに詳細に説明する。
 (第5の実施の形態)
 本実施の形態では、第1の実施の形態の製造方法を用いて作成した電子部品を二次実装した電子部品搭載装置を用いて、電気接続の信頼性を確認した。比較例として、図18に示す従来の電子部品を二次実装した電子部品搭載装置を用いた。
 尚、ここで用いる電子部品は、上記第1の実施の形態の製造方法に限らず、本発明の製造方法であれば何れの方法を用いて製造しても良い。
 本実施の形態で用いた電子部品の製造方法を、次の(1)~(7)の手順および図1(a)~図1(m)および図2の模式的な断面図を用いて説明する。
 (1)回路部品が実装された実装セラミック基板104の準備:
 図1(a)に示す、絶縁性樹脂シート131に形成されたビアホール導体134の電気的接続性を評価するための配線パターン124と、回路部品を実装するための配線パターン102a、102bが形成された、サイズ100×100mm、厚み0.4mmの4層で構成される、配線パターンを有するセラミック基板103を準備する。
 次いで図1(b)に示す、セラミック基板103の配線パターン上に、ACF、NCF、SBB、等の手段により半導体チップまたは半導体パッケージなどの半導体素子112をフリップチップ実装する。
 次に、クリーム半田ペーストをスクリーン印刷、ディスペンス等の手段により供給し、回路部品111a・111b・111cを実装し、リフローを行って回路部品が実装された実装セラミック基板104を準備する。
 尚、これら実装部品は絶縁性樹脂シート131に内蔵されるが、二次実装時のリフロー工程で半田再溶融によりショートが発生しないように、Sn-Ag-Cu半田より融点が高いSnSb半田の様な高温タイプのクリーム半田や、融点シフト型半田あるいは導電性接着剤を用いることが好ましい。
 また、回路部品の実装はセラミック基板の片面側だけでも良い。
 (2)配線パターンを形成した転写形成材125の準備:
 図1(c)は、厚み0.07mmのキャリア銅箔である、転写形成材のキャリア層123上に、離型層としてニッケルめっきを介して、厚み0.012mmの銅箔122が積層された転写形成材121(古河サーキットフォイル株式会社F-DP)である。
 フォトリソグラフィー技術によって、銅箔122を加工して、所定のパターンを形成した転写形成材の配線パターン124を形成した転写形成材125を準備する。
 尚、キャリア層123の銅箔上に配線パターン124と逆パターンのレジストパターンを形成して、メッキにて配線パターン124を形成後、レジストを除去する方法で転写形成材を作製しても良い。
 (3)導電性ペーストが充填された絶縁性樹脂シート135の準備:
 図1(e)~図1(h)に示す様に、まず、無機フィラーと熱硬化性樹脂の混合物からなる絶縁性樹脂シートを作製した。即ち、エポキシ樹脂(油化シェルエポキシ製エピキュアYH-306)35体積%、アルミナフィラー(昭和電工製AS-40)65体積%を含む混合物を10分攪拌し、この混合物からドクターブレード法によって厚さ0.1mmの絶縁性樹脂シート素材(図示省略)を作製した。
 次に、この絶縁性樹脂シート素材5枚と、その上下面に厚み0.02mmのPPSフィルム132を重ねてラミネートし、100×100×0.54mmの絶縁性樹脂シート(図1(e)参照)を作製した。その後、パンチャーまたはレーザーを用いてインナービアとなる直径0.16mmのビアホール133を形成し、このビアホール133に導電性樹脂ペーストをスクリーン印刷により充填した。その後、PPS保護フィルム132を剥離した。
 ここで使用した導電性樹脂ペーストは、球形状の銅粒子85重量%と、樹脂成分としてビスフェノールA型エポキシ樹脂(油化シェルエポキシ社製「エピコート828」)3重量%と、グリシジルエステル系エポキシ樹脂(東都化成社「YD-171」)9重量%と、硬化剤としてアミンアダクト硬化剤(味の素社製「MY-24」)3重量%とを三本ロールを用いて混錬して調整した。
 尚、内蔵する回路部品のサイズなど状況に応じて、絶縁性樹脂シートに回路部品を内蔵するためのキャビティを加工してもかまわない。
 (4)積層体145の準備:
 図1(i)に示す様に、上記の工程で準備した転写形成材125、ビアホール導体134が形成された絶縁性樹脂シート135a、回路部品が実装された実装セラミック基板104、ビアホール導体が形成された絶縁性樹脂シート135b、および厚さ0.035mmの銅箔でなる金属箔141を、この順番に積層する。ここでは、絶縁性樹脂シートに形成されたビアホール導体134によって、セラミック基板の一方の主面に形成される配線パターン102aと、転写形成材の配線パターン124および、セラミック基板の他方の主面に形成される配線パターン102bと銅箔からなる金属箔141とが電気接続する様に位置合わせされた積層体145を準備する。
 (5)熱プレスによる積層体145の一体化:
 図1(j)~図1(l)に示す様に、上記工程で準備した積層体145の上下面に、厚み2mmのセラミックベース151と、厚み2mmのクッション材152を置き、加熱プレート153にて加圧加熱することで、積層体145を一体化させる。
 その後、転写形成材のキャリア層123を剥離して、本実施の形態で用いる電子部品母材を作製した。
 ここで、154は、加熱するためのヒーターである。加圧加熱は熱プレス機を用いて、加熱温度は200℃、圧力は3MPa、加圧加熱時間は2時間とした。
 絶縁性樹脂シートおよびビアホール導体に含まれるエポキシ樹脂も完全に硬化し、絶縁性樹脂シートに形成されたビアホール導体を通してセラミック基板の配線パターン102a・102bと、転写形成材の配線パターン124および金属箔141が電気接続された。
 尚、上述のクッション材152は、熱プレスの加熱プレートの平行度や平面度の狂い等を吸収して均圧化を図るのが目的である。
 ここで、積層体145を、仮に図15で説明した従来の製造方法で述べた金属プレート356とクッション材352で直接挟んで加圧加熱した場合を考える。その場合、セラミック基板101と、金属プレート356、クッション材352、転写形成材のキャリア層123、銅箔141および絶縁性樹脂シート131との熱膨張係数の違いによって、各部の熱膨張量に差が生じる。特に、絶縁性樹脂シート131のセラミック基板101との接触面での熱膨張量は小さく抑えられているが、その接触面からキャリア層123側又は銅箔141側に近づくに従って、絶縁性樹脂シート131の樹脂層の熱膨張量が増加する分布が生じる。このことにより図17(a)と図17(b)に示す様な、導電性樹脂シートに形成されるビアホール導体の傾斜(歪み)が発生する。
 これに対して、上述した本発明の製造方法を適用して、積層体145の上下面にセラミックベース151を配置して、セラミック基板101をコアとして上下の樹脂材料や金属材料をセラミックベース151で挟み込み加圧することにより、加熱されても樹脂や金属材料の伸びをセラミックベース151で押さえ込むことができる。その結果、図2(a)、図2(b)に示す様にビアホール導体の傾斜(歪み)が抑制されて、位置ずれは生じない。図2(a)は、ビアホール導体134部分の断面図、図2(b)はその上面図である。
 また、セラミック基板101の両面に絶縁性樹脂シート層135a,135bを形成することで、対称構造に近い構成になり、かつ加圧加熱する際にセラミックベース151により絶縁性樹脂シート層の伸びを押さえ込んでいるため、100×100mサイズにおいて反りが0~0.7mmと非常に小さい。
 ここで、従来の電子部品の製造方法による、主としてビアホール導体の傾斜(歪み)の発生メカニズムについて、図面を参照しながらさらに詳細に説明するとともに、本発明の電子部品の製造方法の効果を確認する。
 図13(a)~図13(e)は、従来の電子部品の製造方法における、ビアホール導体の傾斜(歪み)の発生メカニズム等を説明するための模式図である。
 尚、図13(a)の積層体500の構成は、配線パターンを有する転写シート325の代わりに樹脂多層基板126を用いた点を除いて図15に示す積層体300と基本的に同じである。また、回路部品311b等は図示を省略した。
 図13(a)は、積層体500の上下面に金属プレート356を配置した状態を示す。
 図13(b)は、積層体500に対して加圧加熱処理を開始したときの、各部の熱膨張の状況を模式的に示す図である。ここでは、説明のために熱膨張量を誇張して描いてある。
 同図に示す様に、金属プレート356の伸びが大きく(同図の矢印510参照)、樹脂多層基板126は、その金属プレート356の伸びに追従して伸びるが(同図の矢印511a参照)、セラミック基板301はほとんど伸びない(同図の矢印512a参照)。この伸びの違いにより、両端のビアホール導体334が傾斜する。
 図13(c)は、加圧加熱処理が更に進み加熱温度が200℃まで上昇する。この温度上昇の過程で、ビアホール導体334は100℃近傍で硬化するが、絶縁性樹脂シート335の樹脂成分は周辺方向に更に流動し、ビアホール導体334を更に押し曲げる(同図の矢印513a参照)。このビアホール導体334の傾斜による「ずれ量」ΔLは、金属プレート356の伸び量を上回る。ここで、100mm×100mmのサイズの基板端のビアホール導体334の場合、ずれ量ΔLは、0.1~0.3mmである。
 尚、シリカなどのフィラーを含む絶縁性樹脂シート335は、200℃で保持されることにより硬化し、硬化後は、フィラーを含む樹脂のコンポジット硬化物になり熱膨張係数は、樹脂より小さくなる。
