WO2009124624A1 - Tdd-repeater für ein drahtlos-netz und verfahren zum betrieb eines solchen repeaters - Google Patents

Tdd-repeater für ein drahtlos-netz und verfahren zum betrieb eines solchen repeaters Download PDF

Info

Publication number
WO2009124624A1
WO2009124624A1 PCT/EP2009/001655 EP2009001655W WO2009124624A1 WO 2009124624 A1 WO2009124624 A1 WO 2009124624A1 EP 2009001655 W EP2009001655 W EP 2009001655W WO 2009124624 A1 WO2009124624 A1 WO 2009124624A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
master unit
repeater
signal
remote
Prior art date
Application number
PCT/EP2009/001655
Other languages
English (en)
French (fr)
Inventor
Peter Schmid
Oliver Braz
Peter Gunzner
Mathias Schmalisch
Jörg STEFANIK
Original Assignee
Andrew Wireless Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andrew Wireless Systems Gmbh filed Critical Andrew Wireless Systems Gmbh
Priority to US12/936,760 priority Critical patent/US8730848B2/en
Priority to CN200980120599.XA priority patent/CN102047584B/zh
Priority to EP09730690.6A priority patent/EP2263330B1/de
Priority to EP18150663.5A priority patent/EP3334059B1/de
Publication of WO2009124624A1 publication Critical patent/WO2009124624A1/de
Priority to HK11100679.5A priority patent/HK1146858A1/xx
Priority to HK11111432.0A priority patent/HK1157517A1/xx
Priority to US14/279,100 priority patent/US9219524B2/en
Priority to US14/971,286 priority patent/US9774368B2/en
Priority to US15/707,777 priority patent/US10651893B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1415Two-way operation using the same type of signal, i.e. duplex using control lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • H04L7/0012Synchronisation information channels, e.g. clock distribution lines by comparing receiver clock with transmitter clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay

Definitions

  • TDD repeater for a wireless network and method for operating such a repeater
  • the invention relates to a repeater for transmitting communication signals in a wireless network - for example a mobile radio network or a so-called "Wireless Local Area Network” (WLAN) - according to the so-called Time Division Duplex (TDD) method to a method for operating such a repeater.
  • a wireless network for example a mobile radio network or a so-called "Wireless Local Area Network” (WLAN) - according to the so-called Time Division Duplex (TDD) method to a method for operating such a repeater.
  • WLAN Wireless Local Area Network
  • TDD Time Division Duplex
  • a wireless network Within a wireless network is usually a communication between so-called base stations and data receivers and transmitters, which are hereinafter referred to as network terminals.
  • these network terminals are mobile terminals ("mobile phones”), in the case of a WLAN typically mobile computers (“laptops”) with a corresponding network card.
  • radio signals are transmitted on the one hand in a so-called “downlink direction” from the base station to the network terminal and on the other hand in a so-called “uplink direction” from the network terminal to the base station.
  • uplink direction In order to be able to separate the signal traffic in uplink direction and downlink direction, u. a.
  • TDD time division duplex
  • the same transmission frequency is used in both uplink and downlink directions.
  • each signal direction is assigned a defined time window in each case, so that it is transmitted alternately in the uplink and downlink direction with a specific timing.
  • the timing is usually specified by the base station.
  • repeaters In order to enable a signal transmission in a shaded area for radio waves, such as in a tunnel or a building, so-called repeaters are used, the transmission technology of the base station and the network terminals are interposed.
  • a repeater operating on the TDD method is known, for example, from US 2007/0015462 A1.
  • such a repeater comprises a master unit, which in particular communicates with the base station of the radio network, and at least one so-called "remote unit" which establishes contact, for example in the building, with the network terminal
  • the master unit and the remote unit are often in the form of an optical communication signal via optical fibers, such as fiber optic cable.
  • the master unit forwards the signal from the base station in the downlink direction to the remote unit.
  • the remote unit forwards a signal coming from the mobile station in the uplink direction to the master unit.
  • the signals in the uplink and downlink direction are transmitted via a common waveguide.
  • the signal transmission via the waveguide must be adapted to the predetermined timing of the surrounding radio signal transmission.
  • the master unit and the remote unit must be synchronized with one another in accordance with the timing.
  • the invention has for its object to provide a repeater, which is particularly suitable for a tme-division-duplex transmission of communication signals.
  • communication signals in this context are those signals which are transmitted across the repeater between the base station and the network terminals.
  • the invention is further based on the object of specifying a method of operation of such a repeater which is particularly suitable.
  • the repeater comprises a master unit for communication with a base station of a wireless network, at least one remote unit for communication with a network terminal, as well as the remote unit with the Master- unit connecting waveguide for transmitting the communication signals in an uplink direction from the remote unit to the master unit and in a downlink direction from the master unit to the remote unit.
  • Both the master unit and the remote unit each include a - referred to as (time) duplexer - switch for switching between the signal transmission in the uplink direction and the signal transmission in the downlink direction.
  • Both duplexers are controlled by a master unit arranged in the synchronization unit, which is adapted to determine from the master unit - in particular from the base station - supplied communication signal a timing and to deliver a clock signal corresponding control signal to the duplexer.
  • the duplexer of the remote unit is also synchronized by the synchronization unit arranged in the master unit, whereby the repeater can be designed particularly efficiently.
  • the repeater is preferably designed for optical signal transmission between the master unit and the remote unit.
  • the waveguide is an optical waveguide, in particular a fiber optic cable.
  • an electrical signal transmission between the master unit and the remote unit can also be provided.
  • the waveguide is designed in particular as a coaxial cable or waveguide.
  • the repeater is adapted to transmit the control signal for controlling the duplexer of the remote unit as (optical or electrical) signal via the - provided for replacement of the communication signal anyway - waveguide to the remote unit.
  • a simple separation of the control signal from the communication signal transmitted via the same waveguide is made possible, in particular, by the synchronization unit providing the control signal with a modulation frequency different from the communication signal.
  • the synchronization unit expediently comprises a coupler, with which it picks up the communication signal.
  • the synchronization unit determines a clock signal superimposed on the communication signal, which can be formed for example by a so-called "pilot tone” or a synchronization sequence in a preamble of a transmission frame of the communication signal Circuit to which the decoupled signal is supplied.
  • the control signal is first generated in the form of an electrical radio frequency (RF) signal.
  • the synchronization unit comprises a frequency generator for this purpose.
  • this RF control signal is preferably converted into an optical control signal and transmitted via the waveguide to the remote unit.
  • the master unit comprises expediently an optical transmitter (transmitter).
  • the control signal is in this case again converted into an electrical control signal with an optical receiver (receiver) located there and used to control the duplexer arranged in the remote unit.
  • the repeater comprises at least two remote units, which are each connected via a separate waveguide to the master unit.
  • Each of these remote units includes a duplexer.
  • a duplexer is also provided in the master unit for each remote unit. Rationellate all duplexers are controlled by a common - in turn arranged in the master unit - synchronization unit.
  • the repeater comprises at least two remote units, which are connected via a common waveguide to the master unit.
  • the repeater is then designed to modulate the signals assigned to each remote unit to different transmission wavelengths, so that these signals can be separated over their specific transmission wavelength.
  • the master unit contains a plurality of separate transmission paths each corresponding to a remote unit.
  • the master unit is provided with two antenna connection points for signal transmission to the base station.
  • the object is achieved by using the above-described repeater according to the invention by the features of claim 8. Accordingly, it is intended to generate a control signal from the synchronization unit based on a clock signal specified by the base station, and with this control signal both the duplexer to control the master unit as well as the duplexer of the remote unit such that the switching of the signal transmission between uplink and downlink direction synchronously - ie approximately at the same time - with the pre-5 given timing takes place.
  • the running time of the communication signals between the master unit and the remote unit is taken into account.
  • the duplexers arranged in the master unit or the remote unit are not switched exactly at the same time, but with a small time offset which corresponds approximately to the signal propagation time.
  • FIGURE shows a schematic representation of a repeater 15 of a wireless network for so-called "time-division-duplex" signal transmission in a shaded area for radio waves, such as a building.
  • the repeater 1 comprises a master unit 2, which - wired here - with a base station 3 (shown in the figure on the left) of the wireless network communicates.
  • the repeater 1 includes two remote units 4 (shown in the present figure on the right), which - for example, arranged in the building - communicate via schematically indicated radio waves with a mobile network terminal (eg a laptop or mobile phone).
  • a mobile network terminal eg a laptop or mobile phone.
  • One of the base stations 3 Coming radio frequency (RF) communication signal in a so-called (indicated by an arrow) downlink direction 5 forwarded as an optical communication signal to the remote units 4, there converted back into a radio signal and sent to the network terminal.
  • RF radio frequency
  • the repeater 1 is configured here in a so-called "2x2 Multiple Input Multiple Output” (MIMO) configuration
  • the base station 3 has two antenna connection points 7, which are connected to the base station 3 via an antenna or distributor rail 8.
  • the Signal transmission to the two remote units 4 via two separate channels namely via a first (schematically indicated) transmission path 9 and a second (again schematically hinted) transmission path 10.
  • each transmission path 9, 10 for optical signal transmission comprises a separate optical waveguide, here as fiber-optic cable 11, by means of which each remote unit 4 is connected to the master unit 2.
  • a signal transmission via a common optical waveguide is possible by means of a frequency conversion (frequency duplex).
  • the repeater 1 is designed for signal transmission according to the so-called time division duplex method (time division duplex method).
  • the (optical) communication signals are transmitted in a timely manner alternately in the downlink direction 5 or uplink direction 6 after a clocking predetermined by the base station 3.
  • each transmission link 9, 10 is split both within the master unit 2 and within the remote unit 4 into a - partly optical, partly electrical - uplink path 12 and into a downlink path 13.
  • the optical part of the track is coupled via a Y-connection 14 with the fiber optic cable 11.
  • the electrical part is connected at least indirectly to the base station 3 or to the mobile data receiver / transmitter.
  • the communication signal is converted from an optical signal to an electrical signal or vice versa.
  • the master unit 2 within each uplink path 12 comprises an optical Receiver 15, or within each downlink section 13, an optical transmitter 16.
  • Each remote unit 4 comprises within the uplink path 12, an optical transmitter 17 and within the downlink path 13, an optical receiver 18th
  • the master unit 2 comprises for each transmission link 9, 10 a (time) duplexer 19, with which in the electrical part between the uplink path 12 and the downlink path 13 is switched. Depending on the position of the duplexer 19, either the uplink section 12 or the downlink section 13 is thus connected to the base station 3.
  • each remote unit 4o within the electrical part of the transmission path 9, 10 also includes a (time) duplexer 20 with which, depending on the switch position, either the uplink path 12 or the downlink path 13 for communication with the mobile data receiver. transmitter is connected.
  • the switch position shown here corresponds, for example, just a transmission in the downlink direction. 6
  • the master unit 2 comprises a synchronization unit 21 which picks up a clock signal originating from the base station 3 and accordingly drives the duplexers 19 and, on the other hand, each duplexer 20.
  • the synchronization unit 21 has a coupler 22 with which the communication signal supplied to the master unit 2 from the base station 3 is coupled out.
  • the coupler 22 in this case accesses the first transmission path 9.
  • This communication signal is a clock signal superimposed, for example, as a so-called pilot tone.
  • the clock signal is connected upstream as a so-called preamble of a signal transmission frame.
  • This clock signal is identified by the synchronization unit 21.
  • the synchronization unit 21 comprises an integrated circuit, in particular a microcontroller, here referred to as a "switching point detector" 23, which is signal-technically connected to the coupler 22.
  • the switching point detector 23 decides whether the base station 3 is currently transmitting (transmission in the downlink direction 5) or receiving (transmission in the uplink direction 6). Accordingly, the switching point detector 23 directly drives both duplexers 19 of the master unit 2.
  • the synchronization unit 21 has a frequency generator 24 for each transmission path 9, 10.
  • Each frequency generator 24 is also signal-technically coupled to the switching point detector 23 and generates an RF control signal for controlling the corresponding duplexer 20 on the basis of this information.
  • the RF control signal is respectively converted by the optical transmitter 16 of the master unit 2 into an optical control signal and transmitted together with the optical communication signal via the fiber optic cable 11 to the remote unit 4.
  • the control signal and the communication signal for signal separation with different modulation frequency are sent.
  • the optical control signal is converted back to an electrical by the optical receiver 18.
  • This control signal in turn serves as a signal generator for a drive unit 25, which finally clocks the duplexer 20.
  • Both duplexers 19, 20 of each transmission path 9, 10 are thus synchronously clocked, whereby the transmission direction of the communication signals on the optical transmission section of the transmission direction of the surrounding radio transmission is adjusted.
  • both duplexers 19, 20 are thus switched for transmission in the downlink direction 5, whereas the duplexers 19, 20 are switched in the uplink 6 in the reception mode of the base station 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)
  • Bidirectional Digital Transmission (AREA)

