WO2009125735A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2009125735A1
WO2009125735A1 PCT/JP2009/057049 JP2009057049W WO2009125735A1 WO 2009125735 A1 WO2009125735 A1 WO 2009125735A1 JP 2009057049 W JP2009057049 W JP 2009057049W WO 2009125735 A1 WO2009125735 A1 WO 2009125735A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
film
light
electronic device
housing
Prior art date
Application number
PCT/JP2009/057049
Other languages
English (en)
French (fr)
Inventor
敏裕 黒田
智章 柴田
宏 増田
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2010507231A priority Critical patent/JPWO2009125735A1/ja
Priority to EP09730438A priority patent/EP2264985A4/en
Publication of WO2009125735A1 publication Critical patent/WO2009125735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0235Slidable or telescopic telephones, i.e. with a relative translation movement of the body parts; Telephones using a combination of translation and other relative motions of the body parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0274Details of the structure or mounting of specific components for an electrical connector module

Definitions

  • the present invention relates to an electronic device, and more particularly, to an electronic device having a plurality of housings such as a mobile phone and a PDA (Personal Digital Assistance) and a mechanism for sliding them relatively.
  • a mobile phone and a PDA (Personal Digital Assistance)
  • PDA Personal Digital Assistance
  • a foldable or slide type housing structure has been commercialized.
  • a mobile phone it is composed of a casing having a receiver that accepts the voice of the other party, a casing having a transmitter and a key operation unit for transmitting the voice to the other party, and a hinge part. Or connected by a slide structure. Since these two cases have a structure in which the positions can be relatively changed, the wiring connecting these two cases needs to be flexible.
  • Patent Document 2 discloses an optical device having a connecting portion that variably connects relative positions of two housings and at least one optical waveguide for connecting boards provided in the two housings by optical wiring.
  • a portable device including a waveguide film has been proposed (see Patent Document 2 and Claim 1).
  • Patent Document 2 proposes a portable device in which a connecting portion has a hinge, two housings are connected so as to be foldable, and an optical waveguide film is disposed obliquely with respect to the rotation axis of the hinge.
  • Patent Document 2 an optical signal can be transmitted without loss even at a bending radius of about 5 mm (Patent Document 2, paragraph 0018).
  • Patent Document 2 paragraph 0053 When the optical waveguide film is disposed obliquely, a bending radius of 1.5 mm is also good.
  • Patent Document 2 The technique disclosed in Patent Document 2 is considered to be effective for a mobile phone having a hinge part and a folding structure, but when two housings change their relative positions by a slide structure, Since the conditions are more severe, it is doubtful whether the same effect as in the case of the hinge structure is necessarily exhibited.
  • Patent Document 2 Patent Document 2, paragraph 0131, FIG. 29
  • it is concrete about how an optical waveguide film is used in such a structure.
  • the present invention has a structure in which two housings change relative positions by a slide structure, and in an electronic device in which the two housings are connected by an optical waveguide, the optical waveguide is cracked or cracked by the slide.
  • the object is to provide an electronic device that does not generate.
  • the present inventors have arranged the optical waveguide used as the optical wiring so that the width direction is the vertical direction, so that no cracks or cracks occur in the portion of the optical waveguide even by the slide structure. I found.
  • the present invention has been completed based on such findings.
  • the present invention includes a first housing having a first light emitting / receiving unit and a second housing having a second light emitting / receiving unit, and the first housing is relative to the second housing.
  • an optical waveguide having an optical communication means for connecting the first light emitting / receiving unit and the second light emitting / receiving unit with an optical signal, the optical waveguide being a first
  • An electronic apparatus is provided in which the width direction of the optical waveguide is arranged in a vertical direction in a space portion between the casing and the second casing.
  • the electronic device of the present invention can maintain a good communication function without causing cracks or cracks in the optical waveguide even if the slide is repeated for a long time.
  • Mobile phone electronic device of the present invention
  • First housing 20 First housing 20.
  • Second housing 30 Optical waveguide
  • the electronic device includes a first housing having a first light emitting / receiving unit and a second housing having a second light emitting / receiving unit, and the first housing serves as the second housing.
  • An electronic device having a mechanism that slides relative to the optical device comprising: an optical waveguide serving as an optical communication unit that connects the first light emitting / receiving unit and the second light receiving / emitting unit with an optical signal; In the space portion between the first housing and the second housing, the optical waveguide is arranged so that the width direction of the optical waveguide stands in the vertical direction in the space portion.
  • FIG. 1 is a perspective view showing a configuration of a mobile phone which is one of electronic devices of the present invention.
  • An electronic device (mobile phone) 1 according to the present invention includes a first housing 10 having a first light emitting / receiving unit and a second housing 20 having a second light emitting / receiving unit, The part and the second light emitting / receiving part (not shown) are connected by an optical waveguide 30 which is an optical communication means.
  • the first casing and the second casing have a first electric circuit section and a second electric circuit section, respectively, and the first electric circuit section and the second electric circuit section. Are connected by electrical connection means.
  • the electrical connection means is for supplying power, or for transmitting and receiving electrical signals for parallel signals such as LED lighting.
  • the form is not limited, but for example, a flexible printed board can be suitably used.
  • the electrical connection means such as the optical waveguide and the flexible printed circuit board may exist independently or may be integrated.
  • an opto-electric hybrid board in which the optical waveguide and the flexible printed board are integrated is a preferred embodiment.
  • the first housing 10 is usually provided with a wireless transmission circuit unit, an antenna connected to the wireless transmission circuit unit, and character input keys for inputting character information, etc., which are the first light emitting and receiving unit. Connected with. Moreover, the battery part as a power supply is provided and it is connected with the 1st circuit board part.
  • the second casing 20 is usually provided with a receiver that receives sound, a microphone that transmits sound, a display unit that displays characters, images, and the like, which are connected to the second light emitting and receiving unit. ing.
  • the electronic apparatus is characterized in that the first housing has a mechanism that slides relative to the second housing. More specifically, the first housing slides from the state of FIG. 1A to the state of FIG.
  • FIG. 2 is a diagram showing the optical waveguide 30 when the electronic device shown in FIG. 1 is viewed from above.
  • the optical waveguide 30 connecting the first light emitting / receiving unit and the second light receiving / emitting unit is twisted as shown in FIG. 2 in the space between the first housing and the second housing.
  • the optical waveguide is arranged so that the width direction of the optical waveguide stands in the vertical direction.
  • the upper clad side of the optical waveguide is the outside of the bent surface, and the lower clad side is the inside.
  • the optical waveguide has one core with one core, two cores with two cores, four cores with four cores, etc. Things are used. Further, the larger the number of cores and the larger the core size, the larger the amount of information. On the other hand, as the number and size of the cores increase, the optical waveguide itself becomes larger. Therefore, in a small electronic device, the number and size of the cores are limited.
  • FIGS. 3 to 5 show conceptual diagrams when the core has one core, the core has two cores, and the core has four cores. Here, an example in which the core is 50 ⁇ m will be described.
  • FIG. 3 shows a single-core optical waveguide.
  • the refractive index ratio (core / cladding) between the core and the clad is 1.022
  • the size of the core is 50 ⁇ m square
  • the thickness of the optical waveguide is 100 ⁇ m.
  • FIG. 4 shows a two-core optical waveguide. If the cores are 50 ⁇ m square, the distance between the cores is considered to require a cladding layer having a length three times that of the cores in order to suppress interference between the cores.
  • the terminal since it is sufficient if there is a cladding layer that does not leak light, it is about 10 ⁇ m. Therefore, as shown in FIG.
  • FIG. 5 shows a four-core optical waveguide.
  • the distance between the cores requires a clad layer that is three times as long as the width of the core. Therefore, the overall width of the waveguide is about 670 ⁇ m, and the thickness of the waveguide is 100 ⁇ m (0.1 mm). It will be about.
  • Table 1 As shown in Table 1, when the bending radius is 1.5 mm or less, the optical loss exceeds 0.5 dB, and the practical use is difficult. Therefore, when the optical waveguide is arranged by a conventional method with a bending radius of 2 mm, as shown in FIG. 6, the total thickness is 4.2 mm, which meets the needs of small electronic devices such as mobile phones that are required to be thin. It is not possible.
  • the width of the optical waveguide is about 270 ⁇ m, it becomes 1 mm or less. This value is sufficiently small with respect to the thickness direction. Therefore, it can be arranged in the space between the first housing and the second housing constituting the mobile phone. Further, since there is a wide space in the width direction of the mobile phone, the bending radius R with respect to the optical waveguide can be increased, so that no stress is generated in the optical waveguide, and no cracks or cracks are generated. Also, in the 4-core shown in FIG.
  • the width of the optical waveguide is about 670 ⁇ m, so that the space between the first housing and the second housing constituting the mobile phone is the same as in the 2-core case.
  • the bending radius R with respect to the optical waveguide can be increased.
  • the width by the core layer is 50 ⁇ m ⁇ 12
  • the width of the clad layer between the cores is 50 ⁇ m ⁇ 3 times ⁇ 11
  • the width of the clad layer at both ends is 10 ⁇ m ⁇ 2
  • the width is 2270 ⁇ m (2.27 mm).
  • the space can be sufficiently arranged between the first housing and the second housing.
  • Higher capacity communication is possible.
  • a laminated optical waveguide two layers are laminated in FIG. 8) in which a plurality of lower claddings, cores, and upper claddings are stacked can be used, and further large capacity communication is possible. is there.
  • the optical waveguide 30 described above includes an electric hybrid substrate in which the optical waveguide and the flexible electric wiring substrate are joined.
  • the opto-electric hybrid board is formed by joining an optical waveguide film having a core and a clad and a flexible electric wiring board, and the joining is preferably performed over the entire surface.
  • the optical waveguide film and flexible electric wiring board used in the present invention will be described.
  • the optical waveguide film used in the present invention has a core and a clad, and conventionally used as an optical waveguide film can be used.
  • a resin film for forming an optical waveguide comprising a resin composition containing (A) a base polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator can be used.
  • the base polymer is for securing the strength when forming a cured product such as a film, and is not particularly limited as long as the object can be achieved.
  • Phenoxy resin, epoxy resin, examples thereof include (meth) acrylic resins, polycarbonate resins, polyarylate resins, polyether amides, polyether imides, polyether sulfones and the like, and derivatives thereof. These base polymers may be used alone or in combination of two or more.
  • the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, but is a compound having an ethylenically unsaturated group in the molecule from the viewpoint of reactivity to light. Is preferred. Specific examples include (meth) acrylate, vinylidene halide, vinyl ether, vinylpyridine, vinylphenol, etc. Among them, (meth) acrylate is preferable from the viewpoint of transparency and heat resistance. As the (meth) acrylate, any of monofunctional, bifunctional, and trifunctional can be used. Here, (meth) acrylate means acrylate and methacrylate.
  • the photopolymerization initiator of the component (C) is not particularly limited.
  • 2,4,5-triarylimidazole dimer bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide
  • Phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • Examples include acridine derivatives such as phenylacridine and 1,7-bis (9,9'-acridinyl) heptane; N-phenylglycine, N-phenylglycine derivatives, and coumarin compounds.
  • the blending amount of the (A) base polymer is preferably 10 to 80% by mass with respect to the total amount of the (A) component and the (B) component.
  • the blending amount is 10% by mass or more, a thick film having a film thickness of 50 ⁇ m or more can be easily produced when a film is formed.
  • photocuring is performed. The reaction proceeds sufficiently.
  • the blending amount of the (A) base polymer is more preferably 20 to 70% by mass.
  • the blending amount of the (B) photopolymerizable compound is preferably 20 to 90% by mass with respect to the total amount of the component (A) and the component (B).
  • the blending amount is 20% by mass or more, the base polymer can be easily entangled and cured, and when it is 90% by mass or less, a thick film can be easily formed.
  • the blending amount of the photopolymerizable compound (B) is more preferably 30 to 80% by mass.
  • the blending amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). If the blending amount is 0.1 parts by mass or more, the photosensitivity is sufficient. On the other hand, if it is 10 parts by mass or less, absorption at the surface layer of the photosensitive resin composition does not increase during exposure, and the internal Is sufficiently cured. Furthermore, it is preferable that the propagation loss does not increase due to the light absorption effect of the polymerization initiator itself. From the above viewpoint, the blending amount of the (C) polymerization initiator is more preferably 0.2 to 5 parts by mass.
  • the optical waveguide film used in the present invention can be easily produced by dissolving the resin composition containing the components (A) to (C) in a solvent, applying the solution to a substrate, and removing the solvent.
  • the solvent used here is not particularly limited as long as it can dissolve the resin composition.
  • a solvent such as acetamide or propylene glycol monomethyl ether or a mixed solvent thereof can be used.
  • the solid content concentration in the resin solution is usually preferably about 30 to 60% by mass.
  • the thickness of the optical waveguide film used in the present invention is not particularly limited, but the thickness after drying is usually 10 to 250 ⁇ m. When it is 10 ⁇ m or more, there is an advantage that the coupling tolerance with the light emitting / receiving element or the optical fiber can be increased, and when it is 250 ⁇ m or less, there is an advantage that the coupling efficiency with the light emitting / receiving element or the optical fiber is improved. From the above viewpoint, the thickness of the film is preferably in the range of 40 to 90 ⁇ m.
  • the substrate used in the production process of the optical waveguide forming resin film used in the present invention is a support for supporting the optical waveguide forming film, and the material thereof is not particularly limited.
  • Preferable examples include polyesters such as polyethylene terephthalate, polypropylene, and polyethylene from the viewpoint that they can be easily peeled and have heat resistance and solvent resistance.
  • the thickness of the substrate is preferably in the range of 5 to 50 ⁇ m. When it is 5 ⁇ m or more, there is an advantage that the strength as a support is easily obtained, and when it is 50 ⁇ m or less, there is an advantage that a gap with the mask at the time of pattern formation becomes small and a finer pattern can be formed.
  • the thickness of the base material is more preferably in the range of 10 to 40 ⁇ m, and particularly preferably 20 to 30 ⁇ m.
  • the film for forming an optical waveguide provided on the substrate thus obtained can be easily stored, for example, by winding it into a roll.
  • a protective film can also be provided on the optical waveguide forming film as necessary.
  • the base material and the protective film may be subjected to an antistatic treatment or the like in order to facilitate later peeling of the optical waveguide forming film.
  • a manufacturing method for forming an optical waveguide using the resin film for forming an optical waveguide obtained as described above will be described below.
  • the method include a method of laminating the lower clad film peeled off from the base material by applying pressure while heating on the substrate after removing the protective film when the protective film is present. .
  • the heating temperature of the resin film is preferably 50 to 130 ° C.
  • the pressing pressure is preferably about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ). There is no particular limitation.
  • the thickness of the lower cladding layer is not particularly limited, but is preferably 2 to 50 ⁇ m. If it is 2 ⁇ m or more, it becomes easy to confine the propagating light inside the core, and if it is 50 ⁇ m or less, the thickness of the entire optical waveguide 1 is not too large.
  • the thickness of the lower cladding layer is more preferably in the range of 15 to 35 ⁇ m, and particularly preferably in the range of 20 to 30 ⁇ m, from the viewpoint of satisfying bending durability with a particularly small bending radius. .
  • the thickness of the lower cladding layer is a value from the boundary between the core portion and the lower cladding layer to the lower surface of the lower cladding layer.
  • the lower clad film is cured by light or heating, and a core film having a higher refractive index than that of the lower clad film is laminated in the same manner.
  • the resin film thus laminated is irradiated with actinic rays in an image form through a negative or positive mask pattern called an artwork.
  • the active light source include known light sources that effectively emit ultraviolet rays, such as carbon arc lamps, mercury vapor arc lamps, ultrahigh pressure mercury lamps, high pressure mercury lamps, and xenon lamps.
  • those that effectively emit visible light such as a photographic flood bulb and a solar lamp, can be used.
  • the height of the core part 2 is not particularly limited, but is preferably 10 to 150 ⁇ m.
  • the height of the core part is 10 ⁇ m or more, the alignment tolerance is not reduced in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed, and when it is 150 ⁇ m or less, the light emitting / receiving element after the optical waveguide is formed.
  • the coupling efficiency does not decrease in coupling with an optical fiber.
  • the height of the core portion is more preferably in the range of 30 to 90 ⁇ m, particularly preferably in the range of 40 to 80 ⁇ m, from the viewpoint of satisfying bending durability with a particularly small bending radius.
  • a developer corresponding to the composition of the resin film such as an organic solvent, an alkaline aqueous solution, or an aqueous developer, is used for development by a known method such as spraying, rocking immersion, brushing, or scraping.
  • a developer an organic solvent, an alkaline aqueous solution or the like that is safe and stable and has good operability is preferably used.
  • organic solvent developer examples include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl isobutyl ketone, and ⁇ -butyrolactone. It is done. These organic solvents may be added with water in the range of 1 to 20% by mass in order to prevent ignition.
  • Examples of the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium, or potassium hydroxide, alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate, potassium phosphate, and phosphoric acid.
  • Alkali metal phosphates such as sodium and alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate are used.
  • Examples of the alkaline aqueous solution used for development include a dilute solution of 0.1 to 5% by mass of sodium carbonate, a dilute solution of 0.1 to 5% by mass of potassium carbonate, and a dilute solution of 0.1 to 5% by mass of sodium hydroxide.
  • Preferred examples include solutions and dilute solutions of 0.1 to 5% by mass sodium tetraborate.
  • the pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 14, and the temperature is adjusted in accordance with the developability of the layer of the photosensitive resin composition.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • the aqueous developer comprises water or an alkaline aqueous solution and one or more organic solvents.
  • the alkaline substance include borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, , 3-diaminopropanol-2, morpholine and the like.
  • the pH of the developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8 to 12, more preferably pH 9 to 10.
  • organic solvent examples include triacetone alcohol, acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono And butyl ether. These are used alone or in combination of two or more.
  • concentration of the organic solvent is usually preferably 2 to 90% by mass, and the temperature can be adjusted according to the developability. Further, a small amount of a surfactant, an antifoaming agent and the like can be mixed in the aqueous developer.
  • the core pattern may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.1 to 1000 mJ / cm 2 as necessary.
  • an upper clad film having a refractive index lower than that of the core film is laminated by the same method to produce an optical waveguide.
  • the thickness of the upper clad layer is not particularly limited as long as the core portion can be embedded, but the thickness after drying is preferably 2 to 50 ⁇ m, and the bending durability with a small bending radius. From the viewpoint of satisfying the above, the thickness is more preferably in the range of 2 to 30 ⁇ m, particularly preferably in the range of 5 to 25 ⁇ m.
  • the thickness of the upper cladding layer may be the same as or different from the thickness of the lower cladding layer formed first.
  • the thickness of the upper cladding layer is a value from the boundary between the core portion and the upper cladding layer to the upper surface of the upper cladding layer.
  • an FPC (Flexible Printed Circuit) board can be suitably used.
  • a substrate material for the FPC substrate polyimide, polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, and the like are used.
  • polyimide is used from the viewpoint of heat resistance and availability.
  • Kapton made by Toray DuPont Co., Ltd.
  • the thickness of the substrate constituting the flexible electrical wiring substrate is not particularly limited, but as described above, the ratio of the thickness of the reinforcing material to the substrate is 4: 1 to 1: from the viewpoint of bending durability.
  • the optical / electrical hybrid substrate is manufactured by bonding the optical waveguide film and the flexible electrical wiring substrate.
  • an adhesive can be used as necessary.
  • the type of the adhesive can be appropriately determined according to the materials of the optical waveguide film and the flexible electric wiring board.
  • the adhesive preferably has flexibility after curing. Specifically, after curing, the elastic modulus is preferably 700 MPa or less, and 600 MPa or less. It is more preferable that it is 500 MPa or less. Moreover, from the point of the intensity
  • acrylic rubber adhesives and commercially available products include high-heat-resistant adhesive insulating material KS7003 (elastic modulus 700 MPa) manufactured by Hitachi Chemical Co., Ltd., and adhesive highbons for flexible printed wiring boards manufactured by Hitachi Chemical Polymer Co., Ltd. 808 (elastic modulus 50 MPa) etc. are illustrated suitably.
  • the laminating temperature in the roll laminator is preferably in the range of room temperature (25 ° C.) to 100 ° C.
  • room temperature (25 ° C.) or higher adhesion to the optical waveguide is improved, and when it is 100 ° C. or lower, the required film thickness is obtained without flowing the adhesive layer.
  • the range of 40 to 100 ° C. is more preferable.
  • the pressure is preferably 0.2 to 1.0 MPa (1 to 10 kgf / cm 2 ) and the laminating speed is preferably 0.1 to 3 m / min, but these conditions are not particularly limited.
  • the flat plate laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plate.
  • a vacuum pressurizing laminator can be suitably used.
  • the heating temperature here is preferably 50 to 100 ° C.
  • the pressing pressure is preferably 0.1 to 1.0 MPa (1 to 10 kgf / cm 2 ), but these conditions are particularly limited. There is no.
  • the reinforcing material that is the feature of the present invention is attached to the opto-electric hybrid board manufactured as described above.
  • a method for applying the reinforcing material is not particularly limited, but a method for applying the reinforcing material via an adhesive is simple.
  • the adhesive that can be used the same adhesive as that used for joining the optical waveguide film and the flexible electric wiring board can be used.
  • Optical loss during bending For the opto-electric hybrid board manufactured in each example and comparative example, a multi-mode fiber having a core diameter of 50 ⁇ m smaller than the diameter of a circle inscribed in the waveguide is provided on the light incident side at both ends of the longitudinal direction. On the light exit side, the core diameter of 114 ⁇ m, which is larger than the diameter of the circle circumscribing the waveguide, is aligned with a transparent, UV-curable adhesive (“UV2100” manufactured by Daikin Industries, Ltd.). The end faces were connected.
  • a transparent, UV-curable adhesive (“UV2100” manufactured by Daikin Industries, Ltd.
  • a laser light source having a wavelength of 850 nm (“FLS300” manufactured by EXFO) is connected to one side of the multimode fiber on the light incident side, and a light receiving sensor (manufactured by Advantest Co., Ltd.) is connected to one side of the multimode fiber on the light output side. “Q82214”) was connected.
  • a light receiving sensor manufactured by Advantest Co., Ltd.
  • the optical loss BdB was measured in a state where the waveguide was wound around the circumference of 180 ° around a rod having a diameter twice that of the bending R. The light loss during bending was obtained by calculating A during straight line-B during bending. 2.
  • Tensile elastic modulus and tensile strength From a film to be measured, a sample having a width of 10 mm and a length of 70 mm was obtained, using a tensile tester ("RTM-100" manufactured by Orientec Co., Ltd.) according to JIS-K7127, Measurement was performed under the following conditions. Conditions: distance between grippers 50 mm, temperature 25 ° C., pulling speed 50 mm / min The tensile elastic modulus was calculated by the following formula using the first linear portion of the tensile stress-strain curve. In the tensile stress-strain curve, the maximum strength until breakage was taken as the tensile strength.
  • Tensile modulus (MPa) Difference in stress between two points on a straight line (N) ⁇ Original average cross-sectional area of optical waveguide film (mm 2 ) ⁇ Difference in strain between the same two points
  • Example 1 (1-1) Production of Optical Waveguide Film [Production of Clad Layer Forming Resin Film]
  • A 48 parts by mass of phenoxy resin (trade name: Phenotote YP-70, manufactured by Tohto Kasei Co., Ltd.) as the binder polymer
  • B alicyclic diepoxycarboxylate (trade name: KRM) as the photopolymerizable compound -2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 49.6 parts by mass
  • C As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi Denka Kogyo Co., Ltd.) 2 parts by mass, SP-100 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) as a sensitizer, 0.4 parts by mass, and 40 parts by mass of propylene glycol monomethyl
  • the clad layer-forming resin varnish A obtained above was coated on a corona-treated surface of a polyamide film (trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 ⁇ m) (Multicoater TM-MC, ( Coated with Hirano Techseed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then released as a protective film PET film (trade name: Purex A31, Teijin DuPont Films, Inc.) 25 ⁇ m) was attached so that the release surface was on the resin side, and a resin film for forming a clad layer was obtained.
  • the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the thickness after curing is 25 ⁇ m for the lower cladding layer and 70 ⁇ m for the upper cladding layer. Adjusted.
  • A As binder polymer, 26 parts by mass of phenoxy resin (trade name: Phenotote YP-70, manufactured by Toto Kasei Co., Ltd.), (B) 9,9-bis [4- (2- Acrylyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, and bisphenol A type epoxy acrylate (trade name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, (C) 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and 1 -[4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (trade name: Irug
  • the resin layer varnish B for core layer formation obtained above is applied to a non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m) in the same manner as in the above production example.
  • release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) is applied as a protective film so that the release surface is on the resin side to form the core layer A resin film was obtained.
  • the gap of the coating machine was adjusted so that the film thickness after curing was 50 ⁇ m.
  • the lower clad layer was formed by irradiating ultraviolet rays (wavelength 365 nm) with 1 J / cm 2 from the opposite side of the base film and then heat-treating at 80 ° C. for 10 minutes.
  • a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used, under the conditions of pressure 0.4 MPa, temperature 50 ° C., laminating speed 0.2 m / min.
  • MVLP-500 manufactured by Meiki Seisakusho Co., Ltd.
  • the core layer was formed by thermocompression bonding under conditions of a pressurization time of 30 seconds.
  • the resin film for forming a clad layer was laminated as an upper clad layer under the same laminating conditions as described above. Further, after irradiation with a total of 25 J / cm 2 on both surfaces with ultraviolet rays (wavelength 365 nm), heat treatment is performed at 160 ° C. for 1 hour to form a flexible optical waveguide in which an upper cladding layer is formed and a base film is disposed outside. did. Furthermore, in order to peel the polyamide film, the flexible optical waveguide was treated under high temperature and high humidity conditions of 85 ° C./85% for 24 hours to produce a flexible optical waveguide from which the base film was removed.
  • the core layer was 1.584 and the clad layer was 1.550 at a wavelength of 830 nm.
  • the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using a 850 nm surface emitting laser (FLS-300-01-VCL, manufactured by EXFO) as a light source, and Q82214 manufactured by Advantest Co., Ltd. as a light receiving sensor.
  • YDCN-8170C (trade name, bisphenol F type epoxy resin, epoxy manufactured by Toto Kasei Co., Ltd.) Equivalent 157) 16.2 parts by mass, Plyofen LF2882 (Dainippon Ink Chemical Co., Ltd., trade name, bisphenol A novolac resin) 15.3 parts by mass, NUCA-189 (Nihon Unicar Co., Ltd., trade name, 0.1 part by mass of ⁇ -mercaptopropyltrimethoxysilane, NUCA-1160 (manufactured by Nippon Unicar Co., Ltd., trade name, ⁇ -U Idpropyltriethoxysilane) 0.3 parts by mass, A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name, dipentaerythritol hexaacrylate) 30 parts by mass, Irgacure 369 (manufactured by Ciba Specialty Chemicals, Inc.)
  • This adhesive varnish was applied onto a 75 ⁇ m-thick surface release-treated polyethylene terephthalate (manufactured by Teijin Ltd., Teijin Tetron film: A-31) and dried by heating at 80 ° C. for 30 minutes to obtain an adhesive sheet. .
  • This adhesive sheet is laminated together with a light-transmitting supporting base material having a thickness of 80 ⁇ m (manufactured by Thermo Corporation, low density polyethylene terephthalate / vinyl acetate / low density polyethylene terephthalate three-layer film: FHF-100).
  • a sheet-like adhesive composed of a protective film (surface release-treated polyethylene terephthalate), an adhesive layer, and a light-transmitting support substrate was produced.
  • the thickness of the adhesive layer was 10 ⁇ m.
  • the adhesive layer of the sheet-like adhesive thus prepared was cured at 160 ° C. for 1 hour, and the light transmittance was measured with a U-3310 UV-visible spectrophotometer manufactured by Hitachi High-Technologies Corporation. It had a high transmittance of 98% or more at a wavelength of 850 nm and a transmission loss equivalent to 0.1 dB or less.
  • the refractive index was measured with a Metricon prism coupler (Model 2010) and found to be 1.505 at a wavelength of 830 nm.
  • the tensile elastic modulus was 350 MPa.
  • a flexible electric wiring board having electric wiring (length 120 mm, width 2 mm, base material: Kapton 100EN (tensile strength measured by the above method was 370 MPa), board thickness: 25 ⁇ m, copper circuit thickness : 12 ⁇ m), the optical waveguide with an adhesive layer is positioned using a mask aligner mechanism attached to an ultraviolet exposure machine (manufactured by Dainippon Screen Co., Ltd., MAP-1200-L), and the roll laminator is After temporary pressure bonding under the conditions of a working pressure of 0.4 MPa, a temperature of 80 ° C., and a laminating speed of 0.2 m / min, the flexible optical waveguide and the electric wiring board are bonded by heating in a clean oven at 160 ° C.
  • FIG. 1 is a perspective view showing a configuration of a slide type cellular phone.
  • a first housing 10 having a first light emitting / receiving unit and a second housing 20 having a second light emitting / receiving unit, and a first light emitting / receiving unit and a second light emitting / receiving unit (not shown). ) Are connected by optical communication means.
  • the first housing 10 includes a keyboard operation unit, a control unit, a power supply unit, a light emitting / receiving element, and the like.
  • the second housing 20 includes a liquid crystal display unit, an audio unit, a camera unit, a control unit, a power supply unit, a light emitting / receiving element, and the like.
  • the opto-electric hybrid board produced above was twisted and arranged in the space between the first casing and the second casing of the mobile phone so that the width direction of the optical waveguide was vertical.
  • the bending radius R was 2 mm.
  • the light loss at the bent portion was 0.4 dB.
  • the total thickness at the top and bottom of the waveguide was 0.27 mm. It was also confirmed that it can withstand one million slides.
  • Example 1 Comparative Example 1 In Example 1, the optical waveguide was installed in the same manner as in Example 1 except that the optical waveguide was arranged without twisting as in the prior art. As a result of evaluation by the same method as in Example 1, when R was set to 2 mm in this example, the optical loss at the bent portion was 0.4 dB, but the total thickness of the waveguide in and out was 4.2 mm. It was. It was confirmed that it can withstand 1 million slides.
  • Example 2 Comparative Example 2 In Example 1, the optical waveguide was installed in the same manner as in Example 1 except that the optical waveguide was arranged without twisting as in the prior art. As a result of evaluation by the same method as in Example 1, in this example as well, when R was set to 1 mm, the light loss at the bent portion was 1.2 dB. The total thickness at the top and bottom of the waveguide was 2.2 mm. Further, since the bending R was 1 mm, the slide was broken at 5,000 times.
  • signals can be exchanged between the casings with a thickness of 1 mm or less, and the mobile phone itself can be thinned. Moreover, even if the slide is repeated for a long time, the optical waveguide is not cracked or cracked, and a good communication function can be maintained. Therefore, it can be suitably used for mobile phones, PDAs, small personal computers, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Telephone Set Structure (AREA)

Abstract

 第1の受発光部を有する第1の筐体及び第2の受発光部を有する第2の筐体から構成され、第1の筐体が第2の筐体に対して相対的に滑動する機構を有する電子機器であって、第1の受発光部と第2の受発光部を光信号で接続する光通信手段としての光導波路を備え、該光導波路は第1の筐体と第2の筐体の間の空間部において、該光導波路の幅方向が垂直方向となるように配置されることを特徴とする電子機器である。  2つの筐体がスライド構造によって、相対的な位置を変化させる構造を有し、該2つの筐体を光導波路によって接続する電子機器において、スライドによって、光導波路に割れやクラックが発生しない電子機器を提供することができる。

Description

電子機器
 本発明は、電子機器に関し、詳しくは携帯電話、PDA(Personal Digital Assistance)など、複数の筐体を有し、それらが相対的に滑動する機構を有する電子機器に関する。
 携帯電話などの小型の電子機器において、さらなる小型化が要望されており、折り畳み式やスライド式の筐体構造のものが商品化されている。例えば、携帯電話の場合には、通話相手の音声を受諾する受話器を有する筐体と、音声を通話相手に送信するための送話器及びキー操作部を有する筐体から構成され、ヒンジ部を介して接続されるか、又はスライド構造により接続されている。これら2つの筐体は、相対的に位置を変えられる構造を有するため、これら2つの筐体をつなぐ配線はフレキシブルである必要がある。そこで、例えば、これら2つの筐体を電気的に接続する電気接続手段として、枚葉状に重ね合わせた複数のフレキシブルプリント基板部材を用いることが提案されている(特許文献1参照)。
 しかしながら、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めており、さらに高速の通信手段が要望されている。
 このような要望に対して、2つの筐体を光導波路で接続する技術が提案されている(特許文献2参照)。特許文献2には、2つの筐体が相対的な位置を可変に接続する連結部と、2つの筐体に設けられたボードを光配線により接続するための少なくとも1個の光導波路を持つ光導波路フィルムを備える携帯機器が提案されている(特許文献2、請求項1参照)。さらには、連結部がヒンジを有し、2つの筐体が折り畳み可能に接続され、光導波路フィルムがヒンジの回転軸に対して斜めに配置されている携帯機器が提案されている(特許文献2、請求項3参照)。
 特許文献2によれば、曲げ半径5mm程度でも光信号を損失なく伝達できるとあり(特許文献2、段落0018)、また光導波路フィルムを斜めに配置した場合には、曲げ半径1.5mmでも良好な結果を示したとされている(特許文献2、段落0053)。
特開2004-222173号公報 特開2006-42307号公報
 特許文献2に開示される技術は、ヒンジ部を有し、折り畳み構造を有する携帯電話には有効と考えられるが、2つの筐体がスライド構造によって、相対的な位置を変化させる場合には、条件がさらに過酷となるため、必ずしもヒンジ構造の場合と同様の効果を示すかは疑問である。特許文献2にはスライド構造を有する携帯電話についての一応の開示はあるものの(特許文献2、段落0131、図29)、このような構造において光導波路フィルムがどのように用いられているかについて具体的開示はなく、また、その効果についても具体的な開示はない。すなわち、実際にスライドによって2つの筐体の相対的な位置を変化させた場合に、光導波路部分に応力がかかり、結果として割れやクラックが発生するという問題を解決するには至っていない。
 本発明は、2つの筐体がスライド構造によって、相対的な位置を変化させる構造を有し、該2つの筐体を光導波路によって接続する電子機器において、スライドによって、光導波路に割れやクラックが発生しない電子機器を提供することを目的とするものである。
 本発明者らは鋭意検討を重ねた結果、光配線として用いる光導波路を幅方向が垂直方向となるように配することで、スライド構造によっても、光導波路の部分に割れやクラックが発生しないことを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち、本発明は、第1の受発光部を有する第1の筐体及び第2の受発光部を有する第2の筐体から構成され、第1の筐体が第2の筐体に対して相対的に滑動する機構を有する電子機器であって、第1の受発光部と第2の受発光部を光信号で接続する光通信手段としての光導波路を備え、該光導波路は第1の筐体と第2の筐体の間の空間部において、該光導波路の幅方向が垂直方向となるように配置されることを特徴とする電子機器を提供するものである。
 本発明の電子機器は、長時間にわたってスライドを繰り返しても、光導波路に割れやクラックが発生せず、良好な通信機能を維持し得る。
携帯電話(本発明の電子機器)の構成を示す斜視図である。 本発明における光導波路の形状を示す概念図である。 本発明で用いる光導波路(1芯)を示す概念図である。 本発明で用いる光導波路(2芯)を示す概念図である。 本発明で用いる光導波路(4芯)を示す概念図である。 本発明で用いる光導波路(2芯)を従来の方法で配置した場合を示す概念図である。 本発明で用いる光導波路(2芯)を本発明の方法で配置した場合を示す概念図である。 本発明で用い得る積層光導波路(4芯)を示す概念図である。
1.携帯電話(本発明の電子機器)
10.第1の筐体
20.第2の筐体
30.光導波路
 本発明の電子機器は、第1の受発光部を有する第1の筐体及び第2の受発光部を有する第2の筐体から構成され、第1の筐体が第2の筐体に対して相対的に滑動する機構を有する電子機器であって、第1の受発光部と第2の受発光部を光信号で接続する光通信手段としての光導波路を備え、該光導波路は第1の筐体と第2の筐体の間の空間部において、該光導波路の幅方向が、該空間部において垂直方向に立つように配置されることを特徴とする。
 以下、電子機器のひとつである携帯電話を例として、図1及び図2を用いて詳細に説明する。
 図1は本発明の電子機器のひとつである携帯電話の構成を示す斜視図である。本発明における電子機器(携帯電話)1は、第1の受発光部を有する第1の筐体10と第2の受発光部を有する第2の筐体20を有し、第1の受発光部と第2の受発光部(図示せず)は光通信手段である光導波路30で接続されている。
 また、第1の筐体及び第2の筐体は、それぞれ第1の電気回路部及び第2の電気回路部を有しており、該第1の電気回路部と該第2の電気回路部は、電気接続手段で接続されている。電気接続手段は電源を供給するため、又はLED点灯などのパラレル信号用などの電気信号を送受信するためのものであり、その形態は問わないが、例えば、フレキシブルプリント基板を好適に用いることができる。
 光導波路とフレキシブルプリント基板等の電気接続手段は別個独立に存在してもよいし、一体化されていてもよい。本発明において、光導波路とフレキシブルプリント基板が一体化した光電気混載基板は好ましい態様である。
 第1の筐体10には、通常、無線送信回路部、該無線送信回路部に接続されたアンテナ、文字情報等を入力する文字入力キーが配置されており、これらは第1の受発光部と接続されている。また、電源としての電池部を備え、第1の回路基板部と接続されている。
 第2の筐体20には、通常、音声を受信するレシーバー、音声を送信するマイクロフォン、文字や画像等を表示する表示部などが備えられており、これらは第2の受発光部と接続されている。
 本発明の電子機器は、第1の筐体が第2の筐体に対して相対的に滑動する機構を有することが特徴である。より具体的には、図1(a)の状態から、第1の筐体がスライドし、図1(b)の状態になる。
 図2は、図1に示される電子機器を上からみた際の、光導波路30を示す図である。第1の受発光部と第2の受発光部を接続する光導波路30は、図2に示すように捻られた状態で、第1の筐体と第2の筐体の間の空間部に、光導波路の幅方向が垂直方向に立つように配置される。図2に示す例では光導波路の上部クラッド側を曲げられた面の外側とし、下部クラッド側を内側としている。このように配置することで、光導波路に対する曲げ半径Rを大きくすることができるため、第1の筐体10がスライドしても、光導波路に応力はかからず、割れやクラックが発生しない。
 次に、曲げ半径Rと光損失の関係について、以下説明する。まず、光導波路は、コアの数によって、コアが1つの1芯、コアが2つの2芯、コアが4つの4芯などがあり、通常、双方向に通信をすることから、2芯以上のものが用いられる。また、コアの数が多いほど、またコアの大きさが大きいほど、情報量が多くなる。一方、コアの数及び大きさが増大するにつれて、光導波路自体が大きくなるため、小型の電子機器においては、コアの数及び大きさが制限される。
 コアが1芯の場合、コアが2芯の場合及びコアが4芯の場合の概念図を図3~図5に示す。ここでは、コアが50μmのものを例に説明する。
 図3は1芯の光導波路であり、ここでは、コアとクラッドの屈折率比(コア/クラッド)を1.022とし、コアの大きさを50μm角、光導波路の厚さを100μmとした。
 また、図4は2芯の光導波路である。コアが50μm角であると、コア間の距離はコア同士の干渉を抑制するために、その3倍の長さのクラッド層が間に必要であるとされる。また、末端については、光漏れのない程度のクラッド層があれば十分であるので、10μm程度である。従って、図4に示すように、導波路の幅が270μm程度、導波路の厚さが100μm(0.1mm)程度ということになる。
 次に、図5は4芯の光導波路である。コア間の距離は上記と同様に、コアの幅の3倍の長さのクラッド層が必要であるため、導波路の幅は全体で670μm程度、導波路の厚さが100μm(0.1mm)程度となる。
 次に、図3に示すような1芯の光導波路(コアとクラッドの屈折率比=1.022、コア;50μm角、光導波路の厚さ;100μm)を作製し、曲げ半径と光損失変化を測定した結果を第1表に示す。第1表に示すように、曲げ半径が1.5mm以下であると、光損失が0.5dBを超え、実用化が困難なレベルとなる。従って、曲げ半径を2mmとして、従来の方法で光導波路を配置すると、図6に示すように、全体で4.2mm厚となり、薄型化が要求される携帯電話等の小型電子機器のニーズに答えることはできない。
Figure JPOXMLDOC01-appb-T000001
 一方、図7に示すように、本発明の配置、すなわち、光導波路の幅方向が垂直方向に立つような配置をとれば、光導波路の幅は270μm程度であるので、1mm以下となり、携帯電話の厚さ方向に対して十分小さい値となる。従って、携帯電話を構成する第1の筐体と第2の筐体の間の空間部に配することができる。また、携帯電話の幅方向には、広い空間があるので、光導波路に対する曲げ半径Rを大きくとることができるために、光導波路に応力が生じることがなく、割れやクラックが発生しない。
 また、図5に示す4芯においても、光導波路の幅は670μm程度であるので、2芯の場合と同様に、携帯電話を構成する第1の筐体と第2の筐体の間の空間部に配することができ、光導波路に対する曲げ半径Rを大きくとることができる。
 さらに、例えば12芯の場合であれば、コア層による幅が50μm×12、コア間のクラッド層の幅が50μm×3倍×11、両末端のクラッド層の幅が10μm×2であるので、全体としてその幅は2270μm(2.27mm)となる。この場合でも、第1の受発光部と第2の受発光部の相対的な位置をずらすことによって、第1の筐体と第2の筐体の間の空間部に十分配することができ、さらなる大容量の通信が可能である。
 また、図8に示すように、下部クラッド、コア、及び上部クラッドを複数組重ねた積層型の光導波路(図8では2層を積層)を用いることもでき、さらなる大容量の通信も可能である。
 上記で説明した光導波路30には、光導波路とフレキシブル電気配線基板が接合された電気混載基板をも含むものである。
 光電気混載基板は、コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が接合されてなり、接合は全面にわたってなされていることが好ましい。
 以下、本発明で用いられる光導波路フィルムとフレキシブル電気配線基板について説明する。
[光導波路フィルム]
 本発明で用いる光導波路フィルムは、コアとクラッドを備えたものであり、従来、光導波路フィルムとして用いられるものを利用することができる。例えば、(A)ベースポリマー、(B)光重合性化合物、及び(C)光重合開始剤を含有する樹脂組成物からなる光導波路形成用樹脂フィルムを用いることができる。
 (A)ベースポリマーはフィルム等の硬化物を形成する場合に、その強度を確保するためのものであり、その目的を達成し得るものであれば特に限定されず、フェノキシ樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホン等、あるいはこれらの誘導体などが挙げられる。これらのベースポリマーは1種単独でも、また2種以上を混合して用いてもよい。
 (B)光重合性化合物は、紫外線等の光の照射によって重合するものであれば特に制限はないが、光に対する反応性の観点から、分子内にエチレン性不飽和基を有する化合物であることが好ましい。具体的には、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらのうち透明性と耐熱性の観点から、(メタ)アクリレートが好ましい。(メタ)アクリレートとしては、1官能性のもの、2官能性のもの、3官能性のもののいずれをも用いることができる。
 なお、ここで(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。
(C)成分の光重合開始剤としては、特に制限はなく、例えば、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等の芳香族ケトン;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のフォスフィンオキサイド類;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物などが挙げられる。
 (A)ベースポリマーの配合量は、(A)成分及び(B)成分の総量に対して、10~80質量%とすることが好ましい。この配合量が、10質量%以上であるとフィルムを形成する場合に、膜厚50μm以上の厚膜フィルムでも容易に製造することが可能であり、一方、80質量%以下であると、光硬化反応が十分に進行する。以上の観点から、(A)ベースポリマーの配合量は、20~70質量%とすることがさらに好ましい。
 (B)光重合性化合物の配合量は、(A)成分及び(B)成分の総量に対して、20~90質量%とすることが好ましい。この配合量が、20質量%以上であると、ベースポリマーを絡み込んで硬化させることが容易にでき、一方、90質量%以下であると、厚膜のフィルムを容易に形成することできる。以上の観点から、(B)光重合性化合物の配合量は30~80質量%とすることがさらに好ましい。
 (C)光重合開始剤の配合量は、(A)成分及び(B)成分の総量100質量部に対して、0.1~10質量部とすることが好ましい。この配合量が0.1質量部以上であると、光感度が十分であり、一方10質量部以下であれば、露光時に感光性樹脂組成物の表層での吸収が増大することがなく、内部の光硬化が十分となる。さらに、重合開始剤自身の光吸収の影響により伝搬損失が増大することもなく好適である。以上の観点から、(C)重合開始剤の配合量は、0.2~5質量部とすることがさらに好ましい。
 本発明で用いられる光導波路フィルムは、(A)~(C)成分を含有する樹脂組成物を溶媒に溶解して、基材に塗布し、溶媒を除去することにより容易に製造することができる。ここで用いる溶媒としては、該樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、プロピレングリコールモノメチルエーテル等の溶媒又はこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は、通常30~60質量%程度であることが好ましい。
 本発明で用いられる光導波路フィルムの厚さについては特に限定されないが、乾燥後の厚さで、通常は10~250μmである。10μm以上であると、受発光素子又は光ファイバーとの結合トレランスが拡大できるという利点があり、250μm以下であると、受発光素子又は光ファイバーとの結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに40~90μmの範囲であることが好ましい。
 本発明で用いられる光導波路形成用樹脂フィルムの製造過程で用いる基材は、光導波路形成用フィルムを支持する支持体であって、その材料については特に限定されないが、後に光導波路形成用フィルムを剥離することが容易であり、かつ、耐熱性及び耐溶剤性を有するとの観点から、ポリエチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレンなどが好適に挙げられる。該基材の厚さは、5~50μmの範囲であることが好ましい。5μm以上であると、支持体としての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、該基材の厚さは10~40μmの範囲であることがより好ましく、20~30μmであることが特に好ましい。
 このようにして得られた基材上に設けられた光導波路形成用フィルムは、例えばロール状に巻き取ることによって容易に貯蔵することができる。また、必要に応じて、光導波路形成用フィルムの上に保護フィルムを設けることもできる。なお、上記基材及び保護フィルムは、後に光導波路形成用フィルムの剥離を容易とするため、帯電防止処理等が施されていてもよい。
 上記のようにして得られた光導波路形成用樹脂フィルムを用いて光導波路を形成するための製造手法について以下説明する。その方法としては、例えば、基材から剥離された下部クラッドフィルムを、保護フィルムが存在する場合には、保護フィルムを除去後、基板上に加熱しながら圧着することにより積層する方法などが挙げられる。ここで、密着性及び追従性の見地から減圧下で積層することが好ましい。該樹脂フィルムの加熱温度は50~130℃とすることが好ましく、圧着圧力は、0.1~1.0MPa程度(1~10kgf/cm2程度)とすることが好ましいが、これらの条件には特に制限はない。
 下部クラッド層の厚さは、特に制限はないが、2~50μmであることが好ましい。2μm以上であると、伝搬光をコア内部に閉じ込めるのが容易となり、50μm以下であると、光導波路1全体の厚さが大きすぎることがない。本発明では、特に小さい曲げ半径での屈曲耐久性を満足するとの観点から、下部クラッド層の厚さは15~35μmの範囲であることがより好ましく、20~30μmの範囲であることが特に好ましい。
 なお、下部クラッド層の厚さとは、コア部と下部クラッド層との境界から下部クラッド層の下面までの値である。
 次いで、下部クラッドフィルムを光又は加熱により硬化し、下部クラッドフィルムより屈折率の高いコアフィルムを同様な方法で積層する。このようにして積層した樹脂フィルムは、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線が画像状に照射される。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いることができる。
 コア部2の高さについては、特に制限はないが、10~150μmであることが好ましい。コア部の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバーとの結合において位置合わせトレランスが小さくなることがなく、150μm以下であると、光導波路形成後の受発光素子又は光ファイバーとの結合において、結合効率が小さくなることがない。本発明では、特に小さい曲げ半径での屈曲耐久性を満足するとの観点から、コア部の高さは30~90μmの範囲であることがより好ましく、40~80μmの範囲であることが特に好ましい。
 次いで、露光後、ウエット現像、ドライ現像等で未露光部を除去して現像し、コアパターンを製造する。ウエット現像の場合は、有機溶剤、アルカリ性水溶液、水系現像液等の前記樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により現像する。
 現像液としては、有機溶剤、アルカリ性水溶液等の安全かつ安定であり、操作性が良好なものが好ましく用いられる。前記有機溶剤系現像液としては、例えば、1,1,1-トリクロロエタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、シクロヘキサノン、メチルイソブチルケトン、γ-ブチロラクトン等が挙げられる。これらの有機溶剤は、引火防止のため、1~20質量%の範囲で水を添加してもよい。
 上記アルカリ性水溶液の塩基としては、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ、リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ、リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩などが用いられる。また、現像に用いるアルカリ性水溶液としては、例えば、0.1~5質量%炭酸ナトリウムの希薄溶液、0.1~5質量%炭酸カリウムの希薄溶液、0.1~5質量%水酸化ナトリウムの希薄溶液、0.1~5質量%四ホウ酸ナトリウムの希薄溶液等が好ましく挙げられる。また、現像に用いるアルカリ性水溶液のpHは9~14の範囲とすることが好ましく、その温度は、感光性樹脂組成物の層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。
 上記水系現像液としては、水又はアルカリ水溶液と一種以上の有機溶剤とからなる。ここでアルカリ物質としては、前記物質以外に、例えば、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2ーアミノ-2-ヒドロキシメチル-1、3-プロパンジオール、1、3-ジアミノプロパノール-2、モルホリン等が挙げられる。現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8~12とすることが好ましく、pH9~10とすることがより好ましい。上記有機溶剤としては、例えば、三アセトンアルコール、アセトン、酢酸エチル、炭素数1~4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。有機溶剤の濃度は、通常、2~90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。また、水系現像液中には、界面活性剤、消泡剤等を少量混入することもできる。
 また、必要に応じて2種類以上の現像方法を併用してもよい。現像の方式としては、例えば、ディップ方式、バトル方式、高圧スプレー方式等のスプレー方式、ブラッシング、スラッピング等が挙げられる。
 現像後の処理として、必要に応じて60~250℃程度の加熱又は0.1~1000mJ/cm2程度の露光を行うことによりコアパターンをさらに硬化して用いてもよい。
 次いで、コアフィルムより屈折率の低い上部クラッドフィルムを同様の方法で積層し、光導波路を作製する。上部クラッド層の厚さは、コア部を埋め込むことができる範囲であれば、特に制限はないが、乾燥後の厚さで、2~50μmであることが好ましく、小さい曲げ半径での屈曲耐久性を満足するとの観点から、その厚さは2~30μmの範囲であることがより好ましく、5~25μmの範囲であることが特に好ましい。上部クラッド層の厚さは、最初に形成される下部クラッド層の厚さと同一であっても異なってもよい。なお、ここで示す上部クラッド層の厚さとは、コア部と上部クラッド層との境界から上部クラッド層の上面までの値である。
[フレキシブル電気配線基板]
 フレキシブル電気配線基板としては、FPC(Flexible Printed Circuit)基板を好適に用いることができる。FPC基板の基板材料としては、ポリイミド、ポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマーなどが用いられるが、一般的には耐熱性や入手のしやすさの観点からポリイミドが用いられる。市販品としては、例えばカプトン(東レ・デュポン株式会社製)を用いたFPC基板が挙げられる。
 ここで、フレキシブル電気配線基板を構成する基板の厚さについては特に制限はないが、前述のように、補強材と基板の厚さの比が、屈曲耐久性の観点から4:1~1:4の範囲であることが好ましく、この範囲を満足するように基板の厚さを選定することが好ましい。さらには、光電気混載基板自体に求められる厚さから、該基板の厚さは適宜決定されるものであり、具体的には、5~50μmの範囲が好ましい。
[光電気混載基板]
 上記光導波路フィルム及びフレキシブル電気配線基板を接合して、光電気混載基板は製造される。
 光導波路フィルムとフレキシブル電気配線基板の接合に際しては、必要に応じて、接着剤を使用することができる。接着剤の種類としては、光導波路フィルム及びフレキシブル電気配線基板の材質に応じて、適宜決定することができる。
 光電気混載基板に可撓性を持たせるためには、接着剤が硬化後に柔軟性を有することが好ましく、具体的には、硬化後において、弾性率が700MPa以下であることが好ましく、600MPa以下であることがさらに好ましく、500MPa以下であることが特に好ましい。また、接着剤としての強度の点から、1MPa以上であることが好ましく、5MPa以上であることがより好ましい。
 接着剤の種類としては、アクリルゴム系接着剤や市販品としては、日立化成工業株式会社製高耐熱接着絶縁材KS7003(弾性率700MPa)、日立化成ポリマー株式会社製フレキシブル印刷配線板用接着剤ハイボン808(弾性率50MPa)などが好適に例示される。
 光導波路フィルムとフレキシブル電気配線基板の接合方法については特に制限はないが、密着性、気泡巻き込み防止の観点から、ロールラミネータ、または平板型ラミネータを用いる方法が好ましい。ロールラミネータでのラミネート温度は、室温(25℃)~100℃の範囲とすることが好ましい。室温(25℃)以上であると、光導波路との密着性が向上し、100℃以下であると、接着剤層が流動することなく、必要とする膜厚が得られる。以上の観点から、40~100℃の範囲がより好ましい。圧力は0.2~1.0MPa(1~10kgf/cm2)が好ましく、ラミネート速度は0.1~3m/minが好ましいが、これらの条件には特に制限はない。
 また、平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ここでの加熱温度は、50~100℃とすることが好ましく、圧着圧力は、0.1~1.0MPa(1~10kgf/cm2)とすることが好ましいが、これらの条件には特に制限はない。
 上述のようにして、製造された光電気混載基板に対して、本発明の特徴である補強材が貼付される。該補強材の貼付方法としては、特に制限はないが、接着剤を介して貼付する方法が簡便である。用い得る接着剤としては、光導波路フィルムとフレキシブル電気配線基板の接合に用いるのと同様のものを用いることができる。
 以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に何ら制限されるものではない。
(評価方法)
1.曲げ時の光損失
 各実施例及び比較例で製造された光電気混載基板について、その長手両端部に光入射側には導波路に内接する円の径より小さいコア径の50μmのマルチモードファイバを、光出射側には導波路に外接する円の径より大きいコア径の114μmのマルチモードファイバを透明で紫外線硬化型の接着剤(ダイキン工業(株)製「UV2100」)を用いて芯を合せてそれぞれの端面を接続した。
 次に、光入射側のマルチモードファイバの片側には波長850nmのレーザー光源(EXFO社製「FLS300」)を接続し、光出射側のマルチモードファイバの片側には受光センサ((株)アドバンテスト製「Q82214」)を接続した。
 導波路を真っ直ぐにした状態で、レーザー光を入射して受光センサにて初期の光損失AdBを計測した。次に、曲げRの2倍の直径を有する棒に導波路を180度円周に巻きつけた状態で、光損失BdBを測定した。直線時A-曲り時Bを計算することで、曲げ時の光損失を得た。
2.屈曲スライド試験
 各実施例及び比較例で製造された光電気混載基板について、スライド耐久試験機((株)大昌電子製)を用い、スライド量を20mmとし、曲げ半径を1mm又は2mmに設定し、スライド速度2回/秒の条件で屈曲耐久試験を行い、1000回毎に破断の有無を観察して破断しない最大回数を求めた。
3.引張弾性率及び引張強度
 測定対象のフィルムから、幅10mm、長さ70mmのサンプルを得、引張試験機((株)オリエンテック製「RTM-100」)を用い、JIS-K7127に準拠して、以下の条件で測定した。
条件:つかみ具間距離50mm、温度25℃、引張り速度50mm/min
 引張弾性率は、引張り応力―ひずみ曲線の初めの直線部分を用いて以下に示す式により算出した。また、引張り応力―ひずみ曲線において、破断するまでの最大強度を引張強度とした。
引張り弾性率(MPa)=直線上の2点間の応力の差(N)÷光導波路フィルムの元の平均断面積(mm2)÷同じ2点間のひずみの差
実施例1
(1-1)光導波路フィルムの作製
〔クラッド層形成用樹脂フィルムの作製〕
 (A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM-2110、分子量:252、旭電化工業株式会社製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP-170、旭電化工業株式会社製)2質量部、増感剤として、SP-100(商品名、旭電化工業株式会社製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋(株)製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
 上記で得られたクラッド層形成用樹脂ワニスAを、ポリアミドフィルム(商品名:ミクトロン、東レ(株)製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM-MC、(株)ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム(株)、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層25μm、上部クラッド層70μmとなるように調節した。
〔コア層形成用樹脂フィルムの作製〕
 (A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成(株)製)26質量部、(B)光重合性化合物として、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A-BPEF、新中村化学工業(株)製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA-1020、新中村化学工業(株)製)36質量部、(C)光重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
 上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績(株)製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム(株)、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。
[光導波路フィルムの作製]
 上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機((株)オーク製作所製、EXM-1172)にて樹脂側(基材フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層を形成した。
 次に、該下部クラッド層上に、ロールラミネータ(日立化成テクノプラント(株)製、HLM-1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムをラミネートし、次いで平板型ラミネータとして真空加圧式ラミネータ((株)名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、加圧時間30秒の条件にて加熱圧着して、コア層を形成した。
 次に、幅50μmのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N-ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
 次いで、上記と同様なラミネート条件にて、上部クラッド層として上記クラッド層形成用樹脂フィルムをラミネートした。さらに、紫外線(波長365nm)を両面に合計で25J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層を形成し基材フィルムが外側に配置されたフレキシブル光導波路を作製した。さらにポリアミドフィルム剥離のため、該フレキシブル光導波路を85℃/85%の高温高湿条件で24時間処理し、基材フィルムを除去したフレキシブル光導波路を作製した。
 なお、コア層及びクラッド層の屈折率をMetricon社製プリズムカプラー(Model2010)で測定したところ、波長830nmにて、コア層が1.584、クラッド層が1.550であった。また、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長10、5、3、2cm、入射ファイバー;GI-50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI-114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
 また、得られた光導波路フィルムの引張弾性率及び引張強度を上記方法により測定した結果、引張弾性率が2,000MPa、引張強度が70MPaであった。
(1-2)シート状接着剤の作製
 HTR-860P-3(帝国化学産業(株)製、商品名、グリシジル基含有アクリルゴム、分子量100万、Tg-7℃)100質量部、YDCN-703(東都化成(株)製、商品名、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量210)5.4質量部、YDCN-8170C(東都化成(株)製、商品名、ビスフェノールF型エポキシ樹脂、エポキシ当量157)16.2質量部、プライオーフェンLF2882(大日本インキ化学工業(株)製、商品名、ビスフェノールAノボラック樹脂)15.3質量部、NUCA-189(日本ユニカー株式会社製、商品名、γ-メルカプトプロピルトリメトキシシラン)0.1質量部、NUCA-1160(日本ユニカー(株)製、商品名、γ‐ウレイドプロピルトリエトキシシラン)0.3質量部、A-DPH(新中村化学工業(株)製、商品名、ジペンタエリスリトールヘキサアクリレート)30質量部、イルガキュア369(チバ・スペシャリティ・ケミカルズ社製、商品名、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1-オン:I-369)1.5質量部、シクロヘキサノンを加えて攪拌混合し、真空脱気した。この接着剤ワニスを、厚さ75μmの表面離型処理ポリエチレンテレフタレート(帝人株式会社製、テイジンテトロンフィルム:A-31)上に塗布し、80℃で30分間加熱乾燥し粘接着シートを得た。この粘接着シートに、厚さ80μmの光透過性の支持基材(サーモ株式会社製、低密度ポリエチレンテレフタレート/酢酸ビニル/低密度ポリエチレンテレフタレート三層フィルム:FHF-100)をあわせてラミネートすることにより保護フィルム(表面離型処理ポリエチレンテレフタレート)、粘接着剤層、及び光透過性の支持基材からなるシート状接着剤を作製した。粘接着剤層の厚さは10μmとした。
 このように作製したシート状接着剤の粘接着剤層を160℃で1時間硬化し、光線透過率を(株)日立ハイテクノロジーズ製、U-3310紫外可視分光光度計にて測定したところ、波長850nmにおいて98%以上の高い透過率を有しており、0.1dB以下相当の透過損失であった。
 なお、屈折率をMetricon社製プリズムカプラー(Model2010)で測定したところ、波長830nmにて1.505であった。
 また、得られたシート状接着剤の引張弾性率を上記方法により測定した結果、引張弾性率は350MPaであった。
(1-3)光電気混載基板の作製
 フレキシブル光導波路に、ロールラミネータ(日立化成テクノプラント(株)製、HLM-1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、保護フィルムを剥がしたシート状接着剤をラミネートした。続いてダイシングソー((株)ディスコ製、DAD-341)を用いて、導波路を短冊状(長さ120mm、幅2mm)に加工し、支持基材側から紫外線(365nm)を250mJ/cm2照射し、粘接着剤層と支持基材界面の密着力を低下させ支持基材を剥がして接着剤層付き光導波路を得た。
 次に、電気配線を有するフレキシブル電気配線基板(長さ120mm、幅2mm、基材:カプトン100EN(上記方法により測定した引張強度は370MPaであった。)、基板厚さ:25μm、銅回路厚さ:12μm)の所定の箇所に接着剤層付き光導波路を、紫外線露光機((株)大日本スクリーン製,MAP-1200-L)付随のマスクアライナー機構を利用して位置決めし、同ロールラミネータを用い圧力0.4MPa、温度80℃、ラミネート速度0.2m/minの条件で仮圧着した後、クリンオーブン中で160℃、1時間加熱しフレキシブル光導波路と電気配線基板を接着して、光電気混載基板を得た。
 ここでフレキシブル電気配線板の基材であるカプトンENの光線透過率を(株)日立ハイテクノロジーズ製、U-3310分光光度計にて測定したところ、波長850nmにおいて86%であった。これは0.7dB相当の透過損失であり、前述の粘接着剤層と合算しても電気配線板を透過する際の光損失は1dB未満と低損失であるため、本実施例では、光透過用スルーホールを設けない構造とした。
(1-4)携帯電話の作製
 図1はスライド形の携帯電話の構成を示す斜視図である。第1の受発光部を有する第1の筐体10と第2の受発光部を有する第2の筐体20を有し、第1の受発光部と第2の受発光部(図示せず)は光通信手段で接続されている。第1の筐体10はキーボード操作部と制御部と電源部と受発光素子等とから構成される。第2の筐体20には液晶表示部、音声部、カメラ部、制御部、電源部、及び受発光素子等から構成される。
 上記で作製した光電気混載基板を、上記携帯電話の第1の筐体と第2の筐体の間の空間部に、光導波路の幅方向が垂直方向となるように捻って配置した。曲げRは2mmとした。
 上記方法にて評価した結果、曲り部の光損失は0.4dBであった。導波路の入出上下の総厚みは0.27mmであった。また、100万回のスライド回数に耐えることを確認した。
比較例1
 実施例1において、従来と同様に光導波路を捻ることなく、配置したこと以外は実施例1と同様にして光導波路を設置した。実施例1と同様の方法で評価した結果、本例でもRを2mmとした所、曲り部の光損失は0.4dBであったが、導波路の入出上下の総厚みは4.2mmとなった。なお、100万回のスライド回数に耐えることを確認した。
比較例2
 実施例1において、従来と同様に光導波路を捻ることなく、配置したこと以外は実施例1と同様にして光導波路を設置した。実施例1と同様の方法で評価した結果本例でもRを1mmとした所、曲り部の光損失は1.2dBとなった。導波路の入出上下の総厚みは2.2mmとなった。また、曲げRが1mmのため、スライド回数は5千回で破断した。
 本発明の電子機器によれば、1mm以下に薄厚で筐体間の信号のやりとりが可能となり、携帯電話自体の薄型化が可能となる。また、長時間にわたってスライドを繰り返しても、光導波路に割れやクラックが発生せず、良好な通信機能を維持し得る。従って、携帯電話、PDA、小型のパーソナルコンピューター等に好適に使用することができる。

Claims (4)

  1.  第1の受発光部を有する第1の筐体及び第2の受発光部を有する第2の筐体から構成され、第1の筐体が第2の筐体に対して相対的に滑動する機構を有する電子機器であって、第1の受発光部と第2の受発光部を光信号で接続する光通信手段としての光導波路を備え、該光導波路は第1の筐体と第2の筐体の間の空間部において、該光導波路の幅方向が垂直方向となるように配置されることを特徴とする電子機器。
  2.  前記第1の筐体及び第2の筐体が、それぞれ第1の電気回路部及び第2の電気回路部を有し、該第1の電気回路部と該第2の電気回路部を電気信号で接続する電気接続手段を備えた請求項1に記載の電子機器。
  3.  前記電気接続手段がフレキシブルプリント基板であり、該フレキシブルプリント基板と光導波路が一体化されている請求項2に記載の電子機器。
  4.  前記電子機器が携帯電話機である請求項1~3のいずれかに記載の電子機器。
PCT/JP2009/057049 2008-04-07 2009-04-06 電子機器 WO2009125735A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010507231A JPWO2009125735A1 (ja) 2008-04-07 2009-04-06 電子機器
EP09730438A EP2264985A4 (en) 2008-04-07 2009-04-06 ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008099400 2008-04-07
JP2008-099400 2008-04-07

Publications (1)

Publication Number Publication Date
WO2009125735A1 true WO2009125735A1 (ja) 2009-10-15

Family

ID=41161868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057049 WO2009125735A1 (ja) 2008-04-07 2009-04-06 電子機器

Country Status (5)

Country Link
EP (1) EP2264985A4 (ja)
JP (1) JPWO2009125735A1 (ja)
KR (1) KR20110003478A (ja)
TW (1) TW200945006A (ja)
WO (1) WO2009125735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118306A (ja) * 2009-12-07 2011-06-16 Omron Corp 光伝送モジュール、電子機器、光伝送モジュールの組立方法、及び光伝送方法
JP2019074708A (ja) * 2017-10-19 2019-05-16 日本電信電話株式会社 光接続構造およびその形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119060A (ja) * 1997-10-20 1999-04-30 Sumitomo Electric Ind Ltd 光スイッチ用光配線収容ボックス
JP2004222173A (ja) 2003-01-17 2004-08-05 Matsushita Electric Ind Co Ltd 携帯電話機
JP2006042307A (ja) 2004-03-12 2006-02-09 Matsushita Electric Ind Co Ltd 携帯機器
JP2007288436A (ja) * 2006-04-14 2007-11-01 Matsushita Electric Ind Co Ltd スライド型携帯端末

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184617B2 (en) * 2004-03-12 2007-02-27 Matsushita Electric Industrial Co., Ltd. Portable device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119060A (ja) * 1997-10-20 1999-04-30 Sumitomo Electric Ind Ltd 光スイッチ用光配線収容ボックス
JP2004222173A (ja) 2003-01-17 2004-08-05 Matsushita Electric Ind Co Ltd 携帯電話機
JP2006042307A (ja) 2004-03-12 2006-02-09 Matsushita Electric Ind Co Ltd 携帯機器
JP2007288436A (ja) * 2006-04-14 2007-11-01 Matsushita Electric Ind Co Ltd スライド型携帯端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2264985A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118306A (ja) * 2009-12-07 2011-06-16 Omron Corp 光伝送モジュール、電子機器、光伝送モジュールの組立方法、及び光伝送方法
EP2333598A3 (en) * 2009-12-07 2013-11-20 OMRON Corporation, a corporation of Japan Optical transmission module, electronic instrument, method for assembling optical transmission module, and optical transmission method
US8639068B2 (en) 2009-12-07 2014-01-28 Omron Corporation Optical transmission module, electronic instrument, method for assembling optical transmission module, and optical transmission method
JP2019074708A (ja) * 2017-10-19 2019-05-16 日本電信電話株式会社 光接続構造およびその形成方法
JP6992398B2 (ja) 2017-10-19 2022-01-13 日本電信電話株式会社 光接続構造の形成方法

Also Published As

Publication number Publication date
TW200945006A (en) 2009-11-01
EP2264985A1 (en) 2010-12-22
EP2264985A4 (en) 2012-02-22
JPWO2009125735A1 (ja) 2011-08-04
KR20110003478A (ko) 2011-01-12

Similar Documents

Publication Publication Date Title
WO2009096067A1 (ja) 光電気混載基板及び電子機器
WO2010058476A1 (ja) 光電気混載基板及び電子機器
EP2159262B1 (en) Optical waveguide comprising a resin film
WO2011046115A1 (ja) 光導波路基板及びその製造方法
JP4265695B2 (ja) フレキシブル光導波路およびその製造方法ならびに光モジュール
JP5212141B2 (ja) フレキシブル光導波路の製造方法
JP2007128028A (ja) フレキシブル光導波路及びその製造方法
JP5109934B2 (ja) フレキシブル光電気混載基板及び電子機器
WO2010087378A1 (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
WO2009125735A1 (ja) 電子機器
JP5228947B2 (ja) フレキシブル光導波路及びその製造方法
JP2010197985A (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
JP2010164654A (ja) 複合光導波路
JP2010271371A (ja) フレキシブル光導波路
JP5458682B2 (ja) 光導波路形成用樹脂フィルム及びこれを用いた光導波路、その製造方法並びに光電気複合配線板
JP2010271369A (ja) フレキシブル光導波路
JP2010271370A (ja) フレキシブル光導波路
JP2010286674A (ja) 光導波路及び光電気複合配線板
JP2011017993A (ja) 光導波路及び光電気複合配線板
TWI434087B (zh) 光電混載基板及電子機器
JP2009260231A (ja) 光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合モジュール
JP2011017992A (ja) 光導波路及び光電気複合配線板
JP2012133118A (ja) 光電気複合基板、この製造方法、及びこれを用いた光電気複合モジュール
CN101995603A (zh) 光电混载基板和电子机器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507231

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107021997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009730438

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE