WO2009122962A1 - アグロバクテリウム菌による形質転換植物の作成方法 - Google Patents

アグロバクテリウム菌による形質転換植物の作成方法 Download PDF

Info

Publication number
WO2009122962A1
WO2009122962A1 PCT/JP2009/055791 JP2009055791W WO2009122962A1 WO 2009122962 A1 WO2009122962 A1 WO 2009122962A1 JP 2009055791 W JP2009055791 W JP 2009055791W WO 2009122962 A1 WO2009122962 A1 WO 2009122962A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
agrobacterium
transformed
treatment
medium
Prior art date
Application number
PCT/JP2009/055791
Other languages
English (en)
French (fr)
Inventor
石田 祐二
祐弘 樋江井
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to AU2009232967A priority Critical patent/AU2009232967B2/en
Priority to CN2009801121496A priority patent/CN101983007B/zh
Priority to US12/935,525 priority patent/US8357836B2/en
Priority to EP09727983A priority patent/EP2274973A4/en
Publication of WO2009122962A1 publication Critical patent/WO2009122962A1/ja
Priority to HK11108593.1A priority patent/HK1154333A1/xx
Priority to US13/717,663 priority patent/US20130125265A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid

Definitions

  • the present invention relates to a method for producing a novel transformed plant by Agrobacterium.
  • electroporation method, particle gun method and the like are known as transformation methods for monocotyledonous plants such as corn and rice which are main cereals.
  • these physical gene introduction methods have problems such as the introduction of multiple copies of genes, the insertion of genes in an intact form, and the appearance of many malformations and sterility in transformed plants. Yes.
  • Agrobacterium The gene transfer method using Agrobacterium is commonly used as a method for transforming dicotyledonous plants.
  • Agrobacterium hosts are limited to dicotyledonous plants and do not infest monocotyledonous plants (De Cleane and De Ley 1976), but there are attempts to transform monocotyledonous plants with Agrobacterium. Has been made.
  • Mooney et al. Attempted to introduce a kanamycin resistance gene into wheat embryos using Agrobacterium. First, embryos were treated with enzymes to damage the cell walls and then inoculated with Agrobacterium. A very small number of calli that appeared to be resistant to kanamycin grew in the treated callus, but the plant body could not be regenerated from this callus. Moreover, when the presence of the kanamycin resistance gene was confirmed by Southern analysis, structural mutation of the transgene was observed in all resistant calli (Mooney et al. 1991). Raineri et al.
  • attempts to improve the efficiency of maize transformation with Agrobacterium include selection of transformed cells in N6 basic medium (Zhao et al. 2001), addition of AgNO 3 and carbenicillin to the medium (Zhao). et al. 2001, Ishida et al. 2003), addition of cysteine to a co-culture medium (Frame et al. 2002), and the like.
  • the efficiency is improved even in transformation of rice and corn by Agrobacterium.
  • selection marker genes the genes used for selection of transformed cells (selection marker genes), the most commonly used genes confer resistance to herbicides or antibiotics (Kuiper et al. 2001). Bar genes and EPSP genes (De Block et al., 1987; Comai et al., 1985) are genes that confer resistance to herbicides, and NPTII gene and HPT gene (contains resistance to antibiotics). Bevan et al., 1983; Waldron et al., 1985) are often used as selection marker genes for plant transformation. In recent years, it has been reported that PMI genes and XylA genes (Jörsbo et al., 1998; Haldrup et al., 1998) utilizing the metabolic ability of specific sugars are also effective as selection marker genes. In addition to those described above, a number of genes have been reported as selective marker genes using a mechanism for selectively growing transformed cells. And in the transformation method using these genes, it is thought that the selection process which selectively proliferates a transformed cell is essential.
  • the transformed seed is obtained without going through the selection step (Bent, 2000).
  • a selection process using an antibiotic resistance gene or the like is required in order to obtain a desired transformed seed from seeds in which a large number of non-transformed seeds are mixed.
  • Techniques for removing selected marker genes from transformed plants include the co-transformation system (Komari et al., 1996), the MAT vector system (Ebinuma et al., 1997), and the CreLox system (Gleave et al., 1999; Zhang et. al., 2003) has been reported.
  • a transformed plant not containing a selection marker gene can be obtained.
  • this selection step requires a selection marker gene for selection in addition to the target gene (GOI gene).
  • GOI gene target gene
  • the selection marker gene is unnecessary for the transformed plant produced, and if the selection marker gene is still contained in the transformed plant, the herbicide resistance gene and antibiotic resistance gene are transformed.
  • selection marker genes have been reported, the selection marker genes that can be adapted depending on the plant species are limited, which poses a problem when a plurality of genes are introduced separately. Furthermore, techniques for removing selectable marker genes from transformants have also been reported, but these methods require much labor, such as a longer culture period and selection of selectable marker-free individuals in progeny plants than conventional transformation methods. .
  • An object of the present invention is to develop and provide a method capable of obtaining a transformed plant without undergoing such a selection process.
  • the present inventors generally noted that in the plant transformation process, the number of plant cells into which a foreign gene is incorporated is extremely small, and the efficiency of transformation is greatly improved. If the proportion of transformed cells in the transformed cells is increased and maintained until plant regeneration, transformed plants can not be obtained without a selection process using a selection marker gene. I thought. As a result of intensive studies, it was found that a transformed plant can be obtained with sufficiently practical efficiency by appropriately performing the transformation improving treatment, and the present invention has been conceived.
  • this invention contains the following aspect as a preferable aspect.
  • a method for producing a transformed plant using Agrobacterium which includes the step of re-differentiating the plant body by culturing in a regeneration medium later, 1) performing transformation improvement treatment, and 2) redifferentiation from coexistence The method for producing a transformed plant according to any one of the above steps, wherein selection of transformed cells using a selective drug is not performed.
  • Transformation improvement treatment is a treatment that improves the efficiency of introduction of the target gene into plant cells, a treatment that improves the callus induction rate from immature embryos, or a treatment that improves the redifferentiation efficiency from transformed callus.
  • the present invention provides a method for producing a transformed plant by Agrobacterium.
  • the present invention is a method for introducing a gene into a plant via an Agrobacterium, and is based on the discovery that the introduction of a selection marker gene becomes unnecessary by performing a transformation efficiency improvement treatment.
  • the method of the present invention comprises: (I) a coexistence step of culturing plant material inoculated with Agrobacterium in a coexisting medium, and (ii) the tissue obtained in (i) was not subjected to callus growth culture or was subjected to callus growth culture
  • a method for producing a transformed plant using Agrobacterium which includes the step of re-differentiating the plant body by culturing in a regeneration medium later, 1) performing transformation improvement treatment, and 2) redifferentiation from coexistence It is characterized in that selection of transformed cells using a selective drug is not performed in all the steps up to.
  • transformation Improvement Treatment is characterized by performing transformation improvement treatment.
  • the “transformation improving treatment” refers to a treatment in which the proportion of transformed plants obtained is improved by performing the treatment. Specifically, but not limited to, treatment that improves the efficiency of introducing the target gene into plant cells, treatment that improves the callus induction rate from immature embryos, etc., and improvement of redifferentiation efficiency from transformed callus And the like.
  • Such a transformation improving process is not limited, but includes, for example, the following or a combination thereof.
  • heat treatment, centrifugal treatment, heat and centrifugal treatment, pressure treatment, and powder addition are all treatments that improve gene transfer efficiency, and the addition of silver nitrate, copper sulfate, and carbenicillin has the effect of improving callus induction rate. There is. Moreover, the addition of copper sulfate to the regeneration medium improves the regeneration efficiency.
  • the heat treatment can be performed using, for example, the method described in WO98 / 54961.
  • the plant material is treated at 33 ° C. to 60 ° C., preferably 37 ° C. to 52 ° C., for 5 seconds to 24 hours, preferably 1 minute to 24 hours before contacting with Agrobacterium.
  • Centrifugation can be performed, for example, using the method described in WO02 / 12520.
  • 100 G to 250,000 G preferably 500 G to 200,000 G, more preferably 1000 G to 150,000 G with a centrifugal acceleration of 1 second to 4 hours
  • the treatment is preferably performed for 1 second to 2 hours.
  • the heat and centrifugation can be performed using the method described in WO02 / 12521, for example.
  • the conditions for the heat treatment and the centrifugal treatment for example, the above-described conditions can be adopted.
  • the pressurizing treatment can be performed using, for example, the method described in WO2005 / 018169.
  • the pressure treatment is not limited, but is preferably performed in the range of 1.7 to 10 atm, more preferably in the range of 2.4 to 8 atm.
  • silver nitrate and / or copper sulfate to the co-culture medium is described in, for example, Zhao et al. 2001, Ishida et al. 2003, WO2005 / 017152.
  • Silver nitrate and / or copper sulfate can be added to the co-culture medium at a concentration of 1 ⁇ M to 50 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M, for example.
  • the treatment of inoculating Agrobacterium in the presence of powder can be performed using, for example, the method described in WO2007 / 069643. Specifically, for example, it is performed by mixing Agrobacterium suspension and powder and inoculating the plant material, or mixing plant and powder and inoculating it with Agrobacterium.
  • the powder is not limited, but is a porous powder, glass wool or activated carbon, preferably porous ceramics, glass wool or activated carbon, more preferably hydroxyapatite, silica gel or glass wool.
  • N6 inorganic salt In the process of adding N6 inorganic salt to callus growth medium (Zhao et al. 2001), N6 inorganic salt (Chu 1978) is added to callus growth medium.
  • cysteine can be added to the co-culture medium at 10 mg / l to 1 g / l, preferably 50 mg / l to 750 mg / l, more preferably 100 mg / l to 500 mg / l.
  • Carbenicillin addition to the medium in the callus growth and / or regeneration process after the coexistence process is described in Zhao et al. 2001, or Ishida et al. It can be performed using the method described in 2003.
  • Carbenicillin may be added to the callus growth medium and / or the redifferentiation step, for example, at a concentration of 50 mg / l to 500 mg / l, preferably 100 mg / l to 300 mg / l.
  • Carbenicillin is an antibiotic, but it is hardly toxic to plants and can be used for the purpose of preventing the growth of microorganisms in the medium.
  • preferable transformation improvement treatment is heat treatment, centrifugation, heat and centrifugation, pressure treatment, treatment of adding AgNO 3 and / or CuSO 4 to the co-culture medium, or inoculation of Agrobacterium in the presence of powder. Treatment, converting the antibiotic in the callus growth medium and / or regeneration medium to carbenicillin, or a combination thereof.
  • the present inventors have succeeded in sufficiently increasing the number of transformed individuals in the finally obtained redifferentiated individuals by performing these treatments, and without performing the selection process of transformed cells. We found that sufficient transformed individuals could be obtained, and established a selection-free transformation method sufficient for practical use.
  • transformed individuals can be easily obtained by confirming the presence or absence of the transgene by a technique such as PCR, and if it is a progeny individual, confirming the phenotype of the transgene.
  • the present invention is characterized in that in any step for plant transformation from coexistence to redifferentiation, selection of transformed cells using the characteristics of nucleic acids introduced by Agrobacterium is not performed.
  • Examples of selection of transformed cells using the characteristics of nucleic acids introduced by Agrobacterium include selection of transformed cells using a resistance gene against the selected drug and the selected drug.
  • Selection of transformed cells using resistance gene for selected drug and selected drug means that in any step for plant transformation from coexistence to redifferentiation, drug for selecting transformed plant was added It means culturing in a medium and selecting transformed cells depending on the presence or absence of resistance to the selected drug. The present invention does not include such a process at all.
  • selective drugs that have been used in the prior art are antibiotics and / or herbicides.
  • the DNA inserted into the T-DNA in Agrobacterium contained not only the gene intended to be expressed in plants but also a resistance gene for the selected drug. Resistance genes for such selective drugs are known in the art. For example, when the regeneration process is performed in a regeneration medium containing hygromycin as a selective drug, it is necessary that the plant has been introduced with a hygromycin resistance gene from Agrobacterium.
  • a selection step using a drug since a selection step using a drug is not performed, it is not necessary for a nucleic acid introduced by Agrobacterium to have a resistance gene for the selected drug, that is, a selection marker gene.
  • a selection marker gene for the selected drug, that is, a selection marker gene.
  • the present invention does not include such nucleic acids.
  • selection of transformed plants may be performed based on “nutrition requirement selection” of plant cells, for example, “sugar requirement”.
  • sugars that can be used by plant cells include sucrose and glucose, but mannose cannot be used. Therefore, when plant tissue is cultured in a medium containing only mannose as a carbon source, the plant tissue dies because there is no available sugar. Selection based on sugar requirement utilizes this principle.
  • a gene that makes available sugars that cannot be normally used by plant cells from Agrobacterium is introduced into the plant tissue. Such genes are known in the art, and for example, PMI gene, xylose isomerase gene, etc. can be used. In the present invention, the introduced nucleic acid need not contain such a gene.
  • a gene that can be easily detected may be introduced as a screening index and selected depending on the presence or absence of expression of the gene.
  • Examples of such a gene serving as a screening index include the GFP gene.
  • the introduced nucleic acid need not contain such a gene.
  • the selection marker gene refers to a target gene (GOI gene) to be transformed in addition to a target gene to be transformed for the purpose of selecting a transformed cell among many non-transformed cells.
  • a target gene GOI gene
  • the selection marker gene include, but are not limited to, a herbicide resistance gene, an antibiotic resistance gene, and a fluorescence gene.
  • Method for producing transformed plant A method for producing a transformed plant by Agrobacterium generally comprises all or part of the following steps IV.
  • a plant as a control of the present invention is a plant to which a transformation introduction method using Agrobacterium can be applied. Preferably it is a monocotyledonous plant.
  • Monocotyledonous plants to be used in the method of the present invention are preferably gramineous plants, and include, but are not limited to, rice, corn, barley, wheat, sorghum and the like. The most preferred plant to be subjected to the method of the present invention is rice or corn.
  • the “plant material” refers to cells, leaves, roots, stems, buds, flowers (including stamens, pistils, etc.) of the plant to be used for plant transformation by the Agrobacterium method, Seed, seed, germinated seed or any other part of plant tissue, growth point, explant, immature embryo, callus or somatic embryo-like tissue (hereinafter referred to as callus etc. or simply callus in this specification), or complete All aspects of the plant, such as various plant bodies, are included.
  • immature embryos Preferred forms of plant material used in the method of the present invention are immature embryos or callus, and most preferred are immature embryos.
  • expressions of plant cells, tissues, and complete plants are used in the meaning generally used in the technical field.
  • immature embryos refer to immature seed embryos and scutellum that are in the process of ripening after pollination.
  • the stage (ripening stage) of the immature embryo used for the method of the present invention is not particularly limited, and it may be collected at any time after pollination. However, the thing after 2 days after pollination is preferable.
  • the immature embryos are preferably immature embryos of inbread, F1 between inbreads, F1 between inbread and naturally pollinated varieties, and commercially available F1 varieties.
  • callus refers to an undifferentiated cell mass that grows randomly.
  • differentiated cells of plant tissue can be obtained by culturing in a medium (referred to as dedifferentiation medium) containing a plant growth regulator such as auxin (eg, 2,4-D) or cytokinin.
  • auxin eg, 2,4-D
  • cytokinin cytokinin
  • plant tissue, immature embryos, etc. are taken out from the plant body, seeds, etc., and plant materials suitable for transformation are prepared.
  • the plant material can be prepared by a known method. If desired, the plant material may be cultured before being infected with Agrobacterium.
  • Agrobacterium preparation and inoculation process The plant material used in the present invention is inoculated with Agrobacterium.
  • inoculating refers to contacting Agrobacterium with plant material, and methods for inoculating various Agrobacterium are known in the art. Examples of the method include adding a plant material to a suspension in which Agrobacterium is suspended in a liquid medium, a method of dropping Agrobacterium suspension directly on a plant material on a co-culture medium, And a method of injecting an Agrobacterium suspension into the plant and a method of immersing the plant material in the Agrobacterium suspension and reducing the pressure.
  • the plant material inoculated with Agrobacterium used in the present invention is not limited to the plant material inoculated with Agrobacterium by these methods.
  • various additives such as acetosyringone, surfactant, porous ceramics and the like are added to the suspension of Agrobacterium in order to improve the transformation efficiency by Agrobacterium. It can be included.
  • the Agrobacterium that can be used in the present invention may be any known genus Agrobacterium, but is preferably Agrobacterium tumefaciens or Agrobacterium rhizogenes .
  • the Agrobacterium is, for example, LBA4404, EHA101 and AGL1, C58C1, etc., but is not limited thereto.
  • T-DNA which is part of the Ti plasmid, is integrated into the plant genome. Subsequently, this T-DNA contains genes involved in the synthesis of hormones (cytokinin and auxin) necessary for the induction of carcinoma, and it was revealed that they are expressed in plants despite being bacterial genes.
  • Agrobacterium genus Agrobacterium rhizogenes has a similar system using the Ri plasmid (eg, FIGS. 3 and 4 of JP-A-2000-342256).
  • T-DNA was integrated into the plant genome by infection with Agrobacterium, it was expected that when a desired gene was inserted into T-DNA, this gene was also integrated into the plant genome.
  • the Ti plasmid is as large as 190 kb or more, it has been difficult to insert a gene onto T-DNA on the plasmid by standard genetic engineering techniques. For this reason, a method for inserting a foreign gene onto T-DNA has been developed.
  • LBA4404 (Hoekema, A., et al., (1983), Nature, Vol. 4), which is a disarmed strain in which hormone synthesis genes have been removed from the T-DNA of the neoplastic Ti plasmid. 303, p.179-180), C58C1 (pGV3850), GV3Ti11SE, and the like were produced.
  • two kinds of methods have been developed in which a desired gene is introduced into T-DNA of an Agrobacterium Ti plasmid or T-DNA having a desired gene is introduced into Agrobacterium.
  • One of them is an intermediate vector that can be easily manipulated and inserted into a desired gene and can be replicated in Escherichia coli in the T-DNA region of a disarmed Ti plasmid of Agrobacterium. This is a method of introducing by homologous recombination via a hybrid method, called the intermediate vector method.
  • the other is called the binary vector method, which requires the vir region for T-DNA integration into plants, but does not need to exist on the same plasmid to function. Based on. In this vir region, there are virA, virB, virC, virD, virE and virG (Plant Biotechnology Encyclopedia (issued by Enterprise Co., Ltd. (1989))), and the vir region is the virA, virB, virC, virD, Includes all of virE and virG.
  • the binary vector is obtained by incorporating T-DNA into a small plasmid that can be replicated in both Agrobacterium and Escherichia coli, and is used by introducing it into Agrobacterium having a disarm type Ti plasmid.
  • binary vectors include pBIN19, pBI121, pGA482, and many new binary vectors have been constructed and used for transformation.
  • Ri plasmid system a similar vector is constructed and used for transformation.
  • Agrobacterium A281 is a super-virulent fungal system, its host range is wide, and its transformation efficiency is higher than other fungal systems. This characteristic is due to the Ti plasmid pTiBo542 of A281. Two new systems have been developed so far using pTiBo542. One uses fungal strains EHA101 and EHA105 having a disarm-type Ti plasmid of pTiBo542. By applying these to the binary vector system described above, various plant traits can be obtained as a system with high transformation ability. It is used for conversion.
  • the other is a super binary vector system.
  • the super binary vector ('super-binary' vector) is described in, for example, the following documents incorporated herein.
  • This system has a disarm type Ti plasmid and T-DNA having a vir region (virA, virB, virC, virD, virE, and virG (hereinafter, these may also be referred to as “vir fragment regions”, respectively)). Since it consists of a plasmid, it is a kind of binary vector system. However, the T-DNA-containing plasmid, that is, a fragment of the vir region in which at least one vir fragment region is substantially removed from the vir fragment region in the binary vector (of these, preferably a fragment containing at least virB or virG) , More preferably a fragment containing virB and virG). In order to introduce a T-DNA region into which a desired gene has been incorporated into Agrobacterium having a super binary vector, it can be used as a technique that facilitates homologous recombination via a three-way hybridization method.
  • the host genus Agrobacterium is not particularly limited, but Agrobacterium tumefaciens (for example, the above-mentioned Agrobacterium tumefaciens LBA4404 (Hoekema, A., et al., 1983), Nol. 303, p. 179-180) and EHA 101) can be preferably used.
  • Agrobacterium tumefaciens for example, the above-mentioned Agrobacterium tumefaciens LBA4404 (Hoekema, A., et al., 1983), Nol. 303, p. 179-180) and EHA 101
  • the effect of the present invention can be obtained without particular limitation as long as it is a gene transfer system based on the expression of a gene group of a pathogenicity (vir) region in an Agrobacterium.
  • a vector or a super binary vector is preferable because the transformation efficiency is further improved.
  • the introduction plant is maize, it is preferable to use a super binary vector.
  • the same applies to the case of using different vector systems in which these vectors are modified for example, a part of the vir region of an Agrobacterium genus is excised and additionally incorporated into a plasmid. Excise part or all of it and introduce it into Agrobacterium as part of a new plasmid).
  • a desired gene to be introduced into a plant can be incorporated into a restriction enzyme site in the T-DNA region of the plasmid by a conventional method.
  • a large one having many restriction sites may not always be easy to introduce a desired DNA into a T-DNA region by a normal subcloning technique.
  • the target DNA can be introduced by utilizing homologous recombination in the cells of the genus Agrobacterium by a three-line hybridization method.
  • the size of the introduced gene is preferably about 100 bp to 200 kbp.
  • the operation of introducing a plasmid into an Agrobacterium such as Agrobacterium tumefaciens can be performed by a conventional method.
  • the method include the above three-line hybridization method, electroporation method, electroinjection method, PEG and other chemicals. The method by typical processing is included.
  • Genes to be introduced into plants are basically arranged between the left and right border sequences of T-DNA, as in the conventional technique.
  • the plasmid is circular, the number of border sequences may be one, and when a plurality of genes are to be arranged at different sites, there may be three or more border sequences. It may also be placed on Ti or Ri plasmids in Agrobacterium, or on other plasmids. Furthermore, it may be arranged on a plurality of types of plasmids.
  • the inoculation of plant material with Agrobacterium may be performed, for example, by simply contacting the plant material with Agrobacterium.
  • the inoculation may be performed by normal inoculation or by inoculation dropwise.
  • inoculation is performed by mixing plant material and Agrobacterium suspension (inoculation source), immersing the plant material in the suspension, taking out the immersed plant material, and placing it on the medium to coexist.
  • Inoculation is performed by culturing.
  • an Agrobacterium suspension having a cell concentration of about 10 6 to 10 11 cfu / ml is prepared, and the plant material is immersed in the suspension for about 3 to 10 minutes, and then on a solid medium for several days. It can be performed by co-culturing.
  • a suspension of Agrobacterium spp. Is dropped on the plant material that has been deposited on the medium, and after the dripped suspension has dried, the plant material is placed on another place in the medium or on another medium. It is a method of inoculating by cultivating and co-culturing.
  • plant cells inoculated with Agrobacterium as described above are cultured in a medium containing auxins in the presence of Agrobacterium. This is a process to ensure introduction.
  • the plant material is co-cultured with Agrobacterium at the same time as the plant material is infected with Agrobacterium or before the removal of Agrobacterium after infection.
  • the medium used in this step is referred to as “coexisting medium” in this specification.