Abstract

Ein für eine Time-Division-Duplex-Übertragung von Kommunikationssignalen besonders geeigneter Repeater (1) wird angegeben. Der Repeater (1) umfasst eine Mastereinheit (2) zur Kommunikation mit einer Basisstation (3) eines Drahtlos-Netzes, mindestens eine Remote-Unit (4) zur Kommunikation mit einem Netzendgerät, sowie einen die Remote-Unit (4) mit der Mastereinheit (2) verbindenden Wellenleiter (11) zur Übertragung der Kommunikationssignale in einer Uplink-Richtung (6) von der Remote-Unit (4) zur Mastereinheit (2) und in einer Downlink-Richtung (5) von der Mastereinheit (2) zur Remote-Unit (4). Sowohl die Mastereinheit (2) als auch die Remote-Unit (4) umfassen jeweils einen Schalter (19, 20) zur Umschaltung der Signalübertragung zwischen Uplink-Richtung (6) und Downlink-Richtung (5). Beide Schalter (19, 20) werden von einer in der Mastereinheit (2) angeordneten Synchronisationseinheit (21) angesteuert, die dazu ausgebildet ist, aus dem der Mastereinheit (2) - insbesondere von der Basisstation (3) - zugeführten Kommunikationssignal eine Taktung zu ermitteln und ein dieser Taktung entsprechendes Steuersignal an die Schalter (19, 20) abzugeben.

Description

Beschreibung
TDD-Repeater für ein Drahtlos-Netz und Verfahren zum Betrieb eines solchen Re- peaters
Die Erfindung bezieht sich auf einen Repeater zur Übertragung von Kommunikationssignalen in einem drahtlosen Netz - beispielsweise einem Mobilfunknetz oder einem sogenannten „Wireless Local Area Network" (WLAN) - nach dem sogenannten Time- Division-Duplex(TDD)-Verfahren. Die Erfindung bezieht sich weiterhin auf ein Verfahren zum Betrieb eines solchen Repeaters.
Innerhalb eines Drahtlos-Netzes erfolgt üblicherweise eine Kommunikation zwischen sogenannten Basisstationen und Datenempfängern und -sendern, die nachfolgend als Netzendgeräte bezeichnet sind. Im Falle eines Mobilfunknetzes handelt es sich bei die- sen Netzendgeräten um Mobilfunkendgeräte („Handys"), im Falle eines WLAN typischerweise um mobile Computer („Laptops") mit entsprechender Netzkarte. Bei dem Datenaustausch zwischen der Basisstation und einem Netzendgerät werden Funksignale einerseits in einer sogenannten „Downlink-Richtung" von der Basisstation an das Netzendgerät und andererseits in einer sogenannten „Uplink-Richtung" von dem Netz- endgerät an die Basisstation übertragen. Um den Signalverkehr in Uplink-Richtung und Downlink-Richtung voneinander trennen zu können, wird u. a. das sogenannte Time- Division-Duplex(TDD)-Verfahren (Zeitduplexverfahren) eingesetzt. Bei dem TDD- Verfahren wird die gleiche Übertragungsfrequenz sowohl in Uplink- als auch in Downlink-Richtung eingesetzt. Für eine ungestörte Signalübertragung wird jeder Signalrich- tung jeweils ein definiertes Zeitfenster zugewiesen, so dass mit einer bestimmten Taktung abwechselnd in Uplink- und Downlink-Richtung gesendet wird. Die Taktung wird üblicherweise von der Basisstation vorgegeben.
Um eine Signalübertragung auch in einem für Funkwellen abgeschatteten Gebiet, wie beispielsweise in einem Tunnel oder einem Gebäude, zu ermöglichen, werden sogenannte Repeater eingesetzt, die übertragungstechnisch der Basisstation und den Netzendgeräten zwischengeschaltet sind. Ein auf dem TDD-Verfahren arbeitender Repeater ist beispielsweise aus US 2007/0015462 A1 bekannt. In einer auch als Verteilsystem bezeichneten Bauform umfasst ein solcher Repeater eine Mastereinheit, die insbesondere mit der Basisstation des Funknetzes kommuniziert, sowie mindestens eine sogenannte „Remote-Unit", welche - beispielsweise im Gebäude angeordnet - den Kontakt zu dem Netzendgerät herstellt. Die Signalübertragung zwischen der Mastereinheit und der Remote-Unit erfolgt dabei häufig in Form eines optischen Kommunikationssignals über Lichtwellenleiter, beispielsweise Glasfaserkabel.
Dabei leitet die Mastereinheit das ihr von der Basisstation zugehende Signal in der Downlink-Richtung an die Remote-Unit weiter. Umgekehrt leitet die Remote-Unit ein von dem Mobilfunkendgerät kommendes Signal in der Uplink-Richtung an die Mastereinheit weiter. Häufig werden hierbei die Signale in Uplink- und Downlink-Richtung über einen gemeinsamen Wellenleiter übertragen.
Um einen solchen Repeater im Rahmen einer TDD Signalübertragung einsetzen zu können, muss die Signalübertragung über den Wellenleiter an die vorgegebene Taktung der umgebenden Funksignalübertragung angepasst sein. Insbesondere müssen die Mastereinheit und die Remote-Unit nach Maßgabe der Taktung aufeinander syn- chronisiert sein.
Der Erfindung liegt die Aufgabe zugrunde, einen Repeater anzugeben, der für eine Ti- me-Division-Duplex Übertragung von Kommunikationssignalen besonders geeignet ist. Als Kommunikationssignale sind in diesem Zusammenhang - im Gegensatz zu repea- terinternen Signalen - diejenigen Signale bezeichnet, die über den Repeater hinweg zwischen der Basisstation und den Netzendgeräten übertragen werden. Der Erfindung liegt weiterhin die Aufgabe zugrunde, ein zum Betrieb eines solchen Repeaters besonders geeignetes Verfahren anzugeben.
Bezüglich des Repeaters wird diese Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Danach umfasst der Repeater eine Mastereinheit zur Kommunikation mit einer Basisstation eines Drahtlos-Netzes, mindestens eine Remote-Unit zur Kommunikation mit einem Netzendgerät, sowie einen die Remote-Unit mit der Master- einheit verbindenden Wellenleiter zur Übertragung der Kommunikationssignale in einer Uplink-Richtung von der Remote-Unit zur Mastereinheit und in einer Downlink-Richtung von der Mastereinheit zur Remote-Unit. Sowohl die Mastereinheit als auch die Remote- Unit umfassen jeweils einen - nachfolgend als (Zeit-)Duplexer bezeichneten - Schalter zur Umschaltung zwischen der Signalübertragung in Uplink-Richtung und der Signalübertragung in Downlink-Richtung. Beide Duplexer werden von einer in der Mastereinheit angeordneten Synchronisationseinheit angesteuert, die dazu ausgebildet ist, aus dem der Mastereinheit - insbesondere von der Basisstation - zugeführten Kommunikationssignal eine Taktung zu ermitteln und ein dieser Taktung entsprechendes Steuer- Signal an die Duplexer abzugeben.
Mit dem vorgeschlagenen Repeater ist es auf einfache und effektive Weise möglich, die Übertragung bzw. Übertragungsrichtung der Kommunikationssignale an eine von der Basisstation vorgegebene Taktung anzupassen. Als besonders vorteilhaft zeigt es sich dabei, dass bei dem vorgeschlagenen Repeater auch der Duplexer der Remote- Unit durch die in der Mastereinheit angeordnete Synchronisationseinheit mitsynchronisiert wird, wodurch der Repeater besonders rationell ausgebildet werden kann.
Der Repeater ist bevorzugt für eine optische Signalübertragung zwischen der Master- einheit und der Remote-Unit ausgelegt. In diesem Fall handelt es sich bei dem Wellenleiter um einen Lichtwellenleiter, insbesondere ein Glasfaserkabel. Alternativ hierzu kann aber auch eine elektrische Signalübertragung zwischen der Mastereinheit und der Remote-Unit vorgesehen sein. In diesem Fall ist der Wellenleiter insbesondere als Koaxialkabel oder Hohlleiter ausgebildet.
In einer besonders effektiven Ausführungsform der Erfindung ist der Repeater dazu eingerichtet, das Steuersignal zur Ansteuerung des Duplexers der Remote-Unit als (optisches oder elektrisches) Signal über den - zum Austausch des Kommunikationssignals ohnehin vorgesehenen - Wellenleiter an die Remote-Unit zu übertragen. Eine ein- fache Trennung des Steuersignals von dem - über denselben Wellenleiter übertragenen - Kommunikationssignal wird dabei insbesondere dadurch ermöglicht, dass die Synchronisationseinheit das Steuersignal mit einer von dem Kommunikationssignal unterschiedlichen Modulationsfrequenz versieht. - A -
Zur Erfassung der Taktuπg umfasst die Synchronisationseinheit zweckmäßigerweise einen Koppler, mit dem sie das Kommunikationssignal abgreift. Die Synchronisationseinheit ermittelt dabei ein dem Kommunikationssignal überlagertes Taktsignal, das bei- spielsweise durch einen sogenannten „Pilotton" oder eine Synchronisationssequenz in einer Präambel eines Übertragungsrahmens des Kommunikationssignals gebildet sein kann. Insbesondere umfasst die Synchronisationseinheit zur Extraktion des Taktsignals aus dem Kommunikationssignal einen insbesondere als MikroController ausgebildeten Schaltkreis, dem das ausgekoppelte Signal zugeführt ist.
Bevorzugt wird das Steuersignal zunächst in Form eines elektrischen Radiofre- quenz(RF)-Signals erzeugt. Die Synchronisationseinheit umfasst hierzu einen Frequenzgenerator. Zur Übertragung an die Remote-Unit wird dieses RF-Steuersignal bevorzugt in ein optisches Steuersignal umgewandelt und über den Wellenleiter an die Remote-Unit übertragen. Die Mastereinheit umfasst hierzu zweckmäßigerweise einen optischen Sender (Transmitter). In der Remote-Unit wird das Steuersignal in diesem Fall mit einem dort befindlichen optischen Empfänger (Receiver) wieder in ein elektrisches Steuersignal umgewandelt und zur Ansteuerung des in der Re-mote-Unit angeordneten Duplexers eingesetzt.
In einer weiteren Ausführungsform der Erfindung umfasst der Repeater mindestens zwei Remote-Units, welche über je einen separaten Wellenleiter mit der Mastereinheit verbunden sind. Jede dieser Remote-Units umfasst einen Duplexer. Zudem ist auch in der Mastereinheit für jede Remote-Unit ein Duplexer vorgesehen. Rationellerweise sind dabei alle Duplexer durch eine gemeinsame - wiederum in der Mastereinheit angeordnete - Synchronisationseinheit angesteuert.
Zusätzlich oder alternativ dazu umfasst der Repeater mindestens zwei Remote-Units, welche über einen gemeinsamen Wellenleiter mit der Mastereinheit verbunden sind. Der Repeater ist hierbei daraufhin ausgelegt, die einer jeden Remote-Unit zugeordneten Signale auf unterschiedliche Übertragungs-Wellenlängen aufzumodulieren, so dass diese Signale über ihre spezifische Übertragungswellenlänge trennbar sind. In einer bevorzugten Ausführungsform des Repeaters sind insbesondere mehrere Re- mote-Units in einer sogenannten mxn MIMO (Multiple Input Multiple Output; m,n=2,3,...) Konfiguration an die Mastereinheit angeschlossen. Hierbei beinhaltet die Mastereinheit mehrere getrennte, jeweils mit einer Remote-Unit korrespondierende s Übertragungsstrecken. Die Mastereinheit ist andererseits mit zwei Antennenanschluss- stellen zur Signalübertragung mit der Basisstation versehen.
Bezüglich des Verfahrens wird die Aufgabe unter Nutzung des vorstehend beschriebenen Repeaters erfindungsgemäß gelöst durch die Merkmale des Anspruchs 8. Danacho ist vorgesehen, von der Synchronisationseinheit anhand eines - insbesondere von der Basisstation - vorgegebenen Taktsignals ein Steuersignal zu erzeugen, und mit diesem Steuersignal sowohl den Duplexer der Mastereinheit als auch den Duplexer der Remote-Unit derart anzusteuern, dass die Umschaltung der Signalübertragung zwischen Up- link- und Downlink-Richtung synchron - also näherungsweise zeitgleich - mit der vor-5 gegebenen Taktung erfolgt.
Bei der synchronen Ansteuerung der Duplexer wird aber bevorzugt die Laufzeit der Kommunikationssignale zwischen der Mastereinheit und der Remote-Unit berücksichtigt. Die in der Mastereinheit bzw. der der Remote-Unit angeordneten Duplexer werdeno dabei nicht exakt zeitgleich, sondern mit einem geringen Zeitversatz geschaltet, der etwa der Signallaufzeit entspricht.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigt die einzige Figur in schematischer Darstellung einen Repeater 15 eines Drahtlos-Netzes zur sogenannten „Time-Division-Duplex" Signalübertragung in ein für Funkwellen abgeschattetes Gebiet, wie beispielsweise ein Gebäude.
Der Repeater 1 umfasst eine Mastereinheit 2, welche - hier leitungsgebunden - mit einer Basisstation 3 (in der vorliegenden Figur links dargestellt) des Drahtlos-Netzes kommuniziert. Außerdem umfasst der Repeater 1 zwei Remote-Units 4 (in der vorliegenden Figur rechts dargestellt), welche - beispielsweise im Gebäude angeordnet - über schematisch angedeutete Funkwellen mit einem mobilen Netzendgerät (z.B. einem Laptop oder Handy) kommunizieren. Dabei wird ein von der Basisstation 3 an- kommendes Radiofrequenz (RF) -Kommunikationssignal in einer sogenannten (durch einen Pfeil gekennzeichneten) Downlink-Richtung 5 als optisches Kommunikationssignal an die Remote-Units 4 weitergeleitet, dort in ein Funksignal rückgewandelt und an das Netzendgerät ausgesandt. Umgekehrt wird in einer sogenannten (wiederum durch einen Pfeil gekennzeichneten) Uplink-Richtung 6 ein von dem Netzendgerät ausgehendes Kommunikationssignal als optisches Kommunikationssignal an die Mastereinheit 2 weitergeleitet und von dort an die Basisstation 3 übertragen.
Der Repeater 1 ist hier in einer sogenannte „2x2 Multiple Input Multiple Output" (MIMO) Konfiguration ausgebildet. Dementsprechend verfügt die Basisstation 3 über zwei An- tennenanschlussstellen 7, welche über eine Antenne oder Verteilerschiene 8 mit der Basisstation 3 verbunden sind. Andererseits erfolgt die Signalübertragung zu den beiden Remote-Units 4 über zwei getrennte Kanäle, nämlich über eine erste (schematisch angedeutete) Übertragungsstrecke 9 und eine zweite (wiederum schematisch angedeu- tete) Übertragungsstrecke 10. Dabei umfasst jede Übertragungsstrecke 9, 10 zur optischen Signalübertragung einen separaten Lichtwellenleiter, hier als Glasfaserkabel 11 ausgeführt, über welchen jede Remote-Unit 4 mit der Mastereinheit 2 verbunden ist. Alternativ hierzu ist auch eine durch eine Frequenzumwandlung signaltechnisch getrennte Signalübertragung über einen gemeinsamen Lichtwellenleiter möglich (Fre- quenz Duplex).
Der Repeater 1 ist für eine Signalübertragung nach dem sogenannten Time-Division- Duplex-Verfahren (Zeitduplexverfahren) ausgebildet. Hierbei werden die (optischen) Kommunikationssignale nach einer von der Basisstation 3 vorgegebenen Taktung zeit- lieh abwechselnd in Downlink-Richtung 5 bzw. Uplink-Richtung 6 übertragen. Hierzu ist jede Übertragungsstrecke 9, 10 sowohl innerhalb der Mastereinheit 2 als auch innerhalb der Remote-Unit 4 in eine - teils optische, teils elektrische - Uplink-Strecke 12 und in eine Downlink-Strecke 13 aufgespalten. Dabei ist jeweils der optische Teil der Strecke über eine Y-Verbindung 14 mit dem Glasfaserkabel 11 gekoppelt. Der elektrische Teil steht zumindest indirekt mit der Basisstation 3 bzw. mit dem mobilen Datenempfänger / -sender in Verbindung. Innerhalb jeder Strecke wird das Kommunikationssignal von einem optischen Signal in ein elektrisches Signal oder umgekehrt gewandelt. Hierzu umfasst die Mastereinheit 2 innerhalb jeder Uplink-Strecke 12 einen optischen Empfänger 15, bzw. innerhalb jeder Downlink-Strecke 13 einen optischen Sender 16. Jede Remote-Unit 4 hingegen umfasst innerhalb der Uplink-Strecke 12 einen optischen Sender 17 bzw. innerhalb der Downlink-Strecke 13 einen optischen Empfänger 18.
s Zur Umschaltung der Übertragungsrichtung umfasst die Mastereinheit 2 für jede Übertragungsstrecke 9, 10 einen (Zeit-)Duplexer 19, mit welchem im elektrischen Teil zwischen der Uplink-Strecke 12 und der Downlink-Strecke 13 umgeschaltet wird. Je nach Stellung des Duplexers 19 ist somit entweder die Uplink-Strecke 12 oder die Downlink- Strecke 13 mit der Basisstation 3 verbunden. Andererseits umfasst jede Remote-Unit 4o innerhalb des elektrischen Teils der Übertragungsstrecke 9, 10 auch einen (Zeit- )Duplexer 20, mit welchem je nach Schalterstellung entweder die Uplink-Strecke 12 oder die Downlink-Strecke 13 zur Kommunikation mit dem mobilen Datenempfänger / - sender verbunden wird. Die hier dargestellte Schalterposition entspricht beispielsweise gerade einer Übertragung in Downlink-Richtung 6.
Um die Taktung der optischen Übertragung mit der Taktung der Basisstation 3 zu synchronisieren, umfasst die Mastereinheit 2 eine Synchronisationseinheit 21, welche ein von der Basisstation 3 ausgehendes Taktsignal abgreift und dementsprechend einerseits die Duplexer 19 und andererseits jeden Duplexer 20 ansteuert.
Hierzu verfügt die Synchronisationseinheit 21 über einen Koppler 22, mit welchem das der Mastereinheit 2 von der Basisstation 3 zugeführte Kommunikationssignal ausgekoppelt wird. In der dargestellten Ausführungsform der Erfindung greift der Koppler 22 dabei auf die erste Übertragungsstrecke 9 zu.
Diesem Kommunikationssignal ist ein Taktsignal beispielsweise als sogenannter Pilotton überlagert. Alternativ ist das Taktsignal als sogenannte Präambel eines Signalübertragungsrahmens vorgeschaltet. Dieses Taktsignal wird von der Synchronisationseinheit 21 identifiziert.
Hierzu umfasst die Synchronisationseinheit 21 einen integrierten Schaltkreis, insbesondere einen Mikrocontroller, hier als „Switching-Point-Detector" 23 bezeichnet, welcher mit dem Koppler 22 signaltechnisch verbunden ist. Anhand des ausgekoppel- ten Signals entscheidet der Switching-Point-Detector 23, ob die Basisstation 3 gerade sendet (Übertragung in Downlink-Richtung 5) oder empfängt (Übertragung in Uplink- Richtung 6). Dementsprechend steuert der Switching-Point-Detector 23 beide Duplexer 19 der Mastereinheit 2 unmittelbar an.
Um außerdem die Duplexer 20 der Remote-Units 4 zu synchronisieren, wird anhand des ausgekoppelten Taktsignals über jedes Glasfaserkabel 11 ein optisches Steuersignal an diese übertragen. Hierzu verfügt die Synchronisationseinheit 21 für jede Übertragungsstrecke 9, 10 jeweils über einen Frequenzgenerator 24. Jeder Frequenzgene- rator 24 ist ebenfalls mit dem Switching-Point-Detector 23 signaltechnisch gekoppelt und erzeugt aufgrund dessen Information ein RF-Steuersignal zur Ansteuerung des korrespondierenden Duplexers 20. Das RF-Steuersignal wird jeweils durch den optischen Sender 16 der Mastereinheit 2 in ein optisches Steuersignal umgewandelt und gemeinsam mit dem optischen Kommunikationssignal über das Glasfaserkabel 11 an die Remote-Unit 4 übertragen. Dabei werden das Steuersignal und das Kommunikationssignal zur Signaltrennung mit unterschiedlicher Modulationsfrequenz gesendet. Innerhalb der Remote-Unit 4 wird das optische Steuersignal durch den optischen Empfänger 18 in ein elektrisches rückgewandelt. Dieses Steuersignal dient wiederum als Signalgeber für eine Ansteuereinheit 25, welche schließlich den Duplexer 20 taktet.
Beide Duplexer 19, 20 einer jeden Übertragungsstrecke 9,10 werden somit synchron getaktet, wodurch die Übertragungsrichtung der Kommunikationssignale auf dem optischen Übertragungsabschnitt der Übertragungsrichtung der umgebenden Funkübertragung angepasst wird. Bei Sendebetrieb der Basisstation 3 sind somit beide Duplexer 19, 20 für eine Übertragung in Downlink-Richtung 5 geschaltet, wohingegen die Duplexer 19, 20 bei Empfangsbetrieb der Basisstation 3 für eine Übertragung in Upliπk- Richtung 6 geschaltet sind. Bezugszeichenliste
Repeater
Mastereinheit
Basisstation
Remote-Unit
Downlink-Richtung
Uplink-Richtung
Antennenanschlussstelle
Verteilerschiene
Übertragungsstrecke
Übertragungsstrecke
Glasfaserkabel
Uplink-Strecke
Downlink-Strecke
Y-Verbindung
Empfänger
Sender
Sender
Empfänger
(Zeit-)Duplexer
(Zeit-)Duplexer
Synchronisationseinheit
Koppler
Switching-Point-Detector
Frequenzgenerator
Ansteuereinheit

Claims

Ansprüche
1. TDD-Repeater (1 ) zur Übertragung von Kommunikationssignalen in einem Draht- los-Netz,
- mit einer Mastereinheit (2) zur Kommunikation mit einer Basisstation (3) des Drahtlos-Netzes,
- mit mindestens einer Remote-Unit (4) zur Kommunikation mit einem Netzendgerät, und
- mit einem die Remote-Unit (4) mit der Mastereinheit (2) verbindenden Wellenleiter (11 ) zur Übertragung der Kommunikationssignale in einer Uplink-Richtung (6) von der Remote-Unit (4) zur Mastereinheit (2) und in einer Downlink- Richtung (5) von der Mastereinheit (2) zur Remote-Unit (4),
- wobei sowohl die Mastereinheit (2) als auch die Remote-Unit (4) einen Schalter (19, 20) zur Umschaltung zwischen der Signalübertragung in Uplink-Richtung (6) und der Signalübertragung in Downlink-Richtung (5) umfassen, und
- wobei die Mastereinheit (2) eine Synchronisationseinheit (21 ) umfasst, die dazu ausgebildet ist, aus dem der Mastereinheit (2) zugeführten Kommunikationssignal eine Taktung zu ermitteln und ein dieser Taktung entsprechendes Steuersignal an die Schalter (19, 20) abzugeben.
2. Repeater (1 ) nach Anspruch 1 , wobei die Synchronisationseinheit (21 ) dazu ausgebildet ist, das Steuersignal zur Ansteuerung des in der Remote-Unit (4) angeordneten Schalters (20) über den Wellenleiter (11 ) an die Remote-Unit (4) zu übertragen.
3. Repeater (1 ) nach Anspruch 1 oder 2, wobei die Synchronisationseinheit (21 ) einen Frequenzgenerator (24) zur Erzeugung eines RF-Steuersignals zur Ansteuerung des in der Remote-Unit (4) angeordneten Schalters (20) umfasst.
4. Repeater (1 ) nach Anspruch 3, wobei der Frequenzgenerator (24) dazu ausgebildet ist, das Steuersignal zur Ansteuerung des in der Remote-Unit (4) angeordneten Schalters (20) mit einer zu dem Kommunikationssignal verschiedenen Modulationsfrequenz zu erzeugen.
5. Repeater (1) nach einem der Ansprüche 1 bis 4, wobei die Synchronisationseinheit (21) einen Koppler (22) zur Auskopplung des Kommunikationssignals aus einer Übertragungsstrecke der Mastereinheit (2) umfasst.
6. Repeater (1) nach einem der Ansprüche 1 bis 5, mit zwei Remote-Units (4), die über je einen separaten Wellenleiter (11 ) mit der Mastereinheit (2) verbunden sind, wobei jedem Wellenleiter (11 ) sowohl in der Mastereinheit (2) als auch in der Remote-Unit (4) jeweils ein Schalter (19, 20) zugeordnet ist, und wobei jeder Schalter (19, 20) von der Synchronisationseinheit (21) angesteuert ist.
7. Repeater (1 ) nach einem der Ansprüche 1 bis 6, mit zwei Remote-Units (4), die über einen gemeinsamen Wellenleiter (11) mit der Mastereinheit (2) verbunden sind, wobei die Kommunikationssignale der einzelnen Remote-Units (4) unterschiedliche Übertragungs-Wellenlängen aufweisen.
8. Verfahren zum Betrieb eines Repeaters (1 ) gemäß einem der Ansprüche 1 bis 7,
- wobei von der in der Mastereinheit (2) angeordneten Synchronisationseinheit (21 ) aus dem der Mastereinheit (2) zugeführten Kommunikationssignal eine Taktung ermittelt und ein dieser Taktung entsprechendes Steuersignal an die in der Mastereinheit (2) und in der oder jeder Remote-Unit (4) angeordneten Schalter (19, 20) abgegeben wird,
- und wobei mit diesem Steuersignal sowohl der Schalter (19) der Mastereinheit (2) als auch der Schalter (20) der oder jeder Remote-Unit (4) derart angesteuert werden, dass die Schalter (19, 20) synchron mit der vorgegebenen Taktung zwischen einer Signalübertragung in Uplink-Richtung (6) und einer Signalübertragung in Downlink-Richtung (5) umschalten.
9. Verfahren nach Anspruch 8, wobei die Umschaltung des Schalters (19) in der Mastereinheit (2) und des Schalters (20) in der Remote-Unit (4) um eine etwa der Signallaufzeit zwischen der Mastereinheit (2) und der Remote-Unit (4) entsprechende Zeitspanne zeitversetzt erfolgt.
PCT/EP2009/001655 2008-04-09 2009-03-07 Tdd-repeater für ein drahtlos-netz und verfahren zum betrieb eines solchen repeaters WO2009124624A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/936,760 US8730848B2 (en) 2008-04-09 2009-03-07 TDD repeater for a wireless network and method for operating said repeater
CN200980120599.XA CN102047584B (zh) 2008-04-09 2009-03-07 用于无线网络的tdd中继器和用于运行所述中继器的方法
EP09730690.6A EP2263330B1 (de) 2008-04-09 2009-03-07 Tdd-repeater für ein drahtlos-netz und verfahren zum betrieb eines solchen repeaters
EP18150663.5A EP3334059B1 (de) 2008-04-09 2009-03-07 Tdd-repeater für ein drahtlos-netz und verfahren zum betrieb eines solchen repeaters
HK11100679.5A HK1146858A1 (en) 2008-04-09 2011-01-24 Tdd repeater for a wireless network and method for operating said repeater
HK11111432.0A HK1157517A1 (en) 2008-04-09 2011-10-24 Tdd repeater for a wireless network and method for operating said repeater tdd
US14/279,100 US9219524B2 (en) 2008-04-09 2014-05-15 TDD repeater for a wireless network and method for operating said repeater
US14/971,286 US9774368B2 (en) 2008-04-09 2015-12-16 TDD repeater for a wireless network and method for operating said repeater
US15/707,777 US10651893B2 (en) 2008-04-09 2017-09-18 TDD repeater for a wireless network and method for operating said repeater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008017881.0 2008-04-09
DE102008017881A DE102008017881B9 (de) 2008-04-09 2008-04-09 TDD-Repeater für ein Drahtlos-Netz und Verfahren zum Betrieb eines solchen Repeaters

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/936,760 A-371-Of-International US8730848B2 (en) 2008-04-09 2009-03-07 TDD repeater for a wireless network and method for operating said repeater
US14/279,100 Continuation US9219524B2 (en) 2008-04-09 2014-05-15 TDD repeater for a wireless network and method for operating said repeater

Publications (1)

Publication Number Publication Date
WO2009124624A1 true WO2009124624A1 (de) 2009-10-15

Family

ID=40908636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/001655 WO2009124624A1 (de) 2008-04-09 2009-03-07 Tdd-repeater für ein drahtlos-netz und verfahren zum betrieb eines solchen repeaters

Country Status (6)

Country Link
US (4) US8730848B2 (de)
EP (3) EP2696514B1 (de)
CN (2) CN105306126B (de)
DE (1) DE102008017881B9 (de)
HK (3) HK1146858A1 (de)
WO (1) WO2009124624A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075137A1 (en) * 2010-12-01 2012-06-07 Andrew Wireless Systems Gmbh Distributed antenna system for mimo signals
US9774368B2 (en) 2008-04-09 2017-09-26 Andrew Wireless Systems Gmbh TDD repeater for a wireless network and method for operating said repeater

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1398025B1 (it) 2010-02-12 2013-02-07 Andrew Llc Distributed antenna system for mimo communications.
CN103229427B (zh) 2010-10-01 2016-08-03 康普技术有限责任公司 用于多输入多输出信号的分布式天线系统
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
CA2914104C (en) 2013-02-22 2022-12-13 Adc Telecommunications, Inc. Master reference for base station network interface sourced from distributed antenna system
EP3039943A1 (de) * 2013-08-29 2016-07-06 Corning Optical Communications Wireless Ltd. Erkennung in aufwärts-/abwärtsrichtung von zeitlich geduplexten (tdd) rahmenkonfigurationen zur synchronisierung von tdd-abwärts- und abwärtskommunikationen zwischen tdd-kommunikationsvorrichtungen
US9271289B2 (en) 2013-10-30 2016-02-23 Andrew Wireless Systems Gmbh Switching sub-system for distributed antenna systems using time division duplexing
US10560214B2 (en) * 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
CN108352854B (zh) 2015-10-03 2020-09-04 Adc电信公司 用于确定分布式天线系统中tdd信号定时的方法及远程单元
EP3459181B1 (de) * 2016-05-18 2022-07-06 Actelis Networks (Israel) Ltd. Zeitduplexsignalverstärker
US10136427B2 (en) 2016-08-08 2018-11-20 Corning Optical Communications Wireless Ltd Partitioning a time-division-based communications link for communicating multiple types of communications signals in a wireless distribution system (WDS)
JP6577510B2 (ja) * 2017-04-24 2019-09-18 株式会社東芝 通信中継システム及び方法
JP6602813B2 (ja) * 2017-04-24 2019-11-06 株式会社東芝 通信中継システム及び方法
US10673518B2 (en) * 2017-06-27 2020-06-02 Wilson Electronics, Llc Crossover isolation reduction in a signal booster
CN110166106B (zh) * 2019-04-23 2021-09-21 苏州佳世达电通有限公司 无线通讯装置
JP2022548588A (ja) 2019-09-13 2022-11-21 コムスコープ テクノロジーズ リミティド ライアビリティ カンパニー 時分割複信を使用する5g新無線基地局と共に使用するための中継器システム
CN111010217A (zh) * 2019-12-18 2020-04-14 陕西天基通信科技有限责任公司 一种无线直放站及实现mimo的方法
EP3863191A1 (de) 2020-02-04 2021-08-11 Nokia Solutions and Networks Oy Kommunikationssystem
DE102022125633A1 (de) 2022-10-05 2024-04-11 Tk Elevator Innovation And Operations Gmbh Netzwerksystem zur Errichtung einer Mobilfunkverbindung in einem Aufzugschacht

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268846A1 (en) * 2006-03-31 2007-11-22 Widefi, Inc. Enhanced physical layer repeater for operation in WiMAX systems

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105884B2 (ja) * 1986-05-06 1994-12-21 日本電気株式会社 無線電話システム
KR100303703B1 (ko) 1993-03-10 2001-11-22 클라크 3세 존 엠. 자기조정한계를지니는데이타신호비교기
US5371548A (en) 1993-07-09 1994-12-06 Cable Television Laboratories, Inc. System for transmission of digital data using orthogonal frequency division multiplexing
JPH07131401A (ja) 1993-10-28 1995-05-19 Nippon Telegr & Teleph Corp <Ntt> 無線中継装置
US5602836A (en) 1993-11-24 1997-02-11 Lucent Technologies Inc. Multiple access cellular communication with circular interleaving and reduced dropped-packet runlengths
US6108364A (en) 1995-08-31 2000-08-22 Qualcomm Incorporated Time division duplex repeater for use in a CDMA system
KR100217413B1 (ko) * 1996-08-24 1999-09-01 윤종용 시분할 듀플렉싱 / 주파수 도약방식을 채용한 무선 통신 시스템
JPH10257009A (ja) 1997-03-10 1998-09-25 Oki Electric Ind Co Ltd 無線中継方法及び無線中継機
DE19738254A1 (de) * 1997-09-02 1999-03-04 Daimler Benz Aerospace Ag Sende/Empfangsanordnung für eine phasengesteuerte Antenne
KR20000022672A (ko) 1998-09-07 2000-04-25 마츠시타 덴끼 산교 가부시키가이샤 이동국 통신 장치, 기지국 통신 장치 및 무선 통신 방법
KR100317011B1 (ko) 1998-09-07 2001-12-22 마츠시타 덴끼 산교 가부시키가이샤 통신 단말 장치, 기지국 통신 장치 및 무선 통신 방법
JP2000236201A (ja) 1999-02-16 2000-08-29 Fujitsu Ltd スプリアス低減回路
US6925068B1 (en) 1999-05-21 2005-08-02 Wi-Lan, Inc. Method and apparatus for allocating bandwidth in a wireless communication system
US6650630B1 (en) 1999-06-25 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Resource management and traffic control in time-division-duplex communication systems
JP4409743B2 (ja) 2000-02-25 2010-02-03 パナソニック株式会社 無線通信装置及び無線通信方式
DE10061836A1 (de) * 2000-12-12 2002-06-13 Scc Special Comm Cables Gmbh Lichtwellenleiterkabel und Verfahren zum Übertragen von optischen Signalen, insbesondere nach der Wellenlängenmultiplextechnik
NZ509688A (en) 2001-02-01 2003-06-30 Ind Res Ltd Maximum likelihood sychronisation (estimating time delay) for wireless digital communications system using a pilot symbol
US6940827B2 (en) 2001-03-09 2005-09-06 Adaptix, Inc. Communication system using OFDM for one direction and DSSS for another direction
JP3801460B2 (ja) 2001-04-19 2006-07-26 松下電器産業株式会社 基地局装置及び無線通信方法
JP4166480B2 (ja) * 2002-01-30 2008-10-15 松下電器産業株式会社 非対称型フレーム双方向デジタルワイヤレスシステム
CN1219410C (zh) * 2003-05-07 2005-09-14 深圳市一通金泰科技股份有限公司 智能基站信号中继放大转发装置及方法
KR100588325B1 (ko) 2003-06-17 2006-06-09 유호상 시분할 이중화 시스템에서 기지국 신호로부터 송수신스위칭 동기를 획득하는 방법 및 장치
CN1225849C (zh) * 2003-07-18 2005-11-02 大唐移动通信设备有限公司 一种对无线信号进行双向同步转发的方法及装置
DE10336312B4 (de) * 2003-08-07 2007-08-30 Siemens Ag Verfahren zur Synchronisation eines in Funkzellen aufgeteilten Funkkommunikationssystems, sowie eine Basis- und Mobilstation in einem derartigen System
RU2387075C2 (ru) 2003-09-03 2010-04-20 Бехзад МОХЕББИ Сотовый добавочный усилитель с малым радиусом действия
CN1545225A (zh) * 2003-11-11 2004-11-10 武汉虹信通信技术有限责任公司 自由空间光传输移动通信直放站
KR100974454B1 (ko) 2004-01-12 2010-08-06 넥스티비티 인코포레이티드 단거리 셀룰러 부스터
CN1993904B (zh) * 2004-05-13 2011-09-07 高通股份有限公司 具有用于上行链路及下行链路同步之下行链路检测的非变频中继器
CN1707987A (zh) * 2004-06-10 2005-12-14 中兴通讯股份有限公司 一种用于时分双工通讯系统中的双向放大器及其放大方法
KR20060005219A (ko) 2004-07-12 2006-01-17 삼성전자주식회사 시분할 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서 광중계기 동기화를 위한 장치 및 방법
KR20060005925A (ko) * 2004-07-14 2006-01-18 에스케이 텔레콤주식회사 Tdd방식과 ofdm 변조 방식을 이용하는 이동통신망의 rf 중계기에서 전송 신호를 분리하는 스위칭타이밍 신호 생성 방법 및 시스템
ITMI20041505A1 (it) 2004-07-26 2004-10-26 Alberto Lodolo Contatore tangenziale per liquidi
KR100590486B1 (ko) 2004-07-29 2006-06-19 에스케이 텔레콤주식회사 Tdd 방식과 ofdm 변조 방식을 이용하는 이동통신망의 광중계기에서 전송 신호를 분리하는 스위칭타이밍 신호 생성 방법 및 시스템
JP3920297B2 (ja) * 2004-09-01 2007-05-30 富士通株式会社 光スイッチおよび光スイッチを利用した光波形モニタ装置
CN1756121A (zh) * 2004-09-28 2006-04-05 北京信威通信技术股份有限公司 Tdd系统中实现同步的中继网络设备及其实现同步的方法
GB0421674D0 (en) 2004-09-30 2004-10-27 Radioscope Ltd Emergency DAB transmitter system
KR100642248B1 (ko) 2004-10-13 2006-11-10 주식회사 이트로닉스 타임디비젼 듀플렉싱 무선통신시스템
KR100473992B1 (ko) 2004-10-22 2005-03-17 주식회사 한국통신부품 시분할 방식 중계기에 파워 스위치 모듈을 사용함으로써간단하고 저렴한 구조의 중계기
WO2006107136A1 (en) * 2005-04-08 2006-10-12 Kt Corporation Apparatus and method for detecting preamble and rf repeating system using the same
US8577283B2 (en) 2005-07-15 2013-11-05 Qualcomm Incorporated TDD repeater
KR100673868B1 (ko) 2005-08-25 2007-01-24 주식회사 지티앤티 광선로에서 단일 파장으로 데이터를 송수신하는 시분할이중화 광중계기 장치
US7653163B2 (en) * 2005-10-26 2010-01-26 Intel Corporation Systems for communicating using multiple frequency bands in a wireless network
US20070155315A1 (en) * 2006-01-03 2007-07-05 Samsung Electronics Co., Ltd. Apparatus and method for transparent relaying in a multi-hop relay cellular network
CN101438509B (zh) * 2006-03-07 2013-04-17 艾尔珀因特株式会社 自适应反馈估计和抵消装置及方法,及时分双工无线电中继装置
KR100755209B1 (ko) * 2006-04-03 2007-09-04 주식회사 에이로직스 휴대 인터넷 단말의 위치정보를 제공하는 방법과 그 방법을채용한 중계기 및 휴대 인터넷 단말기
CN2904482Y (zh) * 2006-04-03 2007-05-23 北京东方信联科技有限公司 适用于时分双工通信体制的直放站
KR100762637B1 (ko) 2006-05-03 2007-10-01 삼성전자주식회사 Tdd 방식의 무선 시스템 신호 전송을 위한 단일 파장양방향 rof 링크 장치
GB2440187A (en) * 2006-07-17 2008-01-23 Ubidyne Inc DUC and DDC forming digital transceiver
KR100819257B1 (ko) 2006-08-31 2008-04-02 삼성전자주식회사 전송시간을 제어하기 위한 radio over fiber시스템 및 방법
BRPI0715908A2 (pt) * 2006-09-01 2014-03-18 Qualcomm Inc Repetidor possuindo configuração de antena receptora e transmissora dual com adaptação para maior isolamento
KR100842533B1 (ko) 2006-12-13 2008-07-01 삼성전자주식회사 시분할 듀플렉싱 방식 무선광섬유 링크 장치
KR20080069524A (ko) 2007-01-23 2008-07-28 삼성전자주식회사 무선 네트워크에서 데이터를 송수신하는 방법 및 장치
JP2008205979A (ja) 2007-02-22 2008-09-04 Hitachi Ltd 放送データ変換装置
US8537688B2 (en) * 2007-02-23 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and a device for enhanced performance in a cellular wireless TDD system
US7894332B2 (en) * 2007-06-27 2011-02-22 Motorola Mobility, Inc. Power profile reshaping in orthogonal frequency division multiple access symbols
KR100906127B1 (ko) * 2007-07-25 2009-07-07 (주)에어포인트 일체형 적응형 귀환 예측 소거기 및 그 방법과 그를 이용한시분할 이중화 무선중계 장치
US8165100B2 (en) * 2007-12-21 2012-04-24 Powerwave Technologies, Inc. Time division duplexed digital distributed antenna system
DE102008017881B9 (de) 2008-04-09 2012-11-08 Andrew Wireless Systems Gmbh TDD-Repeater für ein Drahtlos-Netz und Verfahren zum Betrieb eines solchen Repeaters
US8310963B2 (en) * 2008-06-24 2012-11-13 Adc Telecommunications, Inc. System and method for synchronized time-division duplex signal switching
US7961689B2 (en) * 2008-08-18 2011-06-14 Adc Telecommunications, Inc. Method and apparatus for determining an end of a subframe in a TDD system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268846A1 (en) * 2006-03-31 2007-11-22 Widefi, Inc. Enhanced physical layer repeater for operation in WiMAX systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700754B2 (en) 2001-11-30 2020-06-30 Andrew Wireless Systems Gmbh Distributed antenna system for MIMO signals
US9774368B2 (en) 2008-04-09 2017-09-26 Andrew Wireless Systems Gmbh TDD repeater for a wireless network and method for operating said repeater
US10651893B2 (en) 2008-04-09 2020-05-12 Andrew Wireless Systems Gmbh TDD repeater for a wireless network and method for operating said repeater
US9787385B2 (en) 2009-12-09 2017-10-10 Andrew Wireless Systems Gmbh Distributed antenna system for MIMO signals
WO2012075137A1 (en) * 2010-12-01 2012-06-07 Andrew Wireless Systems Gmbh Distributed antenna system for mimo signals
CN103563266A (zh) * 2010-12-01 2014-02-05 安德鲁无线系统有限公司 用于mimo信号的分布式天线系统

Also Published As

Publication number Publication date
US20160099748A1 (en) 2016-04-07
EP2263330A1 (de) 2010-12-22
US20180069596A1 (en) 2018-03-08
US20140254440A1 (en) 2014-09-11
US9774368B2 (en) 2017-09-26
HK1146858A1 (en) 2011-07-15
US10651893B2 (en) 2020-05-12
HK1157517A1 (en) 2012-06-29
CN102047584A (zh) 2011-05-04
CN102047584B (zh) 2015-11-25
EP2263330B1 (de) 2014-01-08
HK1221342A1 (zh) 2017-05-26
US8730848B2 (en) 2014-05-20
EP2696514B1 (de) 2018-01-10
EP3334059A1 (de) 2018-06-13
CN105306126A (zh) 2016-02-03
US20110182217A1 (en) 2011-07-28
EP2696514A1 (de) 2014-02-12
EP3334059B1 (de) 2020-11-25
US9219524B2 (en) 2015-12-22
DE102008017881A1 (de) 2009-10-22
DE102008017881B4 (de) 2012-04-12
DE102008017881B9 (de) 2012-11-08
CN105306126B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
EP2696514B1 (de) Tdd-repeater für ein drahtloses netzwerk
DE102009014549B4 (de) Hochfrequenzkommunikationsvorrichtungen und -verfahren
CN103891160B (zh) 使用时分双工方案的分布式天线系统
EP2792086A1 (de) Drahtloses kommunikationsnetzwerk
EP2875585B1 (de) Schaltungsanordnung für eine mobilfunkeinheit eines kraftwagens, kraftwagen und verfahren zum betreiben der schaltungsanordnung
EP1356619B1 (de) Verfahren und elektro-optische schaltungsanordnung zur leitungsprotektion in einer wdm-datenünertragungsstrecke
US20120121267A1 (en) Optical add-drop multiplexer branching unit and corresponding optical transmission method and system
WO2018149459A1 (de) Kompensator, elektronische schaltungsanordnung zum betreiben einer antenne und antennenvorrichtung
EP2280497B1 (de) Gleichwellen-Funknetzvorrichtung
EP0767549A2 (de) Breitbandiges Mobilfunksystem
DE10245973A1 (de) Buskopplung
EP0907260A2 (de) Anordnung zur Übertragung, zur Abstrahlung und zum Empfang von Hochfrequenz-Signalen
EP1039650A2 (de) Schaltungsanordnung zur Dämpfungskompensation
DE19503744C2 (de) Anordnung zur Übertragung, zur Abstrahlung und zum Empfang von Hochfrequenz-Signalen
DE102010044236A1 (de) Lokales Netzwerk
EP3361656B1 (de) Einstellung der datenübertragungsrate für einen übertragungspfad innerhalb eines optischen kernnetzes
DE4008165A1 (de) Zellulares mobilfunksystem
DE60032542T2 (de) Synchronisationsanordnung für ein DECT-Funkkommunikationsnetzwerk
EP1094620B1 (de) Kommunikationssystem für Gebiet mit eingeschränkten Empfangsmöglichkeiten
DE102012006362A1 (de) Verfahren und Vorrichtung zur Übertragung von Daten mit hohen Datenraten auf Koaxialleitungen, insbesondere zum Betrieb einer Mobilfunkstation
DE3744072A1 (de) Kommunikationssystem fuer synchrone und asynchrone datenuebertragung
DE19710571A1 (de) Elektro-optische Sende- und Empfangseinrichtung
DE102009009271A1 (de) Repeaterpaar, Netzwerk, Netzwerk-Cluster und Verfahren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120599.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009730690

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12936760

Country of ref document: US