 図13(d)は、積層体500を200℃で所定時間保持(図13(c)参照)した後、金属プレート356が外された状態を示す。
 図13(e)は、200℃から常温まで冷却された電子部品501を示す。
 セラミック基板301は、わずかに収縮する(同図の矢印512b参照)。絶縁性樹脂シート335は、常温に戻る際に大きく収縮するが(同図の矢印513b参照)、上記の通り、硬化後は、硬化前に比べて熱膨張係数が小さくなっているので、もとのサイズには戻れない。樹脂多層基板126は、絶縁性樹脂シート335に追従して収縮する。ビアホール導体334も絶縁性樹脂シート335の収縮に追従するため少し傾斜が緩やかになるが、配線パターン128b(電極)との接触部分での位置ずれは残る。
 尚、図13(e)には示していないが、常温に冷却されると電子部品の反りが発生する。
 次に、図14(a)~図14(e)は、本発明の電子部品の製造方法にいて、ビアホール導体の歪みが発生し難い理由等を説明するための模式図である。
 尚、図14(a)の積層体550の構成は、金属箔141の代わりに樹脂多層基板126を用いた点を除いて図3に示す積層体146と基本的に同じである。また、回路部品111a等は図示を省略した。
 図14(a)は、積層体550の上下面にセラミックボード151を配置した状態を示す。
 図14(b)は、積層体550に対して加圧加熱処理を開始したときの、各部の熱膨張の状況を模式的に示す図である。ここでは、説明のために熱膨張量を誇張して描いてある。
 同図に示す様に、セラミックベース151の熱膨張量は小さく(同図の矢印510a参照)、樹脂多層基板126は、セラミックベース151で加圧されているので、伸びが抑制されている(同図の矢印561a参照)。また、セラミック基板101の熱膨張量も小さく(同図の矢印562a参照)、全体の伸び量はほぼ同じであり、ビアホール導体134は傾斜しないので、配線パターン128b(電極)との接触部分での位置ずれは生じない。
 図14(c)は、加圧加熱処理が更に進み加熱温度が200℃まで上昇する。この温度上昇の過程で、ビアホール導体は100℃近傍で硬化する。一方、絶縁性樹脂シート135a、135bの樹脂成分は周辺方向に更に流動し、ビアホール導体134の両端部(同図の矢印570a参照)よりも途中部分(同図の矢印571a参照)の方を押し曲げようとするが、わずかに曲がる程度である(図示省略)。この段階でも配線パターン128b(電極)との接触部分での位置ずれは生じない。
 図14(d)は、積層体550を200℃で所定時間保持(図14(c)参照)した後、セラミックベース151が外された状態を示す。
 図14(e)は、200℃から常温まで冷却された電子部品551を示す。
 セラミック基板101、樹脂多層基板126は、わずかに収縮する(同図の矢印562b、561b参照)。絶縁性樹脂シート135a,135bは、樹脂多層基板に近い所では、わずかに収縮し(同図の矢印570b参照)、離れた所ではそれよりも大きく収縮するので(同図の矢印571b参照)、図14(c)で生じたビアホール導体134の曲がりが解消される。
 以上のことから、本発明の電子部品の製造方法を用いて作製した電子部品551では、ビアホール導体134と配線パターン128b(電極)との接触部分での位置ずれは生じない。また、積層体550の上下面をセラミックベース151で加圧加熱するので、電子部品551の全体の寸法の膨張・収縮の変化量が小さいので、配線パターン128aの位置ずれも従来に比べて抑制される。
 また、図14の構成では、セラミック基板101の両側に絶縁性樹脂シート135a,135bを積層しているので、応力バランスが改善され、常温に冷却されても電子部品の反りはほとんど発生しない。
 ここで再び、本実施の形態で用いる電子部品の製造方法の説明に戻る。
 (6)電子部品の作製:
 上記項目(5)にて作製された100×100mサイズの電子部品母材を分割加工ライン155に沿ってダイシング加工によって分割し、20×20mm、厚み1.6mmの本実施の形態の電子部品を(16個/基板)作製した。
 (7)二次実装:
 次に、作製した電子部品を厚み1mmのFR-4の配線基板に、半田ペーストを使用してLGA実装によって二次実装した電子部品搭載装置を作製した。
 ここで比較例として図18に示す、セラミック基板(厚みは0.4mm)の他方の主面には絶縁性樹脂層が無い電子部品を作製し、LGA実装によって二次実装した比較例の電子部品搭載装置を作製した。
 尚、比較例としての電子部品は、図15で説明した従来の製造方法により得られた100×100mサイズの電子部品母材を、ダイシング加工によって20×20mmの個片に分割して作製した。
