WO2009122902A1 - アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法 - Google Patents

アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法 Download PDF

Info

Publication number
WO2009122902A1
WO2009122902A1 PCT/JP2009/055197 JP2009055197W WO2009122902A1 WO 2009122902 A1 WO2009122902 A1 WO 2009122902A1 JP 2009055197 W JP2009055197 W JP 2009055197W WO 2009122902 A1 WO2009122902 A1 WO 2009122902A1
Authority
WO
WIPO (PCT)
Prior art keywords
apatite
collagen
porous body
porous material
volume
Prior art date
Application number
PCT/JP2009/055197
Other languages
English (en)
French (fr)
Inventor
大助 庄司
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US12/935,074 priority Critical patent/US8900640B2/en
Priority to JP2010505560A priority patent/JP5458237B2/ja
Publication of WO2009122902A1 publication Critical patent/WO2009122902A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease

Definitions

  • the present invention relates to a porous body composed of an apatite / collagen composite that can be used as an artificial bone that expands (swells) when implanted in a living body, and a method for producing the same.
  • US Pat. No. 5,776,193 discloses a biodegradable, bone-replaceable, porous three-dimensional structure composed of a water-insoluble mineralized biopolymer (immobilized calcium phosphate) fiber network and a water-soluble binder (such as soluble collagen).
  • a fixed matrix is disclosed.
  • this three-dimensional fixed matrix does not solve the above problem.
  • an object of the present invention is to provide a porous body made of an apatite / collagen complex that becomes an artificial bone that expands when implanted in a living body, and a method for producing the same.
  • the present inventor has been able to maintain the compression state without uncompressing the compression strain by freeze-drying the porous body composed of the apatite / collagen composite with the compression strain applied. And the porous body thus compressed quickly returns to the state before compression by water absorption, and the present invention has been conceived.
  • the porous body composed of the apatite / collagen composite of the present invention is a compressed apatite / collagen composite, and is characterized by swelling due to water absorption.
  • the volume change [volume after expansion / volume before expansion] of the porous body expanded by water absorption is preferably 1.01 to 100 times.
  • the volume change rate [volume when compression strain is applied / volume before compression strain is applied] by applying the compression strain is preferably 1 to 99%.
  • the expansible porous body made of the apatite / collagen composite of the present invention can be implanted with minimal invasion without causing poor repair to a bone defect having a complicated shape and a different size. Further, since the expandable porous body has a relatively compact size before expansion, it can be easily embedded even if the embedding hole is small. By using this expansible porous material as an artificial bone, the burden on the patient who is supplemented with the artificial bone is reduced, and the processing at the time of implantation is unnecessary, improving the workability of the doctor who uses the artificial bone. Can be made.
  • Expandable porous material composed of apatite / collagen composite
  • the expandable porous material is composed of a self-organized apatite / collagen composite and a binding material such as collagen, and maintains a compressed state when dried and absorbs water. As a result, it expands and returns to the state before compression.
  • the porous body that has expanded due to water absorption exhibits elasticity in the same manner as an ordinary apatite / collagen composite porous body, and has excellent biocompatibility and osteoconductivity.
  • the volume change due to expansion when the expandable porous body is immersed in water is preferably 1.01 to 100 times, more preferably 1.1 to 60 times, and more preferably 2 to Most preferably, it is 30 times.
  • volume change due to expansion is less than 1.01, an effect of compressing is hardly obtained, and it is difficult to technically manufacture an expandable porous body that expands more than 100 times.
  • the expansible porous body of the present invention can be used as a living bone replacement type bone reconstruction material or the like by sterilizing by ⁇ rays, electron beams, drying and heating, or the like. Specifically, it is suitable as an artificial bone, an artificial joint, a joint material between a tendon and a bone, a dental implant material, and the like.
  • the expansible porous material may be used while being compressed, or may be used after being expanded by water absorption.
  • the shape of the expandable porous body may be a block shape or a granular shape.
  • the expandable porous material of the present invention is obtained by compressing a porous material prepared using an apatite / collagen composite and a binder such as collagen. It is done.
  • apatite / collagen complex it is preferable that hydroxyapatite and collagen are oriented in a self-organized manner to form a complex similar to living bone.
  • self-organization means that the calcium phosphate having an apatite structure (hydroxyapatite) has an orientation peculiar to living bone along the collagen fiber, that is, the C-axis of hydroxyapatite is the collagen fiber. It means that it is oriented along
  • apatite / collagen composite is produced using collagen, phosphate and calcium salt as raw materials.
  • the collagen is not particularly limited, and those extracted from animals and the like can be used, and the species, tissue site, age, etc. of the derived animal are not particularly limited.
  • collagen obtained from the skin, bone, cartilage, tendon, organ, etc. of mammals eg, cows, pigs, horses, rabbits, mice, etc.
  • birds eg, chickens, etc.
  • collagen-like proteins obtained from the skin, bones, cartilage, fins, scales, organs, etc.
  • the extraction method of collagen is not specifically limited, A general extraction method can be used. Further, instead of extraction from animal tissue, collagen obtained by gene recombination technology may be used.
  • Examples of phosphoric acid or a salt thereof include phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, and the like.
  • Examples of calcium salts include calcium carbonate, calcium acetate, and calcium hydroxide. The phosphate and calcium salt are preferably added in the form of a uniform aqueous solution or suspension, respectively.
  • the fiber length of the apatite / collagen composite produced can be controlled by the mass ratio of the apatite raw material [phosphoric acid (salt) and calcium salt] used to collagen. Therefore, the mass ratio of the apatite raw material to be used and collagen is appropriately determined depending on the composition ratio of the target apatite / collagen complex.
  • the mixing ratio of apatite / collagen in the apatite / collagen composite used in the present invention is preferably 9/1 to 6/4 (mass ratio), more preferably 8.5 / 1.5 to 7/3 (mass ratio), about 8 / 2 (mass ratio) is most preferred.
  • a collagen / phosphoric acid (salt) aqueous solution is an aqueous solution in which collagen and phosphoric acid (salt) are dissolved, and is generally prepared by adding a collagen aqueous solution to a phosphoric acid (salt) aqueous solution.
  • the concentration of collagen in the collagen / phosphoric acid (salt) aqueous solution is preferably 0.1 to 1.5% by mass, particularly preferably about 0.85% by mass.
  • the concentration of phosphoric acid (salt) is preferably 15 to 240 mM, particularly preferably about 120 mM.
  • the collagen aqueous solution used at the time of preparation preferably has a collagen concentration of about 0.85% by mass, and preferably contains about 20 mM phosphoric acid.
  • the concentration of the calcium salt aqueous solution (or suspension) is preferably 50 to 800 mM, particularly preferably about 400 mM.
  • the mixing ratio of phosphoric acid (salt) and calcium salt is preferably 1: 1 to 2: 5, more preferably about 3: 5.
  • the mixing ratio of collagen and apatite (total amount of phosphate and calcium salt) is preferably 1: 9 to 4: 6, and more preferably 1.5: 8.5 to 3: 7.
  • the pH of the reaction solution it is preferable to maintain the pH of the reaction solution at 8.9 to 9.1 by maintaining the calcium ion concentration in the reaction solution at 3.75 ⁇ mM or less and the phosphate ion concentration at 2.25 ⁇ mM or less.
  • concentration of calcium ions and / or phosphate ions exceeds the above range, self-assembly of the complex is prevented.
  • the fiber length of the self-organized apatite / collagen composite becomes 2 mm or less suitable as a raw material for powdered apatite / collagen.
  • the slurry-like apatite / collagen composite aqueous dispersion is freeze-dried. Freeze-drying is performed by evacuating and rapidly drying in a frozen state at -10 ° C or lower.
  • the porosity P of the porous body can be controlled by controlling the amount of liquid added.
  • the dispersion is stirred after the liquid is added, a part of the fibers of the apatite / collagen composite is cut, and the fiber length distribution increases. By adjusting the stirring conditions to obtain fibers having a wide distribution, the strength of the resulting porous body can be improved.
  • binders include soluble collagen, gelatin, polylactic acid, polyglycolic acid, copolymers of lactic acid and glycolic acid, polycaprolactone, carboxymethylcellulose, cellulose ester, dextrose, dextran, chitosan, hyaluronic acid, ficoll, chondroitin sulfate, polyvinyl alcohol, polyalcohol.
  • examples include acrylic acid, polyethylene glycol, polypropylene glycol, water-soluble polyacrylate, water-soluble polymethacrylate, and the like, and soluble collagen is particularly preferable.
  • the addition amount of the binder is preferably 1 to 10% by mass and more preferably 3 to 6% by mass with respect to the apatite / collagen composite.
  • the binder is preferably added in the form of a phosphoric acid aqueous solution.
  • concentration of the binder solution to be added is not particularly limited, but practically, the binder concentration is preferably about 0.85% by mass and the phosphoric acid concentration is about 20 ⁇ m.
  • the dispersion after addition of the binder is adjusted to a pH of about 7, preferably 6.8 to 7.6, more preferably 7.0 to 7.4. It is preferable to adjust the pH with an aqueous sodium hydroxide solution.
  • a concentrated solution (about 10 times) of phosphate buffered saline (PBS) is added to the dispersion to adjust its ionic strength to 0.2 to 1 in order to promote fiberization.
  • PBS phosphate buffered saline
  • a more preferred ionic strength is about 0.8, similar to PBS.
  • the dispersion further contains antibiotics (tetracycline, etc.), anticancer agents (cisplatin, etc.), bone marrow cells, cell growth factors (BMP, FGF, TGF- ⁇ , IGF, PDGF, VEGF, etc.)
  • antibiotics tetracycline, etc.
  • anticancer agents cisplatin, etc.
  • bone marrow cells cell growth factors (BMP, FGF, TGF- ⁇ , IGF, PDGF, VEGF, etc.)
  • additives such as physiologically active factors (hormones, cytokines, etc.) can be added.
  • a porous material can be obtained by freeze-drying the gelled dispersion.
  • the freezing temperature is preferably -80 to -10 ° C, more preferably -80 to -20 ° C.
  • the freezing rate By adjusting the freezing rate, the pore diameter and pore shape of the porous body can be controlled. For example, when the freezing rate is high, the pore size of the produced porous body tends to be small.
  • Freeze-drying is performed by evacuating and rapidly drying in a frozen state at ⁇ 10 ° C. or lower, as in the case of the complex.
  • the drying time is not particularly limited as long as the dispersion is sufficiently dried, but is generally about 24 to 72 hours.
  • Collagen cross-linking In order to increase mechanical strength and maintain the shape of the artificial bone inserted into the body for a desired period of time, the freeze-dried apatite / collagen complex should cross-link collagen. preferable. Crosslinking of collagen can be performed using methods such as physical crosslinking using ⁇ rays, ultraviolet rays, electron beams, thermal dehydration, and the like, and chemical crosslinking using a crosslinking agent or a condensing agent.
  • Chemical cross-linking is performed, for example, by immersing the lyophilized porous body in a solution of a cross-linking agent, by allowing a vapor containing a cross-linking agent to act on the lyophilized porous body, or when producing an apatite / collagen composite. Can be carried out by adding a crosslinking agent to the aqueous solution or suspension.
  • crosslinking agents examples include aldehydes such as glutaraldehyde and formaldehyde, isocyanates such as hexamethylene diisocyanate, carbodiimides such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, and epoxy compounds such as ethylene glycol diethyl ether, Examples thereof include transglutaminase.
  • glutaraldehyde is particularly preferable from the viewpoint of easy control of the degree of crosslinking and biocompatibility of the resulting apatite / collagen crosslinked porous body.
  • the concentration of the glutaraldehyde solution is preferably 0.005 to 0.015% by mass, and more preferably 0.005 to 0.01% by mass.
  • alcohol such as ethanol
  • dehydration is performed at the same time as crosslinking, so that crosslinking occurs in a contracted state of the apatite / collagen composite, and the elasticity of the resulting apatite / collagen crosslinked porous body is improved. .
  • the porous body After the crosslinking treatment, the porous body is immersed in an aqueous solution of about 2% by mass of glycine and washed with water to remove unreacted glutaraldehyde. Further, it is immersed in ethanol, dehydrated, and dried at room temperature.
  • the obtained apatite / collagen crosslinked porous body is processed by cutting with a lathe or the like as necessary.
  • the apatite / collagen porous body may be processed after compression as described below.
  • the volume change rate [volume when compression strain is applied / volume before compression strain is applied] by applying compression strain is preferably 1 to 99%. When this volume change rate is larger than 99%, the compression effect is hardly obtained. When compressive strain is applied to obtain a volume change rate smaller than 1%, the fiber of the apatite / collagen composite is damaged and expanded. The rate will drop significantly.
  • the volume change rate by applying compressive strain is more preferably 5 to 95%, further preferably 10 to 90%.
  • the porous body after lyophilization may be sterilized by ultraviolet rays, ⁇ rays, electron beams, drying and heating, or the like.
  • Example 1 Production of Apatite / Collagen Complex 412 g of a collagen aqueous solution (0.97 wt% collagen, 20 mM phosphoric acid) containing phosphoric acid was added to 400 ml of a 120 mM phosphoric acid aqueous solution and mixed to obtain a solution I. On the other hand, 400 ml of 400 mM calcium hydroxide solution (solution II) was prepared. Solutions I and II were simultaneously added dropwise to 200 ml of water (39.5 ° C.) to obtain a slurry containing an apatite / collagen complex.
  • the reaction solution was added dropwise with stirring at 200 rpm, and the addition rate of solutions I and II was adjusted to about 30 ml / min so that the pH of the reaction solution was maintained at 8.9 to 9.1.
  • the fiber length of the produced apatite / collagen composite was approximately 2 mm or less.
  • the resulting slurry was frozen and lyophilized.
  • the compounding ratio of apatite / collagen in the composite was 8/2 (mass ratio).
  • the dispersion placed in the mold was gelled by holding at 37 ° C. for 2 hours to obtain a jelly-like molded body.
  • the molded body was frozen at ⁇ 20 ° C. and then dried using a freeze dryer.
  • a porous body was obtained by immersing the dried molded body in a 0.01% glutaraldehyde solution prepared using ethanol (concentration 99.5%) as a solvent, followed by crosslinking.
  • the porous body was washed with water, then immersed in a 2% glycine aqueous solution to remove unreacted glutaraldehyde, and washed again with water. Further, it was dehydrated by soaking in ethanol (concentration 99.5%), and then dried at room temperature.
  • the obtained porous body was formed into a cube (10 mm x 10 mm x 10 mm), immersed in physiological saline and sufficiently impregnated with water, and then [volume when compression strain was applied / volume before compression strain was applied ] was frozen in a state where compressive strain was applied in one surface direction in the mold so that it was 20%. Although the application of compressive strain was stopped in the frozen state, the porous body maintained the shape during compression.
  • the frozen porous material was dried with a freeze dryer and sterilized by ⁇ -ray treatment to obtain an expandable porous material of the present invention of 2 mm ⁇ 10 mm ⁇ 10 mm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 圧縮されたアパタイト/コラーゲン複合体からなる多孔体であって、吸水により膨張することを特徴とする膨張性多孔体、及び液体を含浸させたアパタイト/コラーゲン複合体からなる多孔体を、圧縮歪を加えた状態で凍結し、乾燥することを特徴とする吸水により膨張するアパタイト/コラーゲン複合体からなる膨張性多孔体の製造方法。

Description

アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法
 本発明は、生体内に埋植したときに膨張(膨潤)する人工骨として使用できるアパタイト/コラーゲン複合体からなる多孔体、及びその製造方法に関する。
 現在、外傷や病気により生じた骨欠損部の治療法として、患者自身の骨を採取して用いる自家骨移植、他人から提供された骨を用いる同種骨移植、チタンなどの金属や水酸アパタイトセラミックスで作られた人工骨による補填等がある。水酸アパタイトセラミックスは従来の金属、高分子又はアルミナセラミックスにはない骨伝導を有し、骨と直接結合するという特徴を有するため、発売開始後、口腔外科、脳神経外科、耳鼻咽喉科、整形外科等の幅広い領域で自家骨に代わる骨修復材料として徐々に普及してきた。しかし、水酸アパタイトセラミックスに代表されるセラミックス人工骨は固くもろいために術中に取り扱いづらいという問題点があった。これを改善するためにスポンジ状の弾力性を有するアパタイト/コラーゲン複合体が開発され材料の取り扱いが容易になったが、複雑な形状で大きさもそれぞれ異なる骨欠損部への補填は、これらの材料を用いても困難であり補填不良をきたすことがあった。
 米国特許第5,776,193号は、水不溶性鉱物化生体ポリマ-(固定化されたリン酸カルシウム)繊維のネツトワ-クと水溶性バインダー(可溶性コラーゲン等)とからなる生分解性で骨置換可能な多孔質三次元固定マトリツクを開示している。しかしながら、この三次元固定マトリツクは上記問題を解決するものではない。
 従って、本発明の目的は、生体内に埋植したときに膨張する人工骨となるアパタイト/コラーゲン複合体からなる多孔体、及びその製造方法を提供することにある。
 上記目的に鑑み鋭意研究の結果、本発明者は、アパタイト/コラーゲン複合体からなる多孔体を、圧縮歪をかけた状態で凍結乾燥することにより、圧縮歪が解かれずに圧縮状態が維持されること、及びこのように圧縮された多孔体は吸水により速やかに圧縮前の状態に戻ることを見出し、本発明に想到した。
 すなわち、本発明のアパタイト/コラーゲン複合体からなる多孔体は、圧縮されたアパタイト/コラーゲン複合体であって、吸水により膨張することを特徴とする。
 前記吸水により膨張した多孔体の体積変化[膨張後の体積/膨張前の体積]は1.01~100倍であるのが好ましい。
 吸水により膨張するアパタイト/コラーゲン複合体からなる膨張性多孔体を製造する本発明の方法は、液体を含浸させたアパタイト/コラーゲン複合体からなる多孔体を、圧縮歪を加えた状態で凍結し、乾燥することを特徴とする。
 前記圧縮歪を加えることによる体積変化率[圧縮歪印可時の体積/圧縮歪印可前の体積]は1~99%であるのが好ましい。
 本発明のアパタイト/コラーゲン複合体からなる膨張性多孔体は、複雑な形状で大きさも異なる骨欠損部に対し、補填不良をきたすことなく、低侵襲で埋植することができる。また膨張性多孔体は、膨張前は比較的コンパクトなサイズであるため、埋入孔が小さくても容易に埋入することができる。この膨張性多孔体を人工骨として用いることにより、人工骨を補填される患者の負担が軽減されるとともに、埋植時の加工が不要であるため、人工骨を使用する医師の作業性を向上させることができる。
[1] アパタイト/コラーゲン複合体からなる膨張性多孔体
 膨張性多孔体は、自己組織化したアパタイト/コラーゲン複合体とコラーゲン等の結合材とからなり、乾燥時には圧縮状態を保っており、吸水することによって膨張しほぼ圧縮前の状態に戻る。吸水により膨張した多孔体は、通常のアパタイト/コラーゲン複合多孔体と同様に弾力性を示し、優れた生体親和性及び骨伝導能を有する。
 膨張性多孔体を水に浸漬したときの膨張による体積変化[膨張後の体積/膨張前の体積]は1.01~100倍であるのが好ましく、1.1~60倍であるのがより好ましく、2~30倍であるのが最も好ましい。膨張による体積変化が1.01未満では圧縮する効果がほとんど得られず、100倍を越えて膨張するような膨張性多孔体は技術的に製造するのが困難である。
 吸水により膨張した多孔体が有する上記のような物性は、生体材料として好ましい。このため本発明の膨張性多孔体はγ線、電子線、乾燥加熱等により滅菌処理することにより、生体骨置換型骨再建材等として使用できる。具体的には人工骨、人工関節、腱と骨との接合材、歯科用インプラント材等として好適である。膨張性多孔体は圧縮したまま使用しても良いし、吸水により膨張させてから使用してもよい。また、膨張性多孔体の形状は、ブロック状であっても、顆粒状であってよい。
[2] アパタイト/コラーゲン複合体からなる膨張性多孔体の製造
 本発明の膨張性多孔体は、アパタイト/コラーゲン複合体とコラーゲン等の結合材とを用いて作製した多孔体を圧縮することにより得られる。アパタイト/コラーゲン複合体は、ハイドロキシアパタイトとコラーゲンが自己組織化的に配向し、生体骨に類似の複合体を形成しているのが好ましい。本明細書中「自己組織化」とは、コラーゲン繊維に沿って、アパタイト構造を有する水酸化リン酸カルシウム(ハイドロキシアパタイト)が生体骨特有の配向をしていること、すなわちハイドロキシアパタイトのC軸がコラーゲン繊維に沿うように配向していることを意味する。
(1) アパタイト/コラーゲン複合体の製造
(a) 原料
 アパタイト/コラーゲン複合体は、コラーゲン、リン酸塩及びカルシウム塩を原料として製造する。コラーゲンとしては特に限定されず、動物等から抽出したものが使用でき、由来する動物の種、組織部位、年齢等は特に限定されない。一般的には哺乳動物(例えばウシ、ブタ、ウマ、ウサギ、ネズミ等)や鳥類(例えばニワトリ等)の皮膚、骨、軟骨、腱、臓器等から得られるコラーゲンが使用できる。また魚類(例えばタラ、ヒラメ、カレイ、サケ、マス、マグロ、サバ、タイ、イワシ、サメ等)の皮、骨、軟骨、ひれ、うろこ、臓器等から得られるコラーゲン様蛋白を使用することができる。なおコラーゲンの抽出方法は特に限定されず、一般的な抽出方法を使用することができる。また動物組織からの抽出ではなく、遺伝子組み替え技術によって得られたコラーゲンを使用してもよい。
 リン酸又はその塩(以下単に「リン酸(塩)」という)としては、リン酸、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム等が挙げられる。カルシウム塩としては、炭酸カルシウム、酢酸カルシウム、水酸化カルシウム等が挙げられる。リン酸塩及びカルシウム塩はそれぞれ均一な水溶液又は懸濁液の状態で添加するのが好ましい。
 使用するアパタイト原料[リン酸(塩)及びカルシウム塩]とコラーゲンとの質量比により、生成するアパタイト/コラーゲン複合体の繊維長を制御できる。このため使用するアパタイト原料とコラーゲンとの質量比は、目的とするアパタイト/コラーゲン複合体の組成比により適宜決定する。本発明に使用するアパタイト/コラーゲン複合体中のアパタイト/コラーゲンの混合比は9/1~6/4(質量比)が好ましく、8.5/1.5~7/3(質量比)がより好ましく、約8/2(質量比)が最も好ましい。
(b) 溶液の調製
 コラーゲン/リン酸(塩)水溶液は、コラーゲン及びリン酸(塩)を溶解した水溶液で、一般的にリン酸(塩)水溶液にコラーゲン水溶液を加えて調液する。コラーゲン/リン酸(塩)水溶液中のコラーゲンの濃度は0.1~1.5質量%が好ましく、約0.85質量%が特に好ましい。またリン酸(塩)の濃度は15~240 mMが好ましく、約120 mMが特に好ましい。調液時に用いる前記コラーゲン水溶液は、コラーゲンの濃度が約0.85質量%であるのが好ましく、20 mM程度のリン酸を含有するのが好ましい。カルシウム塩水溶液(又は懸濁液)の濃度は50~800 mMが好ましく、約400 mMが特に好ましい。
(c) 合成方法
 添加するカルシウム塩水溶液(又は懸濁液)の量とほぼ同量の水に、約40℃でコラーゲン/リン酸(塩)水溶液、及びカルシウム塩水溶液(又は懸濁液)を同時に滴下することにより、アパタイト/コラーゲン複合体が生成する。滴下条件(滴下速度、攪拌速度、温度等)を制御することにより、アパタイト/コラーゲン複合体の繊維長を制御できる。滴下速度は1~60 mL/分が好ましく、約30 mL/分がより好ましい。攪拌速度は1~400 rpmが好ましく、約200 rpmがより好ましい。リン酸(塩)及びカルシウム塩の混合比率は、1:1~2:5が好ましく、約3:5がより好ましい。またコラーゲン及びアパタイト(リン酸塩とカルシウム塩の総量)の混合比率は、1:9~4:6が好ましく、1.5:8.5~3:7がより好ましい。
 反応液中のカルシウムイオン濃度を3.75 mM以下、リン酸イオン濃度を2.25 mM以下に維持することにより、反応液のpHを8.9~9.1に保つのが好ましい。カルシウムイオン及び/又はリン酸イオンの濃度が上記範囲を超えると、複合体の自己組織化が妨げられる。上記の滴下条件により、自己組織化したアパタイト/コラーゲン複合体の繊維長は、粉末状アパタイト/コラーゲンの原料として好適な2 mm以下となる。
 滴下終了後、スラリー状となったアパタイト/コラーゲン複合体の水分散物を凍結乾燥する。凍結乾燥は、-10℃以下に凍結した状態で真空引きし、急速に乾燥させることにより行う。
(2) アパタイト/コラーゲン複合体からなる膨張性多孔体の製造
(a) アパタイト/コラーゲン複合体を含む分散物の調製
 アパタイト/コラーゲン複合体の粉末に水、リン酸水溶液等を加えて撹拌し、ペースト状の分散物(スラリー)を調製する。分散物中の水の量は、80~99体積%であるのが好ましく、90~97体積%であるのがより好ましい。多孔体の気孔率P(%)は分散物中のアパタイト/コラーゲン複合体と水溶液等との体積比に依存し、下記式(1):
   P = B/(A+B)×100・・・(1)
(ただし、Aは分散物中のアパタイト/コラーゲン複合体の体積を示し、Bは分散物中の液体の体積を示す。)により表される。このため加える液体の量を制御することにより多孔体の気孔率Pを制御することができる。液体を加えた後で分散物を撹拌すると、アパタイト/コラーゲン複合体の繊維の一部が切断され繊維の長さの分布が大きくなる。撹拌条件を調節し広い分布を有する繊維とすることにより、得られる多孔体の強度を向上させることができる。
 多孔体の形状を安定化させるため、分散物にさらにバインダーを添加するのが好ましい。バインダーとしては、可溶性コラーゲン、ゼラチン、ポリ乳酸、ポリグリコール酸、乳酸とグリコール酸のコポリマー、ポリカプロラクトン、カルボキシメチルセルロース、セルロースエステル、デキストロース、デキストラン、キトサン、ヒアルロン酸、フィコール、コンドロイチン硫酸、ポリビニルアルコール、ポリアクリル酸、ポリエチレングリコール、ポリプロピレングリコール、水溶性ポリアクリレート、水溶性ポリメタクリレート等が挙げられ、特に可溶性コラーゲンが好ましい。バインダーの添加量は、アパタイト/コラーゲン複合体に対して、1~10質量%が好ましく、3~6質量%がより好ましい。
 アパタイト/コラーゲン複合体を製造する場合と同様に、バインダーはリン酸水溶液の状態で加えるのが好ましい。添加するバインダー溶液の濃度等は特に限定されないが、実用的にはバインダーの濃度が約0.85質量%、リン酸の濃度が20 mM程度が好ましい。
 後述のゲル化処理時にコラーゲンがゼラチンに変性するのを防止するため、バインダー添加後の分散物はpHを7程度、好ましくは6.8~7.6、より好ましくは7.0~7.4に調製する。pHの調節は水酸化ナトリウム水溶液で行うのが好ましい。
 バインダーとしてコラーゲン加えた場合、その繊維化を促進させるため、分散物にリン酸バッファー生理食塩水(PBS)の濃縮液(10倍程度)を添加し、イオン強度を0.2~1に調整する。より好ましいイオン強度は、PBSと同程度の約0.8である。
 本発明の目的を損なわない範囲内で、分散物にさら抗生物質(テトラサイクリン等)、抗癌剤(シスプラチン等)、骨髄細胞、細胞増殖因子(BMP、FGF、TGF-β、IGF、PDGF、VEGF等)、生理活性因子(ホルモン、サイトカイン等)等の添加剤を添加することができる。
(b) 分散物のゲル化
 成形型に入れた後の分散物の温度を35~45℃に保持することにより、分散物中のコラーゲンが繊維化しゲル状となる。ゲル化により、アパタイト/コラーゲン複合体が沈降するのを防ぎ、均一な多孔体が得られる。より好ましい保持温度は35~40℃である。保持時間は0.5~3.5時間が好ましく、1~3時間がより好ましい。
(c) 凍結乾燥
 ゲル化した分散物を凍結乾燥することにより多孔体を得ることができる。凍結温度は-80~-10℃であるのが好ましく、-80~-20℃であるのがより好ましい。凍結速度を調節することにより、多孔体の気孔径及び気孔形状を制御することができる。例えば凍結速度が大きいと、生成する多孔質体の気孔径は小さくなる傾向がある。
 凍結乾燥は、複合体の場合と同様に、-10℃以下に凍結した状態で真空引きし、急速に乾燥させることにより行う。乾燥時間は、分散物が十分に乾燥するまで行えばよく特に制限されないが、一般的には24~72時間程度である。
(d) コラーゲンの架橋
 機械的強度を高めるとともに、体内に挿入された人工骨等の形状を所望の期間保持し得るようにするため、凍結乾燥したアパタイト/コラーゲン複合体はコラーゲンを架橋するのが好ましい。コラーゲンの架橋は、γ線、紫外線、電子線、熱脱水等を用いた物理的架橋、架橋剤や縮合剤を用いた化学的架橋等の方法を用いて行うことができる。化学的架橋は、例えば凍結乾燥後の多孔体を架橋剤の溶液に浸漬する方法、凍結乾燥後の多孔体に架橋剤を含有する蒸気を作用させる方法、又はアパタイト/コラーゲン複合体を製造する際に水溶液又は懸濁液中に架橋剤を添加する方法により行うことができる。
 架橋剤としては、グルタールアルデヒド、ホルムアルデヒド等のアルデヒド、ヘキサメチレンジイソシアネート等のイソシアネート、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩等のカルボジイミド、エチレングリコールジエチルエーテル等のエポキシ化合物、トランスグルタミナーゼ等が挙げられる。これらの架橋剤のうち、架橋度の制御の容易さや、得られるアパタイト/コラーゲン架橋多孔体の生体適合性の観点から、グルタールアルデヒドが特に好ましい。
 多孔体をグルタールアルデヒド溶液に浸漬して架橋する場合、グルタールアルデヒド溶液の濃度は0.005~0.015質量%が好ましく、0.005~0.01質量%がより好ましい。グルタールアルデヒドの溶媒としてエタノール等のアルコールを使用すると、架橋と同時に脱水もされるため、アパタイト/コラーゲン複合体が収縮した状態で架橋が起こり、生成するアパタイト/コラーゲン架橋多孔体の弾性が向上する。
 架橋処理後、未反応のグルタールアルデヒドを除去するため2質量%程度のグリシン水溶液に多孔体を浸漬し水洗する。さらにエタノールに浸漬し脱水した後、室温で乾燥させる。
(e) 加工
 得られたアパタイト/コラーゲン架橋多孔体は、必要に応じて旋盤等で切削することにより加工する。アパタイト/コラーゲン多孔体は後述の圧縮を行った後に加工しても良い。
(f) 多孔体の圧縮
 生理食塩水等の液体に浸漬し水分を含浸させた多孔体を、所望の圧縮歪を加えた状態で凍結し、乾燥することにより膨張性多孔体を得る。凍結乾燥は前述と同様にして行うことができる。加工を行わない場合は、架橋後乾燥を行わずに直接圧縮歪を加えても良い。圧縮歪は、一面を除いて閉塞する型内にブロック状の多孔体を入れ、その状態で開放面から押圧型等を使って加えてもよいし、ラバープレスによって加えてもよい。圧縮歪の印加と凍結乾燥とを同時に行う場合、多孔体中の水分を逃がすため、押圧型等に通気孔を設けるのが好ましい。
 多孔体へ加える圧縮歪の強さ・方向を調節することにより、得られる膨張性多孔体の膨張率を制御することができる。圧縮歪を加えることによる体積変化率[圧縮歪印可時の体積/圧縮歪印可前の体積]は1~99%であるのが好ましい。この体積変化率が99%を越えて大きい場合、圧縮の効果がほとんど得られず、1%より小さい体積変化率が得られるほど圧縮歪をかけるとアパタイト/コラーゲン複合体の繊維が損傷し、膨張率が著しく低下してしまう。圧縮歪を加えることによる体積変化率は5~95%がより好ましく、10~90%がさらに好ましい。凍結乾燥後の多孔体は紫外線、γ線、電子線、乾燥加熱等により滅菌処理してもよい。
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1
(1)アパタイト/コラーゲン複合体の作製
 120 mMリン酸水溶液400 mlに、リン酸を含むコラーゲン水溶液(0.97 wt%コラーゲン、20 mMリン酸)を412 g加えて混合し溶液Iを得た。他方、400 mM水酸化カルシウム溶液(溶液II)を400 ml調製した。200 mlの水(39.5℃)中に、溶液I及びIIを同時に滴下することにより、アパタイト/コラーゲン複合体を含むスラリーを得た。なお反応溶液を200 rpmで撹拌しながら滴下を行い、溶液I及びIIの滴下速度は、反応溶液のpHが8.9~9.1に保持されるように約30 ml/minに調節した。生成したアパタイト/コラーゲン複合体の繊維長は、概ね2 mm以下であった。得られたスラリーは、凍結及び凍結乾燥した。複合体中のアパタイト/コラーゲンの配合比は8/2(質量比)であった。
(2) アパタイト/コラーゲン複合体を含む多孔体の作製
 乾燥したアパタイト/コラーゲン複合体1 gに純水3.6 mlを加えて撹拌し、ペースト状の分散物を得た。さらにリン酸を含むコラーゲン水溶液4 gを加えて撹拌した後、1NのNaOHをpHがほぼ7になるまで加えた。アパタイト/コラーゲン複合体とコラーゲンとの配合比は97/3(質量比)であった。次いで分散物のイオン強度が0.8となるように10倍濃縮のPBSを加えた。分散物中の液体(純水、リン酸水溶液、NaOH及びPBS)の量は95体積%であった。
 成形型に入れた分散物を、37℃で2時間保持してゲル化させゼリー状の成形体を得た。この成形体を-20℃で凍結し、次いで凍結乾燥機を用いて乾燥した。エタノール(濃度99.5%)を溶媒として調製した0.01%のグルタールアルデヒド溶液に、乾燥した成形体を浸して架橋処理することにより多孔体を得た。この多孔体を水洗した後、2%のグリシン水溶液に浸して未反応のグルタールアルデヒドを除去し、再度水洗した。さらにエタノール(濃度99.5%)に浸して脱水した後、室温で乾燥した。
 得られた多孔体を立方体(10 mm×10 mm×10 mm)に成形し、生理食塩水に浸漬し十分に水分を含浸させた後、[圧縮歪印可時の体積/圧縮歪印可前の体積]が20%になるように型内で1つの面方向に圧縮歪を印可した状態で凍結した。凍結状態で圧縮歪の印可を止めたが、多孔体は圧縮時の形状を保っていた。この凍結状態の多孔体を凍結乾燥機で乾燥した後、γ線処理により滅菌し、2 mm×10 mm×10 mm本発明の膨張性多孔体を得た。
 得られた膨張性多孔体を生理食塩水に浸漬したところ、9 mm×10 mm×10 mmの形状になるまで膨張した。

Claims (4)

  1.  圧縮されたアパタイト/コラーゲン複合体からなる多孔体であって、吸水により膨張することを特徴とする膨張性多孔体。
  2.  請求項1に記載の膨張性多孔体において、前記膨張による体積変化[膨張後の体積/膨張前の体積]が1.01~100倍であることを特徴とする膨張性多孔体。
  3.  吸水により膨張するアパタイト/コラーゲン複合体からなる膨張性多孔体の製造方法であって、液体を含浸させたアパタイト/コラーゲン複合体からなる多孔体を、圧縮歪を加えた状態で凍結し、乾燥することを特徴とする製造方法。
  4.  請求項3に記載の膨張性多孔体の製造方法において、前記圧縮歪を加えることによる体積変化率[圧縮歪印可時の体積/圧縮歪印可前の体積]は1~99%であることを特徴とする製造方法。
PCT/JP2009/055197 2008-04-02 2009-03-17 アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法 WO2009122902A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/935,074 US8900640B2 (en) 2008-04-02 2009-03-17 Expandable, porous apatite/collagen composite, and its production method
JP2010505560A JP5458237B2 (ja) 2008-04-02 2009-03-17 アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008096050 2008-04-02
JP2008-096050 2008-04-02

Publications (1)

Publication Number Publication Date
WO2009122902A1 true WO2009122902A1 (ja) 2009-10-08

Family

ID=41135288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055197 WO2009122902A1 (ja) 2008-04-02 2009-03-17 アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法

Country Status (3)

Country Link
US (1) US8900640B2 (ja)
JP (1) JP5458237B2 (ja)
WO (1) WO2009122902A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018671A2 (en) 2010-08-05 2012-02-09 Collagen Matrix, Inc. Self-expandable biopolymer-mineral composite
JP2014521415A (ja) * 2011-07-28 2014-08-28 シャンシャン ワン 複合コラーゲンスポンジ及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964583A1 (en) 2007-02-09 2008-09-03 Royal College of Surgeons in Ireland Process for producing a collagen/hydroxyapatite composite scaffold
JP5467554B2 (ja) * 2008-04-25 2014-04-09 HOYA Technosurgical株式会社 粉末状のアパタイト/コラーゲン複合体、形状賦形型の人工骨ペースト、及びそれらの製造方法
JP2009268685A (ja) * 2008-05-07 2009-11-19 Hoya Corp アパタイト/コラーゲン複合体で被覆してなる人工骨、及びその製造方法
DE112010001628B4 (de) 2009-04-17 2018-01-18 Hoya Corp. Calciumphosphat-Zementzusammensetzung und deren Kit für eine Knochenprothese
WO2020071497A1 (ja) 2018-10-04 2020-04-09 ニプロ株式会社 骨再生材料
CN114732958A (zh) * 2022-05-09 2022-07-12 洛阳理工学院 一种仿生胶原矿化骨粉及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035128A1 (fr) * 2001-10-25 2003-05-01 Japan Science And Technology Agency Substance biologique composite
WO2006046414A1 (ja) * 2004-10-28 2006-05-04 National Institute For Materials Science アパタイト/コラーゲン複合体繊維を含む多孔体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326350A (en) * 1992-05-11 1994-07-05 Li Shu Tung Soft tissue closure systems
US5776193A (en) 1995-10-16 1998-07-07 Orquest, Inc. Bone grafting matrix
US20100254900A1 (en) * 2002-03-18 2010-10-07 Campbell Phil G Biocompatible polymers and Methods of use
EP1566186B1 (en) * 2002-11-06 2008-01-09 National Institute for Materials Science Apatite/collagen crosslinked porous material containing self-organized apatite/collagen composite and process for producing the same
US7723395B2 (en) * 2004-04-29 2010-05-25 Kensey Nash Corporation Compressed porous materials suitable for implant
US8133500B2 (en) * 2003-12-04 2012-03-13 Kensey Nash Bvf Technology, Llc Compressed high density fibrous polymers suitable for implant
JP4643166B2 (ja) * 2004-03-30 2011-03-02 独立行政法人物質・材料研究機構 アパタイト/コラーゲン複合体繊維を含む多孔体の平均気孔径制御方法
JP2009132601A (ja) 2007-11-01 2009-06-18 Hoya Corp アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
JP5945380B2 (ja) 2008-12-09 2016-07-05 Hoya株式会社 吸収置換型人工骨及びその製造方法
FR2940620B1 (fr) 2008-12-26 2012-03-30 Hoya Corp Os artificiel pouvant etre resorbe et remplace par un os autogene, et procede pour sa production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035128A1 (fr) * 2001-10-25 2003-05-01 Japan Science And Technology Agency Substance biologique composite
WO2006046414A1 (ja) * 2004-10-28 2006-05-04 National Institute For Materials Science アパタイト/コラーゲン複合体繊維を含む多孔体の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAKOS, D. ET AL.: "Hydroxyapatite-collagen- hyaluronic acid composite", BIOMATERIALS, vol. 20, no. 2, 1999, pages 191 - 5 *
KIKUCHI, M. ET AL.: "Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites", BIOMATERIALS, vol. 25, 2004, pages 63 - 69 *
YOSHIHIRO TAKENAKA ET AL.: "Apatite-Collagen Fukugotai no Kotsu Kesson Shufukuzai to shite no Oyo", THE JAPANESE SOCIETY OF CONSERVATIVE DENTISTRY GAKUJUTSU TAIKAI PROGRAM OYOBI KOEN SHOROKUSHU, vol. 127, 2007, pages 113 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018671A2 (en) 2010-08-05 2012-02-09 Collagen Matrix, Inc. Self-expandable biopolymer-mineral composite
EP2600912A2 (en) * 2010-08-05 2013-06-12 Collagen Matrix, Inc. Self-expandable biopolymer-mineral composite
EP2600912A4 (en) * 2010-08-05 2015-01-14 Collagen Matrix Inc SELF-EXTENDING BIOPOLYMER MINERAL COMPOUND
JP2014521415A (ja) * 2011-07-28 2014-08-28 シャンシャン ワン 複合コラーゲンスポンジ及びその製造方法
US9439999B2 (en) 2011-07-28 2016-09-13 Harbin Peiqilong Biopharmaceutical Co., Ltd Composite collagen sponge and preparation method thereof

Also Published As

Publication number Publication date
JP5458237B2 (ja) 2014-04-02
US8900640B2 (en) 2014-12-02
JPWO2009122902A1 (ja) 2011-07-28
US20110014266A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP4680771B2 (ja) リン酸カルシウム含有複合多孔体及びその製造方法
JP4699759B2 (ja) 自己組織化したアパタイト/コラーゲン複合体を含むアパタイト/コラーゲン架橋多孔体及びその製造方法
JP4873555B2 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体の製造方法
JP5458237B2 (ja) アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法
WO2009136553A1 (ja) アパタイト/コラーゲン複合体で被覆してなる人工骨、及びその製造方法
JP5945380B2 (ja) 吸収置換型人工骨及びその製造方法
JP5898399B2 (ja) 吸収置換型人工骨及びその製造方法
JP5008135B2 (ja) アパタイト/コラーゲン複合体からなる多孔体及びその製造方法
JP2009132601A (ja) アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
JP4643166B2 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体の平均気孔径制御方法
JP2009261726A (ja) 粉末状のアパタイト/コラーゲン複合体、形状賦形型の人工骨ペースト、及びそれらの製造方法
JP4934773B2 (ja) アパタイト/コラーゲン複合体からなる多孔体及びその製造方法
CA1333050C (en) Biologic absorbable implant material for filling and closing soft-tissue cavities and method of its preparation
JP4968639B2 (ja) リン酸カルシウム及びアパタイト/コラーゲン複合物からなる複合体
JP4925315B2 (ja) リン酸カルシウム含有複合多孔体及びその製造方法
JP5236894B2 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
JP2007098117A (ja) 一方向性多孔質複合体の製造方法および一方向性多孔質複合体
JP2005213449A (ja) ゼラチンスポンジ
JP2021031352A (ja) 多孔体の製造方法、及び多孔体
KR20050023298A (ko) 케라틴 유래의 정형외과 재료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12935074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726798

Country of ref document: EP

Kind code of ref document: A1