WO2009125840A1 - 音声信号処理装置及び音声信号処理方法 - Google Patents
音声信号処理装置及び音声信号処理方法 Download PDFInfo
- Publication number
- WO2009125840A1 WO2009125840A1 PCT/JP2009/057361 JP2009057361W WO2009125840A1 WO 2009125840 A1 WO2009125840 A1 WO 2009125840A1 JP 2009057361 W JP2009057361 W JP 2009057361W WO 2009125840 A1 WO2009125840 A1 WO 2009125840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- audio signal
- band limiting
- frequency band
- processing
- gain
- Prior art date
Links
- 230000005236 sound signal Effects 0.000 title claims abstract description 123
- 238000012545 processing Methods 0.000 title claims abstract description 116
- 238000003672 processing method Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims description 25
- 230000002194 synthesizing effect Effects 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 238000003786 synthesis reaction Methods 0.000 claims description 11
- 230000000295 complement effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G5/00—Tone control or bandwidth control in amplifiers
- H03G5/16—Automatic control
- H03G5/165—Equalizers; Volume or gain control in limited frequency bands
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G9/00—Combinations of two or more types of control, e.g. gain control and tone control
- H03G9/02—Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers
- H03G9/025—Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers frequency-dependent volume compression or expansion, e.g. multiple-band systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
Definitions
- the present invention relates to an audio signal processing device and an audio signal processing method, for example, an audio signal processing device and an audio signal processing method that perform frequency band limiting processing and gain adjustment by branching an audio signal into a plurality of paths.
- AGC Automatic Gain Control
- the process of changing the gain of the signal is amplitude modulation.
- a technique of changing the amplitude at the time of zero crossing and a method of changing the amplitude gently have been proposed.
- the zero cross does not always come at a desired timing
- the latter is often used.
- the amplitude is changed discretely (or stepwise), a phenomenon in which the amplitude periodically changes with respect to a specific input signal or the like occurs, and distortion that is not included in the original signal occurs.
- an object of the present invention is to provide a technique for reducing unnecessary distortion components caused by a gain change of an input audio signal.
- the apparatus relates to an audio signal processing apparatus.
- the apparatus includes: a first front band limiting unit that performs a frequency band limiting process on a first audio signal; and the first voice that has been subjected to the frequency band limiting process by the first front band limiting unit.
- First gain control means for gain-controlling a signal
- first post-stage band limiting means for performing frequency band limiting processing on the first audio signal gain-controlled by the first gain control means
- synthesis means may be provided for synthesizing an audio signal of a path different from the path of the first audio signal.
- the path for outputting the audio signal combined with the first audio signal to the synthesizing unit includes a second pre-band limiting unit that performs a frequency band limiting process on the second audio signal, and the second Second gain control means for gain-controlling the second sound signal that has been subjected to frequency band restriction processing by the preceding-stage band restriction means, and the second sound that has been gain-controlled by the second gain control means Second post-stage band limiting means for performing frequency band restriction processing on the signal, and outputting the second audio signal after the frequency band restriction processing in the second post-stage band limiting means to the synthesizing means. May be.
- the frequency band of the first audio signal that is output after being band-limited by the first previous-stage band limiting means is the frequency band of the second audio signal that is output after being band-limited by the second previous-stage band limiting means. It may be set lower than the frequency band.
- the path for outputting the voice signal to be synthesized with the first voice signal to the synthesizing means includes third pre-band limiting means for performing frequency band limiting processing on the third voice signal, and the third And third gain control means for gain-controlling the third audio signal that has been subjected to frequency band restriction processing by the preceding-stage band restriction means, and between the third gain control means and the synthesis means
- the third audio signal after gain control in the third gain control means is not provided with a post-band limiting means for performing frequency band limiting processing on the third audio signal subjected to gain control. You may output to a means.
- the path for outputting the audio signal synthesized with the first audio signal to the synthesizing means includes fourth pre-band limiting means for performing frequency band limiting processing on the fourth audio signal.
- No gain control means for gain-controlling the fourth audio signal subjected to frequency band limiting processing and post-stage band limiting means for performing frequency band limiting processing are provided between the preceding stage band limiting means 4 and the synthesizing means.
- the fourth audio signal after the frequency band limiting process in the fourth pre-band limiting unit may be output to the synthesizing unit.
- the path of the audio signal combined with the first audio signal may be a path for outputting the audio signal before the band limiting process to the combining unit.
- Each frequency band limiting process of the first preceding band limiting unit and the first subsequent band limiting unit may be executed by time division processing in the same band limiting unit.
- the characteristic of the second preceding-stage band limiting unit may be set so as to complement the frequency band of the first audio signal subjected to frequency band limiting processing by the first preceding-stage band limiting unit.
- the method according to the present invention relates to an audio signal processing method of an audio signal processing device. This method includes: a path dividing step for branching an input audio signal into a plurality of paths; a band dividing step for dividing the audio signal into a predetermined frequency band by performing frequency band restriction processing on each branched path; A gain adjustment step for adjusting the gain of each of the divided audio signals as necessary, and a frequency band limiting process for each of the gain-adjusted audio signals to remove distortion signals generated in the gain adjustment step. And a synthesis step of synthesizing the audio signal with the frequency band divided after the distortion removal step. In the audio signal divided into the predetermined frequency band, the distortion removal step may be omitted in the audio signal that is not subjected to the gain adjustment step.
- FIG. 1 is a functional block diagram of an audio signal processing apparatus 10 according to the present embodiment.
- the audio signal processing device 10 includes an input audio signal Sin that branches the signals S11 to S1n of the first to Nth paths R1 to Rn, and the branched signals S11 to S1n.
- a signal processing unit 20 for performing predetermined signal processing and an adder 60 for synthesizing signals S41 to S4n processed in each path of the signal processing unit 20.
- the signal processing unit 20 performs a frequency band processing on the branched signals S11 to S1n, an AGC that performs gain adjustment of the band processed signals S21 to S2n, and gain adjustment.
- a post-stage BPF that performs band processing on the processed signals S31 to S3n.
- the route having the second category, the route having only one element of the preceding BPF, the route having the third category, and the route having none of the three elements are also called the fourth category route.
- all routes R1 to Rn are exemplified as the first category route.
- a first front-stage BPF 111, a first AGC 121, and a first rear-stage BPF 131 are provided from the upstream side.
- the second route R2 includes a second preceding stage BPF 112, a second AGC 122, and a second succeeding stage BPF 132.
- the subsequent paths are configured in the same manner, and the Nth path Rn includes an Nth previous stage BPF 11n, an Nth AGC 12n, and an Nth subsequent stage BPF 13n.
- the frequency band selected by the first preceding-stage BPF 111 is the lowest frequency band
- the frequency band selected by the N-th preceding-stage BPF 11n is the highest frequency band.
- the signals S21 to S2n whose frequency band is limited in each of the first to N-th preceding BPFs 111 to 11n are output (signals S31 to S3n) through the first to N-th AGCs 121 to 12n. Therefore, the first front-stage BPF 111 may be a low-pass filter (LPF), and the N-th front-stage BPF 11n may be a high-pass filter.
- LPF low-pass filter
- the first to Nth pre-stage BPFs 111 to 11n and the first to N-th post-stage BPFs 131 to 13n, which will be described later, are, for example, IIR (Infinite Impulse ⁇ Response) filters, and are signal processing semiconductors such as DSPs (Digital Signal Processors). Realized in an integrated circuit.
- IIR Infinite Impulse ⁇ Response
- DSP Digital Signal Processors
- the first to Nth AGCs 121 to 12n adjust the gain of the signals (signals S21 to S2n) of the respective paths (R1 to Rn), respectively, and the first to Nth subsequent BPFs 131 to 13n are obtained as signals S31 to S3n. Output to.
- the first to Nth subsequent BPFs 131 to 13n have the same band characteristics as the first to Nth preceding BPFs 111 to 11n provided in the same path. That is, the band characteristics of the selected frequency are the same between the first to Nth subsequent-stage BPFs 131 to 13n and the corresponding first to Nth previous-stage BPFs 111 to 11n on the same route. Accordingly, in the processing of the first to Nth AGCs 121 to 12n, when a distortion component is generated outside the frequency band selected by the first to Nth previous BPFs 111 to 11n, the distortion component is removed.
- the adder 60 acquires and synthesizes the signals (signals S41 to S4n) subjected to the frequency band restriction processing in the first to Nth subsequent BPFs 131 to 13n to generate an output signal Sout, and outputs an output device such as a speaker (not shown) Output to post-process processing means.
- the signal branching unit 11 branches to the first to Nth paths R1 to Rn to obtain signals S11 to S1n branched to the respective paths (step S10).
- the first to Nth previous-stage BPFs 111 to 11n selectively output predetermined frequency bands respectively set to the first to Nth routes.
- Output to AGC 121 to 12n (signals S21 to S2n) (step S12).
- the first to Nth AGCs 121 to 12n perform gain adjustment on the acquired signals S21 to S2n, respectively, and output the signals to the first to Nth subsequent BPFs 131 to 13n (signals S31 to S3n) (step S14).
- the 1st to N-th post-stage BPFs 131 to 13n respectively select signals in predetermined frequency bands set for the gain-adjusted signals S31 to S3n, respectively, thereby removing distortion components outside the bands. And output to the adder 60 (step S16).
- the adder 60 acquires and synthesizes the signals S41 to S4n subjected to the frequency band limitation processing in the first to Nth subsequent BPFs 131 to 13n, and synthesizes them to output them to an output device such as a speaker or post-processing means (signal Sout). (Step S18).
- distortion components generated outside the frequency band selected by the first to Nth previous BPFs 111 to 11n in the processing of the first to Nth AGCs 121 to 12n can be removed.
- Distortion component can be stably reduced, and the sound quality of the signal synthesized and generated by the adder 60 is improved.
- gain adjustment is performed on all paths, but the present invention is not limited to this. In general, from the viewpoint of preventing destruction of the speaker, it is most necessary to prevent excessive input of low frequency components. The same applies to the distortion felt by the user. Therefore, in a path where a high-frequency signal is selected, for example, the Nth path Rn, sufficient quality may be ensured even if gain adjustment is omitted.
- each route may have a configuration including the routes of the second to fourth categories instead of the configuration of only the routes of the first category.
- the characteristics of the front-stage BPF and the rear-stage BPF may be set to different characteristics. Furthermore, if there is a configuration in which there is a signal in the frequency band that does not perform AGC in the adjacent frequency band, the characteristics of the BPF frequency band provided in the path that does not perform AGC are expanded to the frequency band on the path side that performs AGC and the AGC is performed. The signal of the route may be supplemented.
- the band limiting process is performed by the two BPFs of the preceding stage and the succeeding stage, so that the signal level may be lowered.
- complementation with a signal of a path where AGC is not performed makes it easy to set BPF parameters and improve sound quality.
- FIG. 3 is a functional block diagram showing the configuration of the audio signal processing apparatus 210 of this experimental example.
- the audio signal processing device 210 includes a signal branching unit 240, a signal processing unit 220, and an adder 260.
- the signal branching unit 240 branches the input audio signal Sin into the first and second paths R1 and R2, and outputs the branched signals S11 and S12 to the signal processing unit 220.
- the signal processing unit 220 includes a first front-stage BPF 211, a first AGC 221 and a first rear-stage BPF 231 on the first path R1 from the input side (the signal branching unit 240 side).
- the route R2 includes only the second previous stage BPF 212.
- the adder 260 combines the signal S41 processed by the first rear-stage BPF 231 in the first path R1 and the signal S22 processed by the second front-stage BPF 212 in the second path R2, and outputs the output signal Sout. Is generated.
- FIG. 4 is a graph for explaining the verification result of Experiment 1 with the configuration of FIG.
- FIG. 4A shows the frequency characteristic of the input signal
- FIG. 4B shows the frequency characteristic (peak value) of the output signal according to the conventional method in which only the BPF of the previous stage is configured
- FIG. 4C shows the frequency characteristic of the output signal with the configuration of FIG.
- the experimental conditions are as follows.
- the input signal (original audio signal) is a signal containing almost no distortion centered on 1 kHz and 10 kHz.
- the signal processed by the conventional method has a distortion of about ⁇ 80 dB near the frequency of 100 Hz on the low frequency side, and several peaks from there to 1 kHz. It can be seen that distortion having Further, a distortion of about ⁇ 60 dB to ⁇ 80 dB is generated over a region exceeding 10 kHz even at a frequency higher than 1 kHz.
- the distortion generated on both the low frequency region side and the high frequency region side is reduced.
- a very small distortion of about ⁇ 110 dB can be suppressed, and a very good characteristic that can be said to be a level at which substantially no distortion occurs can be obtained.
- FIG. 5 is a graph for explaining the verification result of Experiment 2 with the configuration of FIG.
- FIG. 5A shows the frequency characteristic of the input signal
- FIG. 5B shows the frequency characteristic (peak value) of the output signal according to the conventional method in which only the previous stage BPF is configured.
- FIG. 5C shows the frequency characteristic of the output signal with the configuration of FIG.
- the experimental conditions are as follows, and the input signal in Experiment 1 is shifted to the low frequency side.
- the input signal (original signal) is a signal containing almost no distortion centered on 100 Hz and 1 kHz.
- the signal processed by the conventional method generates, for example, a distortion of about ⁇ 40 dB near 200 Hz and a distortion of about ⁇ 50 dB near 400 Hz, as shown in FIG. is doing. Further, a distortion of about ⁇ 60 dB to ⁇ 80 dB is generated over a region exceeding 10 kHz even at a frequency higher than 1 kHz.
- the distortion generated on both the low frequency region side and the high frequency region side is reduced.
- the distortion can be suppressed to about ⁇ 50 dB, which is about 10 dB smaller than that in FIG. 5B, and further, in the vicinity of 400 Hz, the distortion can be suppressed to ⁇ 65 dB, which is about ⁇ 15 dB.
- each branched signal path in each branched signal path, one BPF that performs frequency band limiting processing is performed, and the function of the previous BPF and the function of the subsequent BPF are performed by one BPF by time division.
- FIG. 6 is a functional block diagram showing the configuration of the audio signal processing apparatus 310 according to the present embodiment.
- the audio signal processing device 310 includes a front-stage speed conversion unit 351, a signal branching unit 340, a signal processing unit 320, an adder 360, and a rear-stage speed conversion unit 352.
- the pre-stage speed conversion unit 351 converts the speed of the signal Sin to twice or more in order to perform signal processing by time division with the same BPF. Then, the converted signal S1 is output to the signal branching unit 340. Then, similarly to the signal branching unit 11 of FIG. 1, the signal branching unit 340 branches the input signal S1 to the first to Nth paths R1 to Rn and obtains signals S11 to S1n branched.
- the signal processing unit 320 includes a BPF that performs frequency band processing on the branched signals S11 to S1n and an AGC that performs gain adjustment of the frequency band processed signals S21 to S2n in each of the branched paths R1 to Rn.
- the first route R1 includes a first BPF 311 and a first AGC 321.
- a second BPF 312 and a second AGC 322 are provided in the second route R2.
- the subsequent route is configured in the same manner, and the Nth route Rn includes an Nth BPF 31n and an Nth AGC 32n.
- the first to Nth BPFs 311 to 31n When the first to Nth BPFs 311 to 31n obtain the signals S11 to S1n branched in the signal branching unit 340, the first to Nth BPFs 311 to 31n first perform predetermined frequency band processing on the signals S11 to S1n, respectively. Output to Nth AGCs 321 to 32n (signals S21 to S2n).
- the first to Nth AGCs 321 to 32n perform gain adjustment and output to the first to Nth BPFs 311 to 31n (signals S31 to S3n).
- the first to Nth BPFs 311 to 31n perform predetermined frequency band processing on the signals S31 to S3n after gain adjustment, and output the signals to the adder 360 (signals S41 to S4n).
- the signal processing unit 320 determines whether to perform frequency band processing on the signals S11 to S1n acquired from the signal branching unit 340 or to perform frequency band processing on the gain-adjusted audio signals S31 to S3n.
- a switching instruction control unit 330 that controls the N BPFs 311 to 31n is provided. That is, the switching instruction control unit 330 determines and instructs whether the first to Nth BPFs 311 to 31n function as the preceding BPF or the subsequent BPF.
- the signal S5 synthesized by the adder 360 is output to the post-stage speed conversion unit 352. Then, the rear-stage speed conversion unit 352 returns the speed of the signal S1 converted by the front-stage speed conversion unit 351 to the original speed, and outputs it to a sound output device such as a speaker (signal S5).
- the same effects as those of the first embodiment can be realized. Furthermore, since the same BPF is used in the frequency band limiting process in the previous stage and the frequency band limiting process in the subsequent stage, when the same filter coefficient is used, the storage capacity for storing the filter coefficient can be reduced. Further, since the processing of the front speed conversion unit 351 and the rear speed conversion unit 352 can be performed by a DSP that realizes the functions of the first to Nth BPFs 311 to 31n, it can be realized without increasing the number of parts.
- FIG. 7 is a functional block diagram showing the configuration of the audio signal processing device 10a of the present embodiment.
- the signal branching unit 11 branches the input audio signal Sin into the signals S11 to S13 of the first to third paths R1 to R3.
- the number of signal branches is not limited to three.
- the signal processing unit 20a performs predetermined signal processing on the branched signals S11 to S13.
- the adder 60 synthesizes the signals S41, S32, and S23 processed in each path of the signal processing unit 20.
- the first route R1 is the first category route
- the second route R2 is the second category route
- the third route R3 is the third category route.
- a first front-stage BPF 111, a first AGC 121, and a first rear-stage BPF 131 are provided from the upstream side.
- a second previous BPF 112 and a second AGC 122 are provided in the third route R3, only the third previous stage BPF 113 is provided.
- the frequency band of the first pre-stage BPF 111 is the lowest frequency band
- the frequency band of the third pre-stage BPF 113 is set to the highest frequency band. Yes.
- the same effect as that of the first embodiment can be expected. Furthermore, in consideration of the generation of an assumed distortion component, by omitting components that perform AGC processing and band limitation processing, it is possible to reduce distortion that occurs while preventing a decrease in signal level. In addition, it is possible to reduce the man-hours for setting BPF parameters, that is, for designing the audio signal processing apparatus 10a.
- the signal processing unit 20b of the audio signal processing device 10b is the fourth in the configuration of the audio signal processing device 10a shown in FIG.
- the fourth category route that does not perform the AGC processing or the bandwidth limitation processing is added as the route R4. Therefore, in the adder 60, the four signals S41, S32, S23, and S14 processed by each path of the signal processing unit 20 are combined. According to this embodiment, the same effect as that of the third embodiment can be expected.
- This embodiment is also a modification of the first embodiment, and has a configuration in which the path branching configuration in the signal processing unit 20c of the audio signal processing device 10c is a simple two-line path as shown in FIG. .
- the second pre-stage BPF 212 is omitted. That is, the first route R1 is a first category route, and the second route R2 is a fourth category route. More specifically, in the first path R1, the pre-stage BPF 111a, the AGC 121a, and the post-stage BPF 131a are arranged in this order from the signal branching unit 11, and the signal S41 processed by them is output to the adder 60.
- the second path R2 a signal S12 that is not subjected to AGC processing or band limitation processing is output to the adder 60. According to this embodiment, the same effects as those of the third and fourth embodiments can be expected.
- the audio signal processing apparatus includes an upstream band limiting unit that branches an audio signal into a plurality of paths, performs frequency band limiting processing on each of the branched audio signals, and divides the divided audio signal into predetermined frequency bands, and the upstream band Gain control means for controlling the gain of each of the audio signals divided by the limiting means, post-stage band limiting means for frequency band limiting processing of the audio signal gain-controlled by the gain control means, and frequency band of the post-stage band limiting means And a synthesis means for synthesizing the branched audio signal after the restriction process.
- each frequency band limiting process of the preceding band limiting unit and the subsequent band limiting unit provided in the same path may be executed by time division processing in the same band limiting unit.
- the gain control unit and the subsequent-stage band limiting unit may be omitted from some of the plurality of branched paths.
- the characteristic of the preceding band limiting means provided in the path where the gain control means and the subsequent band limiting means are omitted is that the sound signal subjected to the frequency band limiting process by the preceding band limiting means is the gain control means.
- the post-stage band limiting unit may be set to complement the frequency band of the audio signal in the path of the adjacent frequency band that is not omitted.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
- Control Of Amplification And Gain Control (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
また、前記第1の音声信号の経路とは異なる経路の音声信号とを合成する合成手段と、を備えてもよい。
また、前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、第2の音声信号に対して周波数帯域制限処理を施す第2の前段帯域制限手段と、前記第2の前段帯域制限手段にて周波数帯域制限処理が施された前記第2の音声信号をゲイン制御する第2のゲイン制御手段と、前記第2のゲイン制御手段においてゲイン制御された前記第2の音声信号に対して周波数帯域制限処理を施す第2の後段帯域制限手段と、を備え、前記第2の後段帯域制限手段における周波数帯域制限処理後の前記第2の音声信号を前記合成手段へ出力してもよい。
また、前記第1の前段帯域制限手段が帯域制限して出力する前記第1の音声信号の周波数帯域は、前記第2の前段帯域制限手段が帯域制限して出力する前記第2の音声信号の周波数帯域より低く設定されてもよい。
また、前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、第3の音声信号に対して周波数帯域制限処理を施す第3の前段帯域制限手段と、前記第3の前段帯域制限手段にて周波数帯域制限処理が施された前記第3の音声信号をゲイン制御する第3のゲイン制御手段と、を備え、前記第3のゲイン制御手段と前記合成手段との間に、ゲイン制御された前記第3の音声信号に対して周波数帯域制限処理を施す後段帯域制限手段を備えず、前記第3のゲイン制御手段におけるゲイン制御後の前記第3の音声信号を前記合成手段へ出力してもよい。
また、前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、第4の音声信号に対して周波数帯域制限処理を施す第4の前段帯域制限手段を備え、前記第4の前段帯域制限手段と前記合成手段との間に、周波数帯域制限処理が施された前記第4の音声信号をゲイン制御するゲイン制御手段及び周波数帯域制限処理を施す後段帯域制限手段を備えず、前記第4の前段帯域制限手段における周波数帯域制限処理後の前記第4の音声信号を前記合成手段へ出力してもよい。
また、前記第1の音声信号と合成される音声信号の経路は、帯域制限処理前の音声信号を前記合成手段に出力する経路であってもよい。
また、前記第1の前段帯域制限手段と前記第1の後段帯域制限手段の各周波数帯域制限処理は、同一の帯域制限手段において、時分割処理にて実行されてもよい。
また、前記第2の前記前段帯域制限手段の特性は、前記第1の前段帯域制限手段で周波数帯域制限処理された前記第1の音声信号の周波数帯域を補完するように設定されてもよい。
本発明に係る方法は、音声信号処理装置の音声信号処理方法に関する。この方法は、入力した音声信号を複数の経路に分岐する経路分割工程と、分岐した各経路において、前記音声信号を周波数帯域制限処理して所定の周波数帯域に分割する帯域分割工程と、帯域に分割された前記各音声信号に対して、必要に応じて利得調整を行う利得調整工程と、利得調整された前記各音声信号を周波数帯域制限処理して、前記利得調整工程において生じる歪信号を除去する歪除去工程と、前記歪除去工程終了後、周波数帯域が分割された前記音声信号を合成する合成工程と、を実行する。
また、前記所定の周波数帯域に分割された前記音声信号において、前記利得調整工程がなされない前記音声信号にあっては、前記歪除去工程が省略されてもよい。
11、240、340 信号分岐部
20、20a~20c、220、320 信号処理部
60、260、360 加算器
111、211 第1の前段BPF
111a 前段BPF
112、212 第2の前段BPF
113 第3の前段BPF
11n 第Nの前段BPF
121、221 第1のAGC
121a AGC
122 第2のAGC
12n 第NのAGC
131、231 第1の後段BPF
131a 後段BPF
132 第2の後段BPF
13n 第Nの後段BPF
311 第1のBPF
312 第2のBPF
31n 第NのBPF
321 第1のAGC
322 第2のAGC
32n 第NのAGC
330 切替指示制御部
351 前段速度変換部
352 後段速度変換部
1)音声信号を複数の周波数帯域に分割する。
2)各周波数帯域の信号に対して利得調整を行う。
3)利得調整により帯域外に生じた利得変動歪成分を帯域分割フィルタ(BPF)で除去する。
4)BPFで歪成分を除去した信号を合成して出力信号を生成する。
このような処理を行うことで、ノイズ感のない音声の出力信号を生成する。
図1は、本実施形態に係る音声信号処理装置10の機能ブロック図である。図示のように、音声信号処理装置10は、入力された音声の信号Sinを第1~第Nの経路R1~Rnの信号S11~S1nに分岐する信号分岐部11と、分岐した信号S11~S1nに対して所定の信号処理を行う信号処理部20と、信号処理部20の各経路で処理された信号S41~S4nを合成する加算器60とを備えている。
音声の信号Sinが入力されると、信号分岐部11が、第1~第Nの経路R1~Rnに分岐して各経路に分岐した信号S11~S1nを得る(ステップS10)。
入力信号:
1kHz(-12.5dB)+10kHz(-12.5dB) サイン波合成
フィルタ特性:
バンドパスフィルタ(中心周波数1kHz、バンド幅670Hz)
ハイパスフィルタ(カットオフ周波数4kHz、2次、Q:1/21/2)
AGC:
最大ゲイン +9dB、 閾値 -2dB、
アタックタイム1ms、 リリースタイム100ms
入力信号:
100Hz(-9.2dB)+1kHz(-9.2dB) サイン波合成
フィルタ特性:
バンドパスフィルタ(中心周波数100Hz、バンド幅60Hz)
ハイパスフィルタ(カットオフ周波数180Hz、2次、Q:1/21/2)
AGC:
最大ゲイン +9dB、 閾値 -2dB、
アタックタイム1ms、 リリースタイム100ms
本実施形態では、分岐した各信号経路において、周波数帯域制限処理を行うBPFを一つとして、時分割によって前段BPFの機能と後段のBPF機能とを一つのBPFで行う。
本実施形態は、第1の実施形態の変形例であり、図7に、本実施形態の音声信号処理装置10aの構成を示す機能ブロック図を示す。図示のように、音声信号処理装置10aでは、信号分岐部11は、入力された音声の信号Sinを第1~第3の経路R1~R3の信号S11~S13に分岐する。なお、当然に、信号の分岐数は、3経路に限る趣旨ではない。信号処理部20aは、分岐した信号S11~S13に対して所定の信号処理を行う。また、加算器60は、信号処理部20の各経路で処理された信号S41、S32、S23を合成する。
本実施形態も、第1の実施形態の変形例であり、図8に示すように音声信号処理装置10bの信号処理部20bは、図7に示した音声信号処理装置10aの構成において、第4の経路R4として、AGC処理や帯域制限処理を行わない第4カテゴリの経路を追加したことにある。したがって、加算器60において、信号処理部20の各経路で処理された4つの信号S41、S32、S23、S14が合成される。本実施の形態によると、第3の実施形態と同様の効果が期待できる。
本実施形態も、第1の実施形態の変形例であり、図9に示すように音声信号処理装置10cの信号処理部20cにおける経路の分岐構成をシンプルな2系路にした構成となっている。具体的には、図3で示した実験例の構成において、第2の前段BPF212を省いた構成である。つまり、第1の経路R1が第1カテゴリの経路であり、第2の経路R2が第4カテゴリの経路である。より具体的には、第1の経路R1では、信号分岐部11側から順に前段BPF111a、AGC121a及び後段BPF131aが配置されて、それらで処理がなされた信号S41が加算器60に出力される。一方、第2の経路R2では、AGC処理や帯域制限処理が施されない信号S12が加算器60に出力される。本実施形態によると、第3及び第4の実施形態と同様の効果が期待できる。
本実施形態の音声信号処理装置は、音声信号を複数の経路に分岐し、前記分岐した音声信号をそれぞれ周波数帯域制限処理をして所定の周波数帯域に分割する前段帯域制限手段と、前記前段帯域制限手段にて分割された音声信号をそれぞれゲイン制御するゲイン制御手段と、前記ゲイン制御手段においてゲイン制御された音声信号を周波数帯域制限処理する後段帯域制限手段と、前記後段帯域制限手段の周波数帯域制限処理後に、前記分岐された音声信号を合成する合成手段とを備える。
また、同一経路に備わる前記前段帯域制限手段と前記後段帯域制限手段の各周波数帯域制限処理は、同一の帯域制限手段において時分割処理にて実行されてもよい。
また、前記複数に分岐した経路のうち、一部の経路には前記ゲイン制御手段と前記後段帯域制限手段とが省略されてもよい。
また、前記ゲイン制御手段と前記後段帯域制限手段とが省略されている経路に備わる前記前段帯域制限手段の特性は、前記前段帯域制限手段で周波数帯域制限処理された音声信号が前記ゲイン制御手段と前記後段帯域制限手段が省略されていない隣接する周波数帯域の経路の音声信号の周波数帯域を補完するように設定されてもよい。
Claims (11)
- 第1の音声信号に対して周波数帯域制限処理を施す第1の前段帯域制限手段と、
前記第1の前段帯域制限手段にて周波数帯域制限処理が施された前記第1の音声信号をゲイン制御する第1のゲイン制御手段と、
前記第1のゲイン制御手段においてゲイン制御された前記第1の音声信号に対して周波数帯域制限処理を施す第1の後段帯域制限手段と、
を備えることを特徴とする音声信号処理装置。 - 前記第1の後段帯域制限手段の周波数帯域制限処理が施された前記第1の音声信号と、前記第1の音声信号の経路とは異なる経路の音声信号とを合成する合成手段を備えることを特徴とする請求項1に記載の音声信号処理装置。
- 前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、
第2の音声信号に対して周波数帯域制限処理を施す第2の前段帯域制限手段と、
前記第2の前段帯域制限手段にて周波数帯域制限処理が施された前記第2の音声信号をゲイン制御する第2のゲイン制御手段と、
前記第2のゲイン制御手段においてゲイン制御された前記第2の音声信号に対して周波数帯域制限処理を施す第2の後段帯域制限手段と、
を備え、
前記第2の後段帯域制限手段における周波数帯域制限処理後の前記第2の音声信号を前記合成手段へ出力する
ことを特徴とする請求項2に記載の音声信号処理装置。 - 前記第1の前段帯域制限手段が帯域制限して出力する前記第1の音声信号の周波数帯域は、前記第2の前段帯域制限手段が帯域制限して出力する前記第2の音声信号の周波数帯域より低く設定されていることを特徴とする請求項2または3に記載の音声信号処理装置。
- 前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、
第3の音声信号に対して周波数帯域制限処理を施す第3の前段帯域制限手段と、
前記第3の前段帯域制限手段にて周波数帯域制限処理が施された前記第3の音声信号をゲイン制御する第3のゲイン制御手段と、
を備え、
前記第3のゲイン制御手段と前記合成手段との間に、ゲイン制御された前記第3の音声信号に対して周波数帯域制限処理を施す後段帯域制限手段を備えず、
前記第3のゲイン制御手段におけるゲイン制御後の前記第3の音声信号を前記合成手段へ出力する
ことを特徴とする請求項2から4までのいずれかに記載の音声信号処理装置。 - 前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、
第4の音声信号に対して周波数帯域制限処理を施す第4の前段帯域制限手段を備え、
前記第4の前段帯域制限手段と前記合成手段との間に、周波数帯域制限処理が施された前記第4の音声信号をゲイン制御するゲイン制御手段及び周波数帯域制限処理を施す後段帯域制限手段を備えず、
前記第4の前段帯域制限手段における周波数帯域制限処理後の前記第4の音声信号を前記合成手段へ出力する
ことを特徴とする請求項2から5までのいずれかに記載の音声信号処理装置。 - 前記第1の音声信号と合成される音声信号の経路は、帯域制限処理前の音声信号を前記合成手段に出力する経路であることを特徴とする請求項2から6までのいずれかに記載の音声信号処理装置。
- 前記第1の前段帯域制限手段と前記第1の後段帯域制限手段の各周波数帯域制限処理は、同一の帯域制限手段において、時分割処理にて実行されることを特徴とする請求項2から7までのいずれかに記載の音声信号処理装置。
- 前記第2の前記前段帯域制限手段の特性は、前記第1の前段帯域制限手段で周波数帯域制限処理された前記第1の音声信号の周波数帯域を補完するように設定されていることを特徴とする請求項3に記載の音声信号処理装置。
- 入力した音声信号を複数の経路に分岐する経路分割工程と、
分岐した各経路において、前記音声信号を周波数帯域制限処理して所定の周波数帯域に分割する帯域分割工程と、
帯域に分割された前記各音声信号に対して、必要に応じて利得調整を行う利得調整工程と、
利得調整された前記各音声信号を周波数帯域制限処理して、前記利得調整工程において生じる歪信号を除去する歪除去工程と、
前記歪除去工程終了後、周波数帯域が分割された前記音声信号を合成する合成工程と、
を実行することを特徴とする音声信号処理装置の音声信号処理方法。 - 前記所定の周波数帯域に分割された前記音声信号において、前記利得調整工程がなされない前記音声信号にあっては、前記歪除去工程が省略されることを特徴とする請求項10に記載の音声信号処理装置の音声信号処理方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2010011053A MX2010011053A (es) | 2008-04-10 | 2009-04-10 | Dispositivo de procesamiento de señal de audio y metodo de procesamiento de señal de audio. |
US12/937,150 US20110135112A1 (en) | 2008-04-10 | 2009-04-10 | Audio signal processing device and audio signal processing method |
JP2010507282A JPWO2009125840A1 (ja) | 2008-04-10 | 2009-04-10 | 音声信号処理装置及び音声信号処理方法 |
RU2010145530/08A RU2479117C2 (ru) | 2008-04-10 | 2009-04-10 | Устройство обработки звукового сигнала и способ обработки звукового сигнала |
BRPI0911178A BRPI0911178A2 (pt) | 2008-04-10 | 2009-04-10 | aparelho de processamento de sinal de áudio e método de processamento de sinal de áudio |
EP09730605.4A EP2273673A4 (en) | 2008-04-10 | 2009-04-10 | DEVICE FOR AUDIO SIGNAL PROCESSING AND METHOD FOR AUDIO SIGNAL PROCESSING |
CN200980122006.3A CN102057567A (zh) | 2008-04-10 | 2009-04-10 | 音频信号处理设备和音频信号处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-102232 | 2008-04-10 | ||
JP2008102232 | 2008-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009125840A1 true WO2009125840A1 (ja) | 2009-10-15 |
Family
ID=41161971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057361 WO2009125840A1 (ja) | 2008-04-10 | 2009-04-10 | 音声信号処理装置及び音声信号処理方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20110135112A1 (ja) |
EP (1) | EP2273673A4 (ja) |
JP (1) | JPWO2009125840A1 (ja) |
CN (1) | CN102057567A (ja) |
BR (1) | BRPI0911178A2 (ja) |
MX (1) | MX2010011053A (ja) |
RU (1) | RU2479117C2 (ja) |
WO (1) | WO2009125840A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103087164A (zh) * | 2011-10-31 | 2013-05-08 | 中国科学院微生物研究所 | 钠氢泵蛋白及其编码基因和它们的应用 |
CN105245195A (zh) * | 2010-03-18 | 2016-01-13 | 杜比实验室特许公司 | 用于具有音质保护的失真减少多频带压缩器的技术 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9178479B2 (en) | 2011-09-15 | 2015-11-03 | Mitsubishi Electric Corporation | Dynamic range control apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1117778A (ja) * | 1997-06-23 | 1999-01-22 | Sony Corp | 音声信号の処理回路 |
JP2002305698A (ja) * | 2001-04-04 | 2002-10-18 | Mitsubishi Electric Corp | 子画面表示用の映像信号処理回路 |
JP2003299181A (ja) | 2002-04-03 | 2003-10-17 | Sony Corp | オーディオ信号処理装置及びオーディオ信号処理方法 |
JP2005160038A (ja) * | 2003-11-04 | 2005-06-16 | Yamanashi Tlo:Kk | 音信号の加工装置および加工方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4025723A (en) * | 1975-07-07 | 1977-05-24 | Hearing Health Group, Inc. | Real time amplitude control of electrical waves |
US4460871A (en) * | 1979-08-06 | 1984-07-17 | Orban Associates, Inc. | Multiband cross-coupled compressor with overshoot protection circuit |
JPS56136099A (en) * | 1980-03-26 | 1981-10-23 | Mimii Denshi Kk | Hearing aid |
US5745523A (en) * | 1992-10-27 | 1998-04-28 | Ericsson Inc. | Multi-mode signal processing |
KR960000147B1 (ko) * | 1992-11-05 | 1996-01-03 | 삼성전자주식회사 | 셀룰라 무선전화시스템의 송신전력 제어방법 |
US5737432A (en) * | 1996-11-18 | 1998-04-07 | Aphex Systems, Ltd. | Split-band clipper |
JP4214607B2 (ja) * | 1999-03-23 | 2009-01-28 | ソニー株式会社 | マイクロホン装置 |
WO2003084103A1 (en) * | 2002-03-22 | 2003-10-09 | Georgia Tech Research Corporation | Analog audio enhancement system using a noise suppression algorithm |
EA008114B1 (ru) * | 2002-09-10 | 2007-04-27 | Эксестел, Инк. | Радиотелефон для беспроводной связи с местной линией |
US8718298B2 (en) * | 2003-12-19 | 2014-05-06 | Lear Corporation | NVH dependent parallel compression processing for automotive audio systems |
JP2008085412A (ja) * | 2006-09-26 | 2008-04-10 | Sony Corp | オーディオ再生装置 |
-
2009
- 2009-04-10 JP JP2010507282A patent/JPWO2009125840A1/ja active Pending
- 2009-04-10 EP EP09730605.4A patent/EP2273673A4/en not_active Withdrawn
- 2009-04-10 BR BRPI0911178A patent/BRPI0911178A2/pt not_active IP Right Cessation
- 2009-04-10 WO PCT/JP2009/057361 patent/WO2009125840A1/ja active Application Filing
- 2009-04-10 US US12/937,150 patent/US20110135112A1/en not_active Abandoned
- 2009-04-10 RU RU2010145530/08A patent/RU2479117C2/ru not_active IP Right Cessation
- 2009-04-10 CN CN200980122006.3A patent/CN102057567A/zh active Pending
- 2009-04-10 MX MX2010011053A patent/MX2010011053A/es active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1117778A (ja) * | 1997-06-23 | 1999-01-22 | Sony Corp | 音声信号の処理回路 |
JP2002305698A (ja) * | 2001-04-04 | 2002-10-18 | Mitsubishi Electric Corp | 子画面表示用の映像信号処理回路 |
JP2003299181A (ja) | 2002-04-03 | 2003-10-17 | Sony Corp | オーディオ信号処理装置及びオーディオ信号処理方法 |
JP2005160038A (ja) * | 2003-11-04 | 2005-06-16 | Yamanashi Tlo:Kk | 音信号の加工装置および加工方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105245195A (zh) * | 2010-03-18 | 2016-01-13 | 杜比实验室特许公司 | 用于具有音质保护的失真减少多频带压缩器的技术 |
US9935599B2 (en) | 2010-03-18 | 2018-04-03 | Dolby Laboratories Licensing Corporation | Techniques for distortion reducing multi-band compressor with timbre preservation |
US10256785B2 (en) | 2010-03-18 | 2019-04-09 | Dolby Laboratories Licensing Corporation | Techniques for distortion reducing multi-band compressor with timbre preservation |
US10680569B2 (en) | 2010-03-18 | 2020-06-09 | Dolby Laboratories Licensing Corporation | Techniques for distortion reducing multi-band compressor with timbre preservation |
CN103087164A (zh) * | 2011-10-31 | 2013-05-08 | 中国科学院微生物研究所 | 钠氢泵蛋白及其编码基因和它们的应用 |
Also Published As
Publication number | Publication date |
---|---|
RU2010145530A (ru) | 2012-05-20 |
US20110135112A1 (en) | 2011-06-09 |
BRPI0911178A2 (pt) | 2019-02-26 |
EP2273673A1 (en) | 2011-01-12 |
CN102057567A (zh) | 2011-05-11 |
MX2010011053A (es) | 2010-11-12 |
EP2273673A4 (en) | 2013-12-25 |
RU2479117C2 (ru) | 2013-04-10 |
JPWO2009125840A1 (ja) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9553554B2 (en) | Signal processing device | |
JP5345067B2 (ja) | 聴覚感度補正装置 | |
JP6609698B2 (ja) | 歪みを制限するためのシステムおよび方法 | |
JP2008263583A (ja) | 低域増強方法、低域増強回路および音響再生システム | |
KR20040035749A (ko) | 사운드 신호의 대역폭 확장 방법 | |
JP5486665B2 (ja) | 固定された位相応答を有するデジタル等化フィルタ | |
WO2013183103A1 (ja) | 周波数特性変形装置 | |
JP2018531557A6 (ja) | 歪みを制限するためのシステムおよび方法 | |
KR20130018153A (ko) | 음성 신호 처리 회로 | |
US8165322B2 (en) | Circuit for processing sound signals | |
WO2009125840A1 (ja) | 音声信号処理装置及び音声信号処理方法 | |
JP5002414B2 (ja) | 聴覚感度補正装置 | |
US9178479B2 (en) | Dynamic range control apparatus | |
US11622193B2 (en) | Limiter system and method for avoiding clipping distortion or increasing maximum sound level of active speaker | |
US11563425B2 (en) | Linear-phase fir audio filter, production method and signal processor | |
JP4912335B2 (ja) | Agc装置 | |
JP4803193B2 (ja) | オーディオ信号の利得制御装置および利得制御方法 | |
JP2005341204A (ja) | 音場補正方法及び音場補正装置 | |
JP2015095743A (ja) | イコライザ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980122006.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09730605 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010507282 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/011053 Country of ref document: MX Ref document number: 2009730605 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7205/CHENP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010145530 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12937150 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0911178 Country of ref document: BR Kind code of ref document: A2 Effective date: 20101008 |