WO2009125472A1 - 発光素子及び表示パネル - Google Patents

発光素子及び表示パネル Download PDF

Info

Publication number
WO2009125472A1
WO2009125472A1 PCT/JP2008/056900 JP2008056900W WO2009125472A1 WO 2009125472 A1 WO2009125472 A1 WO 2009125472A1 JP 2008056900 W JP2008056900 W JP 2008056900W WO 2009125472 A1 WO2009125472 A1 WO 2009125472A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
electrode
light extraction
light emitting
Prior art date
Application number
PCT/JP2008/056900
Other languages
English (en)
French (fr)
Inventor
崇人 小山田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/056900 priority Critical patent/WO2009125472A1/ja
Priority to US12/936,878 priority patent/US20110042695A1/en
Priority to EP13192823.6A priority patent/EP2701218A3/en
Priority to EP08873863A priority patent/EP2265093A4/en
Priority to PCT/JP2008/072067 priority patent/WO2009125519A1/ja
Priority to JP2010507120A priority patent/JP5181019B2/ja
Publication of WO2009125472A1 publication Critical patent/WO2009125472A1/ja
Priority to US14/107,563 priority patent/US20140151669A1/en
Priority to US14/666,816 priority patent/US20150207103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/50Oxidation-reduction potentials, e.g. excited state redox potentials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】発光素子に光取り出し層を形成した場合に生じうる課題を解決すること。 【解決手段】有機半導体層47,48,49,50,51は、前記第1電極46と前記光電変換層49との間に、銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する光取り出し向上層99を備えている。光取り出し向上層99は、有機半導体層47,48,49,50,51内にて、一例として5.5eV以上の強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれている。

Description

発光素子及び表示パネル
 本発明は、一対の電極の間に与えた印加電圧に応じて発光層を発光させる発光素子等に関する。
 近年、フラットパネルディスプレイの1つとして有機エレクトロルミネッセンス(以下「EL」と省略する)現象を利用して画像を表示する有機ELディスプレイの開発が盛んに行われている。
 有機ELディスプレイは、有機電界発光素子の発光現象を利用して画像を表示する自発光型のディスプレイであるため、視野角が広く消費電力が小さく、かつ軽量で薄く構成することができる点が特徴である。有機電界発光素子は、2つの電極の間に有機半導体層が形成されており、この有機半導体層の一部には発光層が形成されている(特許文献1参照)。
 従来の有機ELディスプレイでは、各有機電界発光素子の内部において発光層が生成した光は、基板や有機半導体層内においてその層が延びる方向(横方向)に光導波しており、その割合は約80%にも到達する。そのため従来の有機電界発光素子は、有機ディスプレイの正面方向への光取り出し効率は一般的に20%程度に留まっており光取り出し効率が悪く、輝度を上げることが困難であった。
特開2007-12369号公報
 このため従来の有機ELディスプレイでは、各有機電界発光素子が、例えばその有機半導体層内に、発光層からの光取り出し効率を向上させるべく機能層(以下「光取り出し向上層」と称する)を設けることも考えられるが、次のような不都合も考えられる。このような光取り出し向上層を設けた場合には、この光取り出し向上層に隣接するその他の有機半導体層との電荷注入壁が増大し、素子の駆動電圧が上昇、且つキャリアバランス変化に伴う輝度低下が生ずることも考えられる。
 本発明が解決しようとする課題には、上記した問題が一例として挙げられる。
 上記課題を解決するために、請求項1記載の発明は、透明又は半透明な第1電極と、前記第1電極と対をなす光を反射する第2電極と、前記第1電極及び前記第2電極の一方から取り出されたホールと、前記第1電極及び前記第2電極の他方から取り出された電子との再結合によって発光する光電変換層を備える有機半導体層とを有し、前記有機半導体層は、前記第1電極と前記光電変換層との間に、銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する光取り出し向上層を備え、前記光取り出し向上層は、前記有機半導体層内にて、一例として5.5eV以上の強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれている。
 上記課題を解決するために、請求項16記載の発明は、透明又は半透明な第1電極と、前記第1電極と対をなす光を反射する第2電極と、前記第1電極及び前記第2電極の一方から取り出されたホールと、前記第1電極及び前記第2電極の他方から取り出された電子との再結合によって発光する光電変換層を備える有機半導体層とを有し、前記有機半導体層は、前記第1電極と前記光電変換層との間に、銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する光取り出し向上層を備え、前記光取り出し向上層は、前記有機半導体層内にて、一例として5.5eV以上の強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれている、発光素子によって各画素が構成されている。
 以下、本発明の一実施の形態を図面を参照しつつ説明する。
 <第1実施形態>
 図1は、第1実施形態としての発光素子が表示パネルの有機電界発光素子3に適用された場合の一例を示す部分断面図である。なお各層の厚さは説明の都合上簡素化しているが、これに限られない。
 有機電界発光素子3は有機半導体素子の一例であり、例えば赤色、緑色及び青色に対応させて各々形成される。図示の有機電界発光素子3は1画素を構成している。
 有機電界発光素子3は、例えばボトムエミッション型の有機電界発光素子であり、例えば赤色、緑色及び青色の各画素に対応させて各々形成される。有機電界発光素子3は、ガラス基板45上に、陽極46、ホール注入層47、光取り出し向上層99、ホール輸送層48、発光層49、電子輸送層50、電子注入層51及び陰極52が順次積層された構造となっている。なお有機電界発光素子3は、発光層49内に電荷及び励起子を各々閉じ込めるための電荷及び励起子拡散層が積層された構造を採用しても良い。
 このガラス基板45は、透明、半透明又は不透明な材質によって構成されている。上記陽極46は第1電極に相当し、ガラス基板45に沿って覆うように形成されている。この陽極46は、後述する発光層49に対してホールを供給する機能を有する。陽極46は、上述したITO(Indium Tin Oxide)以外にも、例えばAu、Ag、Cu又はIZO(Indium Zinc Oxide)を材質としても良く、それらの合金も採用することができる。またその他にも陽極46は、Al、Mo又はTiなどを採用することができる。本実施形態では、主として陽極46はITOを材質とした金属電極であるものとする。
 このホール注入層47は、この陽極46からホールを取り出し易くする機能を有する。このホール注入層47は、例えば、正孔注入層としては、特に限定はないが、銅フタロシアニン等の金属フタロシアニン類および無金属フタロシアニン類、カーボン膜、ポリアニリン等の導電性ポリマーを好適に採用することができる。上記ホール輸送層48は、ホール注入層47によって陽極46から取り出されたホールを発光層49に輸送する機能を有する。このホール輸送層48は、例えば、正孔輸送性を有する有機化合物として、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、1,1-ビス(4-ジ-p-トリアミノフェニル)-シクロヘキサン、1,1-ビス(4-ジ-p-トリアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)-フェニルメタン、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-[4(ジ-p-トリルアミノ)スチリル]スチルベン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノ-ビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノ-ビフェニルN-フェニルカルバゾール、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(3-アセナフテニル)-N-フェニル-アミノ]ビフェニル、1,5-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ナフタレン、4,4’-ビス[N-(9-アントリル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-アントリル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-フェナントリル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(8-フルオランテニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ピレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ペリレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(1-コロネニル)-N-フェニル-アミノ]ビフェニル、2,6-ビス(ジ-p-トリルアミノ)ナフタレン、2,6-ビス[ジ-(1-ナフチル)アミノ]ナフタレン、2,6-ビス[N-(1-ナフチル)-N-(2-ナフチル)アミノ]ナフタレン、4.4’’-ビス[N,N-ジ(2-ナフチル)アミノ]ターフェニル、4.4’-ビス{N-フェニル-N-[4-(1-ナフチル)フェニル]アミノ}ビフェニル、4,4’-ビス[N-フェニル-N-(2-ピレニル)-アミノ]ビフェニル、2,6-ビス[N,N-ジ(2-ナフチル)アミノ]フルオレン、4,4’’-ビス(N,N-ジ-p-トリルアミノ)ターフェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミン等が挙げられる。また、このホール輸送材質はホール注入層を兼ねる事ができる材質でもある。
 光取り出し向上層99は、ホール輸送層48とホール輸送層48との間に形成されている。光取り出し向上層99は、例えば銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する。光取り出し向上層99は、機能層としてのこれらホール輸送層48とホール輸送層48によって挟み込まれており、ホール輸送層48またはホール輸送層48の界面でオーミットコンタクトさせることで、駆動電圧の上昇を抑制することができる。なおここでいう機能層は、後述する混合系の各層によっても同様の効果を発揮することができるばかりでなく、薄膜内部で電荷移動錯体の形成などによるキャリア濃度の向上に伴う導電性構造が考えられ、さらに駆動電圧を低下させることができる可能を有する。この光取り出し向上層99の詳細については後述する。
 このホール輸送層48は、ホール注入層47と発光層49の間に形成されており、その材質であるNPBがホール移動度を持つホール輸送性の材料として一般的であるが、本実施形態では発光効率向上又は発光効率低下抑止層という機能を発揮する。
 上記発光層49は光電変換層に相当し、例えば有機物を材質としており、電界発光現象、つまり、いわゆるエレクトロルミネッセンス(EL:Electroluminescence)現象を使った発光素子である。この発光層49は、複数の電極46,52の間のいずれかに積層されており、印加電圧によって複数の電極46,52の間に生じた電界によって発光する機能を有する。この発光層49は、その外部から電界を用いて受け取ったエネルギーに基づく光を放出する現象を利用し、自ら光を出力する。
 電子輸送層50は、発光層49と電子注入層51との間に形成されている。電子輸送層50は、電子注入層51によって陰極52から取り出された電子を効率的に発光層49に輸送する。例えば、発光層49や電子輸送性有機半導体層の主成分の電子輸送性を有する有機化合物としては、p-テルフェニルやクアテルフェニル等の多環化合物およびそれらの誘導体、ナフタレン、テトラセン、ピレン、コロネン、クリセン、アントラセン、ジフェニルアントラセン、ナフタセン、フェナントレン等の縮合多環炭化水素化合物及びそれらの誘導体、フェナントロリン、バソフェナントロリン、フェナントリジン、アクリジン、キノリン、キノキサリン、フェナジン等の縮合複素環化合物およびそれらの誘導体や、フルオロセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、オキシン、アミノキノリン、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、キナクリドン、ルブレン等およびそれらの誘導体等を挙げることができる。金属キレート錯体化合物、特に金属キレート化オキサノイド化合物では、トリス(8-キノリノラト)アルミニウム、ビス(8-キノリノラト)マグネシウム、ビス[ベンゾ(f)-8-キノリノラト]亜鉛、ビス(2-メチル-8-キノリノラト)アルミニウム、トリス(8-キノリノラト)インジウム、トリス(5-メチル-8-キノリノラト)アルミニウム、8-キノリノラトリチウム、トリス(5-クロロ-8-キノリノラト)ガリウム、ビス(5-クロロ-8-キノリノラト)カルシウム等の8-キノリノラト或いはその誘導体を配位子として少なくとも一つ有する金属錯体も挙げることができる。
 また、電子輸送性を有する有機化合物として、オキサジアゾール類、トリアジン類、スチルベン誘導体およびジスチリルアリーレン誘導体、スチリル誘導体、ジオレフィン誘導体も好適に使用され得る。
 さらに、電子輸送性を有する有機化合物として使用できる有機化合物として、2,5-ビス(5,7-ジ-t-ベンチル-2-ベンゾオキサゾリル)-1,3,4-チアゾール、4,4’-ビス(5,7-t-ペンチル-2-ベンゾオキサゾリル)スチルベン、4,4’-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]スチルベン、2,5-ビス(5.7-ジ-t-ペンチル-2-ベンゾオキサゾリル)チオフェン、2,5-ビス[5-(α,α-ジメチルベンジル)-2-ベンゾオキサゾリル]チオフェン、2,5-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]-3,4-ジフェニルチオフェン、2,5-ビス(5-メチル-2-ベンゾオキサゾリル)チオフェン、4,4’-ビス(2-ベンゾオキサゾリル)ビフェニル、5-メチル-2-{2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2-[2-(4-クロロフェニル)ビニル]ナフト(1,2-d)オキサゾール等のベンゾオキサゾール系、2,2’-(p-フェニレンジピニレン)-ビスベンゾチアゾール等のベンゾチアゾール系、2-{2-[4-(2-ベンゾイミダゾリル)フェニル〕ビニル}ベンゾイミダゾール、2-[2-(4-カルボキシフェニル)ビニル]ベンゾイミダゾール等も挙げられる。
 さらに、電子輸送性を有する有機化合物として、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(3-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、ジスチリルベンゼン、1,4-ビス(2-エチルスチリル)ベンゼン、1,4-ビス(3-エチルスチリル)ベンゼン、1,4-ビス(2-メチルスチリル)-2-メチルベンゼン、1,4-ビス(2-メチルスチリル)-2-エチルベンゼン等も挙げられる。
 また、さらに、電子輸送性を有する有機化合物として、2,5-ビス(4-メチルスチリル)ピラジン、2,5-ビス(4-エチルスチリル)ピラジン、2,5-ビス[2-(1-ナフチル)ビニル]ピラジン、2,5-ビス(4-メトキシスチリル)ピラジン、2,5-ビス[2-(4-ビフェニル)ビニル]ピラジン、2,5-ビス[2-(1-ピレニル)ビニル]ピラジン等が挙げられる。
 その他、さらに、電子輸送性を有する有機化合物として、1,4-フェニレンジメチリディン、4,4’-フェニレンジメチリディン、2,5-キシリレンジメチリディン、2,6-ナフチレンジメチリディン、1,4-ビフェニレンジメチリディン、1,4-p-テレフェニレンジメチリディン、9,10-アントラセンジイルジメチリディン、4,4’-(2,2-ジ-t-ブチルフェニルビニル)ビフェニル、4,4’-(2,2-ジフェニルビニル)ビフェニル等、従来有機EL素子の作製に使用されている公知のものを適宜用いることができる。
 この発光層49上には電子注入層51が積層されている。この電子注入層51は、その陰極52から電子を取り出し易くする機能を有する。この電子注入層51上には陰極52が形成されている。なお、この電子注入層51はバッファー層や陰極52としての機能を含んでいても良い。この有機電界発光素子3は、陽極46と陰極52との間の印加電圧に応じた電界により発光層49が光を出力する。
 本実施形態のように有機電界発光素子3が、例えばボトムエミッションタイプである場合、この発光層49は、主として下方に光L(外部光)を放射するが、実際上においては一例として右側に示したように意図しない方向にも光Lを放射してしまう。有機電界発光素子3は、上述した光取り出し向上層99が存在しない構成である場合、発光層49が放射した一部の光Lは、外部光として有機電界発光素子3の外部に取り出されることなく、有機電界発光素子3内において消失してしまいがちである。本実施形態では、このように発光層49が放出した光Lのうち外部光として取り出すことができない光を「内部光」と呼ぶ。
 図2は、図1に示す有機電界発光素子3内における光路の一例を示す断面のイメージ図である。なお図示の各層の間には隙間が存在しているが、これは図面の見やすさを考慮して設けたものであるため、実際には存在していない。また請求項の有機半導体層とは、例えばホール注入層47、ホール輸送層48、発光層49、電子輸送層50及び電子注入層51のいずれか又はこれらいずれかの組み合わせを表している。
 この有機半導体層においては、その一部、例えば上述した光取り出し向上層99に、金属、例えば銀又は銀の合金を含有させている。つまり光取り出し向上層99は、例えば銀或いは銀の合金又は粒子を含んでいる。この光取り出し向上層99は、その他にも、例えば銀又は銀の合金の薄膜であっても良い。なおこのような金属としては銀に限られず、その代わりに、例えば金を採用しても良い。
 光取り出し向上層99は、有機半導体層47~51内にて、5.5eV以上の強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれた構成となっている。光取り出し向上層99は、例えば5.5eV以上の強いアクセプター性材料を含有する場合、ホール注入層47とホール輸送層48との間に形成されている。また光取り出し向上層99は、強いドナー性材料を含有する場合、電子注入層51と電子輸送層50との間に形成されている。光取り出し向上層99は、例えば金属層又は粒子である。
 有機電界発光素子3は、発光層49は、ホールと電子の再結合によって陽極46、陰極52及び発光層49に沿った方向を含め様々な方向に光を出力する。ここで、一般的な構成を採用した有機電界発光素子を例示した場合、当該一般的な有機電界発送素子においては、電子注入層51、電子輸送層50、発光層49、ホール輸送層48及びホール注入層47などの有機半導体中の横方向への光伝搬は発光量の約40%と云われている。ここでいう横方向とは発光層49に沿った方向に相当する。発光層49では発光点49aにおいて次のような光が生成される。
 <第1発光>
 第1発光は、左側に例示しているように通常の発光を表している。陽極46側への発光線Lは、透過性を有する光取り出し向上層99及び陽極46を透過して有機電界発光素子3の外部に出力される。ここでいう発光線Lは、上述した光Lに相当する。一方、陰極52側への発光線Lは陰極52で反射され、発光層49、光取り出し向上層99及び陽極46を透過して有機電界発光素子3の外部に出力される。
 <第2発光>
 第2発光は、中央に図示しているようにマイクロキャビティ効果や多重反射干渉効果を利用した発光を表している。第2発光では上述した第1発光とは異なる点のみを説明する。第2発光では、陽極46側への発光線Lがホール輸送層48にて反射し陰極52側に戻り、この陰極52が反射して再度陽極46へ向かって有機電界発光素子3の外部に出力される。
 <第3発光>
 第3発光は、ここで、陽極46側への発光線Lのうち発光層49にやや沿った方向への発光線Lは、一般的な構成を採用した従来の有機電界発光素子の内部で消滅しがちであったが、この有機電界発光素子3は、上記光取り出し向上層99の表面荒さに応じて発光線Lが散乱されて、陽極46から有機電界発光素子3の外部に出力される。有機電界発光素子3は、発光層49に備えられた光取り出し向上層99によって光取り出し効率が向上するため、全体として発光量が増大する。このとき各層の屈折率が上述のように設定されていると、横方向への光伝搬を抑制し、さらに光取り出し効率を向上することができる。
 <光取り出し効率の検証>
 図3は、本実施形態による効果を検証するための第1の比較例としての光取り出し効率の一例を示す図である。この第1の比較例では光取り出し向上層99が設けられていない。
 図3に示す一例においては、陽極46、ホール注入層47、ホール輸送層48、発光層49、電子輸送層50、電子注入層51及び陰極52は、各層の区切りを「/」で表すものとして、それぞれITO/トリフェニルアミン誘導体層(32nm)/NPB(38nm)/Alq(60nm)/LiO/Alであるものとする。なお、かっこ内の数値は各層の膜厚を表している。
 また各層の屈折率nは、ホール輸送層48が1.7~1.8であり、発光層49が1.7~1.8であり、ホール輸送層48が1.7~1.8である。この比較例では、駆動電圧Vは4.50[V]であり、輝度Lは274[cd/m]であり、電流効率ELは3.7[cd/A]である。
 図4は、本実施形態による効果を検証するための第2の比較例としての光取り出し効率の一例を示す図である。この第2の比較例ではホール注入層47及び光取り出し向上層99が設けられていない。
 図4に示す一例においては、陽極46、ホール輸送層48、発光層49、電子輸送層50、電子注入層51及び陰極52は、各層の区切りを「/」で表すものとして、それぞれITO/Ag(15nm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Alであるものとする。なお、かっこ内の数値は各層の膜厚を表している。この第2の比較例では、駆動電圧Vは4.9[V]であり、輝度Lは312[cd/m]であり、電流効率ELは4.2[cd/A]である。
 図5は、光取り出し向上層99の厚さに応じた光取り出し効率の一例を示す図である。
 図5に示す一例においては、陽極46、ホール注入層47、光取り出し向上層99、ホール輸送層48、発光層49、電子輸送層50、電子注入層51及び陰極52は、各層の区切りを「/」で表すものとして、それぞれITO/トリフェニルアミン誘導体層(32nm)/Ag(Xnm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Alであるものとする。なお、かっこ内の数値は各層の膜厚を表している。
 また各層の屈折率nは、ホール輸送層48が1.7~1.8であり、光取り出し向上層99が約0.2であり、発光層49が1.7~1.8であり、ホール輸送層48が1.7~1.8である。本実施形態における検証例における電流密度は、例えば7.5[mA/cm]としている。
 光取り出し向上層99の厚さが例えば15nmである場合、駆動電圧Vは5.27[V]であり、輝度Lは580[cd/m]であり、電流効率ELは7.7[cd/A]である。この検証例では、光取り出し向上層99の厚さが15[nm]のときに光取り出し効率が最大となっている。このようにすると、第1の比較例及び第2の比較例と比べて光取り出し効率を向上させることができている。
 図6は、光取り出し向上層99の厚さに応じた光取り出し効率の一例を示す図である。
 図6に示す一例においては、陽極46、ホール注入層47、光取り出し向上層99、ホール輸送層48、発光層49、電子輸送層50、電子注入層51及び陰極52は、各層の区切りを「/」で表すものとして、それぞれITO/40%-MoO:トリフェニルアミン誘導体混合層(32nm)/Ag(Xnm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Alであるものとする。ここで「40%-MoO:トリフェニルアミン誘導体混合層」とは、TPT-1(トリフェニルアミン誘導体)に40%MoOを混合させた層を示している。なお、かっこ内の数値は各層の膜厚を表している。
 また各層の屈折率nは、ホール輸送層48が2.0より大きく、光取り出し向上層99が約0.2であり、発光層49が1.7~1.8であり、ホール輸送層48が1.7~1.8である。なお電子注入層51、電子輸送層50、発光層49、ホール輸送層48及びホール注入層47などの有機半導体層は、全てできる限り屈折率nが低いことが好ましい。
 光取り出し向上層99の厚さが例えば15nmである場合、駆動電圧Vは5.10[V]であり、輝度Lは503[cd/m]であり、電流効率ELは6.7[cd/A]である。この検証例では、光取り出し向上層99の厚さが15[nm]のときに光取り出し効率が最大となっている。このようにすると、第1の比較例及び第2の比較例と比べて光取り出し効率を向上させることができている。
 図7は、光取り出し向上層99の厚さに応じた光取り出し効率の一例を示す図である。
 図7に示す一例においては、陽極46、ホール注入層47、光取り出し向上層99、ホール輸送層48、発光層49、電子輸送層50、電子注入層51及び陰極52は、各層の区切りを「/」で表すものとして、それぞれITO/トリフェニルアミン誘導体層(32nm)/Au(Xnm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Alであるものとする。なお、かっこ内の数値は各層の膜厚を表している。
 また各層の屈折率nは、ホール輸送層48が1.7~1.8であり、光取り出し向上層99が約0.6であり、発光層49が1.7~1.8であり、ホール輸送層48が1.7~1.8である。この例では既に説明した例と比べて、光取り出し向上層99の反射率が低下しているとともに屈折率が低下している。
 光取り出し向上層99の厚さが例えば15nmである場合、駆動電圧Vは5.29[V]であり、輝度Lは361[cd/m]であり、電流効率ELは4.9[cd/A]である。この検証例では、光取り出し向上層99の厚さが20[nm]のときに光取り出し効率が最大となっている。このようにすると、第1の比較例及び第2の比較例と比べて光取り出し効率を向上させることができている。
 図8は、光取り出し向上層99の厚さに応じた光取り出し効率の一例を示す図である。
 図8に示す一例においては、陽極46、ホール注入層47、光取り出し向上層99、ホール輸送層48、発光層49、電子輸送層50、電子注入層51及び陰極52は、各層の区切りを「/」で表すものとして、それぞれITO/トリフェニルアミン誘導体層(32nm)/Ag(Xnm)/40%-MoO:トリフェニルアミン誘導体混合層(28nm)/NPB(10nm)/Alq(60nm)/LiO/Alであるものとする。なお、かっこ内の数値は各層の膜厚を表している。
 また各層の屈折率nは、ホール輸送層48が1.7~1.8であり、光取り出し向上層99が約0.2であり、発光層49が1.7~1.8であり、ホール輸送層48が1.7~1.8である。この例では既に説明した例と比べて屈折率が低下している。
 光取り出し向上層99の厚さが例えば15nmである場合、駆動電圧Vは5.29[V]であり、輝度Lは361[cd/m]であり、電流効率ELは4.9[cd/A]である。この検証例では、光取り出し向上層99の厚さが20[nm]のときに光取り出し効率が最大となっている。このようにすると、第1の比較例及び第2の比較例と比べて光取り出し効率を向上させることができている。
 上記実施形態における有機電界発光素子3は、各層を次のように構成することもできる。
 つまり光取り出し向上層99は透明或いは半透明の薄膜であり、反射率が高い薄膜が好ましく、更に隣接する層より屈折率が低くことが好ましい。この光取り出し向上層99の材質としては、例えばAg,Au,Cu,Al,Pt,Mgの単体の金属、MgAg,MgAuなどの合金系の薄膜、酸化物の薄膜、フッ化物の薄膜、酸化物、フッ化物と金属の混合系の薄膜などを採用することができる。特にAg,Ag合金、Mg合金系は反射率が高く、Agはバルクの屈折率は1以下と低い性質を有する。これらの金属、合金系材料を使用した薄膜は、例えば半透明の1nm以上50nm以下の膜厚として使用することができる。酸化物の薄膜、フッ化物の薄膜、フッ化物と金属の混合系の薄膜は、透明性が高い場合もあるので膜厚は限定されない。さらに、その薄膜は10nm以下でラフネス(界面が平坦ではない)があるので、そのラフネスによって横方向への伝播した光が散乱され、正面方向へ放射される。基板45上の厚さ3nmのAuのラフネスは2.6nmである。
 光取り出し向上層99は、膜厚を、例えば1~50nmとした場合、その透過率が400nm~700nmの可視域で1%~99%以下、特に10~90%、更には20~70%とすることができる。また光取り出し向上層99は、その反射率が400nm~700nmの可視域で1%~99%以下、特に5~95%、更には10~70%とすることができる。
 発光層49は隣接する層より屈折率が同程度、或いは低いのが望ましい。
 <積層構成の一例>
1.ボトムエミッションタイプ(第1構成に相当)
 有機電界発光素子3の積層構成としては、図9に示す一般的な構成に、図10に示す積層構成のように、ホール注入層47とホール輸送層48との間に光取り出し向上層99が形成されている構成の他にも、次のような構成を採用することができる。なお図9及び図10に示す有機電界発光素子の材質としては、一例として陽極46はITOであり、ホール注入層47はCuPcまたはTPT-1(トリフェニルアミン誘導体)であり、ホール輸送層48はNPBであり、発光層49はAlqであり、電子輸送層50はAlqであり、電子注入層51はLiOであり、陰極52はAlである。
 有機電界発光素子の層構成としては、図10に示す構造(構造1-1に相当)において、図11に示すようにホール輸送層48と光取り出し向上層99との間に第2ホール注入層47bが形成されている形態でも良い(構造1-2に相当)。第2ホール注入層47bの材質としては、MoOを例示することができる。光取り出し向上層99は機能層としての第2ホール注入層47bに接している。
 有機電界発光素子の層構成としては、図10に示す構成に加えて、図12に示すように光取り出し向上層99とホール注入層47との間に第1ホール注入層47aが形成されている形態でも良い(構造1-3に相当)。第1ホール注入層47aの材質としては、MoOを例示することができる。光取り出し向上層99は機能層としての第1ホール注入層47aに接している。
 有機電界発光素子の層構成としては、図12に示す構成に加えて、図13に示すようにホール輸送層48と光取り出し向上層99との間に第2ホール注入層47bが形成されている形態でも良い(構造1-4に相当)。第2ホール注入層47bの材質としては、MoOを例示することができる。光取り出し向上層99は機能層としての第2ホール注入層47b及び第1ホール注入層47aに挟み込まれている。
 有機電界発光素子の層構成としては、図10に示す構成において、図14に示すようにホール輸送層48の代わりに混合系ホール注入層47cが形成されている形態でも良い(構造1-5に相当)。混合系ホール注入層47cの材質としては、MoO:TPT-1(トリフェニルアミン誘導体)の混合層を例示することができる。光取り出し向上層99は機能層としての混合系ホール注入層47cに接している。
 有機電界発光素子の層構成としては、図13に示す構成における第1ホール注入層47a及びホール注入層47の代わりに、図15に示すように混合系ホール注入層47cが形成されている形態でも良い(構造1-6に相当)。混合系ホール注入層47cの材質としては、MoO:TPT-1(トリフェニルアミン誘導体)の混合層を例示することができる。光取り出し向上層99は機能層としての第2ホール注入層47b及び混合系ホール注入層47cに挟み込まれている。
 有機電界発光素子の層構成としては、図10に示す構成におけるホール輸送層48、光取り出し向上層99及びホール注入層47の代わりに、図16に示すようにホール輸送層兼励起子閉じ込め層48b、混合系ホール輸送層48a、光取り出し向上層99及びホール輸送層48が形成されている形態でも良い(構造1-7に相当)。ホール輸送層兼励起子閉じ込め層48bの材質としては、NPBを例示することができる。混合系ホール輸送層48aの材質としては、MoO:TPT-1(トリフェニルアミン誘導体)を例示することができる。光取り出し向上層99は機能層としての混合系ホール輸送層48aに接している。
 有機電界発光素子の層構成としては、図16に示す構成における光取り出し向上層99とホール輸送層48との間に、図17に示すように第1ホール注入層47aが形成されている形態でも良い(構造1-8に相当)。第1ホール注入層47aの材質としては、MoOを例示することができる。光取り出し向上層99は機能層としての混合系ホール輸送層48a及び第1ホール注入層47aにより挟み込まれている。
 有機電界発光素子の層構成としては、図16に示す構成におけるホール輸送層48及び第1ホール注入層47aの代わりに、図18に示すように混合系ホール注入層47cが形成されている形態でも良い(構造1-9に相当)。混合系ホール注入層47cの材質としては、MoO:TPT-1(トリフェニルアミン誘導体)を例示することができる。光取り出し向上層99は機能層としての混合系ホール輸送層48a及び混合系ホール注入層47cに依って挟み込まれている。
 有機電界発光素子の層構成としては、図10に示す構成におけるホール輸送層48と光取り出し向上層99との間に、図19に示すように第2ホール注入層47bが形成されている形態でも良い(比較構造に相当)。第2ホール注入層47bの材質としては、MoOを例示することができる。光取り出し向上層99は機能層としての第2ホール注入層47bに接している。
 有機電界発光素子の層構成としては、図18に示す構成における混合系ホール輸送層48a及び混合系ホール注入層47cの代わりに、それぞれ図20に示すようにホール輸送層48c及びホール注入層47dが形成されている形態でも良い(関連第1構造)。ホール輸送層48cの材質としては、MoOなどの酸化物半導体を例示することができ、ホール注入層47dの材質としては、MoOなどの酸化物半導体を例示することができる。光取り出し向上層99は機能層としてのホール輸送層48c及びホール注入層47dによって挟み込まれている。このように酸化物で光取り出し向上層99を挟み込む構成とすると、ウェットプロセスでパターンを形成することが可能となる。
 有機電界発光素子の層構成としては、図20に示す構成におけるホール輸送層兼励起子閉じ込め層48bの代わりに、図21に示すようにホール輸送層48c及びホール注入層47dが形成されている形態でも良い(関連第2構造)。ホール注入層47の材質としては、PEDOT:PSSなどの塗布型ホール注入層、TPT-1(トリフェニルアミン誘導体)を例示することができる。光取り出し向上層99は機能層としてのホール輸送層48c及びホール注入層47dによって挟み込まれている。
 図22は、図9~図21に示した各構成を採用した有機電界発光素子の駆動電圧V[V]及び輝度L[cd/m]の検証例を示す図である。この検証例における電流密度は、例えば7.5[mA/cm]としている。まず最初に図9~図21における各構成における材質を説明する。なおかっこ書きは膜厚を表している。「/」は各層の区切りを示しており、左から右へ陽極46からの各層の材質などを表している。なおITOは導電性酸化物の一例を表しており、MoOは酸化物半導体の一例を表している。
 一般第1構造:ITO/TPT-1(32nm)/NPB(38nm)/Alq(60nm)/LiO/Al
 一般第2構造:ITO/CuPc(25nm)/NPB(45nm)/Alq(60nm)/LiO/Al
 一般第3構造:ITO/40%-MoO:TPT-1(25nm)/NPB(45nm)/Alq(60nm)/LiO/Al
 構造1-1:ITO/TPT-1(32nm)/Ag(15nm)/NPB(45nm)/Alq(60nm)/LiO/Al
 構造1-2:ITO/TPT-1(29nm)/MoO(3nm)/Ag(15nm)/NPB(45nm)/Alq(60nm)/LiO/Al
 構造1-3:ITO/TPT-1(32nm)/Ag(15nm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Al
 構造1-4:ITO/TPT-1(29nm)/MoO(3nm)/Ag(15nm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Al
 構造1-5:ITO/40%-MoO:TPT-1(32nm)/Ag(15nm)/NPB(45nm)/Alq(60nm)/LiO/Al
 構造1-6:ITO/40%-MoO:TPT-1(32nm)/Ag(15nm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Al
 構造1-7:ITO/TPT-1(32nm)/Ag(15nm)/40%-MoO:TPT-1(32nm)/NPB(10nm)/Alq(60nm)/LiO/Al
 構造1-8:ITO/TPT-1(29nm)/MoO(3nm)/Ag(15nm)/40%-MoO:TPT-1(35nm)/NPB(10nm)/Alq(60nm)/LiO/Al
 構造1-9:ITO/40%-MoO:TPT-1(32nm)/Ag(15nm)/40%-MoO:TPT-1(45nm)/NPB(10nm)/Alq(60nm)/LiO/Al
 構造1-9’:ITO/40%-MoO:TPT-1(32nm)/Ag(15nm)/40%-MoO:TPT-1(3nm)/NPB(42nm)/Alq(60nm)/LiO/Al
 比較構造:ITO/Ag(15nm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Al
 第1関連構造:ITO/MoO(39nm)/Ag(15nm)/MoO(3nm)/NPB(42nm)/Alq(60nm)/LiO/Al
 第1’関連構造:ITO/MoO(39nm)/Ag(15nm)/MoO(35nm)/NPB(10nm)/Alq(60nm)/LiO/Al
 まず図10に示す構造1-1を採用した有機電界発光素子は、図9に示す一般第1構成、一般第2構成、一般第3構成及び、図19に示す比較構造(以下、単に「一般第1構成など」と称する)に比べて、駆動電圧Vが9.5[V]とかなり上昇している。これは、図11に示す構造1-2を採用した有機電界発光素子においても9.4[V]とほぼ同様のことが云える。
 次に図12に示す構造1-3を採用した有機電界発光素子は、駆動電圧Vが5.4[V]と大きく減少し、一般第1構成などの駆動電圧Vとほぼ同様となる。これは、図13に示す構造1-4を採用した有機電界発光素子、図15に示す構造1-6を採用した有機電界発光素子、図17に示す構造1-8を採用した有機電界発光素子、図18に示す構造1-9を採用した有機電界発光素子及び、図19に示す構造1-9’を採用した有機電界発光素子においてもほぼ同様のことが云える。なおこれらのうち特に、図13に示す構造1-4を採用した有機電界発光素子、図15に示す構造1-6を採用した有機電界発光素子及び、図19に示す構造1-9’を採用した有機電界発光素子においては、特に高い輝度L[cd/m]を確保することができている。
 なお、本実施形態は、上記に限られず、種々の変形が可能である。以下、そのような変形例を順を追って説明する。
2.トップエミッションタイプ(第2構成に相当)
 上述した実施形態は、主としてボトムエミッションタイプの有機電界発光素子3について説明してきたが、光Lが発光層49から陰極52を経由して出力されるトップエミッションタイプの有機電界発光素子にも適用することができる。
 有機電界発光素子の層構成としては、図9に示す構成において、図23に示すように第1電子輸送層50aと第2電子輸送層50bとの間に光取り出し向上層99が形成された構成であっても良い(構造2-1)。これら第1電子輸送層50a及び第2電子輸送層50bの材質としては、それぞれAlqを例示することができる。
 有機電界発光素子の積層構成としては、図23に示す構成に加えて、図24に示すように第1電子輸送層50aと光取り出し向上層99との間に第1電子注入層51aが形成された構成であっても良い(構造2-2に相当)。第1電子注入層51aの材質としては、LiOを例示することができる。光取り出し向上層99は機能層としての第1電子注入層51aに接している。
 有機電界発光素子の層構成としては、図23に示す構成に加えて、図25に示すように光取り出し向上層99と第2電子輸送層50bとの間に第2電子注入層51bが形成された構成であっても良い(構造2-3に相当)。第2電子注入層51bの材質としては、LiOを例示することができる。光取り出し向上層99は機能層としての第2電子注入層51bに接している。
 有機電界発光素子の層構成としては、図24に示す構成に加えて、図26に示すように第1電子輸送層50aと光取り出し向上層99との間に第1電子注入層51aが形成された構成であっても良い(構造2-4に相当)。光取り出し向上層99は機能層としての第1電子注入層51a及び第2電子注入層51bによって挟み込まれている。
 有機電界発光素子の層構成としては、図23に示す構成における電子注入層51及び第1電子輸送層50aの代わりに、図27に示すように混合系電子注入層51cが形成された構成であっても良い(構造2-5に相当)。混合系電子注入層51cの材質としては、LiOを例示することができる。光取り出し向上層99は機能層としての混合系電子注入層51cに接している。
 有機電界発光素子の層構成としては、図27に示す構成において、図28に示すように光取り出し向上層99と第2電子輸送層50bとの間に第2電子注入層51bが形成された構成であっても良い(構造2-6に相当)。第2電子注入層51bの材質としては、LiOを例示することができる。光取り出し向上層99は機能層としての混合系電子注入層51c及び第2電子注入層51bに挟み込まれている。
 有機電界発光素子の層構成としては、図25に示す構成における第2電子注入層51b及び第2電子輸送層50bの代わりに、図29に示すように混合系電子輸送層50cが形成された構成であっても良い(構造2-7に相当)。混合系電子輸送層50cの材質としては、LiO及びAlqの混合膜を例示することができる。光取り出し向上層99は機能層としての混合系電子輸送層50cに接している。
 有機電界発光素子の層構成としては、図29に示す構成において、図30に示すようにおける第1電子輸送層50aと光取り出し向上層99との間に第1電子注入層51aが形成された構成であっても良い(構造2-8に相当)。光取り出し向上層99は機能層としての第1電子注入層51a及び混合系電子輸送層50cに挟み込まれている。
 有機電界発光素子の層構成としては、図29に示す構成における電子注入層51及び第1電子輸送層50aの代わりに、図31に示すように混合系電子注入層51cが形成された構成であっても良い(構造2-9に相当)。光取り出し向上層99は機能層としての混合系電子注入層51c及び混合系電子輸送層50cによって挟み込まれている。
 上記各構成例においては、陽極46は透明或いは半透明の薄膜が良く、光取り出し向上層に用いられた材料を使用することができる。第2構成の場合、反射率高い薄膜が良く、光取り出し向上層99に用いられた材料を一部使用でき、かつ金属系、合金系の膜厚は50nm以上が好ましい。
 <ホール注入層>
 ホール注入層47は、主に陽極46(例えばITO)からホール輸送層48へのホール注入を促す。ホール注入層47は、例えば、モリブデン酸化物、バナジウム酸化物、タングステン酸化物、ゲルマニウム酸化物、レニウム酸化物、チタン酸化物、亜鉛酸化物などの導電性酸化物、キノジメタン誘導体(TCNQ,F4-TCNQ,TNAP)、ホウ素化合物などの有機分子或いは有機化合物、FeCl,SbCl,SbF6などの金属塩化合物などを混合することで、第1ホール注入層47a、ホール輸送層48は必要なくなる場合がある。この駆動電圧低減効果は、ホール注入層48或いは、ホール輸送層48/光取り出し向上層99の界面でオーミックコンタクトさせることができる。更に、混合系は薄膜内部で電荷移動錯体の形成などによるキャリア濃度向上に伴い導電性向上も考えられ、光取り出しの際の膜厚調整に伴う駆動電圧の変化を抑制し、且つ低駆動電圧を維持できる。ホール注入層47は、第1ホール注入層47aと第2ホール注入層47b、ホール輸送層48より屈折率を同程度或いは高くすることで、光が屈折率の低いところから高いところへ向かう性質を利用できるため、光取り出し効率がより向上する。また、特に膜厚が10nm以下と十分に薄い場合は屈折率の影響を無くすことができる。
 <第1ホール注入層>
 光取り出し向上層99を使用した場合、各々の金属で仕事関数が多様であり、ホール注入層47から光取り出し効率へのホール注入障壁が高くなり駆動電圧が向上するおそれがある。ホール注入層47/光取り出し向上層99の界面に第1ホール注入層47aを設ける。例えば、モリブデン酸化物、バナジウム酸化物、タングステン酸化物、ゲルマニウム酸化物、レニウム酸化物、チタン酸化物、亜鉛酸化物などの導電性酸化物、キノジメタン誘導体(TCNQ,F4-TCNQ,TNAP)、ホウ素化合物などの有機分子或いは有機化合物、FeCl,SbCl,SbF6などの金属塩化合物などが好ましい。第1ホール注入層47aを設ける方法もあるが、例示した材料とホール注入層47を混合した場合、第1ホール注入層47a、ホール輸送層48は必要なくなる場合もある。この駆動電圧低減効果は、ホール注入層47/或いはホール輸送層8/光取り出し向上層99の界面でオーミックコンタクトさせることができる。更に、混合系は薄膜内部で電荷移動錯体の形成などによるキャリア濃度向上に伴い導電性向上も考えられ、光取り出しの際の膜厚調整に伴う駆動電圧の変化を抑制し、且つ低駆動電圧を維持できる。第1ホール注入層47aは、ホール注入層47より屈折率を同程度或いは低く、第2ホール注入層47b或いはホール注入層47より屈折率を同程度或いは高くすることで、光が屈折率の低いところから高いところへ向かう性質を利用できるため、光取り出し効率がより向上する。また、特に膜厚が10nm以下と十分に薄い場合は屈折率の影響を無くすことができる。
 <第2ホール注入層>
 光取り出し向上層99を使用した場合、各々の金属で仕事関数が多様であり、光取り出し向上層99からホール輸送層48へのホール注入障壁が高くなり駆動電圧が向上するおそれがある。これを回避するため、光取り出し向上層99/ホール輸送層48或いは発光層49の界面に第2ホール注入層47bを設ける。例えば、モリブデン酸化物、バナジウム酸化物、タングステン酸化物、ゲルマニウム酸化物、レニウム酸化物、チタン酸化物、亜鉛酸化物などの導電性酸化物、キノジメタン誘導体(TCNQ,F4-TCNQ,TNAP)、ホウ素化合物などの有機分子或いは有機化合物、FeCl,SbCl,SbF6などの金属塩化合物などが好ましい。また、これらの材料をホール輸送(層)材と混合することによっても駆動電圧を低減することができるという効果が得られる。この駆動電圧低減の効果は、光取り出し向上層99/ホール輸送層48の界面でオーミックコンタクトさせることが重要であり、混合系で混合系においても同様の効果が得られると考えられる。更に、混合系は薄膜内部で電荷移動錯体の形成などによるキャリア濃度向上に伴い導電性向上も考えられ、光取り出しの際の膜厚調整に伴う駆動電圧の変化を抑制し、且つ低駆動電圧を維持できる。第2ホール注入層47bは、ホール注入層47、第1ホール注入層47a、ホール輸送層48より屈折率を同程度或いは低くすることで、光が屈折率の低いところから高いところへ向かう性質を利用できるため、光取り出し効率がより向上する。また、特に膜厚が10nm以下と十分に薄い場合は屈折率の影響を無くすことができる。
 <ホール輸送層>
 ホール輸送層48については上述した第2ホール注入層47bとほぼ同様であるので説明を省略する。
 <陰極>
 陰極52は、図2、図9~図21のいずれかに示す構成(第1構成:ボトムエミッションタイプに相当)の場合、反射率高い薄膜が良く、光取り出し向上層99に用いられた材料を一部使用でき、かつ金属系、合金系の膜厚は50nm以上10000nm以下が好ましい。陰極52は、図23~図31のいずれかに示す構造(第2構成:トップエミッションタイプに相当)の場合、透明或いは半透明の薄膜が良く、光取り出し向上層99に用いられた材料を使用することができ、1nm以上100nm以下が好ましい。
 <電子注入層>
 電子注入層51には、例えばアルカリ金属、アルカリ土類金属などの仕事関数が3.0eVより浅いエネルギーの材料を含有する化合物が使用される。特にCsは2.0eV付近と低い。電子注入層51に電子輸送性を有する有機分子を混合した場合、電子輸送層50は必要なくなる場合がある。電子注入層51は、第1電子注入層51aと第2電子注入層51b、電子輸送層50より屈折率を同程度或いは高くすることで、光が屈折率の低いところから高いところへ向かう性質を利用できるため、光取り出し効率がより向上する。また、特に膜厚が10nm以下と十分に薄い場合は屈折率の影響を無くすことができる。
 <第1電子注入層>
 第1電子注入層51aは、ドープする材料が異なるものの考え方は上述した第1ホール注入層47aとほぼ同様であり、屈折率の考えもほぼ同様である。すなわちこの第1電子注入層51aは、電子注入層51或いは電子輸送層50より屈折率を同程度或いは低く、第2電子注入層51bより屈折率を同程度或いは高くすることで、光が屈折率の低いところから高いところへ向かう性質を利用できるため、光取り出し効率がより向上する。また、特に膜厚が10nm以下と十分に薄い場合は屈折率の影響を無くすことができる
 <第2電子注入層>
 第2電子注入層51bは、ドープする材料が異なるものの考え方は上述した第2ホール注入層47bとほぼ同様であり、屈折率の考えもほぼ同様である。この第2電子注入層51bは、電子注入層51、第1電子注入層51a、電子輸送層50より屈折率を同程度或いは低くすることで、光が屈折率の低いところから高いところへ向かう性質を利用できるため、光取り出し効率がより向上する。また、特に膜厚が10nm以下と十分に薄い場合は屈折率の影響を無くすことができる。
 <電子輸送層>
 電子輸送層50は、上述した電子注入層51及び第1電子注入層51aとほぼ同様であるので、説明を省略する。
 以上説明したように、本実施形態における発光素子は、透明又は半透明な第1電極46(陽極に相当)と、前記第1電極46と対をなす光を反射する第2電極52(陰極に相当)と、前記第1電極46及び前記第2電極52の一方から取り出されたホールと、前記第1電極46及び前記第2電極52の他方から取り出された電子との再結合によって発光する光電変換層49を備える有機半導体層47,48,49,50,51とを有し、前記有機半導体層47,48,49,50,51は、前記第1電極46と前記光電変換層49との間に、銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する光取り出し向上層99を備え、前記光取り出し向上層99は、前記有機半導体層47,48,49,50,51内にて、(一例として5.5eV以上の)強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれていることを特徴とする。なおこのような構成の発光素子は、上述した有機電界発光素子3のみならず、半導体レーザなどの他の発光素子も適用することができる。
 以上説明したように、本実施形態における表示パネルは、透明又は半透明な第1電極46(陽極に相当)と、前記第1電極46と対をなす光を反射する第2電極52(陰極に相当)と、前記第1電極46及び前記第2電極52の一方から取り出されたホールと、前記第1電極46及び前記第2電極52の他方から取り出された電子との再結合によって発光する光電変換層49を備える有機半導体層47,48,49,50,51とを有し、前記有機半導体層47,48,49,50,51が、前記第1電極46と前記光電変換層49との間に、銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する光取り出し向上層99を備え、前記光取り出し向上層99は、前記有機半導体層47,48,49,50,51内にて、(一例として5.5eV以上の)強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれている、発光素子が各画素を構成することを特徴とする。
 まず発光素子は、有機半導体層47,48,49,50,51は、ホールと電子の再結合によって第1電極46側、第2電極52側及び有機半導体層47,48,49,50,51に沿った方向を含め様々な方向に光を出力する。第1電極46側への光は、透過性を有する光取り出し向上層99及び第1電極46を透過して発光素子3の外部に出力される。
 一方、第2電極52側への光は、マイクロキャビティ効果、多重反射干渉効果により、第2電極42で反射され、有機半導体層47,48,49,50,51、光取り出し向上層99及び第1電極46を透過して発光素子の外部に出力される。
 ここで、第1電極46側への光のうち有機半導体層47,48,49,50,51にやや沿った方向への光は、一般的な構成を採用する従来の有機電界発光素子の内部で消滅しがちであったが、この発光素子3は、上記光取り出し向上層99の表面荒さに応じて散乱されて、第1電極46を経由して発光素子3の外部に出力される。発光素子3は、基板45に工夫をしなくても、有機半導体層47,48,49,50,51に備えられた光取り出し向上層99によって光取り出し効率が向上するため、全体として輝度を上げることができる。
 ここで発光素子は、その有機半導体層47,48,49,50,51に光取り出し向上層99を備えても、この光取り出し向上層99が隣接する有機半導体層47,48,49,50,51との間で円滑な電荷のやり取りが可能なため、駆動電圧の上昇を回避することができる。またこのような発光素子は、光電変換層49内のキャリアバランスを整えることができる。またこのような発光素子は、消費電力を低減することができ、かつ素子への負担が減るため、素子寿命が長くなる。
 このような光取り出し向上層99を設けた場合には、一見すると、この光取り出し向上層99に隣接するその他の有機半導体層47~51などとの電荷注入壁が増大し、素子の駆動電圧が上昇、且つキャリアバランス変化に伴う輝度低下が生ずることも考えられる。しかしながらこの光取り出し向上層99は、有機半導体層47~51内にて、5.5eV以上の強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれているため、その他の有機半導体層47~51などとの電荷注入壁が増大しなく、素子の駆動電圧が上昇せず、且つキャリアバランス変化に伴う輝度低下が生ずることが無くなる。
 上記実施形態における発光素子3においては、上述した構成に加えてさらに、前記有機半導体層は、前記第1電極46と前記第2電極52の一方(例えば実施形態では陽極に相当)上に形成されており前記一方の電極からホールを取り出し易くするホール注入層47と、前記ホール注入層37によって取り出されたホールを前記光電変換層49に輸送するホール輸送層48とを有することを特徴とする。
 このような構成の発光素子は有機電界発光素子と呼ばれている。このような構成とすると、有機電界発光素子2は、光電変換層49は、ホールと電子の再結合によって第1電極46側、第2電極52側及び光電変換層49に沿った方向を含め様々な方向に光を出力する。第1電極46側への光は、透過性を有する光取り出し向上層99及び第1電極46を透過して有機電界発光素子3の外部に出力される。
 一方、第2電極52側への光は、マイクロキャビティ効果、多重反射干渉効果により、第2電極42で反射され、有機半導体層47,48,49,50,51、光取り出し向上層99及び第1電極46を透過して有機電界発光素子3の外部に出力される。
 ここで、第1電極46側への光のうち光電変換層49にやや沿った方向への光は、一般的な構成を採用した従来の有機電界発光素子3の内部で消滅しがちであったが、この有機電界発光素子3は、上記光取り出し向上層99の表面荒さに応じて光が散乱されて第1電極46を経由して有機電界発光素子3の外部に出力される。有機電界発光素子3は、光取り出し向上層99によって光取り出し効率が向上するため、全体として発光量が増大する。
 このような光取り出し向上層99を設けた場合には、一見すると、この光取り出し向上層99に隣接するその他の有機半導体層47~51などとの電荷注入壁が増大し、素子の駆動電圧が上昇、且つキャリアバランス変化に伴う輝度低下が生ずることも考えられる。しかしながらこの光取り出し向上層99は、有機半導体層47~51内にて、5.5eV以上の強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれているため、その他の有機半導体層47~51などとの電荷注入壁が増大しなく、素子の駆動電圧が上昇せず、且つキャリアバランス変化に伴う輝度低下が生ずることが無くなる。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、5.5eV以上の前記強いアクセプター性材料を含有し、前記光取り出し向上層99は、前記ホール注入層47と前記ホール輸送層48との間に形成されていることを特徴とする。
 このようにすると、発光層49が出力した光は、光取り出し向上層99によって効率よく、陽極46側から有機電界発光素子3の外部へと取り出されるようになる。このため有機電界発光素子3は、いわゆるボトムエミッションタイプである場合には特に光取り出し効率が向上するようになる。
 光取り出し向上層99をホール注入層47とホール輸送層48との間またはそれら少なくともいずれかの層の内に配置する場合、この光取り出し向上層99は、このモリブデン酸化物(MoOx)、バナジウム酸化物(VxOy)、タングステン酸化物(WOx)、ゲルマニウム酸化物(GeOx)、レニウム酸化物(RexOy)、チタン酸化物(TixOy)、亜鉛酸化物(ZnxOy)などの導電性酸化物、酸化物半導体、キノジメタン誘導体(TCNQ,F4-TCNQ,TNAP)、ホウ素化合物などの有機分子或いは有機化合物、FeCl,SbCl,SbF6などの金属塩化合物など5.5eV以上の強アクセプター性材料の薄膜やこれらの材料と有機半導体材料を混合した薄膜を用いるようにしても良い。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記有機半導体材料は、キノジメタン誘導体又はホウ素化合物であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記酸化物は、モリブデン酸化物、バナジウム酸化物、タングステン酸化物又はゲルマニウム酸化物、レニウム酸化物、チタン酸化物、亜鉛酸化物であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記無機化合物は、ハロゲン化物金属などの金属塩化合物であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記光取り出し向上層99は、5.5eV以上の前記強いアクセプター性材料とホール輸送材料とを混合した薄膜であることを特徴とする。
 上記実施形態における発光素子3においては、上述した構成に加えてさらに、前記有機半導体層は、前記第1電極46と前記第2電極52の他方(例えば実施形態では陰極に相当)から電子を取り出し易くする電子注入層51と、前記電子注入層51によって取り出された電子を前記光電変換層49に輸送する電子輸送層50とを有することを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記強いドナー性材料を含有し、前記光取り出し向上層99は、前記電子注入層51と前記電子輸送層50との間に形成されていることを特徴とする。
 このようにすると、発光層49が出力した光は、光取り出し向上層99によって効率よく、陰極52側から有機電界発光素子3の外部へと取り出されるようになる。このため有機電界発光素子3は、いわゆるトップエミッションタイプである場合には特に光取り出し効率が向上する。
 光取り出し向上層99を電子注入層51と電子輸送層50との間またはこれら少なくともいずれかの層の内に配置する場合、アルカリ金属、アルカリ土類金属などの仕事関数が3.0eVより浅いエネルギーの材料を含有する化合物などの強ドナー性材料の薄膜やこれらの材料と電子輸送材料を混合した薄膜を用いることができる。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記光取り出し向上層99は、金属層又は粒子であり、前記金属層49は、仕事関数が3.0eV以下のアルカリ金属、アルカリ土類金属又は希土類であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記酸化物層は、仕事関数が3.0eV以下の酸化アルカリ金属であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記無機化合物は、仕事関数が3.0eV以下のフッ化アルカリ金属、塩化アルカリ金属又はヨウ化アルカリ金属であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記有機半導体材料は、テトラチアフルバレン誘導体又はホウ素化合物であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記光取り出し向上層99は、5.0eV以上の前記強いドナー性材料と電子輸送材料とを混合した薄膜であることを特徴とする。
 上記実施形態における発光素子3は、上述した構成に加えてさらに、前記光取り出し向上層99の膜厚が1nm以上50nm以下であることを特徴とする。
 上記実施形態では、一例として基板45が陽極46側に配置しているがこれに限られず、陰極52側に配置していても良い。
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。
第1実施形態としての発光素子が表示パネルの有機電界発光素子に適用された場合の一例を示す部分断面図である。 図1に示す有機電界発光素子内における光路の一例を示す断面のイメージ図である。 本実施形態による効果を検証するための第1の比較例としての光取り出し効率の一例を示す図である。 本実施形態による効果を検証するための第2の比較例としての光取り出し効率の一例を示す図である。 光取り出し向上層の厚さに応じた光取り出し効率の一例を示す図である。 光取り出し向上層の厚さに応じた光取り出し効率の一例を示す図である。 光取り出し向上層の厚さに応じた光取り出し効率の一例を示す図である。 光取り出し向上層の厚さに応じた光取り出し効率の一例を示す図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 図9~図21に示した各構成を採用した有機電界発光素子の駆動電圧及び輝度の検証例を示す図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。 有機電界発光素子の構成例を示す断面図である。
符号の説明
 46       陽極(第1電極に相当)
 47       ホール注入層(機能層に相当)
 47a      第1ホール注入層(機能層に相当)
 47b      第2ホール注入層(機能層に相当)
 47c      混合系ホール注入層(機能層に相当)
 47d      ホール注入層(機能層に相当)
 48       ホール輸送層(機能層に相当)
 48a      混合系ホール輸送層(機能層に相当)
 48c      ホール輸送層(機能層に相当)
 49       発光層(光電変換層に相当)
 50       電子輸送層
 50a      第1電子輸送層(機能層に相当)
 50b      第2電子輸送層(機能層に相当)
 50c      混合系電子輸送層(機能層に相当)
 51       電子注入層
 51a      第1電子注入層(機能層に相当)
 51b      第2電子注入層(機能層に相当)
 51c      混合系電子注入層(機能層に相当)
 52       陰極(第2電極に相当)
 99       光取り出し向上層

Claims (16)

  1.  透明又は半透明な第1電極と、
     前記第1電極と対をなす光を反射する第2電極と、
     前記第1電極及び前記第2電極の一方から取り出されたホールと、前記第1電極及び前記第2電極の他方から取り出された電子との再結合によって発光する光電変換層を備える有機半導体層とを有し、
     前記有機半導体層は、
     前記第1電極と前記光電変換層との間に、銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する光取り出し向上層
    を備え、
     前記光取り出し向上層は、
     前記有機半導体層内にて、強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれている
    ことを特徴とする発光素子。
  2.  請求項1記載の発光素子において、
     前記有機半導体層は、
     前記第1電極と前記第2電極の一方上に形成されており前記一方の電極からホールを取り出し易くするホール注入層と、
     前記ホール注入層によって取り出されたホールを前記光電変換層に輸送するホール輸送層と
    を有することを特徴とする発光素子。
  3.  請求項2記載の発光素子において、
     前記光取り出し向上層は、5.5eV以上の前記強いアクセプター性材料を含有し、前記ホール注入層と前記ホール輸送層との間に形成されている
    ことを特徴とする発光素子。
  4.  請求項3記載の発光素子において、
     前記有機半導体材料は、キノジメタン誘導体又はホウ素化合物である
    ことを特徴とする発光素子。
  5.  請求項3記載の発光素子において、
     前記酸化物は、モリブデン酸化物、バナジウム酸化物、タングステン酸化物、レニウム酸化物、チタン酸化物、亜鉛酸化物又はゲルマニウム酸化物である
    ことを特徴とする発光素子。
  6.  請求項3記載の発光素子において、
     前記無機化合物は、ハロゲン化物金属の金属塩化合物である
    ことを特徴とする発光素子。
  7.  請求項3記載の発光素子において、
     前記光取り出し向上層は、5.5eV以上の前記強いアクセプター性材料とホール輸送材料とを混合した薄膜である
    ことを特徴とする発光素子。
  8.  請求項1又は請求項2記載の発光素子において、
     前記第1電極と前記第2電極の他方から電子を取り出し易くする電子注入層と、
     前記電子注入層によって取り出された電子を前記光電変換層に輸送する電子輸送層と
    を有することを特徴とする発光素子。
  9.  請求項8記載の発光素子において、
     前記光取り出し向上層は、前記強いドナー性材料を含有し、前記電子注入層と前記電子輸送層との間に形成されている
    ことを特徴とする発光素子。
  10.  請求項9記載の発光素子において、
     前記光取り出し向上層は、金属層又は粒子であり、
     前記金属層は、仕事関数が3.0eV以下のアルカリ金属、アルカリ土類金属又は希土類である
    ことを特徴とする発光素子。
  11.  請求項9記載の発光素子において、
     前記酸化物層は、仕事関数が3.0eV以下の酸化アルカリ金属である
    ことを特徴とする発光素子。
  12.  請求項9記載の発光素子において、
     前記無機化合物は、仕事関数が3.0eV以下のフッ化アルカリ金属、塩化アルカリ金属又はヨウ化アルカリ金属である
    ことを特徴とする発光素子。
  13.  請求項9記載の発光素子において、
     前記有機半導体材料は、テトラチアフルバレン誘導体又はホウ素化合物である
    ことを特徴とする発光素子。
  14.  請求項9記載の発光素子において、
     前記光取り出し向上層は、5.0eV以上の前記強いドナー性材料と電子輸送材料とを混合した薄膜である
    ことを特徴とする発光素子。
  15.  請求項1記載の発光素子において、
     前記光取り出し向上層の膜厚が1nm以上50nm以下である
    ことを特徴とする発光素子。
  16.  透明又は半透明な第1電極と、
     前記第1電極と対をなす光を反射する第2電極と、
     前記第1電極及び前記第2電極の一方から取り出されたホールと、前記第1電極及び前記第2電極の他方から取り出された電子との再結合によって発光する光電変換層を備える有機半導体層とを有し、
     前記有機半導体層が、
     前記第1電極と前記光電変換層との間に、銀又は金を少なくとも成分の一部として含有するとともに部分的に光を反射しかつ透過性を有する光取り出し向上層
    を備え、
     前記光取り出し向上層は、
     前記有機半導体層内にて、5.5eV以上の強いアクセプター性若しくは強いドナー性を有する有機半導体材料、酸化物、フッ化物又は無機化合物を含有する機能層に接している又は挟み込まれている、発光素子によって各画素が構成されていることを特徴とする表示パネル。
PCT/JP2008/056900 2008-04-07 2008-04-07 発光素子及び表示パネル WO2009125472A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2008/056900 WO2009125472A1 (ja) 2008-04-07 2008-04-07 発光素子及び表示パネル
US12/936,878 US20110042695A1 (en) 2008-04-07 2008-04-12 Light emitting device and display panel
EP13192823.6A EP2701218A3 (en) 2008-04-07 2008-12-04 Light-emitting device and display panel
EP08873863A EP2265093A4 (en) 2008-04-07 2008-12-04 LIGHT ELEMENT AND DISPLAY SHOW
PCT/JP2008/072067 WO2009125519A1 (ja) 2008-04-07 2008-12-04 発光素子及び表示パネル
JP2010507120A JP5181019B2 (ja) 2008-04-07 2008-12-04 発光素子及び表示パネル
US14/107,563 US20140151669A1 (en) 2008-04-07 2013-12-16 Light-emitting device and display panel
US14/666,816 US20150207103A1 (en) 2008-04-07 2015-03-24 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056900 WO2009125472A1 (ja) 2008-04-07 2008-04-07 発光素子及び表示パネル

Publications (1)

Publication Number Publication Date
WO2009125472A1 true WO2009125472A1 (ja) 2009-10-15

Family

ID=41161615

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/056900 WO2009125472A1 (ja) 2008-04-07 2008-04-07 発光素子及び表示パネル
PCT/JP2008/072067 WO2009125519A1 (ja) 2008-04-07 2008-12-04 発光素子及び表示パネル

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072067 WO2009125519A1 (ja) 2008-04-07 2008-12-04 発光素子及び表示パネル

Country Status (3)

Country Link
US (3) US20110042695A1 (ja)
EP (2) EP2265093A4 (ja)
WO (2) WO2009125472A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993064A (zh) * 2015-07-29 2015-10-21 苏州大学 一种防短路的透明oled器件及其制备方法
JPWO2013161602A1 (ja) * 2012-04-23 2015-12-24 コニカミノルタ株式会社 透明電極、電子デバイス、および有機電界発光素子
CN108470839A (zh) * 2013-12-31 2018-08-31 昆山工研院新型平板显示技术中心有限公司 一种改善视角特性的顶发射oled器件

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110054841A (ko) * 2009-11-18 2011-05-25 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
TWI533463B (zh) * 2011-03-16 2016-05-11 國立交通大學 垂直式光電元件及其製法
WO2012128081A1 (ja) * 2011-03-24 2012-09-27 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP5998600B2 (ja) * 2011-06-24 2016-09-28 三菱レイヨン株式会社 光学フィルム及びそれを用いた光学装置
KR102110418B1 (ko) * 2013-07-12 2020-05-14 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
US10916720B2 (en) * 2014-10-21 2021-02-09 Sumitomo Chemical Company, Limited Organic photoelectric conversion device and production method thereof
CN104409658B (zh) * 2014-12-04 2018-09-04 京东方科技集团股份有限公司 有机电致发光器件、阵列基板及显示装置
KR20180041479A (ko) * 2016-10-14 2018-04-24 한국과학기술원 컬러 필터 전극 일체형 유기 발광 소자 및 그 제조 방법
CN114946046A (zh) * 2020-01-15 2022-08-26 夏普株式会社 发光元件、发光设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079452A (ja) * 2001-08-24 2004-03-11 Semiconductor Energy Lab Co Ltd 発光装置
JP2005150042A (ja) * 2003-11-19 2005-06-09 Fuji Electric Holdings Co Ltd 有機el発光素子
JP2008028371A (ja) * 2006-06-23 2008-02-07 Canon Inc 有機発光装置
JP2008059905A (ja) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology 有機el複合素子、それを用いた有機el表示装置及び照明装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268971A (ja) * 1999-03-16 2000-09-29 Tdk Corp 有機el素子
KR20010050711A (ko) * 1999-09-29 2001-06-15 준지 키도 유기전계발광소자, 유기전계발광소자그룹 및 이런소자들의 발광스펙트럼의 제어방법
US6730929B2 (en) * 1999-12-24 2004-05-04 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device
US6630786B2 (en) * 2001-03-30 2003-10-07 Candescent Technologies Corporation Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
JP4078813B2 (ja) * 2001-06-12 2008-04-23 ソニー株式会社 成膜装置および成膜方法
JP2004327373A (ja) * 2003-04-28 2004-11-18 Shoka Kagi Kofun Yugenkoshi 光色純度調整可能な有機elフルカラーパネル及びその製造方法
JP2005044778A (ja) * 2003-07-19 2005-02-17 Samsung Sdi Co Ltd 電界発光素子
JP4445925B2 (ja) * 2003-12-25 2010-04-07 富士フイルム株式会社 有機el素子、有機el表示装置、有機el素子の製造方法および有機el素子の製造装置
US8248392B2 (en) * 2004-08-13 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting device using light emitting element and driving method of light emitting element, and lighting apparatus
US7602118B2 (en) * 2005-02-24 2009-10-13 Eastman Kodak Company OLED device having improved light output
JPWO2006098188A1 (ja) * 2005-03-17 2008-08-21 出光興産株式会社 有機エレクトロルミネッセンス素子
JP4539518B2 (ja) * 2005-03-31 2010-09-08 セイコーエプソン株式会社 電気光学装置及び電気光学装置の製造方法
JP2007012369A (ja) 2005-06-29 2007-01-18 Sony Corp 有機発光素子および有機発光装置
JP4844030B2 (ja) * 2005-07-15 2011-12-21 セイコーエプソン株式会社 発光素子および電子機器
US7704663B2 (en) * 2005-08-23 2010-04-27 Fuji Xerox Co., Ltd. Image forming method and image-forming apparatus using the same
US7829907B2 (en) * 2005-09-22 2010-11-09 Panasonic Electric Works Co., Ltd. Organic light emitting element and method of manufacturing the same
JP2007165284A (ja) * 2005-11-18 2007-06-28 Seiko Instruments Inc エレクトロルミネッセンス素子及びこれを用いた表示装置
US20070134512A1 (en) * 2005-12-13 2007-06-14 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
CN100555707C (zh) * 2006-06-28 2009-10-28 中国科学院半导体研究所 采用有机电子受体层促进空穴有效注入的有机发光二极管
US20080012471A1 (en) * 2006-06-29 2008-01-17 Eastman Kodak Company Oled device having improved light output
JP2008034367A (ja) * 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd 表示装置
US8974918B2 (en) * 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2008041361A (ja) * 2006-08-03 2008-02-21 Idemitsu Kosan Co Ltd 蛍光変換媒体及びそれを含むカラー発光装置
KR100922759B1 (ko) * 2008-02-26 2009-10-21 삼성모바일디스플레이주식회사 유기 발광 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079452A (ja) * 2001-08-24 2004-03-11 Semiconductor Energy Lab Co Ltd 発光装置
JP2005150042A (ja) * 2003-11-19 2005-06-09 Fuji Electric Holdings Co Ltd 有機el発光素子
JP2008028371A (ja) * 2006-06-23 2008-02-07 Canon Inc 有機発光装置
JP2008059905A (ja) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology 有機el複合素子、それを用いた有機el表示装置及び照明装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161602A1 (ja) * 2012-04-23 2015-12-24 コニカミノルタ株式会社 透明電極、電子デバイス、および有機電界発光素子
US9947889B2 (en) 2012-04-23 2018-04-17 Konica Minolta Inc. Transparent electrode, electronic device, and organic electroluminescent element
CN108470839A (zh) * 2013-12-31 2018-08-31 昆山工研院新型平板显示技术中心有限公司 一种改善视角特性的顶发射oled器件
CN104993064A (zh) * 2015-07-29 2015-10-21 苏州大学 一种防短路的透明oled器件及其制备方法

Also Published As

Publication number Publication date
US20150207103A1 (en) 2015-07-23
US20110042695A1 (en) 2011-02-24
EP2701218A3 (en) 2014-07-16
EP2265093A1 (en) 2010-12-22
US20140151669A1 (en) 2014-06-05
EP2265093A4 (en) 2012-05-09
EP2701218A2 (en) 2014-02-26
WO2009125519A1 (ja) 2009-10-15

Similar Documents

Publication Publication Date Title
WO2009125472A1 (ja) 発光素子及び表示パネル
JP4824848B2 (ja) 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの特定方法
JP4486713B2 (ja) 有機エレクトロルミネッセント素子
JP5362711B2 (ja) 有機発光素子
JP2001102175A (ja) 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
KR20110036096A (ko) 유기 전계발광 소자
JP2004006165A (ja) 有機エレクトロルミネッセンス素子
KR20150124010A (ko) 백색 유기 발광 소자
JPWO2013024787A1 (ja) 有機エレクトロルミネッセンス素子
WO2009125471A1 (ja) 発光素子及び表示パネル
JP2011054668A (ja) 有機電界発光素子
WO2009119591A1 (ja) 有機エレクトロルミネッセンス素子
TW201228066A (en) Organic electroluminescent device
TWI650402B (zh) 有機電致發光裝置
WO2012023177A1 (ja) 有機発光素子
JP2007243044A (ja) 有機el素子の製造方法
JP2010034042A (ja) 有機電界発光素子
JP5181019B2 (ja) 発光素子及び表示パネル
US20170194586A1 (en) Organic light emitting device
JP5350365B2 (ja) 発光素子及び表示パネル
TW201129241A (en) System for displaying images
JP4825296B2 (ja) 有機エレクトロルミネッセント素子
JP2007257909A (ja) 有機el素子
KR102279513B1 (ko) 백색 유기 발광 소자
KR102230940B1 (ko) 백색 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08740003

Country of ref document: EP

Kind code of ref document: A1