  • a known medium can be used for co-culture.
  • LS-AS medium, nN6-AS medium, or other, N6S3-AS medium, 2N6-AS medium Hiei, Y., et al., (1994), The Plant Journal, Vol. 6, p. 271- Medium (see 282).
  • auxins are preferably added to the co-culture medium. Since auxins generally have an action of dedifferentiating plant material, most or all of the plant material becomes dedifferentiated tissue (callus) in this step.
  • auxins include 3,6-dichloro-o-anisic acid (dicamba), 4-amino-3,5,6-trichloropicolinic acid (picloram), 2,4-dichlorophenoxyacetic acid (2,4- D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), and / or triiodobenzoic acid salt (TIBA).
  • the co-culture medium does not contain auxins other than dicamba, picloram, 2,4-D, 2,4,5-T.
  • the total amount of auxins such as dicamba, picloram, 2,4D, 2,4,5-T in the co-culture medium is preferably 0.1-5.0 mg / l, more preferably Is 0.5-3.0 mg / l, more preferably 1.0-2.0 mg / l, most preferably 1.5 mg / l.
  • the present inventors further improved the transformation efficiency by adding a substance exhibiting auxin activity belonging to benzoic herbicides among auxins to the co-culture medium, and the selection marker gene It has been found that a transformed plant can be obtained without introduction.
  • Benzoic herbicides are divided into (i) benzoic acid type, (ii) salicylic acid type, (iii) picolinic acid type, and (iv) terephthalic acid type (Takematsu, 1982).
  • the terephthalic acid type does not show auxin activity
  • herbicides belonging to any one of (i) benzoic acid type, (ii) salicylic acid type, and (iii) picolinic acid type are preferable, and (ii) ) Salicylic acid type, or (iii) picolinic acid type.
  • More preferred is dicamba (3,6-dichloro-o-anisic acid) or picroram (4-amino-3,5,6-trichloropicolinic acid). Therefore, in the case of corn, it is most preferable to add a substance exhibiting auxin activity belonging to the benzoic herbicide to the co-culture medium.
  • “Cultivation” in this step refers to placing plant material on a solidified co-culture medium or in a liquid co-culture medium and growing it at an appropriate temperature, light / dark conditions and duration. Solidification of the co-culture medium can be carried out by adding a solidifying agent known in the art, and as such a solidifying agent, for example, agarose or the like is known.
  • the culture temperature in this step can be appropriately selected, and is preferably 20 ° C-35 ° C, more preferably 25 ° C.
  • the culture in this step is preferably performed in a dark place, but is not limited thereto.
  • the culture period in this step can also be appropriately selected, and is preferably 1 to 10 days, more preferably 7 days.
  • Callus growth medium is a medium containing plant hormones and nutrients that are suitable for dividing and proliferating dedifferentiated cells. In general transformation tests, it is a drug that inhibits the growth of untransformed cells. (Selection pressure) is added, and it is also used as a “selection medium” for selectively growing transformed cells.
  • selection pressure selection pressure
  • plant materials that have undergone the above coexistence process are generally cultured in a medium containing auxins.
  • the medium used in this step is referred to as “selection medium” and is selected for selection based on the presence or absence of gene introduction. Contains drugs.
  • this step is repeated a plurality of times by changing the composition of the medium. For example, in multiple selection processes, by increasing the concentration of the selected drug in each selection process, the certainty of drug selection increases and the possibility of obtaining transformed plants can be increased. .
  • This selection step is preferably performed at least twice, more preferably three times. When this process is performed a plurality of times, this process requires a period of about 10 days to 3 weeks, and the entire selection process requires about 5-10 weeks. Therefore, this step is the most time-consuming step in the plant transformation method using Agrobacterium.
  • this step has been considered an essential step.
  • the present inventors have performed transformation without any selection of transformed cells using a selective drug in any step from coexistence to redifferentiation, including during the callus growth step, by “transformation improving treatment”.
  • this step can be omitted preferably. That is, the step of culturing the tissue after co-cultivation in a callus growth medium is not included between the co-existence step and the regeneration step.
  • the working efficiency is further improved, and the transformation process can be performed in a shorter period of time, so that it has been found that a transformed plant can be obtained more efficiently.
  • Examples 1-4 and 6-7 in the present specification describe examples in which the callus growth step was omitted and plant transformation was successful particularly in the case of corn.
  • the callus growth step may be performed without adding a selective agent to the callus growth medium. In this case, callus growth occurs but “selection” of the transformant is not performed.
  • V. Redifferentiation step This is a step of redifferentiating the obtained cell mass, growing a redifferentiated individual, and obtaining a complete plant as desired.
  • a known method for example, Hiei, Y., et al., (1994), The Plant Journal, Vol. 6, p. 271-282; And Ishida, Y., et al., (1996), Nature Biotechnology, Vol.14, p.745-750).
  • This step is an essential step in both the conventional method and the present invention.
  • selection of a transformant with a selective drug is essential in the redifferentiation step.
  • Selection of transformed plants is performed by cultivating plant material that has undergone the coexistence process in a regeneration medium containing a selection drug and having resistance to the selection drug.
  • the present invention is characterized in that selection of transformed cells using a selection agent is not performed in any step for plant transformation from coexistence to regeneration. Therefore, in the present invention, selection using a selective drug is not performed in the redifferentiation step.
  • the medium used in this step is referred to as “regeneration medium” in the present specification, and the characteristic is that it does not contain auxins.
  • a medium that can be used as the regeneration medium for example, a medium based on LS inorganic salts or N6 inorganic salts, specifically, an LSZ medium or the like can be used.
  • the “regeneration medium” does not contain a selective drug.
  • Redifferentiation in the present invention means that a plant material that has been completely or partially dedifferentiated again acquires the properties of the original plant material or plant body.
  • the dedifferentiated tissue is redifferentiated and a completely transformed plant body can be obtained.
  • Whether or not a plant has regenerated can be easily determined by observing the morphology of the plant. For example, it can be determined by whether or not specific differentiated plant organs such as stems and leaves appear from the dedifferentiated tissue.
  • “bigger” refers to the vigorous growth of re-differentiated plants. Plant bigger can be measured using known measurement methods performed in the art. For example, in the case of maize, after the redifferentiation step, 0 points of transformed plant tissue in which no redifferentiation was observed, 1 point of transformed plant tissue having a maximum regenerated leaf length of less than 5 mm, and regenerated foliage The average length of all transformed plant tissues is scored by scoring 2 transformed plant tissues with a maximum length of 5 mm or more and less than 2 cm and 3 transformed plant tissues with a maximum length of redifferentiated stems and leaves of 2 cm or more. Can be obtained by calculating. The evaluation method of the bigger is not limited to this, and it is possible to add an appropriate correction to a known method depending on the evaluation object.
  • “Cultivation” in this step refers to placing a plant tissue on a solidified regeneration medium or in a liquid regeneration medium and growing it at an appropriate temperature, light / dark conditions and period.
  • the regeneration medium can be solidified using, for example, agar.
  • the culture temperature in this step can be appropriately selected, and is preferably 20 ° C-35 ° C, more preferably 25 ° C.
  • the culture in this step is preferably performed under illumination for 16-24 hours / day, but is not limited thereto.
  • the culture period in this step can also be appropriately selected, and is preferably 7 days to 21 days, more preferably 14 days.
  • This step it is possible to easily obtain a completely transformed plant body by using a method known in the art.
  • This is a step of confirming the presence or absence of the transgene for the obtained redifferentiated individual and identifying the transformed individual.
  • PCR, Southern analysis, etc. can be used preferably. It can also be easily selected by confirming the phenotype of the transgene.
  • stable and efficient transformation can be performed without introducing a plant selection marker gene into a desired plant.
  • FIG. 1 shows the result of Southern blot analysis of a Yukihikari redifferentiated plant obtained by non-selective transformation.
  • Genomic DNA was extracted from a redifferentiated plant that had been transformed with Agrobacterium LBA4404 (pSB134) and selected without selection, and digested with the restriction enzyme HindIII. The digested DNA was subjected to agarose gel electrophoresis and then hybridized with a GUS probe. Seed-derived Yukihikari (control) (lane C), GUS positive expression (GUS uniformly expressed) redifferentiated plant (lane 1-11), GUS dot-like expression redifferentiated plant (lane 12-17).
  • FIG. 2 shows the results of Southern blot analysis of A188 redifferentiated plants obtained by non-selective transformation.
  • Genomic DNA was extracted from a redifferentiated plant body (corn) obtained by transformation with Agrobacterium LBA4404 (pSB124) and selected without selection, and digested with the restriction enzyme BamHI. The digested DNA was subjected to agarose gel electrophoresis and then hybridized with a GUS probe. Seed-derived A188 (control) (lane C), GUS positive expression (GUS uniformly expressed) redifferentiated plant (lane 1-13).
  • FIG. 3 shows the results of Southern blot analysis of A188 regenerated plantlets and T1 progeny plants obtained by non-selective transformation.
  • Example 1 Gene expression in a plant body regenerated without selection from immature corn embryos inoculated by a conventional method .
  • Materials and Methods Immature embryos (size 1.0-1.5 mm) of corn (variety: A188) 7 to 14 days after pollination were aseptically collected and LS-inf liquid medium (Ishida et al., 1996). ) Once.
  • pretreatment 46 ° C., heat treatment for 3 minutes and 20,000 ⁇ g, centrifugation for 10 minutes
  • An Agrobacterium strain LBA4404 (pSB134) (Hiei and Komari, 2006) was suspended in an LS-inf liquid medium containing 100 ⁇ M acetosyringone at about 1.0 ⁇ 10 9 cfu / ml as an inoculum source.
  • the inoculum was added to the heat-centrifugated immature embryo, stirred for 30 seconds, and allowed to stand at room temperature for 5 minutes.
  • 1.5 mg in LS-AS medium (Ishida et al. 1996, solidifying agent is 8 g / l agarose) containing 5 ⁇ M AgNO 3 and 5 ⁇ M CuSO 4 except 2,4-D (2,4-dichlorophenoxy-acetic acid)
  • An immature embryo inoculated with Agrobacterium in a co-culture medium supplemented with dicamba (3,6-dichloro-o-anisic acid) at a concentration of 1 / l was placed so that the scutellum was on top.
  • Immature embryos cultured for 7 days at 25 ° C. in the dark were placed on LSZ medium (Ishida et al. 1996) containing 10 ⁇ M CuSO 4 and cultured at 25 ° C. under illumination for about 2 weeks.
  • a part of the leaf of the plant body that had undergone redifferentiation was cut out, immersed in 0.1 M phosphate buffer (pH 6.8) containing 0.1% Triton X-100, and allowed to stand at 37 ° C. for 1 hour.
  • a phosphate buffer containing 1.0 mM 5-bromo-4-chloro-3-indolyl- ⁇ -D-glucuronic acid (X-gluc) and 20% methanol was added. After treatment at 37 ° C. for 24 hours, the expression of the GUS gene was examined.
  • Example 1 The conditions of Example 1 are summarized below.
  • Vector Super Binary Vector having pSB134 GUS gene, hygromycin resistance gene (selection marker gene) and part of pathogenicity gene of strong pathogenic strain Selection process: None in all steps Results Regeneration of the plant body was observed from all 16 immature embryos placed on the LSZ medium. Four to thirteen leaf pieces were collected from plants regenerated from each immature embryo and examined for expression of the GUS gene.
  • the leaf pieces derived from the two immature embryos were all GUS negative. In the leaf pieces collected from the remaining 14 immature embryos, GUS gene expression was observed in at least one leaf piece. Leaf pieces showing dot-like expression were found in 5 immature embryos. Leaf pieces expressing the GUS gene in stripes were found in 6 immature embryos. Two immature embryos having both leaf-like and strip-like leaf pieces were observed. Here, it is speculated that those expressed in stripes are chimeras of transformed cells and non-transformed cells, and those expressed in dots are gene silencing in some transformed cells Is done. GUS positive leaf pieces whose cuts were uniformly stained blue were obtained from one immature embryo.
  • results of this example indicate that a GUS gene-transformed corn plant was obtained under the condition that no selection step using antibiotics or the like was performed in any step from coexistence to redifferentiation.
  • Example 2 Gene expression in plant bodies regenerated without selection from immature corn embryos inoculated by the dropping method
  • Materials and Methods Approximately 80 mg of hydroxyapatite (Bio-Rad) was added to 1 ml of the inoculum of Agrobacterium strain LBA4404 (pSB134) prepared in the same manner as in Example 1.
  • pretreatment 46 ° C., heat treatment for 3 minutes and 20,000 ⁇ g, centrifugation for 10 minutes
  • immature embryos (variety A188), except 2,4-D, were added to LS-AS medium (Ishida et al. 1996, solidifying agent 8 g / l agarose) containing 5 ⁇ M AgNO 3 and 5 ⁇ M CuSO 4 .
  • the scutellum was placed on a co-culture medium supplemented with dicamba at a concentration of 5 mg / l so that the scutellum was on top.
  • Example 2 The conditions of Example 2 are summarized below.
  • Material Corn Immature embryo Method: Agrobacterium inoculation by dripping method Transformation improvement treatment: Powder treatment, heat and centrifugation treatment, treatment adding Ag + and Cu 2+ ions to the medium Addition of auxin to the coexistence process: Daikanba Coexistence After culturing, go directly to the redifferentiation step without going through the callus growth step.
  • results of this example indicate that a GUS gene-transformed corn plant was obtained under the condition that no selection step using antibiotics or the like was performed in any step from coexistence to redifferentiation.
  • Example 3 Effect of auxin in co-culture medium on gene expression in plant bodies regenerated without selection from immature maize embryos
  • Immature embryos (size 1.0-1.5 mm) of corn (variety: A188) 7 to 14 days after pollination were aseptically collected and washed once with LS-inf liquid medium.
  • a pretreatment 46 ° C., 3 minutes heat treatment
  • An Agrobacterium strain LBA4404 (pSB124) was suspended in an LS-inf liquid medium containing 100 ⁇ M acetosyringone as an inoculum.
  • the inoculation source was added to the heat-treated immature embryo, stirred for 30 seconds, and allowed to stand at room temperature for 5 minutes. 6.8 ⁇ M in LS-AS medium (Ishida et al. 1996, solidifying agent is 8 g / l agarose) containing 5 ⁇ M AgNO 3 and 5 ⁇ M CuSO 4 except 2,4-D (2,4-dichlorophenoxy-acetic acid) Immature embryos inoculated with Agrobacterium in co-culture medium supplemented with dicamba (3,6-dichloro-o-anisic acid) or picloram (4-amino-3,5,6-trichloropicolinic acid) Twenty-four immature embryos were placed so that the scutellum was on top.
  • Immature embryos cultured for 7 days at 25 ° C. in the dark were placed on LSZ medium (Ishida et al. 1996) containing 10 ⁇ M CuSO 4 and cultured at 25 ° C. under illumination for about 2 weeks.
  • a part of the leaf of the plant body that had been redifferentiated was cut out, immersed in 0.1 M phosphate buffer (pH 6.8) containing 0.1% Triton X-100, and allowed to stand at 37 ° C. for 1 hour. .
  • a phosphate buffer containing 1.0 mM 5-bromo-4-chloro-3-indolyl- ⁇ -D-glucuronic acid (X-gluc) and 20% methanol was added. After treatment at 37 ° C. for 24 hours, the expression of the GUS gene was examined.
  • Example 3 The conditions of Example 3 are summarized below.
  • immature embryos co-cultured in a medium containing dicamba and picloram showed high efficiency of plant redifferentiation, and the regenerated plants obtained showed a high percentage of transgene expression.
  • Transgene expression was also observed in immature embryos co-cultured in a medium containing 2,4-D, but was slightly lower.
  • Example 4 Effect of heat and centrifugation treatment on immature corn embryos on gene expression in plants regenerated without selection
  • Immature embryos (size 1.0-1.5 mm) of corn (variety: A188) 7 to 14 days after pollination were aseptically collected and washed once with LS-inf liquid medium.
  • pretreatment 46 ° C., 3 minutes heat treatment and 20,000 ⁇ g, 4 ° C., 10 minutes centrifugation
  • immature embryos without these pretreatments were used.
  • Agrobacterium strain LBA4404 (pSB124) was suspended in an LS-inf liquid medium containing 100 ⁇ M acetosyringone to obtain an inoculum.
  • Inoculums were added to immature embryos that had been pretreated with heat and centrifugation and immature embryos that were not pretreated with controls, respectively, and stirred for 30 seconds, and then allowed to stand at room temperature for 5 minutes. Except for 2,4-D (2,4-dichlorophenoxy-acetic acid), LS-AS medium containing 5 ⁇ M AgNO 3 and 5 ⁇ M CuSO 4 (Ishida et al. 1996, solidifying agent is 8 g / l agarose) 6.
  • Immature embryos cultured for 7 days at 25 ° C. in the dark were placed on LSZ medium (Ishida et al. 1996) containing 10 ⁇ M CuSO 4 and cultured at 25 ° C. under illumination for about 2 weeks.
  • a part of the leaf of the plant body that had undergone redifferentiation was cut out, immersed in 0.1 M phosphate buffer (pH 6.8) containing 0.1% Triton X-100, and allowed to stand at 37 ° C. for 1 hour.
  • a phosphate buffer containing 1.0 mM 5-bromo-4-chloro-3-indolyl- ⁇ -D-glucuronic acid (X-gluc) and 20% methanol was added. After treatment at 37 ° C. for 24 hours, the expression of the GUS gene was examined.
  • Example 4 The conditions of Example 4 are summarized below.
  • Material Corn Immature embryo Method: Agrobacterium inoculation by conventional method (1) Heat and centrifugation treatment, treatment of adding Ag + and Cu 2+ ions to the medium (2) No heat and centrifugation treatment, treatment of adding Ag + and Cu 2+ ions to the medium, auxin to the co-culture medium Addition: Daikanba After co-culture, go directly to the redifferentiation step without going through the callus growth step.
  • Example 5 Non-selective transformation of rice Materials and Methods
  • Rice (variety: Yukihikari) immature seeds 8 to 12 days after flowering are defatted and treated with 1% sodium hypochlorite containing 70% ethanol for a few seconds and 1 drop of Tween 20 (registered trademark) for 5 minutes. did. Immature seeds were washed several times with sterile water, and immature embryos having a length of 1.3-1.8 mm were collected. Subsequently, in order to increase gene transfer efficiency, immature embryos were subjected to centrifugation at 20,000 ⁇ g for 10 minutes as a transformation improvement treatment (Hiei et al., 2006).
  • Agrobacterium LBA4404 (pSB134) (Hiei and Komari, 2006) was suspended in an AA-inf liquid medium (Hiei and Komari, 2006) containing 100 ⁇ M acetosyringone at a concentration of about 1.0 ⁇ 10 9 cfu / ml, and used as an inoculum source. Centrifugated immature embryos were placed on nN6-As medium (Hiei et al., 2006) with the scutellum side facing up. 5 ⁇ l of the inoculum was dropped on each immature embryo and co-cultured for 7 days in the dark at 25 ° C.
  • each immature embryo was divided into 4 to 5 with a scalpel.
  • the divided immature embryos were placed on an nN6 medium (Hiei et al., 2006) containing 250 mg / l cefotaxime and 100 mg / l carbenicillin with the scutellum side facing upward and cultured at 30 ° C. for about 10 days.
  • Each of the sections enlarged primarily by blastocyst proliferation was further divided into 4-5. At this stage, 18-25 sections were obtained per immature embryo.
  • the sections were placed on an nN6 medium (Hiei et al., 2006) containing 250 mg / l cefotaxime and 100 mg / l carbenicillin with the scutellum side facing upward and cultured under light conditions at 30 ° C. for about 2 weeks.
  • callus was propagated by culturing twice, individual cells of the scutellum grew about 140 times, and the sections were covered with callus.
  • the cell growth rate was estimated from the size of each section. From the callus formed in the section, only one callus (0.5-1 mm large) is taken out for each section, placed on N6R regeneration medium (Hiei et al., 2006), and 2 under 30 ° C light conditions. Cultured for a week. The reason why only one callus was placed on the regeneration medium from each section was to obtain a plant body derived from random and independent cells.
  • Southern blot analysis was performed by the following method. DNA was extracted from the leaves of the redifferentiated plant by the method of Komari (1989), and 7 ⁇ g of DNA was digested with the restriction enzyme HindIII for each plant. The digested DNA was subjected to 0.7% agarose gel electrophoresis (1.5 V / cm, 15 hours). Southern hybridization was performed by the method of Sambrook et al. (1989). As a probe, a SalI-SacI (1.9 kb) fragment of pGL2-IG (Hiei et al., 1994), which is a GUS gene fragment, was used.
  • Example 5 The conditions of Example 5 are summarized below.
  • Test 1 Super Binary Vector having pSB134 GUS gene, hygromycin resistance gene (selection marker gene) and part of pathogenicity gene of strong pathogenic strain Selection process: None in all steps Results The test was performed twice (Tests 1 and 2). The results of Test 1 are shown in Table 1. In Test 1, 100 divided sections were obtained from 5 immature embryos, and 100 calluses were placed on the regeneration medium from each, yielding 92 plants. Of these, 73 plants were examined for GUS gene expression one leaf at a time. Nine plants were transformants that expressed GUS uniformly throughout the leaf tissue (GUS positive). It was. The transformation efficiency was 12.3% per regenerated plant body.
  • Test 2 The results of Test 2 are shown in Table 2.
  • 107 divided sections were obtained from 5 immature embryos, and 107 calluses were placed on the regeneration medium from each, yielding 100 plants. Of these, 95 plants were examined for GUS gene expression with leaves one by one, and 16 plants were transformants that uniformly expressed GUS. The transformation efficiency was 16.8% per redifferentiated plant body. As described above, a transformant was obtained with a very high efficiency of 10% or more per redifferentiated plant without any selection process.
  • FIG. 1 The result of Southern blot analysis is shown in FIG.
  • the presence of the introduced GUS gene was confirmed in all the 11 individuals examined in the redifferentiated plants that showed a positive expression of the GUS gene (FIG. 1). Even in redifferentiated plants in which the expression of the GUS gene showed a dot shape, the presence of the GUS gene was confirmed in all 6 individuals examined, but there was a tendency that the copy number of the introduced gene was high in any individual. (FIG. 1). Further, Southern blot analysis was also performed on the redifferentiated plants in which the expression of the GUS gene was negative, but no band hybridizing with the GUS probe was detected in any of the 7 plants tested.
  • blastocysts of immature embryos into which genes were introduced were proliferated, and redifferentiated plants were obtained from callus randomly extracted from them. Of these, 10% or more were transformed plants. This indicates that 10% or more of the blastocysts of immature embryos have been transformed by Agrobacterium infection.
  • Example 6 Southern analysis of transgenic maize plant obtained without selection Materials and Methods
  • the transformed corn (variety: A188) obtained in Examples 3 and 4 was cultivated in a greenhouse.
  • DNA was extracted from the leaves of these plants by the method of Komari et al. ( Komari et al. (1989)), and 10 ⁇ g of DNA was digested with the restriction enzyme BamHI for each plant.
  • the digested DNA was subjected to 0.7% agarose gel electrophoresis (1.5 V / cm, 15 hours).
  • Southern hybridization was performed by Sambrook et al. (Sambrook, J., et al., (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory. .
  • a SalI-SacI 1.9 kb
  • fragment of pGL2-IG Hiei et al., 1994
  • Example 7 Inheritance to a progeny plant of a transgene in transformed maize obtained without selection Materials and Methods The transformed corn (variety: A188) obtained in Examples 3 and 4 was cultivated in a greenhouse. Pollen was collected from a non-transformed A188 plant and crossed with the silk thread of the transformed plant to obtain a progeny seed (T1 generation).
  • the obtained seeds were sown in a plastic pot containing culture soil.
  • the seedling leaves on the 11th day after sowing were cut out, immersed in 0.1 M phosphate buffer (pH 6.8) containing 0.1% Triton X-100, and allowed to stand at 37 ° C. for 1 hour.
  • a phosphate buffer containing 1.0 mM 5-bromo-4-chloro-3-indolyl- ⁇ -D-glucuronic acid (X-gluc) and 20% methanol was added. After treatment at 37 ° C. for 24 hours, the expression of the GUS gene was examined.
  • DNA was extracted from the leaves of the transformed plant and the above-mentioned T1 plant by the method of Komari (1989), and 10 ⁇ g of DNA was digested with the restriction enzyme BamHI for each plant.
  • the digested DNA was subjected to 0.7% agarose gel electrophoresis (1.5 V / cm, 15 hours).
  • Southern hybridization was performed by the method of Sambrook et al. (1989).
  • a SalI-SacI (1.9 kb) fragment of pGL2-IG Hiei et al., 1994, which is a GUS gene fragment, was used.
  • Results Table 3 shows the results of examining the separation of the GUS gene in the progeny plants of corn transformed plants obtained by non-selected traits.
  • DNA extracted from the transgenic plant of line number 195 showed one hybridizing band.
  • DNA extracted from five plants showing GUS positivity showed a single band of the same size as the T0 plant.
  • no hybridizing band was detected in the DNA extracted from the plant showing GUS negative.
  • DNA extracted from the transformed plant of line number 169 showed 5 hybridizing bands.
  • DNA extracted from 5 plants that showed GUS positivity showed bands of the same size as the T0 plant, but the number was different from 1, 4 and 5. Since the expression of the GUS gene in the T1 plant of line number 169 showed separation of two factors, it was estimated that 4 copies and 1 copy of the GUS gene are located on different chromosomes. No hybridizing band was detected in DNA extracted from plants that showed GUS negative (FIG. 3).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、新規のアグロバクテリウムによる形質転換植物の作成方法を提供することを目的とする。  本発明の作成方法は、   (i)アグロバクテリウムを接種した植物材料を、共存培地で培養する共存工程、及び   (ii)(i)で得られた組織を、カルス増殖培養を行わず、あるいはカルス増殖培養を行った後に、再分化培地で培養し植物体を再分化させる工程 を含む、アグロバクテリウムを用いた形質転換植物の製造方法であって  1)形質転換向上処理を行うこと、及び  2)共存から再分化までのいずれの工程においても、アグロバクテリウムにより導入される核酸の特性を利用した形質転換細胞の選抜を行なわないこと を特徴とする。

Description

アグロバクテリウム菌による形質転換植物の作成方法
 本出願は、2008年3月31日に出願された日本国特許出願2008-094049に基づく優先権を主張する。
 本発明は、新規のアグロバクテリウムによる形質転換植物の作成方法に関する。
 主要穀類であるトウモロコシ、イネなどの単子葉植物の形質転換方法としては、従来より、エレクトロポレーション法、パーティクルガン法などが知られている。しかし、これらの物理的遺伝子導入方法は多コピーの遺伝子が導入されてしまう、遺伝子の挿入がインタクトな形でなされない、形質転換植物に奇形や不稔が多くみられるなどの問題を有している。
 アグロバクテリウム属細菌を用いた遺伝子導入法は、双子葉植物の形質転換法として普遍的に用いられている。アグロバクテリウム属細菌の宿主は双子葉植物のみに限られ、単子葉植物には寄生しないとされている(De Cleene and De Ley 1976)が、アグロバクテリウムにより単子葉植物を形質転換する試みがなされている。
 Grimsley et al.はアグロバクテリウムのT-DNAの中にトウモロコシストリークウイルス(Maize streak virus)のDNAを挿入したものをトウモロコシ生長点に接種したところ、トウモロコシストリークウイルスの感染を確認したことを報告している。トウモロコシストリークウイルスのDNAを接種しただけでは、このような感染症状が認められないことから、上の観察はアグロバクテリウムがトウモロコシにDNAを導入することができることを示すものと解釈している(Grimsley et al. 1987)。しかし、ウイルスは核ゲノムに組み込まれなくても増殖する可能性があるので、この結果はT-DNAが核に組み込まれたものを示しているとはいえない。Grimsley et al.はさらに感染効率はトウモロコシの茎頂の生長点に接種したときが最も高く(Grimsley et al. 1988)、感染にはアグロバクテリウムのプラスミドのVir C遺伝子が必須であることを示した(Grimsley et al. 1989)。
 Gould et al.はトウモロコシの生長点に針で傷を付けた後、カナマイシン抵抗性遺伝子とGUS遺伝子を持った強病原性アグロバクテリウムEHA1を接種し、処理後の生長点をカナマイシンで選抜したところ、抵抗性を示す植物を得た。この後代の種子が導入した遺伝子を持つことを確認するためサザン分析を行ったところ、一部の種子で導入遺伝子が確認された(Gould et al. 1991)。このことは、アグロバクテリウム処理された生長点からカナマイシン選抜により得られた植物体には形質転換細胞と非形質転換細胞が混在していたことを示す(キメラ現象)。
 Mooney et al.は、アグロバクテリウムを用いてコムギの胚にカナマイシン抵抗性遺伝子の導入を試みた。まず、胚を酵素で処理することにより、細胞壁に傷を付け、その後アグロバクテリウムを接種した。処理したカルスのうち極めて少数のカナマイシン抵抗性と思われるカルスが増殖したが、このカルスから植物体の再生はできなかった。また、カナマイシン抵抗性遺伝子の存在をサザン分析で確認したところ、全ての抵抗性カルスで導入遺伝子の構造変異がみられた(Mooney et al. 1991)。
Raineri et al.はイネの胚盤に傷を付けた後、強病原性のアグロバクテリウムA281 (pTiBo542)をイネの8品種に処理したところ、日本晴、藤坂5号の2品種で腫瘍状の組織の増殖がみられた。さらに、T-DNAからホルモン合成遺伝子を除いたTiプラスミドにカナマイシン抵抗性遺伝子とGUS遺伝子を挿入したプラスミドを持つアグロバクテリウムをイネの胚に接種したところカナマイシン抵抗性カルスの増殖がみられた。この抵抗性カルスでは、GUS遺伝子の発現が認められたが、形質転換植物を得ることはできなかった。これらのことから、アグロバクテリウムのT-DNAがイネの細胞に導入されたと解釈している(Raineri et al. 1990)。
 このように、イネ、トウモロコシ、コムギ等のイネ科の作物でもアグロバクテリウムによる遺伝子導入が可能であることを示唆する研究報告がなされていたが、何れも再現性に問題があるほか、導入した遺伝子の確認についても不完全で、説得できる結果が示されていなかった(Potrykus 1990)。
 Chan at l.は2,4-D共存下で2日間培養したイネ未熟胚に付傷後、ジャガイモ懸濁培養細胞を含む培地中でnpt II遺伝子とGUS遺伝子を持ったアグロバクテリウムを接種した。処理した未熟胚をG418添加培地上で培養したところ、誘導されたカルスから再分化植物体が得られた。再分化植物体およびその後代の植物体でのGUS遺伝子の所在をサザン分析で確認したところ、再分化当代、後代いずれの植物体でも導入遺伝子の存在が認められたことを報告している(Chan et al. 1993)。この結果は、アグロバクテリウムによるイネの形質転換を支持するものであるが、形質転換効率は1.6%と非常に低く、供試した未熟胚数250に対し、正常な生長を示した再生植物体は1個体にすぎなかった。イネの未熟胚を摘出するには多大な労力を要するため、このように低い形質転換効率では実用的なレベルにあるとは言い難い。
 近年、強病原性アグロバクテリウムの病原性遺伝子の一部を有するスーパーバイナリーベクターの利用により、イネ、トウモロコシなどの単子葉植物においても、安定して、高効率で形質転換のなされることが報告された(Hiei et al. 1994, Ishida et al. 1996)。これらの報告では、アグロバクテリウムによる形質転換は、安定して、高効率で形質転換がなされる他に、得られた形質転換植物に変異が少なく、導入された遺伝子はコピー数が少なく、かつインタクトな形のものが多いという利点をもつとしている。イネ、トウモロコシでの成功に続いて、主要な穀類であるコムギ(Cheng et al. 1997)、オオムギ(Tingay et al. 1997)およびソルガム(Zhao et al. 2000)でのアグロバクテリウムによる形質転換の報告がなされた。
 アグロバクテリウムによるトウモロコシ形質転換の効率を改善する試みとしては、上記以外にも、N6基本培地での形質転換細胞の選抜(Zhao et al. 2001)、培地へのAgNO3およびカルベニシリンの添加(Zhao et al. 2001、Ishida et al. 2003)、共存培地へのシステインの添加(Frame et al. 2002)などがなされてきた。このように培地組成や選抜マーカー遺伝子の改変により、アグロバクテリウムによるイネやトウモロコシの形質転換においても効率の向上がなされている。
 これまでに報告されているアグロバクテリウムによるイネ・トウモロコシの形質転換方法では、そのほとんどが、アグロバクテリウムを接種した胚盤由来カルス、あるいはアグロバクテリウムを接種した未熟胚から誘導されたカルスについて、除草剤の成分や抗生物質を含む培地で形質転換カルスを選択的に増殖させ、得られた形質転換細胞塊を再分化培地に置床して再分化させる、という工程を経て形質転換植物を得ている(Deji et al., 2000; Negrotto et al., 2000; Nomura et al., 2000a; Nomura et al., 2000b; Taniguchi et al., 2000; Frame et al., 2002; Zhang et al., 2003; Frame et al. 2006)。
 植物の形質転換方法においては、形質転換細胞の選抜は形質転換植物の作出に不可欠であり、この工程がなければ植物の形質転換は成功しないとされてきた(Potrykus et al., 1998; Erikson et al., 2005; Joersbo et al., 2001)。形質転換細胞の選抜は多くの場合、非形質転換細胞の増殖を阻害する薬剤に対して抵抗性を示す遺伝子を植物材料に導入する操作を行い、この薬剤を含む培地で植物材料を培養することにより、薬剤抵抗性遺伝子が植物細胞のゲノムに組み込まれ発現する形質転換細胞のみを選択的に増殖させる方法により行われる。
 形質転換細胞の選抜に用いられる遺伝子(選抜マーカー遺伝子)のうち、最も一般的に使用される遺伝子は除草剤あるいは抗生物質に対する抵抗性を付与するものである(Kuiper et al. 2001)。除草剤に対する抵抗性を付与する遺伝子としてはbar遺伝子やEPSP遺伝子(De Block et al., 1987; Comai et al., 1985)、抗生物質に対する抵抗性を付与する遺伝子としてはNPTII遺伝子やHPT遺伝子(Bevan et al., 1983; Waldron et al., 1985)が植物の形質転換の選抜マーカー遺伝子として使用されることが多い。また近年、特定の糖の代謝能を利用したPMI遺伝子やXylA遺伝子(Joersbo et al., 1998; Haldrup et al., 1998)なども選抜マーカー遺伝子として有効であることが報告されている。形質転換された細胞を選択的に増殖させる機構を利用した選抜マーカー遺伝子としては、上述したものの他にも数多くの遺伝子が報告されている。そして、これらの遺伝子を用いた形質転換法では形質転換細胞を選択的に増殖させる選抜工程は必須であると考えられている。
 花芽組織に減圧浸潤法を用いて形質転換を行うインプランタ形質転換法では、形質転換された種子は選抜工程を経ずに得られる(Bent, 2000)。しかし、非形質転換種子が多数混在した種子の中から目的とする形質転換種子を得るためには抗生物質抵抗性遺伝子などを利用した選抜工程が必要となる。
 GFP遺伝子を導入し、紫外線照射下で蛍光を発する細胞を指標に可視的に形質転換部位を選抜し、形質転換植物を得る方法が報告されている(Elliott et al., 1998; Zhu et al., 2004)。この方法では、形質転換細胞は増殖の違いにより非形質転換細胞と混在した中からは選抜されることはないが、GFP遺伝子の発現の有無により、形質転換細胞と非形質転換細胞を区別し、より分ける選抜工程が必要である。
 選抜マーカー遺伝子を形質転換植物から除く技術として、コ・トランスフォーメーションシステム(Komari et al., 1996)、MATベクターシステム(Ebinuma et al., 1997)およびCreLoxシステム(Gleave et al., 1999; Zhang et al., 2003)が報告されている。これらのシステムを用いることにより、選抜マーカー遺伝子を含まない形質転換植物を得ることができる。しかし、選抜マーカーフリーの形質転換植物を作出する過程では、従来より用いられている薬剤耐性遺伝子や植物ホルモン合成遺伝子などを使用し、形質転換細胞と非形質転換細胞を区別し選抜する工程が必要である。
 このように、植物の形質転換においてこれまでになされている方法では、形質転換細胞と非形質転換細胞を選り分ける選抜工程が不可欠であった。この選抜工程には、上記のように、目的とする遺伝子(GOI遺伝子)の他に選抜を行うための選抜マーカー遺伝子が必要である。この選抜マーカー遺伝子が発現することにより産生されるタンパク質や酵素の働きにより生ずる反応、例えば除草剤抵抗性、抗生物質抵抗性や蛍光の発光などを利用し、多数の非形質転換細胞の中のごく一部の形質転換細胞を区別して増殖させ形質転換植物が得られる。しかし、選抜マーカー遺伝子は作出された形質転換植物には不要なものであり、さらに選抜マーカー遺伝子が形質転換植物に含まれたままでは、除草剤抵抗性遺伝子や抗生物質抵抗性遺伝子が形質転換体を介して一般の非組換え植物に伝播する危険は皆無とはいえないとして、形質転換植物の利用に不安を抱く一般消費者も多い。また、選抜マーカー遺伝子は多くの種類が報告されているものの、植物の種により適応できる選抜マーカー遺伝子は限定され、複数の遺伝子を分けて導入するときには問題となる。さらに形質転換体から選抜マーカー遺伝子を除く技術も報告されているが、これらの方法は通常の形質転換法よりも長い培養期間や後代植物での選抜マーカーフリー個体の選抜など、多大な労力を要する。
 以上のように、これまでに形質転換植物の作出に関する報告が数多くなされているが、形質転換された細胞、組織、器官あるいは個体を、形質転換されていない細胞、組織、器官あるいは個体からより分ける選抜工程を経ずに形質転換体を得る方法は報告されていない。すなわち、GOI(Gene of Interest)遺伝子のみを導入して形質転換植物を得ることは現在まで不可能であったといえる。
WO98/54961 WO02/12520 WO02/12521 WO2005/017169 WO2005/017152 WO2007/069643 De Cleene, M. and De Ley, J. (1976) The host range of crown gall.  Bot. Rev. 42:389-466. Grimsley, N., Horn, T., Davis, J.W. and Horn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177-179. Grimsley, N.H., Ramos, C., Hein, T. and Horn, B. (1988) Meristematic tissues of maize plants are most susceptible to Agroinfection with maize streak virus. Bio/tecnology 6:185-189. Grimsley, N., Horn, B., Ramos, C., Kado, C. and Rogowsky, P. (1989) DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol. Gen. Genet. 217:309-316. Gould, J., Devey, M., Hasegawa, O., Ulian, E.C., Peterson, G. and Smith, R.H. (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and shoot apex. Plant Physiol. 95:426-434. Mooney, P.A., Goodwin, P.B., Dennis, E.S. and Llewellyn, D.J. (1991) Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell, Tissues and Organ Culture 25:209-218. Raineri, D.M., Bottino, P., Gordon, M.P. and Nester, E.W. (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/technology 8:33-38. Potrycus, I (1990) Gene transfer to cereals: an assessment. Bio/technology 8:535-542. Chan, M-T., Chang, H-H., Ho, S-L., Tong, W-F. and Yu, S-M. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter / β-glucuronidase gene.  Plant Mol. Biol. 22:491-506. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6:271-282. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14:745-750. Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C. M., Duncan, D. R., Conner, T. W.,  Wan, Y. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971-980. Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., Brettell, R. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369-1376. Zhao, Z.-Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Peng, H., Rudert, M., Schoeder, S., Hondred, D., Seltzer, J., Pierce, D. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44: 789-798. Deji, A., Sakakibara, H., Ishida, Y., Yamada, S., Komari, T., Kubo, T., Sugiyama, T. (2000) Genomic organization and transcriptional regulation of maize ZmRR1 and ZmRR2 encoding cytokinin-inducible response regulators. Biochim. et Biophys. Acta 1492: 216-220. Negrotto, D., Jolley, M., Beer, S., Wenck, A. R., Hansen, G. (2000) The use of phosphomannose-isomerase as a selection marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Reports 19: 798-803. Nomura, M., Sentoku, N., Nishimura, A., Lin, J-H., Honda, C., Taniguchi, M., Ishida, Y., Ohta, S., Komari, T., Miyao-Tokumori, M., Kono-Murakami, Y., Tajima, S., Ku, M. S. B., Matsuoka, M. (2000a) The evolution of C4 plants: acquisition of cis-regulatory sequences in the promoter of C4-type pyruvate, orthophosphate dikinase gene. Plant J. 22: 211-221. Nomura, M., Katayama, K., Nishimura, A., Ishida, Y., Ohta, S., Komari, T., Miyao-Tokutomi, M., Tajima, S., Matsuoka, M. (2000b) The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Plant Mol. Biol. 44: 99-106. Taniguchi, M., Izawa, K., Ku, M. S. B., Lin, J-H., Saito, H., Ishida, Y., Ohta, S., Komari, T., Matsuoka, M., Sugiyama, T. (2000) The promoter for the maize C4 pyruvate, orthophosphate dikinase gene directs cell- and tissue-specific transcription in transgenic maize plants. Plant Cell Physiol. 41: 42-48. Zhao, Z.-Y., Gu, W., Cai, T., Tagliani, L., Hondred, D., Bond, D., Schroeder, S., Rudert, M., Pierce, D. (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed. 8: 323-333. Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z., Xiang, C., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D., Wang, K. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129: 13-22. Ishida, Y., Saito, H., Hiei, Y., Komari, T. (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnology 20:57-66. Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Peschke, V., Gilbertson, L. (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 107: 1157-1168. Frame, B.R., McMurray, J.M., Fonger, T.M., Main, M.L., Taylor, K.W., Torney, F.J., Paz, M.M., Wang, K. (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep. 25: 1024-1034. Hiei, Y., Ishida, Y., Kasaoka, K. & Komari, T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 87, 233-243 (2006). Hiei, Y. & Komari, T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 85, 271-283 (2006). Komari, T. Transformation of callus cultures of nine plant species mediated by Agrobacterium. Plant Sci. 60, 223-229 (1989). Bent, A.F. (2000) Arabidopsis in planta transformation.  Uses, mechanisms, and prospects for transformation of other species. Plant Physiol., 124:1540-1547. Bevan, M.W., Flavell, R.B., Chilton, M.-D. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plants cell transformation. Nature, 304:184-187. Comai, L., Facciotti, D., Hiatt, W.R., Thompson, G., Rose, R.E., Stalker, D.M. (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature, 317:741-744. De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Movva, N.R., Thompson, C., Van Montagu, M., Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J., 6:2513-2518. Ebinuma, H., Sugita, K., Matsunaga, E., Yamakado, M. (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc. Natl. Acad. Sci. U. S. A., 94:2117-2121. Elliott, A.R., Campbell, J.A., Brettell R.I.S., Grof, C.P.L. (1998) Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust. J. Plant Physiol., 25:739-743. Erikson, O.S., Hertzberg, M., Nasholm, T. (2005) The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation. Plant Mol. Biol., 57:425-433. Gleave, A.P., Mitra, D.S., Mudge, S.R., Morris, B.A.M. (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant. Mol. Biol., 40:223-235. Haldrup, A., Petersen, S.G., Okkels, F.T. (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol. Biol., 37:287-296. Joersbo, M., Donaldson, I., Kreiberg, J., Petersen, S.G., Brunstedt, J., Okkels, F.T. (1998) Analysis of mannose selection used for transformation of sugar beet. Mol. Breed., 4:111-117. Komari, T., Hiei, Y., Saito, Y., Murai, N., Kumashiro, T. (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal, 10:165-174. Kuiper, H.A., Kleter, G.A., Noteborn, H.P.J.M., Kok, E.J. (2001) Assessment of the food safety issues related to genetically modified food. The Plant Journal, 27:503-528. Potrykus, I., Bilang, R., Futterer J., Sautter, C., Schrott, M. (1998) Genetic engineering of crop plants. Agricultural Biotechnology, Marcel Deker Inc., New York. 119-159. 竹松哲夫 (1982) 除草剤研究総覧 博友社 79-154. Waldron, C., Murphy, E.B., Roberts, J.L., Gustafson, G.D., Armour, S.L., Malcolm, S.K. (1985) Resistance to hygromycin B: A new marker for plant transformation studies. Plant Mol. Biol., 5:102-108. Zhu, Y.J., Asbayani, R., Moore, P.H. (2004) Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.) transformation. Plant Cell Rep., 22:660-667. Chu, C.-C. (1978) The N6 medium and its applications to anther culture of cereal crops. In Proc. Symp. Plant Tissue Culture. Peking: Science Press, pp. 43-50. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
 従来のアグロバクテリウム属細菌を介した単子葉植物への遺伝子導入方法において、選抜マーカー遺伝子導入を利用した、形質転換細胞、組織、器官あるいは個体の選抜工程は不可欠であった。本発明はこのような選抜工程を経ずに形質転換植物を得ることのできる方法を開発し、提供することを目的とする。
 本発明者らは上記課題解決のため鋭意研究に努めた結果、単子葉植物について形質転換効率向上処理を行うことにより、選抜マーカー遺伝子を導入することなく、実用的な効率で形質転換植物を得られることを見出した。
 具体的には、本発明者らは、一般に、植物の形質転換工程では、外来遺伝子の組み込まれる植物細胞の数が非常に少ないことに着目し、形質転換の効率を大幅に向上させて、非形質転換細胞中に占める形質転換細胞の割合を高めてやり、それを植物体再分化まで維持することができれば、選抜マーカー遺伝子を利用した選抜工程を経ることなく形質転換植物を得られるのではないかと考えた。鋭意研究の結果、形質転換向上処理を適切に行うことにより十分実用的な効率で形質転換植物を得られることを見出し、本発明を想到した。
 限定されるわけではないが本発明は、好ましい態様として下記の態様を含む。
[態様1]
  (i)アグロバクテリウム菌を接種した植物材料を、共存培地で培養する共存工程、及び
  (ii)(i)で得られた組織を、カルス増殖培養を行わず、あるいはカルス増殖培養を行った後に、再分化培地で培養し植物体を再分化させる工程
を含む、アグロバクテリウムを用いた形質転換植物の製造方法であって
 1)形質転換向上処理を行うこと、及び
 2)共存から再分化までのいずれの工程においても選抜薬剤を用いた形質転換細胞の選抜を行わないこと
を特徴とする、前記形質転換植物の作成方法。
[態様2]
 3)共存培養後の組織をカルス増殖培地で培養する工程を、共存工程と再分化工程の間に含まないこと、をさらに特徴として有する、態様1に記載の形質転換植物の作成方法。
[態様3]
 アグロバクテリウム菌により導入される核酸が選抜薬剤に対する耐性遺伝子を含まない、態様1又は2に記載の形質転換植物の作成方法。
[態様4]
 1)形質転換向上処理が、目的遺伝子の植物細胞への導入効率を向上させる処理、未熟胚などからのカルス誘導率を向上させる処理、あるいは、形質転換カルスからの再分化効率を向上させる処理である、態様1ないし3のいずれか1項に記載の形質転換植物の作成方法。
[態様5]
 1)形質転換向上処理が以下からなるグループから選択される、態様1ないし4のいずれか1項に記載の形質転換植物の作成方法。
 熱処理;
 遠心処理;
 熱及び遠心処理;
 加圧処理;
 硝酸銀および/または硫酸銅の共存培地への添加;
 粉体の存在下でアグロバクテリウムを接種する処理;
 共存工程後の、カルス増殖及び/または再分化工程における培地へのカルベニシリン添加
 カルス増殖培地にN6無機塩を添加する処理;ならびに
 共存培地にシステインを添加する処理
[態様6]
 共存工程において、ベンゾイック系除草剤に属する化合物を添加することを含む、態様1ないし5に記載の形質転換植物の作成方法。
[態様7]
 ベンゾイック系除草剤に属する化合物が、安息香酸型、サリチル酸型またはピコリン酸型のいずれかである、態様6に記載の形質転換植物の作成方法。
[態様8]
 ベンゾイック系除草剤に属する化合物が、3,6-ジクロロ-o-アニシン酸、または4-アミノ-3,5,6-トリクロロピコリン酸である、態様6または7に記載の形質転換植物の作成方法。
[態様9]
 植物が単子葉植物である、態様1ないし8に記載の形質転換植物の作成方法。
[態様10]
 植物がトウモロコシ又はイネである、態様1ないし9に記載の形質転換植物の作成方法。
 [本発明の実施するための好ましい態様]
 本発明は、アグロバクテリウム菌による形質転換植物の作成方法を提供する。本発明は、アグロバクテリウム属細菌を介して植物への遺伝子導入を行う方法であって、形質転換効率向上処理を行うことにより、選抜マーカー遺伝子の導入が不要になる、という発見に基づく。本発明の方法は、
  (i)アグロバクテリウム菌を接種した植物材料を、共存培地で培養する共存工程、及び
  (ii)(i)で得られた組織を、カルス増殖培養を行わず、あるいはカルス増殖培養を行った後に、再分化培地で培養し植物体を再分化させる工程
を含む、アグロバクテリウムを用いた形質転換植物の製造方法であって
 1)形質転換向上処理を行うこと、及び
 2)共存から再分化までの全ての工程で選抜薬剤を用いた形質転換細胞の選抜を行わないこと
を特徴とする。
 形質転換向上処理
 本発明は、形質転換向上処理を行うことを特徴の1つとする。本発明の方法において、「形質転換向上処理」とは、当該処理を行うことにより、得られる形質転換植物の割合が向上する処理をいう。限定されるわけではないが、具体的には、目的遺伝子の植物細胞への導入効率を向上させる処理、未熟胚などからのカルス誘導率を向上させる処理、形質転換カルスからの再分化効率を向上させる処理などが挙げられる。このような形質転換向上処理としては、限定されるものではないが、例えば以下のようなものあるいはこれらの組み合わせが含まれる。
 熱処理(参照:WO98/54961)、
 遠心処理(参照:WO02/12520)、
 熱及び遠心処理(参照:WO02/12521)、
 加圧処理(参照:WO2005/017169)、
 硝酸銀および/または硫酸銅の共存培地への添加(参照:AgNO3(Zhao et al. 2001、Ishida et al. 2003;CuSO4(WO2005/017152)、
 粉体の存在下でアグロバクテリウムを接種する処理(参照:WO2007/069643)、
 共存工程後の、カルス増殖及び/または再分化工程における培地へのカルベニシリン添加(参照:Zhao et al. 2001、Ishida et al. 2003)、
 カルス増殖培地にN6無機塩(Chu 1978)を添加する処理(Zhao et al. 2001)、ならびに
 共存培地にシステインを添加する処理(Frame et al. 2002)。
 このうち、熱処理、遠心処理、熱及び遠心処理、加圧処理、粉体の添加はいずれも遺伝子導入効率を向上させる処理であり、硝酸銀、硫酸銅、カルベニシリンの添加はカルス誘導率を向上させる効果がある。また、再分化培地への硫酸銅の添加は再分化効率を向上させる。
 限定されるわけではないが、熱処理は例えばWO98/54961に記載の方法を用いて行うことができる。例えば、植物材料をアグロバクテリウム菌と接触させる前に、33℃ないし60℃、好ましくは37℃ないし52℃で、5秒間ないし24時間、好ましくは1分間ないし24時間、処理する。
 遠心処理は、例えばWO02/12520に記載の方法を用いて行うことができる。例えば、植物材料をアグロバクテリウム菌と接触させる前に、100Gないし25万G、好ましくは、500Gないし20万G、更に好ましくは1000Gないし15万Gの遠心加速度で、1秒間ないし4時間、更に好ましくは1秒間ないし2時間処理する。
 熱及び遠心処理は例えばWO02/12521に記載の方法を用いて行うことができる。熱処理及び遠心処理の条件は、例えば上述した条件を採用しうる。
 加圧処理は、例えばWO2005/017169に記載の方法を用いて行うことができる。加圧処理は、限定されるわけではないが、好ましくは1.7気圧ないし10気圧の範囲、より好ましくは2.4気圧ないし8気圧の範囲で行われる。
 硝酸銀および/または硫酸銅の共存培地への添加は、例えば、Zhao et al. 2001、Ishida et al. 2003、WO2005/017152に記載されている。硝酸銀および/または硫酸銅は、例えば、1μMないし50μM、好ましくは1μMないし10μMの濃度で、共存培地に添加しうる。
 粉体の存在下でアグロバクテリウムを接種する処理は、例えばWO2007/069643に記載の方法を用いて行うことができる。具体的には、例えば、アグロバクテリウム懸濁液と粉体を混合して植物材料に接種する、あるいは、植物と粉体を混合してこれにアグロバクテリウムを接種する、といった方法で行う。粉体は、限定されるものではないが、多孔質の粉体、グラスウールまたは活性炭であり、好ましくは多孔性セラミックス、グラスウールまたは活性炭、さらに好ましくはハイドロキシアパタイト、シリカゲル、グラスウールである。
 カルス増殖培地にN6無機塩を添加する処理(Zhao et al. 2001)では、カルス増殖培地にN6無機塩(Chu 1978)を添加することにより行う。
 共存培地にシステインを添加する処理では、システインを10mg/lないし1g/l、好ましくは50mg/lないし750mg/l、より好ましくは100mg/lないし500mg/lで、共存培地に添加しうる。
 共存工程後の、カルス増殖及び/または再分化工程における培地へのカルベニシリン添加は、Zhao et al. 2001、またはIshida et al. 2003に記載の方法を用いて行うことができる。カルベニシリンは、カルス増殖用培地、及び/または再分化工程に例えば、50mg/lないし500mg/l、好ましくは100mg/lないし300mg/lの濃度で添加しうる。なお、カルベニシリンは抗生物質であるが、植物に対してほとんど毒性がなく、培地中の微生物の増殖を防ぐ目的で利用することができる。
 当業者は、これらの処理を適切なタイミング・条件で行うことができる。また、これらを適宜組み合わせることは、形質転換効率向上のために一層好ましい。例えば、またトウモロコシであれば、熱及び遠心処理、粉体処理、共存培地へのAgNO3及び/又はCuSO4の添加処理、カルス増殖培地および/または再分化培地中の抗生物質としてカルベニシリン添加処理のうち2つ以上を組み合わせることが望ましい。イネでは、熱処理および/または遠心処理を含むことが好ましく、カルス増殖培地および/または再分化培地中の抗生物質としてカルベニシリン添加処理を組み合わせることが最も好ましい。
 従って、好ましい形質転換向上処理は、熱処理、遠心処理、熱及び遠心処理、加圧処理、共存培地にAgNO3および/またはCuSO4を添加する処理、あるいは粉体の存在下でアグロバクテリウムを接種する処理、カルス増殖培地および/または再分化培地中の抗生物質をカルベニシリンにする処理、またはこれらの組み合わせである。
 本発明者らは、これらの処理を行うことで、最終的に得られる再分化個体中の形質転換個体の数を十分に増加させることに成功し、形質転換細胞の選抜処理を行わなくても十分な形質転換個体が得られることを見出し、実用に足る無選抜形質転換方法を確立した。
 これらの形質転換個体は、導入遺伝子の有無をPCRなどの手法で確認することにより、また後代個体であれば導入遺伝子の表現型を確認することにより、容易に獲得することができる。
 形質転換細胞の選抜
 本発明は、共存から再分化までの植物形質転換のためのいずれの工程でも、アグロバクテリウムにより導入される核酸の特性を利用した形質転換細胞の選抜を行わないことを特徴とする。
 アグロバクテリウムにより導入される核酸の特性を利用した形質転換細胞の選抜の例として、選抜薬剤に対する耐性遺伝子と選抜薬剤を用いた形質転換細胞の選抜が挙げられる。
 「選抜薬剤に対する耐性遺伝子と選抜薬剤を用いた形質転換細胞の選抜」とは、共存から再分化までの植物形質転換のためのいずれの工程において、形質転換植物を選抜するための薬剤を添加した培地での培養を行い、選抜薬剤に対する耐性の有無により形質転換された細胞を選抜することを意味する。本発明はこのような工程を全く含まない。
 従来の技術で使用されてきた選抜薬剤の例は、抗生物質および/または除草剤である。抗生物質としては、植物に対して毒性を有するもの、例えば、ハイグロマイシン、カナマイシン、またはブラストサイジンS等が、除草剤としては、例えば、フォスフィノスライシン、ビアラフォス、またはグリホセート等が使用されてきた。
 本工程のために、アグロバクテリウム中のT-DNA中に挿入したDNAは、植物に発現させることを意図する遺伝子のみならず、選抜薬剤に対する耐性遺伝子を含むことが必要であった。このような選抜薬剤に対する耐性遺伝子は当該技術分野においては公知である。例えばハイグロマイシンを選抜薬剤として含む再分化培地において再分化工程が行われる場合、植物にはアグロバクテリウムからハイグロマイシン耐性遺伝子が導入されていることが必要である。
 本発明では、薬剤を用いた選抜工程を行わないため、選抜薬剤に対する耐性遺伝子、即ち、選抜マーカー遺伝子をアグロバクテリウムにより導入される核酸が有する必要がない。よって、限定されるわけではないが、好ましい態様において、本発明ではこのような核酸を含まない。
 あるいは、従来法として、形質転換植物の選抜は、植物細胞の「栄養要求性選抜」、例えば「糖要求性」に基づいて行われることもある。
 糖要求性の場合、植物細胞が利用できる糖はシュークロース、グルコースなどがあるが、マンノースは利用できないことが知られている。したがって、マンノースのみを炭素源とする培地で植物組織を培養すると、利用できる糖がないために植物組織は枯死する。糖要求性に基づく選抜はこの原理を利用するものである。糖要求性に基づき形質転換植物の選抜を行う場合には、植物組織には、アグロバクテリウムから通常植物細胞が利用できない糖類を利用可能にする遺伝子が導入されている。このような遺伝子は当該技術分野において公知であり、例えば、PMI遺伝子、キシロースイソメラーゼ遺伝子等が使用可能である。本発明では、導入される核酸がこのような遺伝子を含む必要がない。
 あるいは、従来法として、容易に検出可能な遺伝子をスクリーニングの指標として導入し、当該遺伝子の発現の有無により選抜することがある。このようなスクリーニングの指標となる遺伝子としては、GFP遺伝子等があげられる。本発明では、導入される核酸がこのような遺伝子を含む必要がない。
 本発明の方法において、選抜マーカー遺伝子とは、多数の非形質転換細胞の中にある形質転換細胞を選抜することを目的として、形質転換しようとする目的遺伝子(GOI遺伝子)の他に、植物に導入する遺伝子を意味する。限定されるものではないが、この選抜マーカー遺伝子の例として、除草剤抵抗性遺伝子、抗生物質抵抗性遺伝子、蛍光遺伝子などが挙げられる。
 形質転換植物の作成方法
 アグロバクテリウムによる形質転換植物の作成方法は、一般に以下のI~Vの工程の全部又は一部を含む。
 I.植物材料の調製工程
 II.アグロバクテリウムの調製および接種工程
 III.共存工程
 IV.カルス増殖工程
 V.再分化工程
 I.植物材料の調製工程
 本発明の対照となる植物はアグロバクテリウムを用いた形質転換導入方法が適用可能な植物である。好ましくは単子葉植物である。本発明の方法に供される単子葉植物には、好ましくはイネ科植物であり、イネ、トウモロコシ、オオムギ、コムギ、ソルガムその他が含まれるがこれらに限定されるものではない。本発明の方法に供される最も好ましい植物は、イネまたはトウモロコシである。
 本発明の方法において、「植物材料」とは、アグロバクテリウム法による植物の形質転換に供試するための当該植物の細胞、葉、根、茎、芽、花(雄蕊、雌蕊等含む)、実、種子、発芽種子もしくはその他いずれかの部位の植物組織、成長点、外植片、未熟胚、カルスもしくは不定胚様組織(以下、本明細書においてカルス等、または単にカルスという)、または完全な植物体、などの植物のあらゆる態様を包含する。
 本発明の方法に用いる植物材料の形態として好ましいのは未熟胚またはカルスであり、最も好ましいのは未熟胚である。本明細書において、植物の細胞、組織、完全な植物体という表現は、技術分野において一般的に用いられる意味で用いられる。本明細書において、未熟胚とは、受粉後の登熟過程にある未熟種子の胚および胚盤をいう。また、本発明の方法に供される未熟胚のステージ(熟期)は特に限定されるものではなく、受粉後いかなる時期に採取されたものであってもよい。もっとも、受粉後2日以降のものが好ましい。後述の形質転換後、後述の方法により、増殖し、正常な個体を再生する能力を有するカルスを誘導できる未熟胚胚盤を用いることが好ましい。また、未熟胚はインブレッド、インブレッド間のF1、インブレッドと自然受粉品種間のF1、市販F1品種の未熟胚であることが好ましい。本明細書において、カルスとは、無秩序に増殖する未分化状態の細胞塊をいう。カルスを得るためには、植物組織の分化した細胞をオーキシン(例えば、2,4-D)またはサイトカイニン等の植物成長調節物質を含む培地(脱分化培地という)において培養して得ることができる。このカルスを得るための処理を脱分化処理といい、またこの過程を脱分化過程という。
 本工程において、必要に応じ、植物組織、未熟胚などを植物体、種子などから取り出し、形質転換に好適な植物材料を調製する。植物材料の調製は公知の方法によって行うことができる。また、所望により植物材料をアグロバクテリウムに感染させる前に培養してもよい。
 II.アグロバクテリウムの調製および接種工程
 本発明において使用される植物材料はアグロバクテリウムを接種される。本明細書で使用する「接種する」とは、アグロバクテリウムを植物材料に接触することをいい、当該技術分野においては種々のアグロバクテリウムを接種する方法が公知である。当該方法としては、例えば、アグロバクテリウムを液体培地に懸濁した懸濁液に植物材料を加える方法、共存培地上の植物材料にアグロバクテリウムの懸濁液を直接滴下する方法、植物材料中にアグロバクテリウム菌懸濁液を注入する方法およびアグロバクテリウム懸濁液中に植物材料を浸漬し減圧する方法があげられる。しかしながら、本発明において使用されるアグロバクテリウムを接種された植物材料は、これらの方法によりアグロバクテリウムを接種された植物材料に限定されない。
 当該アグロバクテリウムの接種工程においては、アグロバクテリウムによる形質転換効率を改善するために、例えば、アセトシリンゴン、界面活性剤、多孔性セラミックス等の種々の添加剤をアグロバクテリウムの懸濁液中に含ませることが可能である。
 本発明に使用可能なアグロバクテリウムは公知のいずれのアグロバクテリウム属細菌であってよいが、好ましくはAgrobacterium tumefaciens、またはAgrobacterium rhizogenesである。本発明の好ましい態様において、アグロバクテリウムは、例えば、LBA4404、EHA101およびAGL1、C58C1等であるが、これに限定はされない。
 土壌細菌アグロバクテリウム(Agrobacterium tumefaciens)が多くの双子葉植物に根頭癌腫病(crown gall disease)を引き起こすことは古くから知られており、1970年代には、Tiプラスミドが病原性に関与すること、さらにTiプラスミドの一部であるT-DNAが植物ゲノムに組み込まれることが発見された。その後このT-DNAには癌腫の誘発に必要なホルモン(サイトカイニンとオーキシン)の合成に関与する遺伝子が存在し、細菌遺伝子でありながら植物中で発現することが明らかにされた。T-DNAの切り出しと植物への伝達にはTiプラスミド上のヴィルレンス領域(vir領域)に存在する遺伝子群が必要であり、またT-DNAが切り出されるためにはT-DNAの両端に存在するボーダー配列が必要である。他のアグロバクテリウム属細菌であるAgrobacterium rhizogenesもRiプラスミドによる同様なシステムを有している(例えば、特開2000-342256の図3および図4)。
 アグロバクテリウムの感染によってT-DNAが植物ゲノムに組み込まれるので、T-DNA上に所望の遺伝子を挿入するとこの遺伝子も植物ゲノムに組み込まれることが期待された。しかしながら、Tiプラスミドは190kb以上と巨大であるため、標準的な遺伝子工学的手法ではプラスミド上のT-DNA上に遺伝子を挿入することは困難であった。そのため、T-DNA上に外来遺伝子を挿入するための方法が開発された。
 まず、腫瘍性のTiプラスミドのT-DNAからホルモン合成遺伝子が除去されたディスアーム型の菌系(disarmed strains)であるLBA4404(Hoekema, A., et al., (1983), Nature, Vol.303, p.179-180参照)、C58C1(pGV3850)、GV3Ti11SEなどが作製された。これらを用いることにより、所望の遺伝子をアグロバクテリウムのTiプラスミドのT-DNA中に、あるいは所望の遺伝子を有するT-DNAをアグロバクテリウムに導入する2種類の方法が開発された。このうちの一つは、遺伝子操作が容易で所望の遺伝子の挿入が可能であり、大腸菌で複製ができる中間ベクターを、アグロバクテリウムのディスアーム型TiプラスミドのT-DNA領域中に、三系交雑法(triparental mating)を介して相同組換えにより導入する方法であり、中間ベクター法と呼ばれる。
 もう一つは、バイナリーベクター(binary vector)法とよばれるもので、T-DNAの植物への組み込みにvir領域が必要であるが、機能するために同じプラスミド上に存在する必要はないという結果に基づいている。このvir領域にはvirA、virB、virC、virD、virEおよびvirGが存在し、(植物バイオテクノロジー事典(エンタプライズ株式会社発行(1989)))、vir領域とはこのvirA、virB、virC、virD、virEおよびvirGの全てを含むものをいう。バイナリーベクターは、T-DNAをアグロバクテリウムと大腸菌の両方で複製可能な小さなプラスミドに組み込んだものであり、これをディスアーム型Tiプラスミドを有するアグロバクテリウムに導入して用いる。
 アグロバクテリウムへのバイナリーベクターの導入は、エレクトロポレーション法や三系交雑法などの、公知の方法により行うことができる。バイナリーベクターには、pBIN19、pBI121、pGA482などがあり、これらをもとに数多くの新たなバイナリーベクターが構築され、形質転換に用いられている。また、Riプラスミドのシステムにおいても、同様なベクターが構築され形質転換に用いられている。
 アグロバクテリウムA281は、強病原性(super-virulent)の菌系であり、その宿主範囲は広く、形質転換効率も他の菌系より高い。この特性は、A281が有するTiプラスミドのpTiBo542によるものである。pTiBo542を用いて、これまでに2つの新しいシステムが開発されている。一つはpTiBo542のディスアーム型のTiプラスミドを有する菌系EHA101およびEHA105を用いたものであり、これらを上述のバイナリーベクターシステムに適用することにより、形質転換能力の高いシステムとして種々の植物の形質転換に利用されている。
 もう一つは、スーパーバイナリーベクターシステムである。スーパーバイナリーベクター(’super-binary’ vector)については、例えば本明細書中に援用される以下の文献に記載されている。
 Hiei, Y., et al., (1994), The Plant Journal, Vol.6, p.271-282;
 Ishida, Y., et al., (1996), Nature Biotechnology, Vol.4, p.745-750;
 Komari, T. and Kubo T., (1999), Methods of Genetic Transformation: Agrobacterium tumefaciens. In Vasil, I. K. (ed.) Molecular improvement of cereal crops., Kluwer Academic Publishers, Dordrecht, p.43-82;および
 国際公開第95/06722号パンフレット
 スーパーバイナリーベクターシステムについては、例えば特開2000-342256の図4に記載されている。
 このシステムは、vir領域(virA、virB、virC、virD、virEおよびvirG(以下、これらをそれぞれ「vir断片領域」ということもある。))を持つディスアーム型のTiプラスミドおよびT-DNAを有するプラスミドからなることから、バイナリーベクターシステムの一種である。しかしながら、T-DNAを有する側のプラスミド、即ちバイナリーベクターにvir断片領域のうち、少なくとも一つのvir断片領域を実質的に取除いたvir領域の断片(このうち好ましくは少なくともvirBまたはvirGを含む断片、さらに好ましくはvirBおよびvirGを含む断片)を組み込んだスーパーバイナリーベクターを用いる点で異なる。なお、スーパーバイナリーベクターを有するアグロバクテリウムに、所望の遺伝子を組み込んだT-DNA領域を導入するには、三系交雑法を介した相同組換えが容易な手法として利用できる。
 本発明の方法においては、宿主となるアグロバクテリウム属細菌としては、特に限定されないが、Agrobacterium tumefaciens(例えば上述のAgrobacterium tumefaciens LBA4404(Hoekema, A., et al., (1983), Nature, Vol.303, p.179-180を参照)およびEHA101)を好ましく用いることができる。
 本発明の方法によれば、アグロバクテリウム属細菌における病原性(vir)領域の遺伝子群の発現に基づく遺伝子導入系であれば、特に限定されることなく本発明の効果を得ることができる。
 例えば、上述した中間ベクター、バイナリーベクター、強病原性のバイナリーベクター、スーパーバイナリーベクターなどいずれのベクターシステムに対しても用いることができ、本発明による効果を得ることができるが、強病原性のバイナリーベクター、スーパーバイナリーベクターが、形質転換効率がより向上するため、好ましい。(特に導入先植物がトウモロコシの場合には、スーパーバイナリーベクターを使用することが好ましい)。これらのベクター類を改変した、異なるベクターシステムを用いた場合においても同様である(例えば、アグロバクテリウム属細菌のvir領域の一部または全部を切り出し付加的にプラスミド中に組み込む、vir領域の一部または全部を切り出し新たなプラスミドの一部としてアグロバクテリウムに導入するなど)。
 植物に導入しようとする所望の遺伝子は、上記プラスミドのT-DNA領域中の制限酵素部位に常法により組み込むことができる。大型で多数の制限部位を持つものは、通常のサブクローニングの手法では所望のDNAをT-DNA領域内に導入することが必ずしも容易でないことがある。このような場合には、三系交雑法により、アグロバクテリウム属細菌の細胞内での相同組換えを利用することで目的のDNAを導入することができる。限定されるわけではないが、導入される遺伝子の大きさは好ましくは約100bpないし200kbpである。