 評価方法は、本発明の電子部品を二次実装した電子部品搭載装置および比較例の電子部品搭載装置、各50個を用い、液槽熱衝撃試験(-55℃の恒温槽に5分浸漬後に125℃の恒温槽に5分浸漬)を1000回行い、ビアホール導体と二次実装部の電気接続抵抗を測定する方法で行った。
 その結果、比較例の電子部品搭載装置では、18個のサンプルにおいて、ビアホール導体自体の不良が発生し、42個のサンプルにおいて、二次実装の電気接続不良が発生した。尚、ビアホール導体自体の不良とは、ビアホール導体334が図17に示す様に曲がることにより、ビアホール導体の圧縮状態が不十分となりビアホール導体自体の抵抗値が高くなるという不良である。
 これに対して、本発明の製造方法を適用した電子部品を二次実装した電子部品搭載装置では、セラミック基板101をコアとして積層体145の上下面にセラミックベース151を配置して加圧加熱する工程を採用したことにより、ビアホール導体134の傾斜がほとんど生じないので、ビアホール導体自体の不良の発生も無く、また、ビアホール導体134の位置ずれ等による二次実装の電気接続の不良も発生しなかった。
 更に、セラミック基板101の両面に絶縁性樹脂シート層135a,135bを積層した構成により、応力バランスが改善され、電子部品147の反りの発生も抑制でき、マザー基板への二次実装性、そして二次実装後の電気接続の信頼性が向上した。
 (第6の実施の形態)
 本実施の形態では、上記第5の実施の形態と同様に、第1の実施の形態の製造方法を用いて作成した電子部品を二次実装した電子部品搭載装置を用いて、上記と同じ評価方法により電気接続の信頼性の確認テストを行った。また、比較例として、図18に示す従来の電子部品を二次実装した電子部品搭載装置を用いた点も同じである。
 本実施の形態と、上記第5の実施の形態との相違点は、ビアホール導体134、334(図1,図18参照)の直径と、その長さを、表1に示す通り、様々な値に変えた電子部品を作製し、評価した点である。
Figure JPOXMLDOC01-appb-T000001
 ここで、表1は、ビアホール導体134、334の直径に対する長さの比(長さ(μm)/直径(μm):以下、これを単にアスペクト比と呼ぶ)が1~6の範囲内になるように作製した電子部品における、ビアホール導体の長さと直径との組み合わせを示している。尚、ビアホール導体の長さは、絶縁性樹脂シート層の厚みと同じであるとして表した。
 例えば、表1の最も左の縦列は、ビアホール導体の直径(100、150、180、200、250(μm))が5通りに設定されていることを示している。更にその右側の欄は、絶縁性樹脂シート層の厚みを示している。
 例えば、表1の左から5つ目の縦列の欄は、最左列のビアホール導体の5通りの直径との組み合わせにより、アスペクト比が2となる様に設定された、絶縁性樹脂シート層の厚み(200、300、360、400、500(μm))が5通り示されている。他の欄も同様である。
 表2は、第1の実施の形態の製造方法を用いて作成した電子部品を二次実装した電子部品搭載装置の評価結果を示し、表3は、比較例の電子部品搭載装置の評価結果を示す。○印は電気接続の信頼性に問題が無かったことを示し、×印は問題があったことを示す。
 ここで、表1と表2の見方を説明する。例えば、表1から、アスペクト比が4のサンプルの内(右端から3つ目の縦列を参照)、ビアホール導体の直径が150μmに設定されたサンプルは、対応する絶縁性樹脂シート層の厚みが600μmであることが分かる。そして、そのサンプルの評価結果は、表2で、右端から3つ目の縦列の対応位置に○印(アスペクト比が4の縦列の上から2つ目の○印)が記入されていることから、信頼性に問題が無かったことが分かる。
 尚、表2において、空白欄は、評価の確認テストを実施しなかったことを示しているが、上記確認結果から判断して、空白欄にも全て○印が入るものと推定出来る。
Figure JPOXMLDOC01-appb-T000002
 また、比較例の表3からは、アスペクト比が1~1.25の範囲では、評価結果として全て○印になっており、信頼性に問題が無かったが、それ以上の全てのアスペクト比では、信頼性に問題が生じたことが分かる。
Figure JPOXMLDOC01-appb-T000003
 以上の結果から、本実施の形態では、本発明の製造方法を適用した電子部品によれば、従来の電子部品では実現出来なかったアスペクト比1.5~6を実現出来ることが確認できた。
 即ち、積層体において、回路部品などを絶縁性樹脂シート層に埋め込む構成の場合、ビアホール導体の長さが長くなり、アスペクト比が大きくなる。しかし、この様な場合でも、本発明の製造方法を適用した電子部品によれば、セラミック基板101をコアとして積層体145の上下面にセラミックベース151を配置して加圧加熱する工程を採用したことにより、ビアホール導体自体の不良や位置ずれ等が低減されて、電気接続の信頼性が大幅に向上するという格別の効果を発揮する。
 尚、セラミック基板101(厚みをt3とする)をコアとして、その両側に第1の絶縁性樹脂シート層(厚みをt1とする)(図1(i)の135a参照)と第2の絶縁性樹脂シート層を積層(厚みをt2とする)(図1(i)の135b参照)した構成の本発明の電子部品(例えば、図1(i)の135a,135b参照)によれば、応力バランスが改善されるので、電子部品の反りが低減されて、マザー基板への二次実装性、そして二次実装後の電気接続信頼性向上という効果を発揮する。その場合、t3≦t1,t3≦t2の関係を満たすことが好ましい。
 尚、上記実施の形態では、本発明の電子部品の製造方法として、セラミック基板の両面に絶縁性樹脂シートを積層し、且つ、そのセラミック基板をコアとして積層体の上下面からセラミック板を配置して、加圧加熱を行う場合について説明した。しかしこれに限らず例えば、絶縁性樹脂シートはセラミック基板の片面にのみ積層する構成でも良い。この場合、電子部品の反りが発生する可能性はあるが、ビアホール導体の歪みが抑制されるので、部品全体としては、従来に比べて電気接続の信頼性が向上するという効果を発揮する。
 また、上記実施の形態では、本発明の電子部品の製造方法として、積層体を一体化した後で、所定寸法に切断して複数個の電子部品を得る切断工程を備えた場合について説明した。しかしこれに限らず例えば、切断工程を有さず、電子部品を一個ずつ製造する構成にも本発明は適用できる。
 また、上記実施の形態では、第2の絶縁性樹脂シート層に第3の配線パターン、又は、金属箔(導電性膜層)を積層した場合について説明した。しかし、これに限らず例えば、第2の絶縁性樹脂シート層に第3の配線パターンを有した樹脂多層基板層を積層した構成でも良い。
 また、上記実施の形態では、第1又は第2の絶縁性樹脂シート層の何れかに回路部品が内蔵されている例としては、第2の絶縁性樹脂シート層に回路部品が内蔵されている場合を説明した(図5参照)。しかし、これに限らず例えば、第1の絶縁性樹脂シート層に回路部品が内蔵されており、セラミック基板上に形成された第1の配線パターンと電気的接続がされている構成でも良い。
 尚、本実施例1では、二次実装面の配線パターンを転写パターンとしたが、多層フレキ基板でも良い。また、回路部品の実装面は片面でも良い。
 このように本発明の電子部品は、セラミック基板の両面に絶縁性樹脂シートと配線パターンが形成された基材の積層体を、加圧加熱して一体化する際に、積層体の上下面にセラミックベースを配置することで、異種積層構成に起因するビアホール導体の歪み、及び、電子部品の反りを低減し、二次実装の電気接続信頼性を高める効果がある。
 本発明にかかる電子部品、及び電子部品の製造方法は、セラミック基板を含む異種積層構造において、耐衝撃性に優れ、インナービア接続および、二次実装の電気接続信頼性の高い電子部品を提供することが出来るという効果を有し、セラミック基板と樹脂材料との異種材料を積層した部品内蔵構造を有する電子部品とその製造方法等として有用である。
 101、301 セラミック基板
 103 配線パターンを有するセラミック基板
 104,333 実装セラミック基板
 102a、102b、302a、302b 配線パターン
 111a~111c、114a~114b、311a~311c 回路部品
 112、113、312 半導体素子
 121 転写形成材
 123、323 転写形成材のキャリア層
 124、324 転写形成材の配線パターン
 125 配線パターンが形成された転写形成材
 126 樹脂多層基板(樹脂多層基板層)
 127 樹脂多層基板のコア材
 131 絶縁性樹脂シート
 131a 絶縁性樹脂シート(第1の絶縁性樹脂シート層)
 131b 絶縁性樹脂シート(第2の絶縁性樹脂シート層)
 134、334 ビアホール導体
 135a ビアホール導体を有する絶縁性樹脂シート(ビアホール導体を有する第1の絶縁性樹脂シート層)
 135b ビアホール導体を有する絶縁性樹脂シート(ビアホール導体を有する第2の絶縁性樹脂シート層)
 141 金属箔(導電性膜層)
 151 セラミックベース
 152、352 クッション材
 143、343 電子部品母材
 126 樹脂多層基板
 153、353 加熱プレート
 356 金属プレート

Claims (7)

  1.  第1の配線パターンを有するセラミック基板と、
     前記セラミック基板の第1の主面に接着された、導電性樹脂組成物を含むビアホール導体を有した第1の絶縁性樹脂シート層と、
     前記第1の絶縁性樹脂シート層に接着された、前記ビアホール導体により前記第1の配線パターンと電気的に接続された第2の配線パターンまたは、前記第2の配線パターンを有する樹脂多層基板層と、
     前記セラミック基板の第2の主面に接着された第2の絶縁性樹脂シート層とを備えた、電子部品。
  2.  前記ビアホール導体の径に対する長さの比(長さ/径)が、1.5以上で6以下の範囲内にある、請求項1に記載の電子部品。
  3.  前記セラミック基板の前記第1の主面および前記第2の主面の少なくとも一方に、前記第1又は第2の絶縁性樹脂シート層に内蔵された状態で、前記第1の配線パターンに実装された回路部品をさらに備えた、請求項1または2に記載の電子部品。
  4.  前記回路部品が半導体素子を含む、請求項3記載の電子部品。
  5.  前記第2の絶縁性樹脂シート層は、前記導電性樹脂組成物を含むビアホール導体を有しており、
     前記第2の絶縁性樹脂シート層に接着された第3の配線パターンまたは、前記第3の配線パターンを有した樹脂多層基板層または、導電性膜層を備え、
     前記ビアホール導体によって前記セラミック基板層の前記第1の配線パターンと、前記第3の配線パターンまたは前記導電性膜層とが電気的に接続された、請求項1~4の何れか一つに記載の電子部品。
  6.  前記第3の配線パターンに回路部品を実装した、請求項5に記載の電子部品。
  7.  前記第1の絶縁性樹脂シート層の厚み、及び前記第2の絶縁性樹脂シート層の厚みは、前記セラミック基板の厚みと同一又はそれ以上の厚みである、請求項1~6の何れか一つに記載の電子部品。
PCT/JP2009/001900 2008-05-13 2009-04-24 電子部品 WO2009139121A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008125539A JP2011151048A (ja) 2008-05-13 2008-05-13 電子部品の製造方法および電子部品
JP2008-125539 2008-05-13

Publications (1)

Publication Number Publication Date
WO2009139121A1 true WO2009139121A1 (ja) 2009-11-19

Family

ID=41318498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001900 WO2009139121A1 (ja) 2008-05-13 2009-04-24 電子部品

Country Status (2)

Country Link
JP (1) JP2011151048A (ja)
WO (1) WO2009139121A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165530A1 (ja) * 2011-06-03 2012-12-06 株式会社村田製作所 多層基板の製造方法および多層基板
WO2018031214A1 (en) * 2016-08-10 2018-02-15 Qualcomm Incorporated Land grid array (lga) packaging of passive-on-glass (pog) structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477372B2 (ja) * 2009-03-11 2014-04-23 日本電気株式会社 機能素子内蔵基板、及びその製造方法、並びに電子機器
JP5977051B2 (ja) * 2012-03-21 2016-08-24 新光電気工業株式会社 半導体パッケージ、半導体装置及び半導体パッケージの製造方法
DE102017209366A1 (de) * 2017-06-02 2018-12-06 Conti Temic Microelectronic Gmbh Elektrische Komponente und Verfahren zu deren Herstellung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347846A (ja) * 2002-05-22 2003-12-05 Murata Mfg Co Ltd 温度補償型水晶発振器
JP2004056112A (ja) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd 回路部品、回路部品実装体、および回路部品内蔵モジュールと、回路部品実装体および回路部品内蔵モジュールの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347846A (ja) * 2002-05-22 2003-12-05 Murata Mfg Co Ltd 温度補償型水晶発振器
JP2004056112A (ja) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd 回路部品、回路部品実装体、および回路部品内蔵モジュールと、回路部品実装体および回路部品内蔵モジュールの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165530A1 (ja) * 2011-06-03 2012-12-06 株式会社村田製作所 多層基板の製造方法および多層基板
US9451700B2 (en) 2011-06-03 2016-09-20 Murata Manufacturing Co., Ltd. Method for producing multi-layer substrate and multi-layer substrate
WO2018031214A1 (en) * 2016-08-10 2018-02-15 Qualcomm Incorporated Land grid array (lga) packaging of passive-on-glass (pog) structure
US10361149B2 (en) 2016-08-10 2019-07-23 Qualcomm Incorporated Land grid array (LGA) packaging of passive-on-glass (POG) structure

Also Published As

Publication number Publication date
JP2011151048A (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
US7378745B2 (en) Package substrate for a semiconductor device having thermoplastic resin layers and conductive patterns
US10009992B2 (en) PCB hybrid redistribution layer
EP1304742B1 (en) Method for producing a component built-in module
US7394663B2 (en) Electronic component built-in module and method of manufacturing the same
KR19980064661A (ko) 프린트배선기판과 전자구성부품
US20110074046A1 (en) Printed wiring board and manufacturing method thereof
US7089660B2 (en) Method of fabricating a circuit board
WO2009139121A1 (ja) 電子部品
KR20130001143A (ko) 프린트 배선판 및 프린트 배선판의 제조 방법
KR20100032452A (ko) 전자 부품 실장 장치 및 그 제조 방법
WO2004049437A1 (en) Crack resistant interconnect module
JP2004274035A (ja) 電子部品内蔵モジュールとその製造方法
JP2006261387A (ja) モジュールとその製造方法
JP4694007B2 (ja) 三次元実装パッケージの製造方法
EP1890524A1 (en) Multilayer printed wiring board and method for manufacturing same
JP2011119616A (ja) プリント配線基板の製造方法、プリント配線基板、および電子装置
JP5010681B2 (ja) 配線基板及びその製造方法
JP2006186058A (ja) 部品内蔵モジュールとその製造方法
JP2010283300A (ja) 突起電極付き配線基板及び突起電極付き配線基板の製造方法
JP4324732B2 (ja) 半導体装置の製造方法
US10314166B2 (en) Printed wiring board
JP2020198432A (ja) プリント配線板装置およびその製造方法
JP6313804B2 (ja) 部品内蔵基板
JP2008205124A (ja) 電子部品内蔵型配線基板及びその製造方法
JP2007258635A (ja) 部品内蔵基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP