WO2009125840A1 - 音声信号処理装置及び音声信号処理方法 - Google Patents

音声信号処理装置及び音声信号処理方法 Download PDF

Info

Publication number
WO2009125840A1
WO2009125840A1 PCT/JP2009/057361 JP2009057361W WO2009125840A1 WO 2009125840 A1 WO2009125840 A1 WO 2009125840A1 JP 2009057361 W JP2009057361 W JP 2009057361W WO 2009125840 A1 WO2009125840 A1 WO 2009125840A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
band limiting
frequency band
processing
gain
Prior art date
Application number
PCT/JP2009/057361
Other languages
English (en)
French (fr)
Inventor
成文 後田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to MX2010011053A priority Critical patent/MX2010011053A/es
Priority to US12/937,150 priority patent/US20110135112A1/en
Priority to JP2010507282A priority patent/JPWO2009125840A1/ja
Priority to RU2010145530/08A priority patent/RU2479117C2/ru
Priority to BRPI0911178A priority patent/BRPI0911178A2/pt
Priority to EP09730605.4A priority patent/EP2273673A4/en
Priority to CN200980122006.3A priority patent/CN102057567A/zh
Publication of WO2009125840A1 publication Critical patent/WO2009125840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/165Equalizers; Volume or gain control in limited frequency bands
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G9/00Combinations of two or more types of control, e.g. gain control and tone control
    • H03G9/02Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers
    • H03G9/025Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers frequency-dependent volume compression or expansion, e.g. multiple-band systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the present invention relates to an audio signal processing device and an audio signal processing method, for example, an audio signal processing device and an audio signal processing method that perform frequency band limiting processing and gain adjustment by branching an audio signal into a plurality of paths.
  • AGC Automatic Gain Control
  • the process of changing the gain of the signal is amplitude modulation.
  • a technique of changing the amplitude at the time of zero crossing and a method of changing the amplitude gently have been proposed.
  • the zero cross does not always come at a desired timing
  • the latter is often used.
  • the amplitude is changed discretely (or stepwise), a phenomenon in which the amplitude periodically changes with respect to a specific input signal or the like occurs, and distortion that is not included in the original signal occurs.
  • an object of the present invention is to provide a technique for reducing unnecessary distortion components caused by a gain change of an input audio signal.
  • the apparatus relates to an audio signal processing apparatus.
  • the apparatus includes: a first front band limiting unit that performs a frequency band limiting process on a first audio signal; and the first voice that has been subjected to the frequency band limiting process by the first front band limiting unit.
  • First gain control means for gain-controlling a signal
  • first post-stage band limiting means for performing frequency band limiting processing on the first audio signal gain-controlled by the first gain control means
  • synthesis means may be provided for synthesizing an audio signal of a path different from the path of the first audio signal.
  • the path for outputting the audio signal combined with the first audio signal to the synthesizing unit includes a second pre-band limiting unit that performs a frequency band limiting process on the second audio signal, and the second Second gain control means for gain-controlling the second sound signal that has been subjected to frequency band restriction processing by the preceding-stage band restriction means, and the second sound that has been gain-controlled by the second gain control means Second post-stage band limiting means for performing frequency band restriction processing on the signal, and outputting the second audio signal after the frequency band restriction processing in the second post-stage band limiting means to the synthesizing means. May be.
  • the frequency band of the first audio signal that is output after being band-limited by the first previous-stage band limiting means is the frequency band of the second audio signal that is output after being band-limited by the second previous-stage band limiting means. It may be set lower than the frequency band.
  • the path for outputting the voice signal to be synthesized with the first voice signal to the synthesizing means includes third pre-band limiting means for performing frequency band limiting processing on the third voice signal, and the third And third gain control means for gain-controlling the third audio signal that has been subjected to frequency band restriction processing by the preceding-stage band restriction means, and between the third gain control means and the synthesis means
  • the third audio signal after gain control in the third gain control means is not provided with a post-band limiting means for performing frequency band limiting processing on the third audio signal subjected to gain control. You may output to a means.
  • the path for outputting the audio signal synthesized with the first audio signal to the synthesizing means includes fourth pre-band limiting means for performing frequency band limiting processing on the fourth audio signal.
  • No gain control means for gain-controlling the fourth audio signal subjected to frequency band limiting processing and post-stage band limiting means for performing frequency band limiting processing are provided between the preceding stage band limiting means 4 and the synthesizing means.
  • the fourth audio signal after the frequency band limiting process in the fourth pre-band limiting unit may be output to the synthesizing unit.
  • the path of the audio signal combined with the first audio signal may be a path for outputting the audio signal before the band limiting process to the combining unit.
  • Each frequency band limiting process of the first preceding band limiting unit and the first subsequent band limiting unit may be executed by time division processing in the same band limiting unit.
  • the characteristic of the second preceding-stage band limiting unit may be set so as to complement the frequency band of the first audio signal subjected to frequency band limiting processing by the first preceding-stage band limiting unit.
  • the method according to the present invention relates to an audio signal processing method of an audio signal processing device. This method includes: a path dividing step for branching an input audio signal into a plurality of paths; a band dividing step for dividing the audio signal into a predetermined frequency band by performing frequency band restriction processing on each branched path; A gain adjustment step for adjusting the gain of each of the divided audio signals as necessary, and a frequency band limiting process for each of the gain-adjusted audio signals to remove distortion signals generated in the gain adjustment step. And a synthesis step of synthesizing the audio signal with the frequency band divided after the distortion removal step. In the audio signal divided into the predetermined frequency band, the distortion removal step may be omitted in the audio signal that is not subjected to the gain adjustment step.
  • FIG. 1 is a functional block diagram of an audio signal processing apparatus 10 according to the present embodiment.
  • the audio signal processing device 10 includes an input audio signal Sin that branches the signals S11 to S1n of the first to Nth paths R1 to Rn, and the branched signals S11 to S1n.
  • a signal processing unit 20 for performing predetermined signal processing and an adder 60 for synthesizing signals S41 to S4n processed in each path of the signal processing unit 20.
  • the signal processing unit 20 performs a frequency band processing on the branched signals S11 to S1n, an AGC that performs gain adjustment of the band processed signals S21 to S2n, and gain adjustment.
  • a post-stage BPF that performs band processing on the processed signals S31 to S3n.
  • the route having the second category, the route having only one element of the preceding BPF, the route having the third category, and the route having none of the three elements are also called the fourth category route.
  • all routes R1 to Rn are exemplified as the first category route.
  • a first front-stage BPF 111, a first AGC 121, and a first rear-stage BPF 131 are provided from the upstream side.
  • the second route R2 includes a second preceding stage BPF 112, a second AGC 122, and a second succeeding stage BPF 132.
  • the subsequent paths are configured in the same manner, and the Nth path Rn includes an Nth previous stage BPF 11n, an Nth AGC 12n, and an Nth subsequent stage BPF 13n.
  • the frequency band selected by the first preceding-stage BPF 111 is the lowest frequency band
  • the frequency band selected by the N-th preceding-stage BPF 11n is the highest frequency band.
  • the signals S21 to S2n whose frequency band is limited in each of the first to N-th preceding BPFs 111 to 11n are output (signals S31 to S3n) through the first to N-th AGCs 121 to 12n. Therefore, the first front-stage BPF 111 may be a low-pass filter (LPF), and the N-th front-stage BPF 11n may be a high-pass filter.
  • LPF low-pass filter
  • the first to Nth pre-stage BPFs 111 to 11n and the first to N-th post-stage BPFs 131 to 13n, which will be described later, are, for example, IIR (Infinite Impulse ⁇ Response) filters, and are signal processing semiconductors such as DSPs (Digital Signal Processors). Realized in an integrated circuit.
  • IIR Infinite Impulse ⁇ Response
  • DSP Digital Signal Processors
  • the first to Nth AGCs 121 to 12n adjust the gain of the signals (signals S21 to S2n) of the respective paths (R1 to Rn), respectively, and the first to Nth subsequent BPFs 131 to 13n are obtained as signals S31 to S3n. Output to.
  • the first to Nth subsequent BPFs 131 to 13n have the same band characteristics as the first to Nth preceding BPFs 111 to 11n provided in the same path. That is, the band characteristics of the selected frequency are the same between the first to Nth subsequent-stage BPFs 131 to 13n and the corresponding first to Nth previous-stage BPFs 111 to 11n on the same route. Accordingly, in the processing of the first to Nth AGCs 121 to 12n, when a distortion component is generated outside the frequency band selected by the first to Nth previous BPFs 111 to 11n, the distortion component is removed.
  • the adder 60 acquires and synthesizes the signals (signals S41 to S4n) subjected to the frequency band restriction processing in the first to Nth subsequent BPFs 131 to 13n to generate an output signal Sout, and outputs an output device such as a speaker (not shown) Output to post-process processing means.
  • the signal branching unit 11 branches to the first to Nth paths R1 to Rn to obtain signals S11 to S1n branched to the respective paths (step S10).
  • the first to Nth previous-stage BPFs 111 to 11n selectively output predetermined frequency bands respectively set to the first to Nth routes.
  • Output to AGC 121 to 12n (signals S21 to S2n) (step S12).
  • the first to Nth AGCs 121 to 12n perform gain adjustment on the acquired signals S21 to S2n, respectively, and output the signals to the first to Nth subsequent BPFs 131 to 13n (signals S31 to S3n) (step S14).
  • the 1st to N-th post-stage BPFs 131 to 13n respectively select signals in predetermined frequency bands set for the gain-adjusted signals S31 to S3n, respectively, thereby removing distortion components outside the bands. And output to the adder 60 (step S16).
  • the adder 60 acquires and synthesizes the signals S41 to S4n subjected to the frequency band limitation processing in the first to Nth subsequent BPFs 131 to 13n, and synthesizes them to output them to an output device such as a speaker or post-processing means (signal Sout). (Step S18).
  • distortion components generated outside the frequency band selected by the first to Nth previous BPFs 111 to 11n in the processing of the first to Nth AGCs 121 to 12n can be removed.
  • Distortion component can be stably reduced, and the sound quality of the signal synthesized and generated by the adder 60 is improved.
  • gain adjustment is performed on all paths, but the present invention is not limited to this. In general, from the viewpoint of preventing destruction of the speaker, it is most necessary to prevent excessive input of low frequency components. The same applies to the distortion felt by the user. Therefore, in a path where a high-frequency signal is selected, for example, the Nth path Rn, sufficient quality may be ensured even if gain adjustment is omitted.
  • each route may have a configuration including the routes of the second to fourth categories instead of the configuration of only the routes of the first category.
  • the characteristics of the front-stage BPF and the rear-stage BPF may be set to different characteristics. Furthermore, if there is a configuration in which there is a signal in the frequency band that does not perform AGC in the adjacent frequency band, the characteristics of the BPF frequency band provided in the path that does not perform AGC are expanded to the frequency band on the path side that performs AGC and the AGC is performed. The signal of the route may be supplemented.
  • the band limiting process is performed by the two BPFs of the preceding stage and the succeeding stage, so that the signal level may be lowered.
  • complementation with a signal of a path where AGC is not performed makes it easy to set BPF parameters and improve sound quality.
  • FIG. 3 is a functional block diagram showing the configuration of the audio signal processing apparatus 210 of this experimental example.
  • the audio signal processing device 210 includes a signal branching unit 240, a signal processing unit 220, and an adder 260.
  • the signal branching unit 240 branches the input audio signal Sin into the first and second paths R1 and R2, and outputs the branched signals S11 and S12 to the signal processing unit 220.
  • the signal processing unit 220 includes a first front-stage BPF 211, a first AGC 221 and a first rear-stage BPF 231 on the first path R1 from the input side (the signal branching unit 240 side).
  • the route R2 includes only the second previous stage BPF 212.
  • the adder 260 combines the signal S41 processed by the first rear-stage BPF 231 in the first path R1 and the signal S22 processed by the second front-stage BPF 212 in the second path R2, and outputs the output signal Sout. Is generated.
  • FIG. 4 is a graph for explaining the verification result of Experiment 1 with the configuration of FIG.
  • FIG. 4A shows the frequency characteristic of the input signal
  • FIG. 4B shows the frequency characteristic (peak value) of the output signal according to the conventional method in which only the BPF of the previous stage is configured
  • FIG. 4C shows the frequency characteristic of the output signal with the configuration of FIG.
  • the experimental conditions are as follows.
  • the input signal (original audio signal) is a signal containing almost no distortion centered on 1 kHz and 10 kHz.
  • the signal processed by the conventional method has a distortion of about ⁇ 80 dB near the frequency of 100 Hz on the low frequency side, and several peaks from there to 1 kHz. It can be seen that distortion having Further, a distortion of about ⁇ 60 dB to ⁇ 80 dB is generated over a region exceeding 10 kHz even at a frequency higher than 1 kHz.
  • the distortion generated on both the low frequency region side and the high frequency region side is reduced.
  • a very small distortion of about ⁇ 110 dB can be suppressed, and a very good characteristic that can be said to be a level at which substantially no distortion occurs can be obtained.
  • FIG. 5 is a graph for explaining the verification result of Experiment 2 with the configuration of FIG.
  • FIG. 5A shows the frequency characteristic of the input signal
  • FIG. 5B shows the frequency characteristic (peak value) of the output signal according to the conventional method in which only the previous stage BPF is configured.
  • FIG. 5C shows the frequency characteristic of the output signal with the configuration of FIG.
  • the experimental conditions are as follows, and the input signal in Experiment 1 is shifted to the low frequency side.
  • the input signal (original signal) is a signal containing almost no distortion centered on 100 Hz and 1 kHz.
  • the signal processed by the conventional method generates, for example, a distortion of about ⁇ 40 dB near 200 Hz and a distortion of about ⁇ 50 dB near 400 Hz, as shown in FIG. is doing. Further, a distortion of about ⁇ 60 dB to ⁇ 80 dB is generated over a region exceeding 10 kHz even at a frequency higher than 1 kHz.
  • the distortion generated on both the low frequency region side and the high frequency region side is reduced.
  • the distortion can be suppressed to about ⁇ 50 dB, which is about 10 dB smaller than that in FIG. 5B, and further, in the vicinity of 400 Hz, the distortion can be suppressed to ⁇ 65 dB, which is about ⁇ 15 dB.
  • each branched signal path in each branched signal path, one BPF that performs frequency band limiting processing is performed, and the function of the previous BPF and the function of the subsequent BPF are performed by one BPF by time division.
  • FIG. 6 is a functional block diagram showing the configuration of the audio signal processing apparatus 310 according to the present embodiment.
  • the audio signal processing device 310 includes a front-stage speed conversion unit 351, a signal branching unit 340, a signal processing unit 320, an adder 360, and a rear-stage speed conversion unit 352.
  • the pre-stage speed conversion unit 351 converts the speed of the signal Sin to twice or more in order to perform signal processing by time division with the same BPF. Then, the converted signal S1 is output to the signal branching unit 340. Then, similarly to the signal branching unit 11 of FIG. 1, the signal branching unit 340 branches the input signal S1 to the first to Nth paths R1 to Rn and obtains signals S11 to S1n branched.
  • the signal processing unit 320 includes a BPF that performs frequency band processing on the branched signals S11 to S1n and an AGC that performs gain adjustment of the frequency band processed signals S21 to S2n in each of the branched paths R1 to Rn.
  • the first route R1 includes a first BPF 311 and a first AGC 321.
  • a second BPF 312 and a second AGC 322 are provided in the second route R2.
  • the subsequent route is configured in the same manner, and the Nth route Rn includes an Nth BPF 31n and an Nth AGC 32n.
  • the first to Nth BPFs 311 to 31n When the first to Nth BPFs 311 to 31n obtain the signals S11 to S1n branched in the signal branching unit 340, the first to Nth BPFs 311 to 31n first perform predetermined frequency band processing on the signals S11 to S1n, respectively. Output to Nth AGCs 321 to 32n (signals S21 to S2n).
  • the first to Nth AGCs 321 to 32n perform gain adjustment and output to the first to Nth BPFs 311 to 31n (signals S31 to S3n).
  • the first to Nth BPFs 311 to 31n perform predetermined frequency band processing on the signals S31 to S3n after gain adjustment, and output the signals to the adder 360 (signals S41 to S4n).
  • the signal processing unit 320 determines whether to perform frequency band processing on the signals S11 to S1n acquired from the signal branching unit 340 or to perform frequency band processing on the gain-adjusted audio signals S31 to S3n.
  • a switching instruction control unit 330 that controls the N BPFs 311 to 31n is provided. That is, the switching instruction control unit 330 determines and instructs whether the first to Nth BPFs 311 to 31n function as the preceding BPF or the subsequent BPF.
  • the signal S5 synthesized by the adder 360 is output to the post-stage speed conversion unit 352. Then, the rear-stage speed conversion unit 352 returns the speed of the signal S1 converted by the front-stage speed conversion unit 351 to the original speed, and outputs it to a sound output device such as a speaker (signal S5).
  • the same effects as those of the first embodiment can be realized. Furthermore, since the same BPF is used in the frequency band limiting process in the previous stage and the frequency band limiting process in the subsequent stage, when the same filter coefficient is used, the storage capacity for storing the filter coefficient can be reduced. Further, since the processing of the front speed conversion unit 351 and the rear speed conversion unit 352 can be performed by a DSP that realizes the functions of the first to Nth BPFs 311 to 31n, it can be realized without increasing the number of parts.
  • FIG. 7 is a functional block diagram showing the configuration of the audio signal processing device 10a of the present embodiment.
  • the signal branching unit 11 branches the input audio signal Sin into the signals S11 to S13 of the first to third paths R1 to R3.
  • the number of signal branches is not limited to three.
  • the signal processing unit 20a performs predetermined signal processing on the branched signals S11 to S13.
  • the adder 60 synthesizes the signals S41, S32, and S23 processed in each path of the signal processing unit 20.
  • the first route R1 is the first category route
  • the second route R2 is the second category route
  • the third route R3 is the third category route.
  • a first front-stage BPF 111, a first AGC 121, and a first rear-stage BPF 131 are provided from the upstream side.
  • a second previous BPF 112 and a second AGC 122 are provided in the third route R3, only the third previous stage BPF 113 is provided.
  • the frequency band of the first pre-stage BPF 111 is the lowest frequency band
  • the frequency band of the third pre-stage BPF 113 is set to the highest frequency band. Yes.
  • the same effect as that of the first embodiment can be expected. Furthermore, in consideration of the generation of an assumed distortion component, by omitting components that perform AGC processing and band limitation processing, it is possible to reduce distortion that occurs while preventing a decrease in signal level. In addition, it is possible to reduce the man-hours for setting BPF parameters, that is, for designing the audio signal processing apparatus 10a.
  • the signal processing unit 20b of the audio signal processing device 10b is the fourth in the configuration of the audio signal processing device 10a shown in FIG.
  • the fourth category route that does not perform the AGC processing or the bandwidth limitation processing is added as the route R4. Therefore, in the adder 60, the four signals S41, S32, S23, and S14 processed by each path of the signal processing unit 20 are combined. According to this embodiment, the same effect as that of the third embodiment can be expected.
  • This embodiment is also a modification of the first embodiment, and has a configuration in which the path branching configuration in the signal processing unit 20c of the audio signal processing device 10c is a simple two-line path as shown in FIG. .
  • the second pre-stage BPF 212 is omitted. That is, the first route R1 is a first category route, and the second route R2 is a fourth category route. More specifically, in the first path R1, the pre-stage BPF 111a, the AGC 121a, and the post-stage BPF 131a are arranged in this order from the signal branching unit 11, and the signal S41 processed by them is output to the adder 60.
  • the second path R2 a signal S12 that is not subjected to AGC processing or band limitation processing is output to the adder 60. According to this embodiment, the same effects as those of the third and fourth embodiments can be expected.
  • the audio signal processing apparatus includes an upstream band limiting unit that branches an audio signal into a plurality of paths, performs frequency band limiting processing on each of the branched audio signals, and divides the divided audio signal into predetermined frequency bands, and the upstream band Gain control means for controlling the gain of each of the audio signals divided by the limiting means, post-stage band limiting means for frequency band limiting processing of the audio signal gain-controlled by the gain control means, and frequency band of the post-stage band limiting means And a synthesis means for synthesizing the branched audio signal after the restriction process.
  • each frequency band limiting process of the preceding band limiting unit and the subsequent band limiting unit provided in the same path may be executed by time division processing in the same band limiting unit.
  • the gain control unit and the subsequent-stage band limiting unit may be omitted from some of the plurality of branched paths.
  • the characteristic of the preceding band limiting means provided in the path where the gain control means and the subsequent band limiting means are omitted is that the sound signal subjected to the frequency band limiting process by the preceding band limiting means is the gain control means.
  • the post-stage band limiting unit may be set to complement the frequency band of the audio signal in the path of the adjacent frequency band that is not omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 入力した音声信号の種類によらず利得変化により生じる不要な歪み成分を低減する技術を提供する。  図1に示すように、音声信号処理装置10に信号Sinが入力されると、信号分岐部11は第1~第Nの経路R1~Rnに分割する。第1~第Nの経路R1~Rnの各経路において、第1~第Nの前段BPF111~11nが、それぞれに設定されている所定の周波数の帯域を選択して第1~第NのAGC121~12nに出力する。第1~第NのAGC121~12nは、それぞれ取得した信号を利得調整し、第1~第Nの後段BPF131~13nに出力する。第1~第Nの後段BPF131~13nはそれぞれ、帯域制限処理により帯域外の歪み成分を除去する。加算器60は、帯域制限処理された信号を合成してスピーカ等の出力装置または後工程処理手段へ出力する。

Description

音声信号処理装置及び音声信号処理方法
 本発明は、音声信号処理装置及び音声信号処理方法に係り、例えば音声信号を複数の経路に分岐して周波数帯域制限処理及び利得調整を行う音声信号処理装置及び音声信号処理方法に関する。
 近年、一般に音声のダイナミックレンジを圧縮する手法として、AGC(Auto Gain Control)の機能が用いられる。信号の利得を変化させる処理は振幅変調にあたり、その処理により生じる歪みを低減する方法として、ゼロクロス時に振幅を変化させる技術や、振幅をなだらかに変化させる方法が提案されている。前者においては、ゼロクロスが所望のタイミングで訪れるとは限らないため、後者が用いられることが多い。しかしながら、離散的に(または段階的に)振幅を変化させていることから、特定の入力信号に対して振幅が周期的に変化してしまう現象等が起こり、原信号に無い歪みが生じてしまうことがある。
 そこで、そのような課題を解決するために、帯域分割された音声信号ごとに利得調整を行い、利得調整後の音声信号を再び加算して出力する技術がある(例えば、特許文献1参照)。この技術では、上記のような構成により、高周波成分の音質を保持しつつ音声出力レベルを平均化している。
特開2003-299181号公報
 ところで、特許文献1に開示の技術では、入力信号に応じて利得を刻々と変化させるため、利得変化時に歪みが発生し、出力信号に歪みが含まれてしまうという課題があり、改善が求められていた。
 本発明の目的は、上記課題に鑑み、入力した音声信号の利得変化により生じる不要な歪み成分を低減する技術を提供することにある。
 本発明に係る装置は、音声信号処理装置に関する。この装置は、第1の音声信号に対して周波数帯域制限処理を施す第1の前段帯域制限手段と、前記第1の前段帯域制限手段にて周波数帯域制限処理が施された前記第1の音声信号をゲイン制御する第1のゲイン制御手段と、前記第1のゲイン制御手段においてゲイン制御された前記第1の音声信号に対して周波数帯域制限処理を施す第1の後段帯域制限手段と、前記第1の後段帯域制限手段の周波数帯域制限処理が施された前記第1の音声信号と、を備える。
 また、前記第1の音声信号の経路とは異なる経路の音声信号とを合成する合成手段と、を備えてもよい。
 また、前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、第2の音声信号に対して周波数帯域制限処理を施す第2の前段帯域制限手段と、前記第2の前段帯域制限手段にて周波数帯域制限処理が施された前記第2の音声信号をゲイン制御する第2のゲイン制御手段と、前記第2のゲイン制御手段においてゲイン制御された前記第2の音声信号に対して周波数帯域制限処理を施す第2の後段帯域制限手段と、を備え、前記第2の後段帯域制限手段における周波数帯域制限処理後の前記第2の音声信号を前記合成手段へ出力してもよい。
 また、前記第1の前段帯域制限手段が帯域制限して出力する前記第1の音声信号の周波数帯域は、前記第2の前段帯域制限手段が帯域制限して出力する前記第2の音声信号の周波数帯域より低く設定されてもよい。
 また、前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、第3の音声信号に対して周波数帯域制限処理を施す第3の前段帯域制限手段と、前記第3の前段帯域制限手段にて周波数帯域制限処理が施された前記第3の音声信号をゲイン制御する第3のゲイン制御手段と、を備え、前記第3のゲイン制御手段と前記合成手段との間に、ゲイン制御された前記第3の音声信号に対して周波数帯域制限処理を施す後段帯域制限手段を備えず、前記第3のゲイン制御手段におけるゲイン制御後の前記第3の音声信号を前記合成手段へ出力してもよい。
 また、前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、第4の音声信号に対して周波数帯域制限処理を施す第4の前段帯域制限手段を備え、前記第4の前段帯域制限手段と前記合成手段との間に、周波数帯域制限処理が施された前記第4の音声信号をゲイン制御するゲイン制御手段及び周波数帯域制限処理を施す後段帯域制限手段を備えず、前記第4の前段帯域制限手段における周波数帯域制限処理後の前記第4の音声信号を前記合成手段へ出力してもよい。
 また、前記第1の音声信号と合成される音声信号の経路は、帯域制限処理前の音声信号を前記合成手段に出力する経路であってもよい。
 また、前記第1の前段帯域制限手段と前記第1の後段帯域制限手段の各周波数帯域制限処理は、同一の帯域制限手段において、時分割処理にて実行されてもよい。
 また、前記第2の前記前段帯域制限手段の特性は、前記第1の前段帯域制限手段で周波数帯域制限処理された前記第1の音声信号の周波数帯域を補完するように設定されてもよい。
 本発明に係る方法は、音声信号処理装置の音声信号処理方法に関する。この方法は、入力した音声信号を複数の経路に分岐する経路分割工程と、分岐した各経路において、前記音声信号を周波数帯域制限処理して所定の周波数帯域に分割する帯域分割工程と、帯域に分割された前記各音声信号に対して、必要に応じて利得調整を行う利得調整工程と、利得調整された前記各音声信号を周波数帯域制限処理して、前記利得調整工程において生じる歪信号を除去する歪除去工程と、前記歪除去工程終了後、周波数帯域が分割された前記音声信号を合成する合成工程と、を実行する。
 また、前記所定の周波数帯域に分割された前記音声信号において、前記利得調整工程がなされない前記音声信号にあっては、前記歪除去工程が省略されてもよい。
 本発明によれば、入力した音声信号の利得変化により生じる不要な歪み成分を低減する技術を提供できる。
第1の実施形態に係る、音声信号処理装置の機能ブロック図である。 第1の実施形態に係る、音声信号処理装置における音声信号の処理を示すフローチャートである。 第1の実施形態の実験例に係る、音声信号処理装置の機能ブロック図である。 第1の実施形態の実験例に係る、実験1の検証結果を説明するグラフである。 第1の実施形態の実験例に係る、実験2の検証結果を説明するグラフである。 第2の実施形態に係る、音声信号処理装置の機能ブロック図である。 第3の実施形態に係る、音声信号処理装置の機能ブロック図である。 第4の実施形態に係る、音声信号処理装置の機能ブロック図である。 第5の実施形態に係る、音声信号処理装置の機能ブロック図である。
10、10a~10c、210、310 音声信号処理装置
11、240、340 信号分岐部
20、20a~20c、220、320 信号処理部
60、260、360 加算器
111、211 第1の前段BPF
111a 前段BPF
112、212 第2の前段BPF
113 第3の前段BPF
11n 第Nの前段BPF
121、221 第1のAGC
121a AGC
122 第2のAGC
12n 第NのAGC
131、231 第1の後段BPF
131a 後段BPF
132 第2の後段BPF
13n 第Nの後段BPF
311 第1のBPF
312 第2のBPF
31n 第NのBPF
321 第1のAGC
322 第2のAGC
32n 第NのAGC
330 切替指示制御部
351 前段速度変換部
352 後段速度変換部
 次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。本実施形態の処理の概要は次の通りである。
1)音声信号を複数の周波数帯域に分割する。
2)各周波数帯域の信号に対して利得調整を行う。
3)利得調整により帯域外に生じた利得変動歪成分を帯域分割フィルタ(BPF)で除去する。
4)BPFで歪成分を除去した信号を合成して出力信号を生成する。
このような処理を行うことで、ノイズ感のない音声の出力信号を生成する。
(第1の実施形態)
 図1は、本実施形態に係る音声信号処理装置10の機能ブロック図である。図示のように、音声信号処理装置10は、入力された音声の信号Sinを第1~第Nの経路R1~Rnの信号S11~S1nに分岐する信号分岐部11と、分岐した信号S11~S1nに対して所定の信号処理を行う信号処理部20と、信号処理部20の各経路で処理された信号S41~S4nを合成する加算器60とを備えている。
 信号処理部20は、分岐した各経路R1~Rnにおいてそれぞれ、分岐された信号S11~S1nを周波数帯域処理する前段BPFと、帯域処理された信号S21~S2nの利得調整を行うAGCと、利得調整された信号S31~S3nを帯域処理する後段BPFとを備えている。なお、以降の説明で、各経路R1~Rnにおいて、前段BPF、AGC、および後段BPFの3要素のうち、3要素とも備える経路を第1カテゴリの経路、また、前段BPFおよびAGCの2要素を備える経路を第2カテゴリの経路、前段BPFのみの1要素を備える経路を第3カテゴリの経路、3要素いずれもそなえない経路を第4カテゴリの経路、ともいう。図1の構成では、全ての経路R1~Rnが、第1カテゴリの経路として例示する。
 より具体的には、第1の経路R1において、上流側から、第1の前段BPF111と、第1のAGC121と、第1の後段BPF131とが備わる。同様に、第2の経路R2において、第2の前段BPF112と、第2のAGC122と、第2の後段BPF132とが備わる。そして、以降の経路において同様にして構成され、第Nの経路Rnにおいて、第Nの前段BPF11nと、第NのAGC12nと、第Nの後段BPF13nとが備わる。
 ここで、第1~第Nの前段BPF111~11nにおいて、第1の前段BPF111が選択する周波数の帯域が最も低い周波数帯域であり、第Nの前段BPF11nが選択する周波数の帯域が最も高い周波数帯域に設定されている。第1~第Nの前段BPF111~11nのそれぞれにおいて周波数帯域制限された信号S21~S2nは、第1~第NのAGC121~12nを通して出力(信号S31~S3n)される。したがって、第1の前段BPF111は、ローパスフィルタ(LPF)であってよく、第Nの前段BPF11nは、ハイパスフィルタであってもよい。第1~第Nの前段BPF111~11nや後述の第1~第Nの後段BPF131~13nは、例えば、IIR(Infinite Impulse Response)フィルタであって、DSP(Digital Signal Processor)等の信号処理用半導体集積回路で実現される。
 また、第1~第NのAGC121~12nは、それぞれの経路(R1~Rn)の信号(信号S21~S2n)をそれぞれ利得調整し、信号S31~S3nとして第1~第Nの後段BPF131~13nへ出力する。
 第1~第Nの後段BPF131~13nは、それぞれ同一経路に備わる第1~第Nの前段BPF111~11nと同一の帯域特性を備えている。つまり、第1~第Nの後段BPF131~13nと、対応する同一経路の第1~第Nの前段BPF111~11nは、選択する周波数の帯域特性が同一である。したがって、第1~第NのAGC121~12nの処理において、第1~第Nの前段BPF111~11nが選択した周波数帯域の外に歪み成分が発生した場合には、その歪み成分は除去される。
 加算器60は、第1~第Nの後段BPF131~13nにおいて周波数帯域制限処理された信号(信号S41~S4n)を取得し合成して出力信号Soutを生成し、図示しないスピーカ等の出力装置や後工程処理手段へ出力する。
 図2のフローチャートに、以上の構成による音声信号の処理をまとめて説明する。
 音声の信号Sinが入力されると、信号分岐部11が、第1~第Nの経路R1~Rnに分岐して各経路に分岐した信号S11~S1nを得る(ステップS10)。
 第1~第Nの経路R1~Rnの各経路において、第1~第Nの前段BPF111~11nが、それぞれに設定されている所定の周波数帯域を選択的に出力して第1~第NのAGC121~12nに出力(信号S21~S2n)する(ステップS12)。
 第1~第NのAGC121~12nは、それぞれ取得した信号S21~S2nに対して利得調整を行い、第1~第Nの後段BPF131~13nに出力(信号S31~S3n)する(ステップS14)。
 第1~第Nの後段BPF131~13nはそれぞれ、利得調整された信号S31~S3nに対してそれぞれに設定されている所定の周波数帯域の信号を選択することで、その帯域外の歪み成分を除去し加算器60へ出力する(ステップS16)。
 加算器60は、第1~第Nの後段BPF131~13nそれぞれで周波数帯域制限処理された信号S41~S4nを取得し合成してスピーカ等の出力装置または後工程処理手段へ出力(信号Sout)する(ステップS18)。
 以上、本実施形態によると、第1~第NのAGC121~12nの処理において第1~第Nの前段BPF111~11nが選択した周波数帯域の外に生じる歪み成分を除去できるため、不要の成分(歪み成分)を安定的に軽減することができ、加算器60で合成され生成される信号の音質が向上する。なお、上述の実施形態では、全ての経路で利得調整がなされているがこれに限る趣旨ではない。スピーカの破壊防止の観点では、一般に、低周波数成分の過入力を防止する必要性が最も高い。また、ユーザが感じる歪みについても同様である。そこで、高周波数の信号が選択されている経路、例えば第Nの経路Rnでは、利得調整を省略しても十分な品質を確保できることもある。そのような場合、前段BPFのみとして、AGCや後段BPFを省略することができる。つまり、各経路を第1カテゴリの経路のみの構成でなく、第2~4カテゴリの経路を含む構成であってもよい。その様な実施形態については、第3~第5の実施形態で例示する。また、前段BPFと後段のBPFの特性を異なる特性に設定してもよい。さらに、隣接周波数帯域にAGCを行わない周波数帯域の信号がある構成であれば、AGCを行わない経路に備わるBPFの周波数帯域の特性を、AGCを行う経路側に周波数帯域に拡げてAGCの行う経路の信号を補完してもよい。つまり、AGCを行う経路では、帯域制限処理が前段及び後段の二つのBPFでなされるため、信号レベルが低下してしまう可能性がある。その様な場合、信号レベルの低下を防止しつつ発生する歪みを少なくするように二つのBPFのパラメータを設定することが難しくなってしまうことがある。そのようなときに、AGCがなされない経路の信号により補完することで、BPFのパラメータの設定が容易となり、また、音質を向上させることができる。
 次に、上記の構成及び処理による効果の検証結果(実験1、2)について説明する。なお、ここでは、構成及び処理による効果の確認が容易にできるように、分岐する経路を低周波数帯域側の第1の経路R1と、高周波数帯域側の第2の経路R2の二つとする。さらに、第2の経路R2においては利得調整を行わない。
 図3は、本実験例の音声信号処理装置210の構成を示す機能ブロック図である。図示のように、音声信号処理装置210は、信号分岐部240と、信号処理部220と、加算器260とを備える。
 信号分岐部240は、入力した音声の信号Sinを第1及び第2の経路R1、R2に分岐して、分岐した信号S11、S12を信号処理部220へ出力する。また、信号処理部220は、第1の経路R1に、入力側(信号分岐部240側)から第1の前段BPF211と、第1のAGC221と、第1の後段BPF231とを備え、第2の経路R2には、第2の前段BPF212のみを備えている。そして、加算器260は、第1の経路R1において第1の後段BPF231で処理された信号S41と第2の経路R2において第2の前段BPF212で処理された信号S22とを合成して出力信号Soutを生成する。
 図4は、図3の構成による実験1の検証結果を説明するグラフである。図4(a)は、入力信号の周波数特性を示しており、図4(b)は、前段のBPFのみの構成とした従来の手法による出力信号の周波数特性(ピーク値)を示しており、図4(c)は、図3の構成による出力信号の周波数特性を示している。なお、実験条件は次の通りである。
 入力信号:
    1kHz(-12.5dB)+10kHz(-12.5dB) サイン波合成
 フィルタ特性:
    バンドパスフィルタ(中心周波数1kHz、バンド幅670Hz)
    ハイパスフィルタ(カットオフ周波数4kHz、2次、Q:1/21/2
 AGC:
    最大ゲイン +9dB、 閾値 -2dB、
    アタックタイム1ms、 リリースタイム100ms
 図4(a)に示すように、入力信号(原音声信号)は、1kHz及び10kHzを中心とした歪みがほとんど含まれていない信号である。そして、従来の手法で処理した信号は、図4(b)に示すように、低周波数側では、例えば、100Hz付近では-80dB程度の歪みが発生しており、そこから1kHzまで幾つかのピークを有する歪みが発生しているのが分かる。また、1kHzより高い周波数側でも10kHzを超える領域までに亘り、-60dB~-80dB程度の歪みが発生している。
 一方、本実施形態で提案する手法によれば、図4(c)に示すように、低周波数域側及び高周波数域側の両方で発生する歪みが低減されているのが分かる。例えば、100Hz付近では-110dB程度の非常に小さな歪みまで抑えることができており、実質的に歪みが発生していないレベルとも言える非常に良好な特性が得られている。
 図5は、図3の構成による実験2の検証結果を説明するグラフである。図5(a)は、入力信号の周波数特性を示しており、図5(b)は、前段のBPFのみの構成とした従来の手法による出力信号の周波数特性(ピーク値)を示しており、図5(c)は、図3の構成による出力信号の周波数特性を示している。なお、実験条件は次の通りであり、実験1における入力信号を低周波数側にシフトしている。
 入力信号:
    100Hz(-9.2dB)+1kHz(-9.2dB) サイン波合成
 フィルタ特性:
    バンドパスフィルタ(中心周波数100Hz、バンド幅60Hz)
    ハイパスフィルタ(カットオフ周波数180Hz、2次、Q:1/21/2
 AGC:
    最大ゲイン +9dB、 閾値 -2dB、
    アタックタイム1ms、 リリースタイム100ms
 図5(a)に示すように、入力信号(原信号)は、100Hz及び1kHzを中心とした歪みがほとんど含まれていない信号である。そして、従来の手法で処理した信号は、図5(b)に示すように、低周波数側では、例えば、200Hz付近では-40dB程度の歪みが、また、400Hz付近では-50dB程度の歪みが発生している。また、1kHzより高い周波数側でも10kHzを超える領域までに亘り、-60dB~-80dB程度の歪みが発生している。
 一方、本実施形態で提案する手法によれば、図5(c)に示すように、低周波数域側及び高周波数域側の両方で発生する歪みが低減されているのが分かる。例えば、200Hz付近では、図5(b)と比べ10dB程度小さい-50dB程度まで歪みを抑えることができており、さらに、400Hz付近では-15dB程度小さい-65dBまで歪みを抑えることができている。
(第2の実施形態)
 本実施形態では、分岐した各信号経路において、周波数帯域制限処理を行うBPFを一つとして、時分割によって前段BPFの機能と後段のBPF機能とを一つのBPFで行う。
 図6は、本実施形態に係る音声信号処理装置310の構成を示す機能ブロック図である。図示のように、音声信号処理装置310は、前段速度変換部351と、信号分岐部340と、信号処理部320と、加算器360と、後段速度変換部352とを備える。
 前段速度変換部351は、同一のBPFで時分割により信号処理を行うために、信号Sinの速度を2倍以上に変換する。そして変換後の信号S1が信号分岐部340に出力される。そして、信号分岐部340は、図1の信号分岐部11と同様に、入力された信号S1を第1~第Nの経路R1~Rnに分岐して分岐した信号S11~S1nを得る。
 信号処理部320は、分岐した各経路R1~Rnにおいてそれぞれ、分岐された信号S11~S1nを周波数帯域処理するBPFと、周波数帯域処理された信号S21~S2nの利得調整を行うAGCとを備えている。具体的には、第1の経路R1において、第1のBPF311と、第1のAGC321とが備わる。同様に、第2の経路R2において、第2のBPF312と、第2のAGC322とが備わる。そして、以降の経路において同様にして構成され、第Nの経路Rnにおいて、第NのBPF31nと、第NのAGC32nとが備わる。
 第1~第NのBPF311~31nは、信号分岐部340において分岐された信号S11~S1nを取得すると、まず、それら信号S11~S1nに対してそれぞれ所定の周波数帯域処理を行い、それぞれ第1~第NのAGC321~32nへ出力(信号S21~S2n)する。
 第1~第NのAGC321~32nは、それぞれ利得調整を行い、第1~第NのBPF311~31nに出力(信号S31~S3n)する。第1~第NのBPF311~31nでは、利得調整後の信号S31~S3nに対して、それぞれ所定の周波数帯域処理を行い加算器360へ出力(信号S41~S4n)する。
 また、信号処理部320は、信号分岐部340から取得した信号S11~S1nに周波数帯域処理を行うか、利得調整された音声信号S31~S3nに周波数帯域処理を行うかを決定し第1~第NのBPF311~31nを制御する切替指示制御部330を備える。つまり、切替指示制御部330は、第1~第NのBPF311~31nを前段のBPFとして機能させるか後段のBPFとして機能させるかを決定し指示する。
 加算器360で合成された信号S5は、後段速度変換部352に出力される。そして、後段速度変換部352は、前段速度変換部351で変換された信号S1の速度をもとの速度に戻し、スピーカ等の音声出力装置へ出力(信号S5)する。
 以上、本実施形態によると、第1の実施形態と同様の効果を実現できる。さらに、前段の周波数帯域制限処理と後段の周波数帯域制限処理とで同一のBPFを使用するため、同一のフィルタ係数を使用する場合に、フィルタ係数を格納する記憶容量を低減できる。また、前段速度変換部351や後段速度変換部352の処理は、第1~第NのBPF311~31nの機能を実現するDSPに行わせることができるため、部品点数を増やさず実現できる。
(第3の実施形態)
 本実施形態は、第1の実施形態の変形例であり、図7に、本実施形態の音声信号処理装置10aの構成を示す機能ブロック図を示す。図示のように、音声信号処理装置10aでは、信号分岐部11は、入力された音声の信号Sinを第1~第3の経路R1~R3の信号S11~S13に分岐する。なお、当然に、信号の分岐数は、3経路に限る趣旨ではない。信号処理部20aは、分岐した信号S11~S13に対して所定の信号処理を行う。また、加算器60は、信号処理部20の各経路で処理された信号S41、S32、S23を合成する。
 本実施の形態では、第1の経路R1が第1カテゴリの経路、第2の経路R2が第2カテゴリの経路、そして第3の経路R3が第3カテゴリの経路となっている。具体的には、第1の経路R1において、上流側から、第1の前段BPF111と、第1のAGC121と、第1の後段BPF131とが備わる。同様に、第2の経路R2において、第2の前段BPF112と、第2のAGC122とが備わる。そして、第3の経路R3では、第3の前段BPF113のみが備わる。
 ここで、第1~第3の前段BPF111~113において、第1の前段BPF111が有する周波数帯域が最も低い周波数帯域であり、第3の前段BPF113が有する周波数帯域が最も高い周波数帯域に設定されている。
 以上、本実施形態によると、第1の実施形態と同様の効果が期待できる。さらに、想定される歪み成分の発生を考慮して、AGC処理や帯域制限処理を行う構成要素を省くことで、信号レベルの低下を防止しつつ発生する歪みを少なくすることができる。また、BPFのパラメータの設定、つまり音声信号処理装置10aの設計の工数が低減できる。
(第4の実施形態)
 本実施形態も、第1の実施形態の変形例であり、図8に示すように音声信号処理装置10bの信号処理部20bは、図7に示した音声信号処理装置10aの構成において、第4の経路R4として、AGC処理や帯域制限処理を行わない第4カテゴリの経路を追加したことにある。したがって、加算器60において、信号処理部20の各経路で処理された4つの信号S41、S32、S23、S14が合成される。本実施の形態によると、第3の実施形態と同様の効果が期待できる。
(第5の実施形態)
 本実施形態も、第1の実施形態の変形例であり、図9に示すように音声信号処理装置10cの信号処理部20cにおける経路の分岐構成をシンプルな2系路にした構成となっている。具体的には、図3で示した実験例の構成において、第2の前段BPF212を省いた構成である。つまり、第1の経路R1が第1カテゴリの経路であり、第2の経路R2が第4カテゴリの経路である。より具体的には、第1の経路R1では、信号分岐部11側から順に前段BPF111a、AGC121a及び後段BPF131aが配置されて、それらで処理がなされた信号S41が加算器60に出力される。一方、第2の経路R2では、AGC処理や帯域制限処理が施されない信号S12が加算器60に出力される。本実施形態によると、第3及び第4の実施形態と同様の効果が期待できる。
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本実施形態を簡単にまとめると、以下の通りである。
 本実施形態の音声信号処理装置は、音声信号を複数の経路に分岐し、前記分岐した音声信号をそれぞれ周波数帯域制限処理をして所定の周波数帯域に分割する前段帯域制限手段と、前記前段帯域制限手段にて分割された音声信号をそれぞれゲイン制御するゲイン制御手段と、前記ゲイン制御手段においてゲイン制御された音声信号を周波数帯域制限処理する後段帯域制限手段と、前記後段帯域制限手段の周波数帯域制限処理後に、前記分岐された音声信号を合成する合成手段とを備える。
 また、同一経路に備わる前記前段帯域制限手段と前記後段帯域制限手段の各周波数帯域制限処理は、同一の帯域制限手段において時分割処理にて実行されてもよい。
 また、前記複数に分岐した経路のうち、一部の経路には前記ゲイン制御手段と前記後段帯域制限手段とが省略されてもよい。
 また、前記ゲイン制御手段と前記後段帯域制限手段とが省略されている経路に備わる前記前段帯域制限手段の特性は、前記前段帯域制限手段で周波数帯域制限処理された音声信号が前記ゲイン制御手段と前記後段帯域制限手段が省略されていない隣接する周波数帯域の経路の音声信号の周波数帯域を補完するように設定されてもよい。

Claims (11)

  1.  第1の音声信号に対して周波数帯域制限処理を施す第1の前段帯域制限手段と、
     前記第1の前段帯域制限手段にて周波数帯域制限処理が施された前記第1の音声信号をゲイン制御する第1のゲイン制御手段と、
     前記第1のゲイン制御手段においてゲイン制御された前記第1の音声信号に対して周波数帯域制限処理を施す第1の後段帯域制限手段と、
     を備えることを特徴とする音声信号処理装置。
  2.  前記第1の後段帯域制限手段の周波数帯域制限処理が施された前記第1の音声信号と、前記第1の音声信号の経路とは異なる経路の音声信号とを合成する合成手段を備えることを特徴とする請求項1に記載の音声信号処理装置。
  3.  前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、
     第2の音声信号に対して周波数帯域制限処理を施す第2の前段帯域制限手段と、
     前記第2の前段帯域制限手段にて周波数帯域制限処理が施された前記第2の音声信号をゲイン制御する第2のゲイン制御手段と、
     前記第2のゲイン制御手段においてゲイン制御された前記第2の音声信号に対して周波数帯域制限処理を施す第2の後段帯域制限手段と、
     を備え、
     前記第2の後段帯域制限手段における周波数帯域制限処理後の前記第2の音声信号を前記合成手段へ出力する
     ことを特徴とする請求項2に記載の音声信号処理装置。
  4.  前記第1の前段帯域制限手段が帯域制限して出力する前記第1の音声信号の周波数帯域は、前記第2の前段帯域制限手段が帯域制限して出力する前記第2の音声信号の周波数帯域より低く設定されていることを特徴とする請求項2または3に記載の音声信号処理装置。
  5.  前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、
     第3の音声信号に対して周波数帯域制限処理を施す第3の前段帯域制限手段と、
     前記第3の前段帯域制限手段にて周波数帯域制限処理が施された前記第3の音声信号をゲイン制御する第3のゲイン制御手段と、
     を備え、
     前記第3のゲイン制御手段と前記合成手段との間に、ゲイン制御された前記第3の音声信号に対して周波数帯域制限処理を施す後段帯域制限手段を備えず、
     前記第3のゲイン制御手段におけるゲイン制御後の前記第3の音声信号を前記合成手段へ出力する
     ことを特徴とする請求項2から4までのいずれかに記載の音声信号処理装置。
  6.  前記第1の音声信号と合成される音声信号を前記合成手段へ出力する経路は、
     第4の音声信号に対して周波数帯域制限処理を施す第4の前段帯域制限手段を備え、
     前記第4の前段帯域制限手段と前記合成手段との間に、周波数帯域制限処理が施された前記第4の音声信号をゲイン制御するゲイン制御手段及び周波数帯域制限処理を施す後段帯域制限手段を備えず、
     前記第4の前段帯域制限手段における周波数帯域制限処理後の前記第4の音声信号を前記合成手段へ出力する
     ことを特徴とする請求項2から5までのいずれかに記載の音声信号処理装置。
  7.  前記第1の音声信号と合成される音声信号の経路は、帯域制限処理前の音声信号を前記合成手段に出力する経路であることを特徴とする請求項2から6までのいずれかに記載の音声信号処理装置。
  8.  前記第1の前段帯域制限手段と前記第1の後段帯域制限手段の各周波数帯域制限処理は、同一の帯域制限手段において、時分割処理にて実行されることを特徴とする請求項2から7までのいずれかに記載の音声信号処理装置。
  9.  前記第2の前記前段帯域制限手段の特性は、前記第1の前段帯域制限手段で周波数帯域制限処理された前記第1の音声信号の周波数帯域を補完するように設定されていることを特徴とする請求項3に記載の音声信号処理装置。
  10.  入力した音声信号を複数の経路に分岐する経路分割工程と、
     分岐した各経路において、前記音声信号を周波数帯域制限処理して所定の周波数帯域に分割する帯域分割工程と、
     帯域に分割された前記各音声信号に対して、必要に応じて利得調整を行う利得調整工程と、
     利得調整された前記各音声信号を周波数帯域制限処理して、前記利得調整工程において生じる歪信号を除去する歪除去工程と、
     前記歪除去工程終了後、周波数帯域が分割された前記音声信号を合成する合成工程と、
     を実行することを特徴とする音声信号処理装置の音声信号処理方法。
  11.  前記所定の周波数帯域に分割された前記音声信号において、前記利得調整工程がなされない前記音声信号にあっては、前記歪除去工程が省略されることを特徴とする請求項10に記載の音声信号処理装置の音声信号処理方法。
PCT/JP2009/057361 2008-04-10 2009-04-10 音声信号処理装置及び音声信号処理方法 WO2009125840A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2010011053A MX2010011053A (es) 2008-04-10 2009-04-10 Dispositivo de procesamiento de señal de audio y metodo de procesamiento de señal de audio.
US12/937,150 US20110135112A1 (en) 2008-04-10 2009-04-10 Audio signal processing device and audio signal processing method
JP2010507282A JPWO2009125840A1 (ja) 2008-04-10 2009-04-10 音声信号処理装置及び音声信号処理方法
RU2010145530/08A RU2479117C2 (ru) 2008-04-10 2009-04-10 Устройство обработки звукового сигнала и способ обработки звукового сигнала
BRPI0911178A BRPI0911178A2 (pt) 2008-04-10 2009-04-10 aparelho de processamento de sinal de áudio e método de processamento de sinal de áudio
EP09730605.4A EP2273673A4 (en) 2008-04-10 2009-04-10 DEVICE FOR AUDIO SIGNAL PROCESSING AND METHOD FOR AUDIO SIGNAL PROCESSING
CN200980122006.3A CN102057567A (zh) 2008-04-10 2009-04-10 音频信号处理设备和音频信号处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-102232 2008-04-10
JP2008102232 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125840A1 true WO2009125840A1 (ja) 2009-10-15

Family

ID=41161971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057361 WO2009125840A1 (ja) 2008-04-10 2009-04-10 音声信号処理装置及び音声信号処理方法

Country Status (8)

Country Link
US (1) US20110135112A1 (ja)
EP (1) EP2273673A4 (ja)
JP (1) JPWO2009125840A1 (ja)
CN (1) CN102057567A (ja)
BR (1) BRPI0911178A2 (ja)
MX (1) MX2010011053A (ja)
RU (1) RU2479117C2 (ja)
WO (1) WO2009125840A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087164A (zh) * 2011-10-31 2013-05-08 中国科学院微生物研究所 钠氢泵蛋白及其编码基因和它们的应用
CN105245195A (zh) * 2010-03-18 2016-01-13 杜比实验室特许公司 用于具有音质保护的失真减少多频带压缩器的技术

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178479B2 (en) 2011-09-15 2015-11-03 Mitsubishi Electric Corporation Dynamic range control apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117778A (ja) * 1997-06-23 1999-01-22 Sony Corp 音声信号の処理回路
JP2002305698A (ja) * 2001-04-04 2002-10-18 Mitsubishi Electric Corp 子画面表示用の映像信号処理回路
JP2003299181A (ja) 2002-04-03 2003-10-17 Sony Corp オーディオ信号処理装置及びオーディオ信号処理方法
JP2005160038A (ja) * 2003-11-04 2005-06-16 Yamanashi Tlo:Kk 音信号の加工装置および加工方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025723A (en) * 1975-07-07 1977-05-24 Hearing Health Group, Inc. Real time amplitude control of electrical waves
US4460871A (en) * 1979-08-06 1984-07-17 Orban Associates, Inc. Multiband cross-coupled compressor with overshoot protection circuit
JPS56136099A (en) * 1980-03-26 1981-10-23 Mimii Denshi Kk Hearing aid
US5745523A (en) * 1992-10-27 1998-04-28 Ericsson Inc. Multi-mode signal processing
KR960000147B1 (ko) * 1992-11-05 1996-01-03 삼성전자주식회사 셀룰라 무선전화시스템의 송신전력 제어방법
US5737432A (en) * 1996-11-18 1998-04-07 Aphex Systems, Ltd. Split-band clipper
JP4214607B2 (ja) * 1999-03-23 2009-01-28 ソニー株式会社 マイクロホン装置
WO2003084103A1 (en) * 2002-03-22 2003-10-09 Georgia Tech Research Corporation Analog audio enhancement system using a noise suppression algorithm
EA008114B1 (ru) * 2002-09-10 2007-04-27 Эксестел, Инк. Радиотелефон для беспроводной связи с местной линией
US8718298B2 (en) * 2003-12-19 2014-05-06 Lear Corporation NVH dependent parallel compression processing for automotive audio systems
JP2008085412A (ja) * 2006-09-26 2008-04-10 Sony Corp オーディオ再生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117778A (ja) * 1997-06-23 1999-01-22 Sony Corp 音声信号の処理回路
JP2002305698A (ja) * 2001-04-04 2002-10-18 Mitsubishi Electric Corp 子画面表示用の映像信号処理回路
JP2003299181A (ja) 2002-04-03 2003-10-17 Sony Corp オーディオ信号処理装置及びオーディオ信号処理方法
JP2005160038A (ja) * 2003-11-04 2005-06-16 Yamanashi Tlo:Kk 音信号の加工装置および加工方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245195A (zh) * 2010-03-18 2016-01-13 杜比实验室特许公司 用于具有音质保护的失真减少多频带压缩器的技术
US9935599B2 (en) 2010-03-18 2018-04-03 Dolby Laboratories Licensing Corporation Techniques for distortion reducing multi-band compressor with timbre preservation
US10256785B2 (en) 2010-03-18 2019-04-09 Dolby Laboratories Licensing Corporation Techniques for distortion reducing multi-band compressor with timbre preservation
US10680569B2 (en) 2010-03-18 2020-06-09 Dolby Laboratories Licensing Corporation Techniques for distortion reducing multi-band compressor with timbre preservation
CN103087164A (zh) * 2011-10-31 2013-05-08 中国科学院微生物研究所 钠氢泵蛋白及其编码基因和它们的应用

Also Published As

Publication number Publication date
RU2010145530A (ru) 2012-05-20
US20110135112A1 (en) 2011-06-09
BRPI0911178A2 (pt) 2019-02-26
EP2273673A1 (en) 2011-01-12
CN102057567A (zh) 2011-05-11
MX2010011053A (es) 2010-11-12
EP2273673A4 (en) 2013-12-25
RU2479117C2 (ru) 2013-04-10
JPWO2009125840A1 (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
US9553554B2 (en) Signal processing device
JP5345067B2 (ja) 聴覚感度補正装置
JP6609698B2 (ja) 歪みを制限するためのシステムおよび方法
JP2008263583A (ja) 低域増強方法、低域増強回路および音響再生システム
KR20040035749A (ko) 사운드 신호의 대역폭 확장 방법
JP5486665B2 (ja) 固定された位相応答を有するデジタル等化フィルタ
WO2013183103A1 (ja) 周波数特性変形装置
JP2018531557A6 (ja) 歪みを制限するためのシステムおよび方法
KR20130018153A (ko) 음성 신호 처리 회로
US8165322B2 (en) Circuit for processing sound signals
WO2009125840A1 (ja) 音声信号処理装置及び音声信号処理方法
JP5002414B2 (ja) 聴覚感度補正装置
US9178479B2 (en) Dynamic range control apparatus
US11622193B2 (en) Limiter system and method for avoiding clipping distortion or increasing maximum sound level of active speaker
US11563425B2 (en) Linear-phase fir audio filter, production method and signal processor
JP4912335B2 (ja) Agc装置
JP4803193B2 (ja) オーディオ信号の利得制御装置および利得制御方法
JP2005341204A (ja) 音場補正方法及び音場補正装置
JP2015095743A (ja) イコライザ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122006.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507282

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/011053

Country of ref document: MX

Ref document number: 2009730605

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7205/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010145530

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12937150

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0911178

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101008