 また、プラスミドをAgrobacterium tumefaciens等のアグロバクテリウム属細菌に導入する操作は従来法により行うことができ、例としては、上記した三系交雑法やエレクトロポレーション法、エレクトロインジェクション法、PEGなどの化学的な処理による方法などが含まれる。
 植物に導入しようとする遺伝子は、従来の技術と同様に基本的にはT-DNAの左右境界配列の間に配置されるものである。しかし、プラスミドが環状であるため、境界配列の数は1つでもよく、複数の遺伝子を異なる部位に配置しようとする場合には、境界配列が3個以上あってもよい。また、アグロバクテリウム属細菌中で、TiまたはRiプラスミド上に配置されてもよく、または他のプラスミド上に配置されてもよい。さらには、複数の種類のプラスミド上に配置されてもよい。
 アグロバクテリウム属細菌を植物材料に接種することは、例えば、植物材料をアグロバクテリウム属細菌と単に接触させることによって行ってもよい。接種は、通常接種により行ってもよく、また、滴下接種により行ってもよい。
 通常接種は、植物材料とアグロバクテリウム属細菌懸濁液(接種源)を混合して植物材料を当該懸濁液に浸漬し、浸漬した植物材料を取り出して、培地上に着床させて共存培養を行うことにより接種を行う方法である。例えば、106~1011cfu/ml程度の細胞濃度のアグロバクテリウム属細菌懸濁液を調製し、この懸濁液中に植物材料を3~10分間程度浸漬後、固体培地上で数日間共存培養することにより行うことができる。滴下接種は、培地上に着床させた植物材料上にアグロバクテリウム属細菌懸濁液を滴下し、滴下した懸濁液が乾いた後、植物材料を培地の別の場所あるいは別の培地上に着床させて共存培養を行うことにより接種を行う方法である。
 III.共存工程
 本工程は、上記のようにアグロバクテリウムを接種した植物細胞を、アグロバクテリウムの共存下にて、オーキシン類を含む培地で培養することにより、植物細胞へのアグロバクテリウムからDNAの導入を確実にする工程である。好ましくは、植物材料をアグロバクテリウムに感染させると同時に、あるいは感染後、アグロバクテリウムを除去する前に、植物材料をアグロバクテリウムと共存培養させる。
 本工程で使用される培地は、本明細書中では「共存培地」という。共存培養には公知の培地を使用できる。例えば、LS-AS培地、nN6-AS培地、あるいはその他、N6S3-AS培地、2N6-AS培地(Hiei, Y., et al., (1994), The Plant Journal, Vol.6, p.271-282を参照)等の培地が知られている。
 本発明において好ましくは、共存培地中にオーキシン類を添加する。オーキシン類は一般に植物材料を脱分化させる作用を有するために、本工程において、ほとんどの植物材料は一部または全部が脱分化組織(カルス)となる。オーキシン類としては、例えば、3,6-ジクロロ-o-アニシン酸(ダイカンバ)、4-アミノ-3,5,6-トリクロロピコリン酸(ピクロラム)、2,4-ジクロロフェノキシ酢酸(2,4-D)、2,4,5-トリクロロフェノキシ酢酸(2,4,5-T)、および/またはトリヨード安息香酸 (TIBA)が挙げられる。本発明の好ましい態様においては、共存培地中にダイカンバ、ピクロラム、2,4-D、2,4,5-T以外のオーキシン類は含まない。
 限定されるわけではないが、ダイカンバ、ピクロラム、2,4D、2,4,5-Tなどのオーキシン類の共存培地中における総量は、好ましくは、0.1-5.0mg/l、さらに好ましくは、0.5-3.0mg/l、より好ましくは、1.0-2.0mg/l、最も好ましくは、1.5mg/lである。
 本発明者らは、植物材料がトウモロコシの場合、オーキシン類の中でも特にベンゾイック系除草剤に属するオーキシン活性を示す物質を共存培地に添加することにより、形質転換効率が一層向上し、選抜マーカー遺伝子を導入することなく、形質転換植物を得られることを見出した。
 ベンゾイック系除草剤はその基本構造から、(i)安息香酸型、(ii)サリチル酸型、(iii)ピコリン酸型、(iv)テレフタール酸型に分けられる(Takematsu、1982)。しかしながら、(iv)テレフタール酸型はオーキシン活性を示さないため、(i)安息香酸型、(ii)サリチル酸型、(iii)ピコリン酸型のいずれかに属する除草剤が好ましく、より好ましくは(ii)サリチル酸型、(iii)ピコリン酸型のいずれかである。さらに好ましくは、ダイカンバ(Dicamba)(3,6-dichloro-o-anisic acid)あるいはピクロラム(Picloram)(4-amino-3,5,6-trichloropicolinic acid)である。従って、トウモロコシの場合には、共存培地にベンゾイック系除草剤に属するオーキシン活性を示す物質を添加することが最も好ましい。
 あるいは、植物材料がイネの場合は、2,4-ジクロロフェノキシ酢酸(2,4-D)を添加することが好ましい。
 本工程における「培養」とは、固化した共存培地の上または液体状の共存培地の中に植物材料を置床し、適切な温度、明暗条件および期間で生育させることをいう。共存培地の固化は、当該技術分野において公知の固化剤を添加することにより行うことができ、そのような固化剤としては、例えばアガロース等が知られている。本工程における培養温度は、適宜選択可能であり、好ましくは20℃-35℃、さらに好ましくは25℃で行われる。また、本工程の培養は好ましくは暗所で行われるが、これに限定されない。本工程の培養期間もまた適宜選択可能であり、好ましくは1日-10日、より好ましくは7日である。
 IV.カルス増殖工程
 アグロバクテリウムによる植物の形質転換方法においては、一般にはカルス増殖工程は必要と考えられてきた。
 カルス増殖培地上に移し、カルス増殖させることにより、「形質転換した細胞の集団を含む細胞塊」を得ることができる。カルス増殖培地とは「脱分化状態の細胞を分裂、増殖するのに適当な植物ホルモンおよび栄養素を含む培地であり、一般的な形質転換試験では、形質転換していない細胞の増殖を阻害する薬剤(選抜圧)を添加し形質転換細胞を選択的に増殖させる“選抜培地”としても用いられる。よって本カルス増殖工程は、一般には上記共存工程を経た植物材料を、オーキシン類を含む培地で培養し、形質転換体を遺伝子の導入の有無により選抜する工程である。本工程で使用される培地は、本明細書中では「選抜培地」といい、遺伝子の導入の有無により選抜するために選抜薬剤等を含んでいる。
 本工程は、従来法においては、培地の成分組成を変更して、複数回繰り返して行われている。例えば、複数回の選抜工程では、選抜薬剤の濃度を各選抜工程で上昇させることにより、薬剤選抜の確実性が増し、形質転換をした植物体を得られる可能性を上昇させることが可能となる。本選抜工程は、好ましくは少なくとも2回、より好ましくは3回行われる。複数回本工程が行われる場合、本工程は1回につき10日-3週間程度の期間を要し、複数回の選抜工程全体で5-10週間程度を要する。よって、アグロバクテリウムによる植物の形質転換方法において、本工程は最も時間を要する工程である。
 従来のアグロバクテリウムによる植物の形質転換方法においては、本工程は必須の工程であると考えられてきた。しかしながら、本発明者らは「形質転換向上処理」により、カルス増殖工程中を含む、共存から再分化までのいずれの工程においても選抜薬剤を用いた形質転換細胞の選抜を行わなくても形質転換が上手くいくことを初めて見いだし、本願発明を想到した。よって、本発明においては、好ましくは本工程を省略できる。即ち、共存培養後の組織をカルス増殖培地で培養する工程を、共存工程と再分化工程の間に含まない。これにより、作業効率が一層向上し、また形質転換工程をより短期間で行なえるため、より効率的に形質転換植物を得られることを見出した。本明細書中の実施例1-4、6-7では特にトウモロコシの場合に、カルス増殖工程を省略し植物形質転換に成功した例が記載されている。
 あるいは、カルス増殖培地に選抜薬剤を添加せずに、カルス増殖工程を行ってもよい。この場合、カルス増殖は生じるが形質転換体の「選抜」は行われなない。
 V.再分化工程
 得られた細胞塊の再分化を行い、再分化個体を生育させ、そして、所望により完全な植物体を得る工程である。得られた形質転換細胞から完全な植物体を再生するには、公知の方法(例えば、Hiei, Y., et al., (1994), The Plant Journal, Vol.6, p.271-282; および、Ishida, Y., et al., (1996), Nature Biotechnology, Vol.14, p.745-750)により行うことができる。
 本工程は、従来法および本発明のいずれにおいても必須の工程である。従来、再分化工程においても選抜薬剤による形質転換体の選抜が必須と考えられてきた。形質転換植物の選抜は、選抜薬剤を含む再分化培地で、共存工程を経た植物材料を培養し、選抜薬剤に対する耐性の有無により行われる。しかしながら、本発明は、共存から再分化までの植物形質転換のためのいずれの工程でも、選抜薬剤を用いた形質転換細胞の選抜を行わないことを特徴とする。よって、本発明においては、再分化工程においても選抜薬剤を用いた選抜を行わない。
 本工程で使用される培地は、本明細書中では「再分化培地」といい、その特徴としてオーキシン類を含まないことが挙げられる。再分化培地として使用可能な培地は、例えば、LS無機塩類やN6無機塩類を基本とする培地、例えば具体的にはLSZ培地等が使用可能である。しかしながら「再分化培地」は、選抜薬剤を含まない。
 本発明における「再分化」とは、全部または一部が脱分化していた植物材料が、再び元の植物材料または植物体の性質を獲得することをいう。再分化工程に供することにより、脱分化組織が再分化し、完全な形質転換植物体を得ることが可能となる。植物が再分化したか否かは植物の形態を観察することにより容易に決定可能である。例えば、脱分化組織から茎や葉のような特定の分化した植物器官が現れるか否かにより決定することが可能である。
 本明細書において、「ビガー」とは、再分化した植物の生育の旺盛さをいう。植物のビガーは当該技術分野で行われる公知の測定方法を用いて測定することが可能である。例えば、トウモロコシの場合は、再分化工程後に、再分化の見られなかった形質転換植物組織を0点、再分化した茎葉の最大長が5mm未満の形質転換植物組織を1点、再分化した茎葉の最大長が5mm以上2cm未満の形質転換植物組織を2点、そして再分化した茎葉の最大長が2cm以上の形質転換植物組織を3点、とスコアリングしすべての形質転換植物組織の平均値を計算することにより求めることが可能である。ビガーの評価方法はこれに限定されることなく評価対象等に依存して、適当な修正を周知の方法に加えることも可能である。
 本工程における「培養」とは、固化した再分化培地の上または液体状の再分化培地の中に植物組織を置床し、適切な温度、明暗条件および期間にて生育させることをいう。再分化培地の固化は、上記のように例えば寒天等により行うことが可能である。本工程における培養温度は、適宜選択可能であり、好ましくは20℃-35℃、さらに好ましくは25℃で行われる。また、本工程の培養は好ましくは16-24時間/日の照明下で行われるが、これに限定されない。本工程の培養期間もまた適宜選択可能であり、好ましくは7日-21日、より好ましくは14日である。
 本工程の後においては、当該技術分野において公知の方法を用いることにより容易に完全な形質転換植物体を得ることが可能である。得られた再分化個体について、導入遺伝子の有無を確認し、形質転換個体を特定する工程である。限定するものではないが、PCRやサザン分析などを好ましく用いることができる。また導入遺伝子の表現型を確認することにより、容易に選択することができる。
 本発明により、単子葉植物の形質転換方法において、所望の植物に、植物選抜マーカー遺伝子を導入することなく、安定で効率的な形質転換を行うことができる。
図1は、無選抜形質転換により得られたゆきひかり再分化植物体のサザンブロット解析の結果を示す。
 アグロバクテリウムLBA4404(pSB134)で形質転換し、無選抜得た再分化植物体よりゲノムDNAを抽出し、制限酵素HindIIIで消化した。消化したDNAをアガロースゲル電気泳動に供したのち、GUSプローブとハイブリダイゼーションした。種子由来ゆきひかり(対照)(レーンC)、GUS陽性発現(GUSを一様に発現)再分化植物体(レーン1-11)、GUSドット状発現再分化植物体(レーン12-17)。
図2は、無選抜形質転換により得られたA188再分化植物体のサザンブロット解析の結果を示す。
 アグロバクテリウムLBA4404(pSB124)で形質転換し、無選抜で得た再分化植物体(トウモロコシ)よりゲノムDNAを抽出し、制限酵素BamHIで消化した。消化したDNAをアガロースゲル電気泳動に供したのち、GUSプローブとハイブリダイゼーションした。種子由来A188(対照)(レーンC)、GUS陽性発現(GUSを一様に発現)再分化植物体(レーン1-13)。
図3は、無選抜形質転換により得られたA188再分化当代植物体およびT1後代植物体のサザンブロット解析の結果を示す。
 アグロバクテリウムLBA4404(pSB124)で形質転換し、無選抜で得た再分化当代植物体(トウモロコシ)および形質転換していないA188植物の花粉を交配することにより得られたT1後代植物体よりゲノムDNAを抽出し、制限酵素BamHIで消化した。消化したDNAをアガロースゲル電気泳動に供したのち、GUSプローブとハイブリダイゼーションした。系統番号195当代(T0)植物体(レーン1)、系統番号195のGUS陽性発現の後代(T1)植物体(レーン2-6)、系統番号195のGUS陰性の後代(T1)植物体(レーン7)。系統番号169当代(T0)植物体(レーン8)、系統番号169のGUS陽性発現の後代(T1)植物体(レーン9-13)、系統番号195のGUS陰性の後代(T1)植物体(レーン14)。
 以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例1 通常法で接種したトウモロコシ未熟胚から無選抜で再分化した植物体での遺伝子発現
  1.材料および方法
 受粉後7から14日目のトウモロコシ(品種:A188)の未熟胚(大きさ1.0-1.5mm)を無菌的に採取し、LS-inf液体培地(Ishida et al., 1996)で1回洗浄した。形質転換向上処理として遺伝子導入効率を高めるための前処理(46℃、3分間の熱処理および20,000xg、10分間の遠心処理)を行った(Hiei et al., 2006)。100μMアセトシリンゴンを含むLS-inf液体培地に約1.0x109 cfu/mlでアグロバクテリウム菌系LBA4404 (pSB134)(Hiei and Komari, 2006)を懸濁し接種源とした。
 熱・遠心処理した未熟胚に接種源を加え、30秒間撹拌した後、5分間室温で静置した。2,4-D(2,4-dichlorophenoxy-acetic acid)を除き、5μM AgNO3および5μM CuSO4を含むLS-AS培地(Ishida et al. 1996、固化剤は8g/lアガロース)に1.5mg/lの濃度でダイカンバ(Dicamba)(3,6-dichloro-o-anisic acid)を添加した共存培地にアグロバクテリウムを接種した未熟胚を胚盤が上になるように置床した。
 25℃、暗黒下で7日間培養した未熟胚を10μM CuSO4を含むLSZ培地(Ishida et al. 1996)に置床し、25℃、照明下で約2週間培養した。再分化のみられた植物体の葉の一部を切り取り0.1%のTriton X-100を含む0.1M リン酸緩衝液(pH6.8)に浸漬し、37℃で1時間静置した。リン酸緩衝液を除いた後、1.0mM 5-ブロモ-4-クロロ-3-インドリル-β-D-グルクロン酸(X-gluc)および20%メタノールを含むリン酸緩衝液を添加した。37℃で24時間処理した後、GUS遺伝子の発現を調査した。
 以下に、実施例1の条件をまとめた。
  材料: トウモロコシ 未熟胚
  方法: 通常法でアグロバクテリウム接種
  形質転換向上処理: 熱及び遠心処理、培地にAg+、Cu2+イオンを添加する処理
  共存培地へのオーキシンの添加: ダイカンバ
  共存培養後、カルス増殖工程を経ず、直接再分化工程へ。
  ベクター: pSB134 GUS遺伝子、ハイグロマイシン抵抗性遺伝子(選抜マーカー遺伝子)を有し、かつ強病原性菌株の病原性遺伝子の一部を有するスーパーバイナリーベクター
  選抜処理: 全工程においてなし
  2.結果
 LSZ培地に置床した16の未熟胚の全てから植物体の再分化がみられた。4から13枚の葉片を各未熟胚から再分化した植物より採取し、GUS遺伝子の発現を調査した。
 2つの未熟胚由来の葉片は全てがGUS陰性であった。残りの14の未熟胚から採取した葉片では少なくとも1枚の葉片でGUS遺伝子の発現がみられた。ドット状の発現を示す葉片は5つの未熟胚でみられた。ストライプ状にGUS遺伝子を発現する葉片は6つの未熟胚でみられた。ドット状、ストライプ状に発現する葉片を両方有した未熟胚は2つみられた。ここで、ストライプ状に発現したものは、形質転換細胞と非形質転換細胞のキメラであること、ドット状に発現したものは、一部の形質転換細胞でジーンサイレンシングが起こっていることが推測される。切り口が一様に青く染色されるGUS陽性の葉片は1つの未熟胚から得られた。
 本実施例の結果は、共存から再分化までのいずれの工程においても、抗生物質などを用いた選抜工程を全く行わない条件でGUS遺伝子の形質転換されたトウモロコシ植物が得られたことを示す。
 実施例2 滴下法で接種したトウモロコシ未熟胚から無選抜で再分化した植物体での遺伝子発現
  1.材料および方法
 実施例1と同様の方法で調整したアグロバクテリウム菌系LBA4404 (pSB134)の接種源1mlに約80mgのハイドロキシアパタイト(Bio-Rad)を添加した。形質転換向上処理として遺伝子導入効率を高めるための前処理(46℃、3分間の熱処理および20,000xg、10分間の遠心処理)を行った。
 上記処理後未熟胚(品種A188)を2,4-Dを除き、5μM AgNO3および5 μM CuSO4を含むLS-AS培地(Ishida et al. 1996、固化剤は8g/lアガロース)に1.5mg/lの濃度でダイカンバを添加した共存培地に胚盤が上になるように置床した。
 接種源中のハイドロキシアパタイトが均等に分散するようにボルテックスミキサーで撹拌した後、5μlの接種源を未熟胚上に滴下した。滴下した接種源が乾いた後、未熟胚を同培地上の別の場所に移動した。培養器をシールした後、25℃、暗黒下で7日間共存培養を行った。共存培養後の未熟胚を実施例1と同様の方法で培養し、再分化植物を得るとともに再分化植物の葉でのGUS遺伝子の発現を調査した。
 以下に実施例2の条件をまとめた。
  材料: トウモロコシ 未熟胚
  方法: 滴下法でアグロバクテリウム接種
  形質転換向上処理: 粉体処理、熱及び遠心処理、培地にAg+、Cu2+イオンを添加する処理
  共存工程へのオーキシン添加: ダイカンバ
  共存培養後、カルス増殖工程を経ず、直接再分化工程へ。
  ベクター: pSB134 GUS遺伝子、ハイグロマイシン抵抗性遺伝子(選抜マーカー遺伝子)を有し、かつ強病原性菌株の病原性遺伝子の一部を有するスーパーバイナリーベクター
  選抜処理: 全工程においてなし
  2.結果
 LSZ培地に置床した12の未熟胚の全てから植物体の再分化がみられた。3から17枚の葉片を各未熟胚から再分化した植物より採取し、GUS遺伝子の発現を調査した。3つの未熟胚由来の葉片は全てがGUS陰性であった。残りの9の未熟胚から採取した葉片では少なくとも1枚の葉片でGUS遺伝子の発現がみられた。ドット状の発現を示す葉片は3つの未熟胚でみられた。ドット状、ストライプ状に発現する葉片を両方有した未熟胚は4つみられた。切り口が一様に青く染色されるGUS陽性の葉片は2つの未熟胚から得られた。
 本実施例の結果は、共存から再分化までのいずれの工程においても、抗生物質などを用いた選抜工程を全く行わない条件でGUS遺伝子の形質転換されたトウモロコシ植物が得られたことを示す。
 実施例3 共存培地中のオーキシンがトウモロコシ未熟胚から無選抜で再分化した植物体での遺伝子発現に及ぼす効果
  1.材料及び方法
 受粉後7から14日目のトウモロコシ(品種:A188)の未熟胚(大きさ1.0-1.5mm)を無菌的に採取し、LS-inf液体培地で1回洗浄した。形質転換向上処理として遺伝子導入効率を高めるための前処理(46℃、3分間の熱処理)を行った。100μMアセトシリンゴンを含むLS-inf液体培地にアグロバクテリウム菌系LBA4404 (pSB124)(Komari et al., 1996)を懸濁し接種源とした。
 熱処理した未熟胚に接種源を加え、30秒間撹拌した後、5分間室温で静置した。2,4-D(2,4-dichlorophenoxy-acetic acid)を除き、5μM AgNO3および5μM CuSO4を含むLS-AS培地(Ishida et al. 1996、固化剤は8g/lアガロース)に6.8μMの濃度でダイカンバ(3,6-dichloro-o-anisic acid)あるいはピクロラム(Picloram)(4-amino-3,5,6-trichloropicolinic acid)を添加した共存培地にアグロバクテリウムを接種した未熟胚を胚盤が上になるように、24個の未熟胚を置床した。
 一方、5μM AgNO3および5μM CuSO4を含むLS-AS培地に対し、オーキシンとして1.5mg/l(6.8μM)の2,4-Dを含ませたものも実験した。24個の未熟胚を置床した。
 25℃、暗黒下で7日間培養した未熟胚を10μM  CuSO4を含むLSZ培地(Ishida et al. 1996)に置床し、25℃、照明下で約2週間培養した。再分化のみられた植物体の葉の一部を切り取り0.1%のTriton X-100を含む0.1 Mリン酸緩衝液(pH6.8)に浸漬し、37℃で1時間静置した。リン酸緩衝液を除いた後、1.0mM 5-ブロモ-4-クロロ-3-インドリル-β-D-グルクロン酸(X-gluc)および20%メタノール含むリン酸緩衝液を添加した。37℃で24時間処理した後、GUS遺伝子の発現を調査した。
 以下に、実施例3の条件をまとめた。
  材料: トウモロコシ 未熟胚
  方法: 通常法でアグロバクテリウム接種
  形質転換向上処理: 熱処理、培地にAg+、Cu2+イオンを添加する処理
  共存培地へのオーキシンの添加: ダイカンバ、ピクロラム又は2,4-D
  共存培養後、カルス増殖工程を経ず、直接再分化工程へ。
  ベクター: pSB124 GUS遺伝子を有するが、選抜マーカー遺伝子を有しない、かつ強病原性菌株の病原性遺伝子の一部を有するスーパーバイナリーベクター
  選抜処理: 全工程においてなし
  2.結果
 ダイカンバを含む共存培地で培養した未熟胚はLSZ培地上で置床した24の未熟胚の全てから植物体の再分化がみられた。各未熟胚から再分化した植物より葉を採取し、GUS遺伝子の発現を調査した。13個の未熟胚由来の葉片は全てがGUS陰性であった。残りの11の未熟胚から採取した葉片では少なくとも1枚の葉片でGUS遺伝子の発現がみられた。ドット状の発現やストライプ状の発現など、不完全な発現をした個体も数えた。
 ピクロラムを含む共存培地で培養した未熟胚もすべてがLSZ培地上で植物体の再分化がみられた。15個の未熟胚由来の葉片は全てがGUS陰性であった。残りの9つの未熟胚から採取した葉片では少なくとも1枚の葉片でGUS遺伝子の発現がみられた。
 2,4-Dを含む培地で共存培養を行った24の未熟胚のうち、3つの未熟胚はLSZ培地上で植物の再分化はみられなかった。再分化のみられた21の未熟胚のうち、少なくとも1枚の葉片でGUS遺伝子の発現がみられたのは4未熟胚であった。
 このように、特にダイカンバおよびピクロラムを含む培地で共存培養を行った未熟胚では高い効率で植物体の再分化がみられ、かつ得られた再分化植物が導入遺伝子の発現を示す割合も高かった。2,4-Dを含む培地で共存培養を行った未熟胚でも導入遺伝子の発現が観察されたがやや低かった。
 本実施例の結果は、共存から再分化までのいずれの工程においても、抗生物質などを用いた選抜工程を全く行わない条件でGUS遺伝子の形質転換されたトウモロコシ植物が得られたことを示す。2,4-D、ダイカンバおよびピクロラムはいずれも除草活性を有する有機化合物のうちオーキシン活性を示す物質である。2,4-Dはフェノキシ系除草剤に属し、ダイカンバおよびピクロラムはベンゾイック系除草剤に属する点で異なる(竹松、1982)。このことは、トウモロコシでは、未熟胚から無選抜で効率よく形質転換植物を得るには、アグロバクテリウムを接種した未熟胚を共存培養する培地に含まれるオーキシンが、フェノキシ系除草剤に属する物質よりもベンゾイック系除草剤に属する物質の方が適していることを示す。
 実施例4 トウモロコシ未熟胚への熱及び遠心処理が無選抜で再分化した植物体での遺伝子発現に及ぼす効果
  1.材料および方法
 受粉後7から14日目のトウモロコシ(品種:A188)の未熟胚(大きさ1.0-1.5mm)を無菌的に採取し、LS-inf液体培地で1回洗浄した。形質転換向上処理として遺伝子導入効率を高めるための前処理(46℃、3分間の熱処理および20,000xg、4℃、10分間の遠心処理)を行った。対照としてこれらの前処理を行わない未熟胚を供した。100μMアセトシリンゴンを含むLS-inf液体培地にアグロバクテリウム菌系LBA4404(pSB124)を懸濁し接種源とした。
 熱および遠心の前処理をした未熟胚と対照の前処理を行わない未熟胚にそれぞれ接種源を加え、30秒間撹拌した後、5分間室温で静置した。2,4-D(2,4-dichlorophenoxy-acetic acid)を除き、5μM AgNO3および5μM CuSO4を含むLS-AS培地(Ishida et al. 1996、固化剤は8 g/lアガロース)に6.8μMの濃度でダイカンバ(3,6-dichloro-o-anisic acid)を添加した共存培地にアグロバクテリウムを接種した未熟胚を胚盤が上になるように置床した。前処理を行った未熟胚、行わない未熟胚をそれぞれ75個を供試した。試験は2回行った。
 25℃、暗黒下で7日間培養した未熟胚を10μM CuSO4を含むLSZ培地(Ishida et al. 1996)に置床し、25℃、照明下で約2週間培養した。再分化のみられた植物体の葉の一部を切り取り0.1%のTriton X-100を含む0.1Mリン酸緩衝液(pH6.8)に浸漬し、37℃で1時間静置した。リン酸緩衝液を除いた後、1.0mM 5-ブロモ-4-クロロ-3-インドリル-β-D-グルクロン酸(X-gluc)および20%メタノール含むリン酸緩衝液を添加した。37℃で24時間処理した後、GUS遺伝子の発現を調査した。
 以下に、実施例4の条件をまとめた。
  材料: トウモロコシ 未熟胚
  方法: 通常法でアグロバクテリウム接種
  形質転換向上処理:
    (1)熱及び遠心処理、培地にAg+、Cu2+イオンを添加する処理
    (2)熱及び遠心処理なし、培地にAg+、Cu2+イオンを添加する処理はあり
  共存培地へのオーキシンの添加: ダイカンバ
  共存培養後、カルス増殖工程を経ず、直接再分化工程へ。
  ベクター: pSB124 GUS遺伝子を有するが、選抜マーカー遺伝子を有しない、かつ強病原性菌株の病原性遺伝子の一部を有するスーパーバイナリーベクター
  選抜処理: 全工程においてなし

  2.結果
 1回目の試験では、熱及び遠心処理を行った75の未熟胚から296のシュートが再分化した。このうち、葉の組織全体でGUS遺伝子の発現を示したのは5個体であった。これに対し、前処理を行わない75の未熟胚から再分化のみられた291のシュートのうち、葉の組織全体でGUS遺伝子の発現を示した個体は0であった。2回目の試験では、熱・遠心処理を行った未熟胚から243のシュートが再分化し、葉の組織全体でGUS遺伝子の発現を示すGUS陽性の個体が4個体得られた。
 熱・遠心処理の前処理を行わない未熟胚では再分化のみられた266のシュートのうち、葉の組織全体でGUS遺伝子の発現を示したGUS陽性の個体は1個体であった。これらの結果から、特に熱・遠心の処理をアグロバクテリウムを接種する前の未熟胚に行うことにより、無選抜により再分化した植物の組織全体で導入遺伝子を発現する個体が効率よく得られることが示された。ただし、1個体のみ遺伝子導入の結果が得られたのは、硝酸銀及び硫酸銅の共存培地への添加の効果と思われる。
 実施例5 イネの無選抜形質転換
  1.材料および方法
 開花後8ないし12日のイネ(品種:ゆきひかり)未熟種子を脱頴し、70%エタノールで数秒、Tween20(登録商標)を1滴含む1%次亜塩素酸ナトリウムで5分間処理した。未熟種子を滅菌水で数回洗浄し、1.3-1.8mmの長さの未熟胚を採取した。ついで、形質転換向上処理として未熟胚に、遺伝子導入効率を高めるため、20,000xgで10分間の遠心処理を行った(Hiei et al., 2006)。100μMアセトシリンゴンを含むAA-inf液体培地(Hiei and Komari, 2006)に約1.0x109cfu/mlの濃度でアグロバクテリウムLBA4404(pSB134)(Hiei and Komari, 2006)を懸濁し接種源とした。遠心処理をした未熟胚をnN6-As培地(Hiei et al., 2006)上に胚盤側を上向きにして置床した。各未熟胚に接種源を5μlずつ滴下し、25℃暗黒下で、7日間共存培養を行った。
 共存培養後、各々の未熟胚をメスで4ないし5分割した。分割した未熟胚を250mg/lセフォタキシムと100mg/lカルベニシリンを含むnN6培地(Hiei et al., 2006)へ胚盤側を上向きにして置床し、30℃ 明条件下で約10日間培養した。主に胚盤細胞の増殖により肥大した切片の各々をさらに4ないし5分割した。この段階で未熟胚あたり18-25個の切片を得た。切片を250mg/lセフォタキシムと100mg/lカルベニシリンを含むnN6培地(Hiei et al., 2006)へ胚盤側を上向きにして置床し、30℃明条件下で約2週間培養した。
 共存培養後、2回の培養を行うことによりカルス増殖させ、胚盤の個々の細胞はおよそ140倍に増殖し、切片はカルスで覆われた。なお、細胞の増殖比率は、各切片の大きさから推定された。切片に形成されたカルスの中から、切片毎に1カルスのみ(0.5-1mm大)を取り出し、N6R再分化培地(Hiei et al., 2006)へ置床し、30℃明条件下で2週間培養した。各切片から1カルスのみを再分化培地へ置床したのは、ランダムかつ独立な細胞に由来する植物体を得るためである。各カルスから再分化した苗条塊(shoot clump)をN6F発根培地(Hiei et al., 2006)に移植し、30℃ 明条件下で約10日間培養し、完全な再分化植物体を得た。なお上述した培地には、ハイグロマイシン、ビアラホスなどの選抜薬剤は一切含まれていない。
 得られた植物体の葉の一部を切り取り0.1%のTriton X-100(登録商標)を含む0.1Mリン酸緩衝液(pH6.8)に浸漬し、37℃で1時間静置した。リン酸緩衝液を除いた後、1.0mM 5-ブロモ-4-クロロ-3-インドリル-β-D-グルクロン酸(X-gluc)および20% メタノールを含むリン酸緩衝液を添加した。37℃で24時間処理した後、GUS遺伝子の発現を調査した。なお、GUS遺伝子の発現の調査は、1切片につき最大で1植物体からの1枚の葉において実施した。形質転換効率は、GUS遺伝子の発現を調査した植物数に対するGUS陽性(GUSを一様に発現)を示した植物体数の割合で評価した。
 また、再分化植物体のゲノムに導入遺伝子が組み込まれているかどうかを確認するため、以下の方法により、サザンブロット解析を行った。再分化植物体の葉からKomari(1989)の方法によりDNAを抽出し、各植物体につき7μgのDNAを制限酵素HindIIIで消化した。消化したDNAは、0.7% アガロースゲル電気泳動(1.5V/cm、15時間)に供した。サザンハイブリダイゼーションは、Sambrookら(1989)の方法によって実施した。なお、プローブには、GUS遺伝子断片であるpGL2-IG(Hiei et al., 1994)のSalI-SacI(1.9kb)断片を用いた。
 以下に実施例5の条件をまとめた。
  材料: イネ 未熟胚
  方法: 通常法でアグロバクテリウム接種
  形質転換向上処理: 遠心処理、培地にセファタキシム、カルベニシリンを添加する処理
  共存工程へのオーキシン添加: 2,4-D
  共存培養後、カルス増殖工程を経て、直接再分化工程へ。
  ベクター: pSB134 GUS遺伝子、ハイグロマイシン抵抗性遺伝子(選抜マーカー遺伝子)を有し、かつ強病原性菌株の病原性遺伝子の一部を有するスーパーバイナリーベクター
  選抜処理: 全工程においてなし
  2.結果
 試験は2回行った(試験1及び2)。試験1の結果を表1に示す。試験1では、5個の未熟胚より100個の分割切片を得、それぞれから100個のカルスを再分化培地に置床したところ、92の植物体を得た。このうち73の植物体について1枚ずつの葉でGUS遺伝子の発現を調査したところ、9個の植物体が、葉の組織全体でGUSを一様に発現する(GUS陽性)形質転換体であった。形質転換効率は、再分化植物体当たり12.3%であった。
 試験2の結果を表2に示す。試験2では、5個の未熟胚より107個の分割切片を得、それぞれから107個のカルスを再分化培地に置床したところ、100の植物体を得た。このうち95の植物体について1枚ずつの葉でGUS遺伝子の発現を調査したところ、16個の植物体がGUSを一様に発現する形質転換体であった。その形質転換効率は、再分化植物体当たり16.8%であった。以上のように選抜工程を全く経ることなく、再分化植物体当たり10%以上という非常に高い効率で形質転換体が得られた。
 試験1および試験2ともにいくつかの植物体の葉片でGUS遺伝子の発現がドット状を呈した(表1および表2)。この異常な発現は、ジーンサイレンシングによるものと推測される。なお、このドット状の発現を示した植物体は形質転換体とは見なさなかった。
 サザンブロット解析の結果を、図1に示した。GUS遺伝子の発現で陽性を示した再分化植物体は、調査した11個体すべてにおいて導入GUS遺伝子の存在が確認された(図1)。GUS遺伝子の発現がドット状を示した再分化植物体においても、調査した6個体すべてでGUS遺伝子の存在が確認されたが、いずれの個体においても導入された遺伝子のコピー数が多い傾向があった(図1)。また、GUS遺伝子の発現が陰性であった再分化植物体についても、サザンブロット解析を実施したが、供試した7植物体いずれにおいてもGUSプローブとハイブリダイズするバンドは検出されなかった。
 本実施例では、遺伝子導入した未熟胚の胚盤細胞を増殖させ、その中からランダムに抽出したカルスより再分化植物体を得た。このうち10%以上が形質転換した植物体であった。このことは、アグロバクテリウム感染により未熟胚の胚盤細胞の10%以上が形質転換されていることを示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例6 無選抜で得られた形質転換トウモロコシ当代植物でのサザン分析
 1.材料および方法
 実施例3および4で得られた形質転換トウモロコシ(品種:A188)を温室で栽培した。これらの植物の葉からKomariらの方法(Komariら、(1989))の方法によりDNAを抽出し、各植物体につき10μgのDNAを制限酵素BamHIで消化した。消化したDNAは、0.7% アガロースゲル電気泳動(1.5V/cm、15時間)に供した。サザンハイブリダイゼーションは、Sambrookらの方法(Sambrook, J., et al., (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.)によって実施した。なお、プローブには、GUS遺伝子断片であるpGL2-IG(Hiei et al., 1994)のSalI-SacI(1.9kb)断片を用いた。
 2.結果
 いずれの形質転換体もGUSプローブにハイブリダイズするバンドを示した。そのパターンは形質転換体ごとに異なり、導入遺伝子が植物の染色体上にランダムに挿入されていることが示された。このことから、無選抜法で得られたトウモロコシ植物が形質転換体であることが分子的手法によって確認された(図2)。
 実施例7 無選抜で得られた形質転換トウモロコシでの導入遺伝子の後代植物への遺伝
 1.材料および方法
 実施例3および4で得られた形質転換トウモロコシ(品種:A188)を温室で栽培した。形質転換していないA188植物から花粉を採取し、形質転換植物の絹糸に交配し、後代種子(T1世代)を得た。
 得られた種子を培養土を入れたビニールポットに播種した。播種後11日目の幼苗の葉を切り取り、0.1%のTriton X-100を含む0.1Mリン酸緩衝液(pH6.8)に浸漬し、37℃で1時間静置した。リン酸緩衝液を除いた後、1.0mM 5-ブロモ-4-クロロ-3-インドリル-β-D-グルクロン酸(X-gluc)および20%メタノール含むリン酸緩衝液を添加した。37℃で24時間処理した後、GUS遺伝子の発現を調査した。
 形質転換当代植物および上述のT1植物の葉からKomari(1989)の方法によりDNAを抽出し、各植物体につき10μgのDNAを制限酵素BamHIで消化した。消化したDNAは、0.7% アガロースゲル電気泳動(1.5V/cm、15時間)に供した。サザンハイブリダイゼーションは、Sambrookら(1989)の方法によって実施した。なお、プローブには、GUS遺伝子断片であるpGL2-IG(Hiei et al., 1994)のSalI-SacI(1.9kb)断片を用いた。
 2.結果
 表3に、無選抜形質により得られたトウモロコシ形質転換植物の後代植物でのGUS遺伝子の分離を調べた結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、調査した4系統の形質転換植物のいずれもその後代植物でGUS遺伝子の発現が陽性および陰性の分離を示した。GUS遺伝子の発現が陽性を示した植物体の数と陰性を示した植物体の数はいずれの系統も1:1あるいは3:1の比に適合し、無選抜形質転換により導入されたGUS遺伝子がメンデルの法則に従って後代植物に遺伝することが確認された。
 系統番号195の形質転換当代植物から抽出したDNAは1本のハイブリダイズするバンドを示した。このT1後代植物のうちGUS陽性を示した5個体の植物から抽出したDNAはいずれもT0植物と同じサイズの1本のバンドを示した。これに対し、GUS陰性を示した植物から抽出したDNAではハイブリダイズするバンドは検出されなかった。
 系統番号169の形質転換当代植物から抽出したDNAは5本のハイブリダイズするバンドを示した。このT1後代植物のうちGUS陽性を示した5個体の植物から抽出したDNAはいずれもT0植物と同じサイズのバンドを示したが、その数は1、4、5本と異なった。系統番号169のT1植物でのGUS遺伝子の発現は2因子の分離を示したことから、4コピーと1コピーのGUS遺伝子がそれぞれ別の染色体上に座上することが推定された。GUS陰性を示した植物から抽出したDNAではハイブリダイズするバンドは検出されなかった(図3)。
 以上より、無選抜形質により得られたトウモロコシ形質転換植物に導入された遺伝子は、メンデルの法則に従って後代植物に遺伝することが確認された。

Claims (10)

  1.   (i)アグロバクテリウムを接種した植物材料を、共存培地で培養する共存工程、及び
      (ii)(i)で得られた組織を、カルス増殖培養を行わず、あるいはカルス増殖培養を行った後に、再分化培地で培養し植物体を再分化させる工程
    を含む、アグロバクテリウムを用いた形質転換植物の製造方法であって
     1)形質転換向上処理を行うこと、及び
     2)共存から再分化までのいずれの工程においても、アグロバクテリウムにより導入される核酸の特性を利用した形質転換細胞の選抜を行なわないことを特徴とする、前記形質転換植物の作成方法。
  2.  3)共存培養後の組織をカルス増殖培地で培養する工程を、共存工程と再分化工程の間に含まないこと、をさらに特徴として有する、請求項1に記載の形質転換植物の作成方法。
  3.  アグロバクテリウムにより導入される核酸の特性を利用した形質転換細胞の選抜が、選抜薬剤に対する耐性遺伝子と選抜薬剤を用いた選抜である、請求項1又は2に記載の形質転換植物の作成方法。
  4.  1)形質転換向上処理が、目的遺伝子の植物細胞への導入効率を向上させる処理、未熟胚などからのカルス誘導率を向上させる処理、あるいは、形質転換カルスからの再分化効率を向上させる処理である、請求項1ないし3のいずれか1項に記載の形質転換植物の作成方法。
  5.  1)形質転換向上処理が以下からなるグループから選択される、請求項1ないし4のいずれか1項に記載の形質転換植物の作成方法。
     熱処理;
     遠心処理;
     熱及び遠心処理;
     加圧処理;
     硝酸銀および/または硫酸銅の共存培地への添加;
     粉体の存在下でアグロバクテリウムを接種する処理;
     共存工程後の、カルス増殖及び/または再分化工程における培地へのカルベニシリン添加;
     カルス増殖培地にN6無機塩を添加する処理;ならびに
     共存培地にシステインを添加する処理
  6.  共存工程において、ベンゾイック系除草剤に属する化合物を添加することを含む、請求項1ないし5に記載の形質転換植物の作成方法。
  7.  ベンゾイック系除草剤に属する化合物が、安息香酸型、サリチル酸型またはピコリン酸型のいずれかである、請求項6に記載の形質転換植物の作成方法。
  8.  ベンゾイック系除草剤に属する化合物が、3,6-ジクロロ-o-アニシン酸、または4-アミノ-3,5,6-トリクロロピコリン酸である、請求項6または7に記載の形質転換植物の作成方法。
  9.  植物が単子葉植物である、請求項1ないし8に記載の形質転換植物の作成方法。
  10.  植物がトウモロコシ又はイネである、請求項1ないし9に記載の形質転換植物の作成方法。
PCT/JP2009/055791 2008-03-31 2009-03-24 アグロバクテリウム菌による形質転換植物の作成方法 WO2009122962A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2009232967A AU2009232967B2 (en) 2008-03-31 2009-03-24 Agrobacterium-mediated method for producing transformed plant
CN2009801121496A CN101983007B (zh) 2008-03-31 2009-03-24 利用土壤杆菌制作转化植物的方法
US12/935,525 US8357836B2 (en) 2008-03-31 2009-03-24 Agrobacterium-mediated method for producing transformed maize or rice
EP09727983A EP2274973A4 (en) 2008-03-31 2009-03-24 PROCESS USING AGROBACTERIUM FOR PRODUCTION OF A TRANSFORMED PLANT
HK11108593.1A HK1154333A1 (en) 2008-03-31 2011-08-16 Method of producing transformed plant by using agrobacterium strain
US13/717,663 US20130125265A1 (en) 2008-03-31 2012-12-17 Agrobacterium-mediated method for producing transformed plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094049A JP2011120478A (ja) 2008-03-31 2008-03-31 アグロバクテリウム菌による形質転換植物の作成方法
JP2008-094049 2008-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/717,663 Division US20130125265A1 (en) 2008-03-31 2012-12-17 Agrobacterium-mediated method for producing transformed plant

Publications (1)

Publication Number Publication Date
WO2009122962A1 true WO2009122962A1 (ja) 2009-10-08

Family

ID=41135342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055791 WO2009122962A1 (ja) 2008-03-31 2009-03-24 アグロバクテリウム菌による形質転換植物の作成方法

Country Status (7)

Country Link
US (2) US8357836B2 (ja)
EP (1) EP2274973A4 (ja)
JP (1) JP2011120478A (ja)
CN (1) CN101983007B (ja)
AU (1) AU2009232967B2 (ja)
HK (1) HK1154333A1 (ja)
WO (1) WO2009122962A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502197A (ja) * 2006-08-31 2010-01-28 モンサント テクノロジー エルエルシー 選択を含まない植物形質転換
WO2012015039A1 (ja) * 2010-07-29 2012-02-02 日本たばこ産業株式会社 アグロバクテリウム菌を用いた、オオムギ属植物へ遺伝子導入を行う方法およびオオムギ属植物の形質転換植物の作成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550399B2 (en) 2012-05-31 2020-02-04 Kaneka Corporation Plant transformation method using plant growth inhibiting hormone
DE102013020605A1 (de) * 2013-12-15 2015-06-18 Kws Saat Ag Selektionsmarker-freies rhizobiaceae-vermitteltes verfahren zur herstellung einer transgenen pflanze der gattung triticum
US11421241B2 (en) 2015-01-27 2022-08-23 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for conducting site-specific modification on entire plant via gene transient expression
EP3095870A1 (en) * 2015-05-19 2016-11-23 Kws Saat Se Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom
KR102127418B1 (ko) 2015-08-14 2020-06-26 인스티튜트 오브 제네틱스 앤드 디벨롭멘털 바이오롤지, 차이니즈 아카데미 오브 사이언시스 부위-특이적인 뉴클레오티드 치환을 통해 글리포세이트-내성 벼를 수득하는 방법
CN107022561B (zh) * 2016-01-29 2020-08-21 中国种子集团有限公司 用于培育转基因玉米的培养基及培养方法
CN112481293B (zh) * 2020-11-13 2021-11-02 北京农学院 一种采用非离体的葡萄果实构建遗传转化体系的方法
CN113881698B (zh) * 2021-10-29 2023-04-25 上海市农业科学院 一种利用农杆菌转化大麦小孢子愈伤组织的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006722A1 (fr) 1993-09-03 1995-03-09 Japan Tobacco Inc. Procede permettant de transformer une monocotyledone avec un scutellum d'embryon immature
WO1998054961A2 (en) 1997-06-02 1998-12-10 Novartis Ag Plant transformation methods
JP2000342256A (ja) 1999-06-04 2000-12-12 Japan Tobacco Inc 植物細胞への遺伝子導入の効率を向上させる方法
WO2002012521A1 (fr) 1999-06-04 2002-02-14 Japan Tobacco Inc. Procede permettant d'ameliorer l'efficacite du transfert de genes dans des cellules vegetales
WO2002012520A1 (fr) 1999-06-04 2002-02-14 Japan Tobacco Inc. Procede permettant d'ameliorer l'efficacite du transfert de genes dans des cellules vegetales
WO2005017169A1 (ja) 2003-08-13 2005-02-24 Japan Tobacco Inc. 植物材料への遺伝子導入を行う方法
WO2005017152A1 (ja) 2003-08-13 2005-02-24 Japan Tobacco Inc. 銅イオンの添加により植物の形質転換効率を向上させる方法
WO2007069643A1 (ja) 2005-12-13 2007-06-21 Japan Tobacco Inc. 粉体を用いて形質転換効率を向上させる方法
JP2008094049A (ja) 2006-10-16 2008-04-24 Mitsubishi Gas Chem Co Inc ポリアミド延伸フィルムおよび製造方法
WO2008105509A1 (ja) * 2007-02-28 2008-09-04 Japan Tobacco Inc. 選抜工程を経ないアグロバクテリウム菌による形質転換植物の作成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603061B1 (en) * 1999-07-29 2003-08-05 Monsanto Company Agrobacterium-mediated plant transformation method
US8212109B2 (en) * 2001-07-19 2012-07-03 Monsanto Technology Llc Method for the production of transgenic plants
EP1279737A1 (en) * 2001-07-27 2003-01-29 Coöperatieve Verkoop- en Productievereniging, van Aardappelmeel en Derivaten AVEBE B.A. Transformation method for obtaining marker-free plants
US20040210961A1 (en) * 2003-03-07 2004-10-21 Palys Joseph Michael Markerless transformation
KR20050028255A (ko) * 2003-09-18 2005-03-22 (주)넥스젠 마커-프리 형질전환식물체 생산을 위한 신규 방법
WO2008028119A2 (en) * 2006-08-31 2008-03-06 Monsanto Technology Llc. Methods for rapidly transforming monocots
WO2008119136A1 (en) * 2007-04-03 2008-10-09 Queensland University Of Technology Improved methods and constructs for marker free agrobacterium mediated transformatiom

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006722A1 (fr) 1993-09-03 1995-03-09 Japan Tobacco Inc. Procede permettant de transformer une monocotyledone avec un scutellum d'embryon immature
WO1998054961A2 (en) 1997-06-02 1998-12-10 Novartis Ag Plant transformation methods
JP2000342256A (ja) 1999-06-04 2000-12-12 Japan Tobacco Inc 植物細胞への遺伝子導入の効率を向上させる方法
WO2002012521A1 (fr) 1999-06-04 2002-02-14 Japan Tobacco Inc. Procede permettant d'ameliorer l'efficacite du transfert de genes dans des cellules vegetales
WO2002012520A1 (fr) 1999-06-04 2002-02-14 Japan Tobacco Inc. Procede permettant d'ameliorer l'efficacite du transfert de genes dans des cellules vegetales
WO2005017169A1 (ja) 2003-08-13 2005-02-24 Japan Tobacco Inc. 植物材料への遺伝子導入を行う方法
WO2005017152A1 (ja) 2003-08-13 2005-02-24 Japan Tobacco Inc. 銅イオンの添加により植物の形質転換効率を向上させる方法
WO2007069643A1 (ja) 2005-12-13 2007-06-21 Japan Tobacco Inc. 粉体を用いて形質転換効率を向上させる方法
JP2008094049A (ja) 2006-10-16 2008-04-24 Mitsubishi Gas Chem Co Inc ポリアミド延伸フィルムおよび製造方法
WO2008105509A1 (ja) * 2007-02-28 2008-09-04 Japan Tobacco Inc. 選抜工程を経ないアグロバクテリウム菌による形質転換植物の作成方法

Non-Patent Citations (55)

* Cited by examiner, † Cited by third party
Title
"Dictionary of Plant Biotechnology", 1989, ENTERPRISE
ADELINA TRIFONOVA ET AL.: "Agrobacterium- mediated transgene delivery and integration into barley under a range of in vitro culture conditions", PLANT SCIENCE, vol. 161, 2001, pages 871 - 880, XP002958562 *
BENT, A.F.: "Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species", PLANT PHYSIOL., vol. 124, 2000, pages 1540 - 1547
BEVAN, M.W.; FLAVELL, R.B.; CHILTON, M.-D.: "A chimaeric antibiotic resistance gene as a selectable marker for plants cell transformation", NATURE, vol. 304, 1983, pages 184 - 187
BRONWYN R. FRAME ET AL: "Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts", PLANT CELL REP., vol. 25, 2006, pages 1024 - 1034, XP019423768 *
CHAN, M-T.; CHANG, H-H.; HO, S-L.; TONG, W-F.; YU, S-M.: "Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/(3-glucuronidase gene", PLANT MOL. BIOL., vol. 22, 1993, pages 491 - 506
CHENG, M.; FRY, J. E.; PANG, S.; ZHOU, H.; HIRONAKA, C. M.; DUNCAN, D. R.; CONNER, T. W.; WAN, Y.: "Genetic transformation of wheat mediated by Agrobacterium tumefaciens", PLANT PHYSIOL., vol. 115, 1997, pages 971 - 980
CHU, C.-C.: "In Proc. Symp. Plant Tissue Culture", 1978, PEKING: SCIENCE PRESS, article "The N6 medium and its applications to anther culture of cereal crops", pages: 43 - 50
COMAI, L.; FACCIOTTI, D.; HIATT, W.R.; THOMPSON, G.; ROSE, R.E.; STALKER, D.M.: "Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate", NATURE, vol. 317, 1985, pages 741 - 744
DE BLOCK, M.; BOTTERMAN, J.; VANDEWIELE, M.; DOCKX, J.; THOEN, C.; GOSSELE, V.; MOVVA, N.R.; THOMPSON, C.; VAN MONTAGU, M.; LEEMAN: "Engineering herbicide resistance in plants by expression of a detoxifying enzyme", EMBO J., vol. 6, 1987, pages 2513 - 2518
DE CLEENE, M.; DE LEY, J.: "The host range of crown gall", BOT. REV., vol. 42, 1976, pages 389 - 466
DEJI, A.; SAKAKIBARA, H.; ISHIDA, Y.; YAMADA, S.; KOMARI, T.; KUBO, T.; SUGIYAMA, T.: "Genomic organization and transcriptional regulation of maize ZmRR1 and ZmRR2 encoding cytokinin-inducible response regulators", BIOCHIM. ET BIOPHYS. ACTA, vol. 1492, 2000, pages 216 - 220
EBINUMA, H.; SUGITA, K.; MATSUNAGA, E.; YAMAKADO, M.: "Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marke", PROC. NATL. ACAD. SCI. U. S. A., vol. 94, 1997, pages 2117 - 2121
ELLIOTT, A.R.; CAMPBELL, J.A.; BRETTELL R.I.S.; GROF, C.P.L.: "Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker", AUST. J. PLANT PHYSIOL., vol. 25, 1998, pages 739 - 743
ERIKSON, O.S.; HERTZBERG, M.; NÄSHOLM, T.: "The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation", PLANT MOL. BIOL., vol. 57, 2005, pages 425 - 433
FRAME, B.R.; MCMURRAY, J.M.; FONGER, T.M.; MAIN, M.L.; TAYLOR, K.W.; TORNEY, F.J.; PAZ, M.M.; WANG, K.: "Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts", PLANT CELL REP., vol. 25, 2006, pages 1024 - 1034
FRAME, B.R.; SHOU, H.; CHIKWAMBA, R.K.; ZHANG, Z.; XIANG, C.; FONGER, T.M.; PEGG, S.E.K.; LI, B.; NETTLETON, D.S.; PEI, D.: "Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system", PLANT PHYSIOL., vol. 129, 2002, pages 13 - 22
GLEAVE, A.P.; MITRA, D.S.; MUDGE, S.R.; MORRIS, B.A.M.: "Selectable marker-free transgenic plants without sexual crossing: transient expression of ere recombinase and use of a conditional lethal dominant gene", PLANT. MOL. BIOL., vol. 40, 1999, pages 223 - 235
GOULD, J.; DEVEY, M.; HASEGAWA, 0.; ULIAN, E.C.; PETERSON, G.; SMITH, R.H.: "Transformation of Zea mays L. using Agrobacterium tumefaciens and shoot apex", PLANT PHYSIOL., vol. 95, 1991, pages 426 - 434
GRIMSLEY, N.; HORN, B.; RAMOS, C.; KADO, C.; ROGOWSKY, P.: "DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions", MOL. GEN. GENET., vol. 217, 1989, pages 309 - 316
GRIMSLEY, N.; HORN, T.; DAVIS, J.W.; HORN, B.: "Agrobacterium-mediated delivery of infectious maize streak virus into maize plants", NATURE, vol. 325, 1987, pages 177 - 179
GRIMSLEY, N.H.; RAMOS, C.; HEIN, T.; HORN, B.: "Meristematic tissues of maize plants are most susceptible to Agroinfection with maize streak virus", BIO/TECNOLOGY, vol. 6, 1988, pages 185 - 189
HALDRUP, A.; PETERSEN, S.G.; OKKELS, F.T.: "The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent", PLANT MOL. BIOL., vol. 37, 1998, pages 287 - 296
HIEI, Y. ET AL., THE PLANT JOURNAL, vol. 6, 1994, pages 271 - 282
HIEI, Y.; ISHIDA, Y.; KASAOKA, K.; KOMARI, T.: "Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens", PLANT CELL, TISSUE AND ORGAN CULTURE, vol. 87, 2006, pages 233 - 243
HIEI, Y.; KOMARI, T.: "Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens", PLANT CELL, TISSUE AND ORGAN CULTURE, vol. 85, 2006, pages 271 - 283
HIEI, Y.; OHTA, S.; KOMARI, T.; KUMASHIRO, T.: "Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA", THE PLANT JOURNAL, vol. 6, 1994, pages 271 - 282
HOEKEMA, A. ET AL., NATURE, vol. 303, 1983, pages 179 - 180
ISHIDA, Y. ET AL., NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 745 - 750
ISHIDA, Y. ET AL., NATURE BIOTECHNOLOGY, vol. 4, 1996, pages 745 - 750
ISHIDA, Y.; SAITO, H.; HIEI, Y.; KOMARI, T.: "Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens", PLANT BIOTECHNOLOGY, vol. 20, 2003, pages 57 - 66
ISHIDA, Y.; SAITO, H.; OHTA, S.; HIEI, Y.; KOMARI, T.; KUMASHIRO, T.: "High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens", NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 745 - 750
JOERSBO, M.; DONALDSON, 1.; KREIBERG, J.; PETERSEN, S.G.; BRUNSTEDT, J.; OKKELS, F.T.: "Analysis ofmannose selection used for transformation of sugar beet", MOL. BREED., vol. 4, 1998, pages 111 - 117
KOMARI, T.: "Transformation of callus cultures of nine plant species mediated by Agrobacterium", PLANT SCI., vol. 60, 1989, pages 223 - 229
KOMARI, T.; HIEI, Y.; SAITO, Y.; MURAI, N.; KUMASHIRO, T.: "Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers", THE PLANT JOURNAL, vol. 10, 1996, pages 165 - 174
KOMARI, T.; KUBO T.: "Molecular improvement of cereal crops", 1999, KLUWER ACADEMIC PUBLISHERS, article "Methods of Genetic Transformation: Agrobacterium tumefaciens", pages: 43 - 82
KUIPER, H.A.; KLETER, G.A.; NOTEBORN, H.P.J.M.; KOK, E.J.: "Assessment of the food safety issues related to genetically modified food", THE PLANT JOURNAL, vol. 27, 2001, pages 503 - 528
MOONEY, P.A.; GOODWIN, P.B.; DENNIS, E.S.; LLEWELLYN, D.J.: "Agrobacterium tumefaciens-gene transfer into wheat tissues", PLANT CELL, TISSUES AND ORGAN CULTURE, vol. 25, 1991, pages 209 - 218
NEGROTTO, D.; JOLLEY, M.; BEER, S.; WENCK, A. R.; HANSEN, G.: "The use of phosphomannose-isomerase as a selection marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation", PLANT CELL REPORTS, vol. 19, 2000, pages 798 - 803
NOMURA, M.; KATAYAMA, K.; NISHIMURA, A.; ISHIDA, Y.; OHTA, S.; KOMARI, T.; MIYAO-TOKUTOMI, M.; TAJIMA, S.; MATSUOKA, M.: "The promoter ofrbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression", PLANT MOL. BIOL., vol. 44, 2000, pages 99 - 106
NOMURA, M.; SENTOKU, N.; NISHIMURA, A.; LIN, J-H.; HONDA, C.; TANIGUCHI, M.; ISHIDA, Y.; OHTA, S.; KOMARI, T.; MIYAO-TOKUMORI, M.: "The evolution of C4 plants: acquisition of cis-regulatory sequences in the promoter of C4-type pyruvate, orthophosphate dikinase gene", PLANT J., vol. 22, 2000, pages 211 - 221
POTRYCUS, I: "Gene transfer to cereals: an assessment", BIO/TECHNOLOGY, vol. 8, 1990, pages 535 - 542
POTRYKUS, I.; BILANG, R.; FIITTERER J.; SAUTTER, C.; SCHROTT, M.: "Genetic engineering of crop plants. Agricultural Biotechnology", 1998, MARCEL DEKER INC., pages: 119 - 159
RAINERI, D.M.; BOTTINO, P.; GORDON, M.P.; NESTER, E.W.: "Agrobacterium-mediated transformation of rice (Oryza sativa L.)", BIO/TECHNOLOGY, vol. 8, 1990, pages 33 - 38
SAMBROOK, J. ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2274973A4
TANIGUCHI, M.; IZAWA, K.; KU, M. S. B.; LIN, J-H.; SAITO, H.; ISHIDA, Y.; OHTA, S.; KOMARI, T.; MATSUOKA, M.; SUGIYAMA, T.: "The promoter for the maize C4 pyruvate, orthophosphate dikinase gene directs cell- and tissue-specific transcription in transgenic maize plants", PLANT CELL PHYSIOL., vol. 41, 2000, pages 42 - 48
TETSUO TAKEMATSU, JOSOZAI KENKYU SORAN, 1982, pages 79 - 154
TINGAY, S.; MCELROY, D.; KALLA, R.; FIEG, S.; WANG, M.; THORNTON, S.; BRETTELL, R.: "Agrobacterium tumefaciens-mediated barley transformation", PLANT J., vol. 11, 1997, pages 1369 - 1376
WALDRON, C.; MURPHY, E.B.; ROBERTS, J.L.; GUSTAFSON, G.D.; ARMOUR, S.L.; MALCOLM, S.K.: "Resistance to hygromycin B: A new marker for plant transformation studies", PLANT MOL. BIOL., vol. 5, 1985, pages 102 - 108
ZHANG, W.; SUBBARAO, S.; ADDAE, P.; SHEN, A.; ARMSTRONG, C.; PESCHKE, V.; GILBERTSON, L.: "Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants", THEOR. APPL. GENET., vol. 107, 2003, pages 1157 - 1168
ZHAO, Z.-Y.; CAI, T.; TAGLIANI, L.; MILLER, M.; WANG, N.; PENG, H.; RUDERT, M.; SCHOEDER, S.; HONDRED, D.; SELTZER, J.: "Agrobacterium-mediated sorghum transformation", PLANT MOL. BIOL., vol. 44, 2000, pages 789 - 798
ZHAO, Z.-Y.; GU, W.; CAI, T.; TAGLIANI, L.; HONDRED, D.; BOND, D.; SCHROEDER, S.; RUDERT, M.; PIERCE, D.: "High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize", MOL. BREED., vol. 8, 2001, pages 323 - 333
ZHU, Y.J.; ASBAYANI, R.; MOORE, P.H.: "Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.) transformation", PLANT CELL REP., vol. 22, 2004, pages 660 - 667

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502197A (ja) * 2006-08-31 2010-01-28 モンサント テクノロジー エルエルシー 選択を含まない植物形質転換
US8581035B2 (en) 2006-08-31 2013-11-12 Monsanto Technology Llc Plant transformation without selection
US8847009B2 (en) 2006-08-31 2014-09-30 Monsanto Technology Llc Plant transformation without selection
US9617552B2 (en) 2006-08-31 2017-04-11 Monsanto Technology Llc Plant transformation without selection
US10233455B2 (en) 2006-08-31 2019-03-19 Monsanto Technology Llc Plant transformation without selection
US10941407B2 (en) 2006-08-31 2021-03-09 Monsanto Technology Llc Plant transformation without selection
WO2012015039A1 (ja) * 2010-07-29 2012-02-02 日本たばこ産業株式会社 アグロバクテリウム菌を用いた、オオムギ属植物へ遺伝子導入を行う方法およびオオムギ属植物の形質転換植物の作成方法
US9284567B2 (en) 2010-07-29 2016-03-15 Japan Tobacco Inc. Method for gene introduction into hordeum plant using agrobacterium, and method for production of transformed plant of hordeum plant

Also Published As

Publication number Publication date
CN101983007B (zh) 2013-11-06
AU2009232967A1 (en) 2009-10-08
AU2009232967A8 (en) 2010-11-25
HK1154333A1 (en) 2012-04-20
CN101983007A (zh) 2011-03-02
JP2011120478A (ja) 2011-06-23
EP2274973A4 (en) 2011-06-22
US8357836B2 (en) 2013-01-22
AU2009232967B2 (en) 2015-04-02
EP2274973A1 (en) 2011-01-19
US20110030101A1 (en) 2011-02-03
US20130125265A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
WO2009122962A1 (ja) アグロバクテリウム菌による形質転換植物の作成方法
EP1964919B1 (en) Method for improving transformation efficiency using powder
JP5766605B2 (ja) アグロバクテリウム菌を用いた、コムギ属の植物へ遺伝子導入を行う方法、コムギ属の植物の形質転換植物の作成方法
CA2681662C (en) Method for increasing transformation efficiency in plants, comprising coculture step for culturing plant tissue with coculture medium containing 3,6-dichloro-o-anisic acid
US8058514B2 (en) Agrobacterium-mediated method for producing transformed plant without selection step
AU6317900A (en) Method of improving gene transfer efficiency into plant cells
US7902426B1 (en) Method of improving gene transfer efficiency into plant cells utilizing heat and centrifugation
CA2538987C (en) A method for improving plant transformation efficiency by adding copper ion
JP5260963B2 (ja) 粉体を用いて形質転換効率を向上させる方法
JP2000023675A (ja) 広範な品種に適応可能なアグロバクテリウムによるトウモロコシの形質転換方法
WO2016104583A1 (ja) アグロバクテリウム菌を用いた、ソルガム属植物への遺伝子導入方法およびソルガム属植物の形質転換植物の作成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112149.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12935525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009232967

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009727983

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6844/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009232967

Country of ref document: AU

Date of ref document: 20090324

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP