WO2009122865A1 - 鋳片連続鋳造用の連続打撃装置 - Google Patents

鋳片連続鋳造用の連続打撃装置 Download PDF

Info

Publication number
WO2009122865A1
WO2009122865A1 PCT/JP2009/054485 JP2009054485W WO2009122865A1 WO 2009122865 A1 WO2009122865 A1 WO 2009122865A1 JP 2009054485 W JP2009054485 W JP 2009054485W WO 2009122865 A1 WO2009122865 A1 WO 2009122865A1
Authority
WO
WIPO (PCT)
Prior art keywords
striking
slab
cam
continuous
compression spring
Prior art date
Application number
PCT/JP2009/054485
Other languages
English (en)
French (fr)
Inventor
泰 百々
賢一 井出
敏彦 村上
義起 伊藤
Original Assignee
株式会社Ihi
Ihiメタルテック株式会社
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, Ihiメタルテック株式会社, 住友金属工業株式会社 filed Critical 株式会社Ihi
Priority to CN2009801120205A priority Critical patent/CN101983113B/zh
Priority to PL09729055T priority patent/PL2258499T3/pl
Priority to KR1020107019229A priority patent/KR101242730B1/ko
Priority to ES09729055.5T priority patent/ES2687109T3/es
Priority to EP09729055.5A priority patent/EP2258499B1/en
Publication of WO2009122865A1 publication Critical patent/WO2009122865A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Definitions

  • the present invention relates to a continuous striking device for continuous casting of a slab that imparts striking vibration from the short side surface of the slab to improve center segregation and the like.
  • central segregation is an internal defect in which solute components (hereinafter, also referred to as segregation components) such as C, S, P, and Mn that are easily segregated appear in the final solidified portion of the slab, and V segregation is These segregation components are internal defects that are concentrated in a V shape near the final solidified portion of the slab.
  • the generation mechanism of segregation in a slab is considered as follows. That is, as the solidification progresses, segregation components are concentrated between the columnar crystal trees that are solidified structures.
  • the molten steel enriched in the segregation component flows out between the columns of columnar crystals due to shrinkage of the slab during solidification or blistering of the slab called bulging.
  • the concentrated molten steel that has flowed out flows toward the solidification completion point of the final solidified portion, and solidifies as it is to form a concentrated band of segregation components.
  • the concentration band of the segregation component thus formed is segregation.
  • Patent Documents 1 and 2 have already been proposed by the applicant of the present invention.
  • the “continuous casting method” of Patent Document 1 aims to obtain a cast slab having good internal quality by preventing the occurrence of segregation such as center segregation and V segregation by giving impact to the slab. Therefore, in this method, when casting a slab having a rectangular cross-sectional shape, vibration is applied to the slab by continuously hitting at least one short side surface of the slab including the unsolidified portion.
  • E represents the impact energy (J) per impact given to the slab
  • W represents the long side width (mm) of the slab.
  • the “continuous casting method and striking vibration device” of Patent Document 2 provides segregation of a slab by effectively giving impact from the slab surface to a slab including an unsolidified portion even with a slab having a large slab width.
  • the purpose is to effectively prevent the occurrence. Therefore, in this method, when casting the slab 1 having a rectangular cross section, the central solid phase ratio fs at the center of the slab thickness is at least 0.1 to 0.9.
  • the steel sheet is continuously lightly reduced so that the reduction ratio per 1 m is within 1%, and at least one location where the central solid phase ratio fs is in the range of 0.1 to 0.9 1 is a continuous casting method in which the short side surfaces on both opposite sides of 1 are continuously hit in the slab width direction. Also, this method strikes with a striking vibration frequency of 4 to 12 Hz and a vibration energy of 30 to 150 J.
  • the slab 51 solidified and cast in the mold is pulled out downstream in the casting direction while being guided by the plurality of guide rolls 52a of the segment 52.
  • This can be implemented by using a striking vibration device in which a mold 53 or the like is disposed in the segment 52.
  • 53 is a metal mold
  • the segment 52 is generally divided into upper and lower parts so that the rolling gradient of the upper segment 52b can be adjusted and light rolling can be avoided.
  • the segment 52 shown in FIG. 1 is a pair of normal guide rolls in which the upper segment 52b is parallel to the lower segment 52c, no rolling gradient is provided, and the slab 51 is not rolled.
  • the striking device 54 is a striking device having a die 53 attached to its tip, which generates a periodic vibration and transmits this vibration to the die 53.
  • a periodic vibration For example, an air cylinder is employed.
  • the striking device 54 is disposed, for example, at two locations on the short side surface side on both sides of the slab 51 including the unsolidified portion.
  • Reference numeral 55 denotes an impact positioning device which presses the mold 53 against the short side surface of the slab 51 from the standby position shown in FIG. 2A (see FIG. 2B), and after detecting the pressed position, the pull-back position of the mold 53 (see FIG. 2C), the distance L between the front end surface of the mold 53 and the short side surface of the slab 1 (striking amplitude: about 8 mm) is set.
  • the distance L between the mold 53 and the short side surface of the slab 51 varies depending on the width of the cast piece 51 to be cast, it is necessary to set the distance L with respect to the short side surface of the cast piece 51 being cast. . That is, the interval L affects the stroke of the striking device 54. If the stroke is insufficient, the speed at the time of striking cannot be ensured, and sufficient vibration energy for striking cannot be obtained. Therefore, at the start of striking, the relative position adjustment of the short side surfaces of the mold 53 and the slab 51 is performed as positioning.
  • the center solid phase ratio fs at the center of the slab thickness is at least 0.1 to 0.9.
  • the slab 51 is continuously lightly reduced so that the reduction ratio per meter is within 1% in the thickness direction of the slab 51, and the central solid fraction fs is at least 1 within the range of 0.1 to 0.9.
  • the short side surfaces of the opposite sides of the slab 51 are struck continuously in the slab width direction at a vibration frequency of 4 to 12 Hz and vibration energy of 30 to 150 J using the above-described hammering vibration device. It is.
  • the hit vibration device described above has the following problems.
  • the hitting vibration device described above is durable because it receives a large impact (30 to 150 J) at a high frequency (4 to 12 Hz) while being exposed to radiant heat, scale, water, etc. from the slab 51 at a high temperature (for example, about 1200 ° C.).
  • a high temperature for example, about 1200 ° C.
  • the distance L is set as the impact positioning device 55 as shown in FIG. 1, the mold 53 is dragged to the slab 51 during continuous casting and receives a large force in the lateral direction (movement direction of the slab 51).
  • the hitting device 54 and the hitting positioning device 55 are easily damaged.
  • the first object of the present invention is to provide a short striking vibration frequency (for example, 4 to 12 Hz) and a predetermined striking energy (for example, 30 to 150 J) on opposite short sides of a slab formed by continuous casting of steel. Can be struck continuously in the width direction of the slab and exposed to radiant heat, scale, water, etc. from a slab of high temperature (for example, about 1200 ° C.), and a large impact (4-12 Hz) with a large impact ( It is to provide a continuous striking device for continuous casting of a slab having high durability that can be used continuously for a long period of time even when receiving 30 to 150 J).
  • a short striking vibration frequency for example, 4 to 12 Hz
  • a predetermined striking energy for example, 30 to 150 J
  • the second object of the present invention is to provide a continuous striking device for continuous casting of a slab that can be hit with a constant striking energy even if the striking vibration frequency is changed.
  • the third object of the present invention is to provide a continuous striking device for continuous casting of a slab having no durability and capable of continuous use for a long period of time even if there is no slab and repeated blows of a swing are repeated. It is in.
  • the fourth object of the present invention is for continuous casting of a slab that can be accurately positioned without receiving a large force in the lateral direction with respect to the slab during continuous casting and can be struck with a predetermined striking energy. It is to provide a continuous striking device.
  • a striking member for striking a slab A compression spring that biases the striking member toward the slab; A cam mechanism that moves the striking member in a direction away from the slab to compress the compression spring, and then freely moves the striking member; A main body that supports the striking member, a compression spring, and a cam mechanism; The cam mechanism moves away from the striking member at the time of striking and freely accelerates the striking member, thereby converting the compression energy of the compression spring into the kinetic energy of the striking member, and the striking member collides with the slab so that the predetermined striking energy
  • a continuous striking device for continuous casting of a slab is provided.
  • the striking member is a mold for striking a striking surface of a slab
  • One end is fixed to the mold, and comprises a reciprocating member capable of reciprocating between a striking position in contact with the striking surface and a storage position separated from the striking surface by a predetermined distance
  • the compression spring is sandwiched between the reciprocating member and the main body, holds a predetermined compression energy at the accumulation position, and releases the kinetic energy at the striking position
  • the cam mechanism is rotatably supported by the main body, moves the reciprocating member to the accumulation position at a predetermined cycle, and then freely moves the reciprocating member to the striking position, and rotates the rotating cam. It consists of a rotational drive device to drive.
  • cam curve of the rotating cam is preferably an Archimedes curve in which the rotation angle and the displacement are proportional.
  • the reciprocating member has a cam follower that freely rotates while being in contact with the rotating cam.
  • the natural period of the compression spring is set so that the rotating cam and the cam follower come into contact again at the compression position of the compression spring.
  • a damper device is provided for attenuating the moving speed when the reciprocating member passes through the striking position and moves to the slab side.
  • a moving device for moving the main body forward and backward relative to the slab
  • a positioning mechanism for positioning the main body at a predetermined position with respect to the slab.
  • the positioning mechanism includes a plurality of guide rollers which are rotatably attached to the main body and freely rotate while being in contact with a striking surface of the slab at a predetermined position.
  • the continuous striking device includes a striking member, a compression spring, a cam mechanism, and a main body, and the striking member is moved away from the slab by the cam mechanism to compress the compression spring, and then the striking Sometimes the cam mechanism moves away from the striking member to freely accelerate the striking member, thereby converting the compression energy of the compression spring into the kinetic energy of the striking member, and the striking member collides with the slab, thereby obtaining a predetermined striking energy. Since it is applied to the slab, a durable device that does not rely on electrical control can be provided.
  • the continuous striking device of the present invention is capable of striking continuously the short side surfaces on both sides of the slab by continuous casting of steel in the slab width direction and having a high temperature (for example, about 1200 ° C.). Even when exposed to radiant heat from the slab, scale, water, etc., it has high durability that can be used continuously for a long period of time even when subjected to a large impact (30 to 150 J) at a high frequency (4 to 12 Hz).
  • a compression spring is sandwiched between the reciprocating member and the main body, holds a predetermined compression energy at the accumulation position, and releases kinetic energy at the striking position, and the cam mechanism is a reciprocating member.
  • the rotary cam is rotated by the rotary drive device by the structure comprising the rotary cam that moves the reciprocating member to the striking position and then the rotary drive device that rotationally drives the rotary cam.
  • a predetermined striking vibration frequency (for example, 4 to 12 Hz) can be set according to the speed, and a predetermined compression energy of the compression spring can be set to a predetermined striking energy (for example, 30 to 150 J).
  • the cam curve of the rotating cam is an Archimedes curve in which the rotation angle and the displacement are proportional, the cam mechanism can be easily separated from the striking member at the time of striking and the striking member can be freely accelerated.
  • the displacement (deflection amount) of the compression spring by the rotating cam at the accumulation position and the striking position is constant, even if the striking vibration frequency is changed by the rotation speed of the rotating cam, the striking can be performed with constant striking energy.
  • the natural period of the compression spring is set so that the rotating cam and the cam follower recontact at the compression position of the compression spring, the collision speed when the rotating cam recontacts the cam follower can be reduced, and the rotating cam And the durability of the cam follower can be increased.
  • a slab during continuous casting is provided by including a moving device for moving the main body back and forth with respect to the slab and a positioning mechanism (for example, a plurality of guide rollers) for positioning the main body at a predetermined position with respect to the slab.
  • a positioning mechanism for example, a plurality of guide rollers
  • FIG. 1 is an overall perspective view of a continuous striking device for continuous casting of a slab according to the present invention. 1 is an overall plan view showing a relationship between a slab 1 and two continuous impacting devices 10. It is a block diagram of the principal part of the continuous striking device 10, and shows an accumulation position.
  • FIG. 4 is another configuration diagram of the main part of the continuous striking device 10.
  • FIG. The positional relationship between the rotary cam 33 and the cam follower 26 is shown, and the case where the mold 12 does not collide with the slab 1 is shown.
  • the positional relationship between the rotary cam 33 and the cam follower 26 is shown, and the case where the mold 12 collides with the slab 1 is shown.
  • FIG. 3 is an overall perspective view of a continuous striking device for continuous casting of a slab according to the present invention.
  • a total of two continuous hitting devices 10 of the present invention are installed on both sides so as to hit the short side surfaces 1a on opposite sides of the slab 1 simultaneously or alternately.
  • 12 is a mold
  • 14 is a main body
  • 16 is a moving device.
  • the slab 1 is solidified and cast in a mold by continuous casting of steel, has a substantially rectangular cross section, and moves continuously in one direction.
  • the slab 1 extends in an arc shape, and the moving direction is preferably 45 to 54 degrees from vertical to diagonally downward.
  • the piece 1 may be moved horizontally or vertically.
  • the slab 1 at the position where the continuous striking device 10 is installed is a slab including an unsolidified portion, the surface is solidified and the scale is attached, but the surface temperature is high (for example, about 1200 ° C.). And the interior is still solidified or semi-molten.
  • this invention is not limited to the slab 1 of this state, Other states may be sufficient.
  • the mold 12 strikes short side surfaces 1 a (hereinafter referred to as “striking surfaces”) on both sides of the slab 1 which face each other.
  • the mold 12 extends in the moving direction of the slab along the slab 1 and strikes the entire height (thickness in the height direction) of the striking surface 1a so as to strike the central portion of the short side surface 1a (striking surface).
  • the main body 14 is placed on the support base 15 and guided by a linear guide (not shown) so as to be linearly movable in a direction perpendicular to the striking surface 1a (for example, the horizontal direction).
  • the moving device 16 includes an air pressure or hydraulic pressure direct acting cylinder 17, a swing shaft 18, and links 19 a, 19 b, and 19 c. To move forward and backward. Note that the configuration of the moving device 16 is not limited to this example.
  • FIG. 4 is an overall plan view showing the relationship between the slab 1 and the two continuous impacting devices 10.
  • reference numeral 20 denotes a positioning mechanism.
  • a plurality of (three in the figure) are rotatably attached to the main body 14 and freely rotate while contacting the striking surface 1a of the slab 1 at a predetermined position. It consists of a guide roller 20a.
  • the main body 14 is advanced with respect to the slab 1 by the moving device 16 and the plurality of guide rollers 20a are brought into contact with the striking surface 1a of the slab 1, thereby making the slab 1 during continuous casting, Since the guide roller 20a rotates freely while contacting, the main body 14 can be positioned at a predetermined position with respect to the slab 1 without receiving a large force in the lateral direction.
  • FIG. 5A and 5B are configuration diagrams of the main part of the continuous striking device 10, FIG. 5A shows an accumulation position, and FIG. 5B shows a striking position.
  • the continuous striking device 10 of the present invention includes a striking member 22, a compression spring 30, and a cam mechanism 32. These striking members, compression springs, and cam mechanisms are supported by the main body 14.
  • the striking member 22 includes a mold 12 that strikes the striking surface 1 a of the slab 1 and a reciprocating member 23.
  • the reciprocating member 23 includes two sliding portions 24, a cam follower base 25, a cam follower 26, and two connecting portions 27.
  • the striking member 22 is composed of a mold 12 and a reciprocating member 23, and the reciprocating member 23 is composed of one sliding portion 24, a cam follower base 25, a cam follower 26, and one connecting portion 27. In this case, the same effect is obtained.
  • the case where it is constituted by two sliding portions and two connecting portions will be described.
  • the two connecting portions 27 have one end (upper end in the figure) fixed to the mold 12, extending in parallel to the direction orthogonal to the striking surface 1 a, and a striking surface by a bearing 21 a fixed to the support plate 14 a of the main body 14. It is supported so as to be able to reciprocate in a direction orthogonal to 1a.
  • the two sliding portions 24 extend parallel to the direction orthogonal to the striking surface 1a, and are supported by a bearing 21b fixed to the support plate 14b of the main body 14 so as to reciprocate in the direction orthogonal to the striking surface 1a. Has been.
  • cam follower base 25 Both ends of the cam follower base 25 are fixed to the two sliding portions 24 and the two connecting portions 27, and the cam follower base 25 is configured to be able to reciprocate integrally with the two sliding portions 24 and the two connecting portions 27. Yes.
  • the cam follower base 25 is recessed in the direction in which the central portion is separated from the striking surface 1a, but the present invention is not limited to this, and may be linear, for example.
  • the cam follower 26 is attached to an intermediate portion of the cam follower base 25 so as to be freely rotatable, and freely rotates while being in contact with a rotating cam 33 described later.
  • the cam follower 26 is not always in contact with the rotating cam 33 but contacts while the compression spring 30 is compressed by the rotating cam 33, and the rotating cam 33 moves away from the cam follower 26 and reciprocates together with the cam follower 26 at the time of impact.
  • the member 23 is allowed to freely accelerate.
  • one end (upper end in the figure) of the reciprocating member 23 is fixed to the mold 12, the striking position (F) where the mold 12 contacts the striking surface 1a, and the mold 12 is a predetermined distance from the striking surface 1a. It is configured to be able to reciprocate between the distant accumulation positions (B). This “predetermined distance” corresponds to the compression distance of the compression spring 30 by the rotating cam 33.
  • the compression spring 30 is a coil spring in this example, and is sandwiched in a compressed state between the reciprocating member 23 (in this example, the cam follower base 25) and the main body 14 (in this example, the support plate 14b).
  • the predetermined compression energy E1 is held at the position (5A), and the kinetic energy E2 is released at the striking position (position in FIG. 5B).
  • the kinetic energy E2 is a difference in compression energy of the compression spring 30 at the accumulation position (position in FIG. 5A) and the striking position (position in FIG. 5B).
  • There is a relationship of kinetic energy E2 ⁇ compression energy E1 and the kinetic energy E2 can be increased by increasing the amount of compression at the striking position (position of FIG. 5B) of the compression spring 30 with a shim or the like.
  • the cam mechanism 32 includes a rotating cam 33 that is rotatably supported by the main body 14 and a rotation driving device that rotationally drives the rotating cam 33.
  • the rotating cam 33 rotates while being in contact with the cam follower 26 of the reciprocating member 23, moves the reciprocating member 23 (in this example, the cam follower base 25) to the accumulation position (position in FIG. 5A) at a predetermined cycle, and then the cam follower. Apart from 26, the reciprocating member 23 is freely moved to the striking position (position in FIG. 5B).
  • the cam curve of the rotating cam 33 is an Archimedes curve in which the rotation angle and the displacement are proportional.
  • the present invention is not limited to the Archimedean curve, and the reciprocating member 23 is moved to the accumulation position (position in FIG. 5A) at a predetermined cycle to compress the compression spring 30 and then away from the cam follower 26 to reciprocating member. As long as 23 can be freely moved to the striking position (position in FIG. 5B), other curves may be used.
  • any rotation drive device for example, an electric motor + reduction gear
  • this rotary drive device has a well-known universal joint (for example, in the middle) so that rotational power can be transmitted to the rotary cam 33 even when the main body 14 is moved forward and backward by the moving device 16.
  • a Schmidt coupling, a universal coupling, etc. A Schmidt coupling, a universal coupling, etc.
  • the continuous impact device 10 of the present invention is a durable device that does not rely on electrical control. That is, the continuous striking device 10 of the present invention can continuously strike the short side surfaces 1a on both sides of the slab 1 by continuous casting of steel in the width direction of the slab and is high temperature (for example, about 1200). High durability that can be used continuously for a long period of time even when subjected to a large impact (30 to 150 J) at high frequency (4 to 12 Hz) while being exposed to radiant heat, scale, water, etc. Have
  • the compression spring 30 is sandwiched between the reciprocating member 23 (cam follower base 25) and the main body 14 (support plate 14b), holds a predetermined compression energy E1 at the accumulation position (position in FIG. 5A), and strikes.
  • the kinetic energy E2 is released at the position (position of FIG. 5B), and the cam mechanism 32 moves the reciprocating member 23 at a predetermined cycle to the accumulation position (position of FIG. 5A), and then the reciprocating member.
  • the rotary cam 33 that freely moves the rotary cam 23 to the hitting position (position of FIG. 5B) and the rotary drive device that rotationally drives the rotary cam 33, the predetermined hammering vibration is determined by the rotational speed of the rotary cam 33 by the rotary drive device.
  • the frequency (for example, 4 to 12 Hz) can be freely set, and the predetermined compression energy E1 of the compression spring 30 can be converted into the predetermined impact energy E2 (for example, 30 to 150 J). Kill.
  • the cam curve of the rotating cam 33 is an Archimedes curve in which the rotation angle and the displacement are proportional, the cam mechanism 32 can be easily separated from the striking member 22 and freely accelerating the striking member 22 at the time of striking.
  • the striking vibration frequency depends on the rotational speed of the rotating cam 33. Even if you change, you can hit with a certain hit energy.
  • FIG. 7A and 7B are views showing the positional relationship between the rotary cam 33 and the cam follower 26.
  • FIG. 7A shows a case where the mold 12 does not collide with the slab 1
  • FIG. 7B shows a case where the mold 12 collides with the slab 1.
  • the vertical axis y is the displacement of the cam follower 26.
  • a cam curve 33a of the rotary cam 33 is an Archimedes curve in which the rotation angle ⁇ and the displacement y are proportional, and the ABC line in the figure is repeated for each rotation of the rotary cam 33.
  • the cam follower 26 rotates when the rotation angle ⁇ of the rotating cam 33 is between an intermediate angle ⁇ between 2 ⁇ and 2 ⁇ .
  • the cam 33 comes into contact with the cam curve 33a and is displaced so as to move freely from the angle 0 to the angle ⁇ by the spring force without contacting the rotating cam 33.
  • the locus 26a of the cam follower 26 becomes a curve of abcdcdf. That is, the accumulation position (the position in FIG. 5A) corresponds to the point B, and the compression spring 30 is compressed by a distance y1 from the initial position and has a predetermined compression energy E1.
  • the cam follower 26 is accelerated by the spring force to draw a locus of a curve abc.
  • the curve ab is the acceleration period in which the spring extends from the compressed state to the deflection 0 (natural length state)
  • the curve bc is the deceleration period in which the spring extends beyond the initial position.
  • the damper apparatus 35 which attenuates the moving speed is provided.
  • the damper device 35 is, for example, a hydraulic damper or a damper rubber. 5A and 5B, the damper device 35 is provided between the reciprocating member 23 and the main body 14 (support plate 14a). The damper device 35 operates only on the curve bc, and sets the damping force so that the curve bcd does not collide with the cam curve 33a.
  • the damper device 35 attenuates the moving speed of the reciprocating member 23 to thereby reduce the cam follower 26 and the rotating cam 33. Can be prevented, and there is no slab 1, and even when repeated blows are repeated, high durability that enables continuous use for a long period of time can be provided.
  • a curve cdef is the free vibration of the spring and is determined by the natural period of the compression spring 30. This natural period is set so that the rotating cam 33 and the cam follower 26 come into contact again at the compression position of the compression spring 30 (point f in the figure). With this configuration, the collision speed when the rotating cam 33 re-contacts the cam follower 26 (point f in the figure) can be reduced, and the durability of the rotating cam 33 and the cam follower 26 can be improved.
  • the locus 26a of the cam follower 26 is between the abg curve and the abhijjk curve. That is, the accumulation position (the position in FIG. 5A) corresponds to the point B, and the compression spring 30 is compressed by a distance y1 from the initial position and has a predetermined compression energy E1.
  • the cam follower 26 is accelerated by the spring force to draw a locus along a curve ab.
  • a curve ab is an acceleration period in which the spring extends from the compressed state to the deflection 0 (natural length state).
  • the cam follower 26 collides with the slab 1 and stops at that position.
  • the straight line g is maintained, and the cam curve 33a is contacted at an angle ⁇ , and thereafter, compression is performed to the point B along the cam curve 33a.
  • the cam follower 26 collides with the slab 1 and is repelled at the same speed. Following the curve, it collides with the rotating cam 33 at the point k, and thereafter it is compressed along the cam curve 33a.
  • the locus 26a of the cam follower 26 has an abg curve and an abh-i Between jk curves.
  • the natural period of the compression spring is set so that the rotating cam 33 and the cam follower 26 come into contact with each other again at the compression position (point k in the figure) of the compression spring.
  • the continuous striking device 10 of the present invention has short sides on opposite sides of the slab 1 by continuous casting of steel.
  • the surface can be struck continuously in the width direction of the slab and is exposed to radiant heat, scale, water, etc. from the slab 1 at a high temperature (for example, about 1200 ° C.) at a high frequency (4 to 12 Hz). It was confirmed that long-term continuous use was possible even under a large impact (30 to 150 J). That is, FIG.
  • FIG. 8 shows the result of comparing the durability of the present invention based on the durability of the equipment (maintenance due to a serious failure) in the conventional method in which an air cylinder is used as the striking device and the electronic valve is struck by electric control. Show.
  • the continuous casting segment is generally used online for about six months to one year if there is no roll wear and failure (bearing damage, water leakage, etc.).
  • the equipment durability evaluation means that the continuous hitting device has undergone equipment outage / offline maintenance for maintenance, in addition to the segment life due to a serious failure trouble. Compared to the conventional method, continuous hitting is possible about 12 times longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Electrostatic Separation (AREA)

Abstract

 鋳片1を打撃するための打撃部材22と、打撃部材を鋳片に向けて付勢する圧縮バネ30と、打撃部材を鋳片から離れる方向に移動させて圧縮バネを圧縮し、次いで、打撃部材を自由に運動させるカム機構32と、打撃部材、圧縮バネ、及びカム機構を支持する本体14とを備える。打撃時にカム機構32が打撃部材22から離れて打撃部材を自由加速させ、これにより圧縮バネ30の圧縮エネルギーを打撃部材22の運動エネルギーに変換して、その打撃部材22が鋳片1に衝突することで所定の打撃エネルギーを鋳片に与える。

Description

鋳片連続鋳造用の連続打撃装置 発明の背景
発明の技術分野
 本発明は、鋳片の短辺面より打撃振動を付与して中心偏析等を改善する鋳片連続鋳造用の連続打撃装置に関する。
 関連技術の説明
 連続鋳造された鋳片の厚さ中心部とその近傍には、中心偏析やV偏析とよばれるマクロ偏析である内部欠陥が発生しやすい。
 このうち、中心偏析は、鋳片の最終凝固部にC、S、P、Mnなどの偏析しやすい溶質成分(以下、偏析成分ともいう。)が濃化して現れる内部欠陥で、V偏析は、鋳片の最終凝固部の近傍に、これらの偏析成分がV字状に濃化して現れる内部欠陥である。
 そして、これらのマクロ偏析が発生した鋳片を熱間加工した製品では、靱性の低下や水素誘起割れなどが発生しやすくなる。また、これらの製品を冷間で最終製品に加工する際に、割れが発生しやすくなる。
 ところで、鋳片における偏析の生成機構は、以下のように考えられている。
 すなわち、凝固の進行につれて、凝固組織である柱状晶の樹間に偏析成分が濃化する。この偏析成分が濃化した溶鋼が、凝固時の鋳片の収縮、またはバルジングと呼ばれる鋳片のふくれなどにより、柱状晶の樹間から流出する。流出した濃化溶鋼は、最終凝固部の凝固完了点に向かって流動し、そのまま凝固して偏析成分の濃化帯が形成される。このようにして形成した偏析成分の濃化帯が偏析である。
 このような鋳片の偏析を防止するには、柱状晶の樹間に残った偏析成分の濃化した溶鋼の移動を防止すること、およびこれらの濃化溶鋼が局所的に集積することを防止することなどが効果的であり、既に本発明の出願人から特許文献1,2が提案されている。
 特許文献1の「連続鋳造方法」は、鋳片に打撃を付与することにより、中心偏析やV偏析などの偏析の発生を防止し、内部品質の良好な鋳片を得ることを目的とする。
 そのため、この方法は、横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の短辺面の少なくとも1ヶ所を、連続して打撃することにより鋳片に振動を付与しつつ鋳造する方法であって、E≧0.0065×W により表される関係を満足する打撃エネルギーを鋳片に与えるものである。ここで、Eは鋳片に与える1回の打撃当たりの打撃エネルギー(J)を、Wは鋳片の長辺幅(mm)をそれぞれ表す。
 特許文献2の「鋼の連続鋳造方法及び打撃振動装置」は、鋳片幅が大きな鋳片でも、未凝固部を含む鋳片に鋳片表面から効果的に打撃を付与して鋳片の偏析発生を効果的に防止することを目的とする。
 そのため、この方法は、矩形状の横断面を有する鋳片1を鋳造する際に、鋳片厚み中心部の中心固相率fsが少なくとも0.1~0.9の範囲を、鋳片1の厚み方向に1m当たりの圧下率が1%以内となるようにして連続して軽圧下するとともに、該中心固相率fsが0.1~0.9の範囲内の少なくとも1箇所において、鋳片1の相対する両側の短辺面を、鋳片幅方向に連続して打撃する連続鋳造方法である。また、この方法は、打撃振動周波数が4~12Hz、振動エネルギーが30~150Jで打撃するものである。
特開2006-110620号公報、「連続鋳造方法」 特開2007-229748号公報、「鋼の連続鋳造方法及び打撃振動装置」
 特許文献2の鋼の連続鋳造方法は、図1に示すように、鋳型内で凝固鋳造された鋳片51を、セグメント52の複数のガイドロール52aで案内しながら鋳造方向の下流側に引き抜く途中の、セグメント52内に、金型53等を配置した打撃振動装置を使用することによって実施できる。
 図1において、53は鋳片51の短辺面を打撃する金型であり、複数のガイドロール52aで構成されるセグメント52の、少なくとも1つのセグメント52における鋳片51の短辺面全体を一体として一括打撃できるように、1つのセグメント内で連続して打撃が可能な打撃板53aを有した構造となっている。
 セグメント52は、一般的に上下に分割されて上部セグメント52bの圧下勾配を調節でき、軽圧下をしないようにすることもできる構造となっている。なお、図1に示したセグメント52は、上部セグメント52bを下部セグメント52cと平行となして圧下勾配を設けず、鋳片51を圧下しない通常のガイドロール対としたものである。
 54はその先端部に金型53を取り付けた打撃装置で、周期的な振動を発生させてこの振動を金型53に伝達するもので、例えばエアーシリンダが採用される。この打撃装置54は、未凝固部を含む鋳片51の両側の短辺面側の例えば2カ所に配置される。
 55は打撃位置決め装置であり、図2Aに示す待機位置から金型53を鋳片51の短辺面に押し付け(図2B参照)、この押し付け位置を検出した後、金型53の引き戻し位置(図2C参照)における金型53の先端面と鋳片1の短辺面との間隔L(打撃振幅:約8mm)を設定するものである。
 この金型53と鋳片51の短辺面との間隔Lは、鋳造する鋳片51の幅によっても異なるため、鋳造中の鋳片51の短辺面を基準として設定することが必要である。つまり、間隔Lは、打撃装置54のストロークに影響し、ストローク不足の場合は、打撃時の速度が確保できず、打撃振動エネルギーを十分得られないことになる。したがって、打撃開始時は、位置決めと称して金型53と鋳片51の短辺面の相対位置調整を実施する。
 特許文献2の鋼の連続鋳造方法は、矩形状の横断面を有する鋳片51を鋳造する際に、鋳片厚み中心部の中心固相率fsが少なくとも0.1~0.9の範囲を、鋳片51の厚み方向に1m当たりの圧下率が1%以内となるようにして連続して軽圧下するとともに、該中心固相率fsが0.1~0.9の範囲内の少なくとも1箇所において、鋳片51の相対する両側の短辺面を、前記打撃振動装置を用いて、打撃振動周波数が4~12Hz、振動エネルギーが30~150Jで鋳片幅方向に連続して打撃するものである。
 しかし、上述した打撃振動装置には、以下の問題点があった。
 上述した打撃振動装置は、高温(例えば約1200℃)の鋳片51からの輻射熱、スケール、水等に曝されながら、高頻度(4~12Hz)で大きな衝撃(30~150J)を受けるため耐久性が低い問題点があった。
 すなわち、打撃装置54としてエアーシリンダを用い、電磁弁の電気制御により打撃を行った場合、上述した苛酷な環境下では、電磁弁、エアーシリンダ、ケーブル等の破損が頻発し、数日以上の連続使用は到底できなかった。
 また、打撃位置決め装置55として図1のように間隔Lを設定する場合、連続鋳造中の鋳片51に金型53が引きずられ、横方向(鋳片51の移動方向)に大きな力を受けるため、打撃装置54及び打撃位置決め装置55が損傷を受けやすい問題点があった。
 
発明の要約
 本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の第1の目的は、鋼の連続鋳造による鋳片の相対する両側の短辺面を、所定の打撃振動周波数(例えば4~12Hz)、所定の打撃エネルギー(例えば30~150J)で鋳片幅方向に連続して打撃することができ、かつ高温(例えば約1200℃)の鋳片からの輻射熱、スケール、水等に曝されながら、高頻度(4~12Hz)で大きな衝撃(30~150J)を受けても、長期間の連続使用が可能な高い耐久性を有する鋳片連続鋳造用の連続打撃装置を提供することにある。
 また、本発明の第2の目的は、打撃振動周波数を変化させても一定の打撃エネルギーで打撃できる鋳片連続鋳造用の連続打撃装置を提供することにある。
 さらに、本発明の第3の目的は、鋳片がなく、空振りの打撃を繰り返しても、長期間の連続使用が可能な高い耐久性を有する鋳片連続鋳造用の連続打撃装置を提供することにある。
 さらに、本発明の第4の目的は、連続鋳造中の鋳片に対して、横方向に大きな力を受けることなく正確に位置決めし、所定の打撃エネルギーで打撃することができる鋳片連続鋳造用の連続打撃装置を提供することにある。
 本発明によれば、鋳片を打撃するための打撃部材と、
 該打撃部材を鋳片に向けて付勢する圧縮バネと、
 打撃部材を鋳片から離れる方向に移動させて前記圧縮バネを圧縮し、次いで、打撃部材を自由に運動させるカム機構と、
 前記打撃部材、圧縮バネ、及びカム機構を支持する本体とを備え、
 打撃時にカム機構が打撃部材から離れて打撃部材を自由加速させ、これにより圧縮バネの圧縮エネルギーを打撃部材の運動エネルギーに変換して、その打撃部材が鋳片に衝突することで所定の打撃エネルギーを鋳片に与える、ことを特徴とする鋳片連続鋳造用の連続打撃装置が提供される。
 本発明の好ましい実施形態によれば、前記打撃部材は、鋳片の打撃面を打撃する金型と、
 該金型に一端が固定され、打撃面と接触する打撃位置と打撃面から所定距離離れた蓄積位置との間で往復動可能な往復動部材とからなり、
 前記圧縮バネは、前記往復動部材と本体との間に挟持され、前記蓄積位置で所定の圧縮エネルギーを保有し、前記打撃位置で前記運動エネルギーを放出するようになっており、
 前記カム機構は、前記本体に回転可能に支持され、前記往復動部材を前記蓄積位置まで所定の周期で移動し、次いで往復動部材を打撃位置まで自由運動させる回転カムと、該回転カムを回転駆動する回転駆動装置とからなる。
 また、前記回転カムのカム曲線は、回転角度と変位が比例するアルキメデス曲線である、ことが好ましい。
 また、前記往復動部材は、回転カムと接触しながら自由回転するカムフォロアを有する。
 さらに、圧縮バネの圧縮位置で、回転カムとカムフォロアが再接触するように、前記圧縮バネの固有周期が設定されている。
 また、前記往復動部材が打撃位置を通過して鋳片側に移動するとき、その移動速度を減衰させるダンパー装置を備える。
 さらに、前記本体を鋳片に対して前後進させる移動装置と、
 前記本体を鋳片に対して所定の位置に位置決めする位置決め機構とを備える。
 さらに、前記位置決め機構は、前記本体に回転可能に取付けられ、鋳片の打撃面と所定の位置で接触しながら自由回転する複数のガイドローラからなる。
 上記本発明の構成によれば、連続打撃装置が打撃部材、圧縮バネ、カム機構、及び本体を備え、カム機構により打撃部材を鋳片から離れる方向に移動させて圧縮バネを圧縮し、次いで打撃時にカム機構が打撃部材から離れて打撃部材を自由加速させ、これにより圧縮バネの圧縮エネルギーを打撃部材の運動エネルギーに変換して、その打撃部材が鋳片に衝突することで所定の打撃エネルギーを鋳片に与えるので、電気制御に頼らない耐久性のある装置が提供できる。
 すなわち、本発明の連続打撃装置は、鋼の連続鋳造による鋳片の相対する両側の短辺面を、鋳片幅方向に連続して打撃することができ、かつ高温(例えば約1200℃)の鋳片からの輻射熱、スケール、水等に曝されながら、高頻度(4~12Hz)で大きな衝撃(30~150J)を受けても、長期間の連続使用が可能な高い耐久性を有する。
 また、圧縮バネが、往復動部材と本体との間に挟持され、蓄積位置で所定の圧縮エネルギーを保有し、打撃位置で運動エネルギーを放出するようになっており、カム機構が、往復動部材を蓄積位置まで所定の周期で移動し、次いで往復動部材を打撃位置まで自由運動させる回転カムと、該回転カムを回転駆動する回転駆動装置とからなる構成により、回転駆動装置による回転カムの回転速度により所定の打撃振動周波数(例えば4~12Hz)を設定でき、圧縮バネの所定の圧縮エネルギーを所定の打撃エネルギー(例えば30~150J)に設定することができる。
 また、回転カムのカム曲線が、回転角度と変位が比例するアルキメデス曲線であることにより、打撃時にカム機構が打撃部材から離れて打撃部材を自由加速させることが容易にできる。
 また、蓄積位置と打撃位置における回転カムによる圧縮バネの変位(たわみ量)は、一定であるので、回転カムの回転速度により打撃振動周波数を変化させても一定の打撃エネルギーで打撃できる。
 また、圧縮バネの圧縮位置で、回転カムとカムフォロアが再接触するように、圧縮バネの固有周期が設定されているので、回転カムがカムフォロアに再接触する際の衝突速度を低減でき、回転カムとカムフォロアの耐久性を高めることができる。
 また、往復動部材が打撃位置を通過して鋳片側に移動するとき、ダンパー装置により往復動部材の移動速度を減衰させることにより、カムフォロアと回転カムとの衝突を防止することができ、鋳片がなく、空振りの打撃を繰り返しても、長期間の連続使用が可能な高い耐久性を備えることができる。
 さらに、本体を鋳片に対して前後進させる移動装置と、本体を鋳片に対して所定の位置に位置決めする位置決め機構(例えば複数のガイドローラ)とを備えことにより、連続鋳造中の鋳片に対して、横方向に大きな力を受けることなく正確に位置決めし、所定の打撃エネルギーで打撃することができる。
 
特許文献2の打撃振動装置を取付けた鋼の連続鋳造設備の構成図である。 特許文献2の打撃振動装置の作動説明図である。 図2Aに示す待機位置から金型53を鋳片51の短辺面に押し付けた状態を示す。 図2Bの状態から金型53の引き戻した状態を示す。 本発明による鋳片連続鋳造用の連続打撃装置の全体斜視図である。 鋳片1と2台の連続打撃装置10の関係を示す全体平面図である。 連続打撃装置10の主要部の構成図であり、蓄積位置を示す。 連続打撃装置10の主要部の構成図であり、打撃位置を示す。 連続打撃装置10の主要部の他構成図である。 回転カム33とカムフォロア26との位置関係を示し、鋳片1に金型12が衝突しない場合を示している。 回転カム33とカムフォロア26との位置関係を示し、鋳片1に金型12が衝突する場合を示している。 本発明による装置と従来方式との設備耐久性の比較図である。
好ましい実施例の説明
 以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図3は、本発明による鋳片連続鋳造用の連続打撃装置の全体斜視図である。
 この図において、本発明の連続打撃装置10は、鋳片1の相対する両側の短辺面1aを同時又は交互に打撃するように、両側に合計2台設置されている。また、12は金型、14は本体、16は移動装置である。
 鋳片1は、鋼の連続鋳造により鋳型内で凝固鋳造されたものであり、ほぼ矩形断面を有し、一方向に連続的に移動する。
 なお、実際の連続鋳造において、鋳片1は円弧状に延び、その移動方向は垂直から斜め下向きに45~54度の角度となるのが好ましいが、本発明はこの傾斜に限定されず、鋳片1を水平又は垂直に移動させてもよい。
 また、連続打撃装置10が設置される位置における鋳片1は、未凝固部を含む鋳片であり、表面は凝固してスケールが付着しているが、表面温度は高温(例えば約1200℃)であり、内部はまだ凝固中又は半溶融状態にある。なお、本発明はかかる状態の鋳片1に限定されず、その他の状態であってもよい。
 図3において、金型12は、鋳片1の相対する両側の短辺面1a(以下、「打撃面」と呼ぶ)を打撃するようになっている。金型12は、鋳片1に沿って鋳片の移動方向に延び、かつ短辺面1a(打撃面)の全高の中央部分を打撃するように、打撃面1aの全高(高さ方向の厚さ)より低い高さ(厚さ)を有する。
 本体14は、支持台15の上に載り、図示しない直線ガイドにより、打撃面1aに直交する方向(例えば水平方向)に直線移動可能に案内されている。
 移動装置16は、この例では、空圧又は液圧の直動シリンダ17、揺動軸18、リンク19a,19b,19cからなり、直動シリンダ17の伸縮により、本体14を鋳片1に対して前後進させるようになっている。
 なお、移動装置16の構成は、この例に限定されない。
 図4は鋳片1と2台の連続打撃装置10の関係を示す全体平面図である。
 この図において、20は位置決め機構であり、この例において、本体14に回転可能に取付けられ、鋳片1の打撃面1aと所定の位置で接触しながら自由回転する複数(図で3つ)のガイドローラ20aからなる。
 この構成により、移動装置16により本体14を鋳片1に対して前進させて複数のガイドローラ20aを鋳片1の打撃面1aと接触させることにより、連続鋳造中の鋳片1に対して、ガイドローラ20aが接触しながら自由回転するので、横方向に大きな力を受けることなく本体14を鋳片1に対して所定の位置に位置決めすることができる。
 図5A、図5Bは、連続打撃装置10の主要部の構成図であり、図5Aは蓄積位置、図5Bは打撃位置を示している。
 これらの図において、本発明の連続打撃装置10は、打撃部材22、圧縮バネ30、カム機構32を備える。これらの打撃部材、圧縮バネ、及びカム機構は本体14に支持されている。
 打撃部材22は、鋳片1の打撃面1aを打撃する金型12と、往復動部材23からなる。往復動部材23は、この例では、2本の摺動部24、カムフォロア台25、カムフォロア26、2箇所の連結部27からなる。
 また、図6に示すように打撃部材22が金型12と往復動部材23から構成され、往復部材23が1箇所の摺動部24、カムフォロア台25、カムフォロア26、1箇所の連結部27からなる場合も同様の作用である。以降、2箇所の摺動部および2箇所の連結部により構成される場合について、説明する。
 2箇所の連結部27は、金型12に一端(図で上端)が固定され、打撃面1aに直交する方向に平行に延び、本体14の支持板14aに固定された軸受21aにより、打撃面1aに直交する方向に往復動可能に支持されている。また、2箇所の摺動部24は、打撃面1aに直交する方向に平行に延び、本体14の支持板14bに固定された軸受21bにより、打撃面1aに直交する方向に往復動可能に支持されている。
 カムフォロア台25は、2箇所の摺動部24及び2箇所の連結部27に両端が固定され、2箇所の摺動部24及び2箇所の連結部27と一体的に往復動可能に構成されている。なお、この例でカムフォロア台25は中央部が打撃面1aから離れる方向に凹んでいるが、本発明はこれに限定されず、例えば直線状であってもよい。
 カムフォロア26は、カムフォロア台25の中間部に自由回転可能に取付けられ、後述する回転カム33と接触しながら自由回転するようになっている。なお、本発明において、カムフォロア26は回転カム33と常時接触はせず、回転カム33で圧縮バネ30を圧縮する間は接触し、打撃時に回転カム33がカムフォロア26から離れてカムフォロア26と共に往復動部材23を自由加速させるようになっている。
 この構成により、往復動部材23は、金型12に一端(図で上端)が固定され、金型12が打撃面1aと接触する打撃位置(F)と金型12が打撃面1aから所定距離離れた蓄積位置(B)との間で往復動可能に構成されている。
 この「所定距離」は、回転カム33による圧縮バネ30の圧縮距離に相当する。
 圧縮バネ30は、この例ではコイルバネであり、往復動部材23(この例ではカムフォロア台25)と本体14(この例では、支持板14b)との間に圧縮状態で挟持され、蓄積位置(図5Aの位置)で所定の圧縮エネルギーE1を保有し、打撃位置(図5Bの位置)で運動エネルギーE2を放出するようになっている。
 運動エネルギーE2は、蓄積位置(図5Aの位置)と打撃位置(図5Bの位置)における圧縮バネ30の圧縮エネルギーの差である。運動エネルギーE2≦圧縮エネルギーE1の関係があり、シム等で圧縮バネ30の打撃位置(図5Bの位置)における圧縮量を増大させることにより、運動エネルギーE2を増加することができる。
 カム機構32は、本体14に回転可能に支持された回転カム33と、回転カム33を回転駆動する回転駆動装置とからなる。
 回転カム33は、往復動部材23のカムフォロア26と接触しながら回転し、往復動部材23(この例ではカムフォロア台25)を蓄積位置(図5Aの位置)まで所定の周期で移動し、次いでカムフォロア26から離れて、往復動部材23を打撃位置(図5Bの位置)まで自由運動させるようになっている。
 この例において、回転カム33のカム曲線は、回転角度と変位が比例するアルキメデス曲線である。なお、本発明はアルキメデス曲線に限定されず、往復動部材23を蓄積位置(図5Aの位置)まで所定の周期で移動して圧縮バネ30を圧縮し、次いでカムフォロア26から離れて、往復動部材23を打撃位置(図5Bの位置)まで自由運動させることができる限りで、その他の曲線であってもよい。
 図示しない回転駆動装置は、回転カム33を所定の速度で回転駆動できる限りで任意の回転駆動装置(例えば、電動機+減速機)を用いることができる。
 また、この回転駆動装置は、移動装置16により本体14を鋳片1に対して前後進させた場合でも、回転カム33に回転動力を伝達できるように、その中間に、周知の自在継手(例えば、シュミットカップリング、ユニバーサルカップリング等)を設けるのがよい。
 上述した本発明の構成によれば、連続打撃装置10が打撃部材22、圧縮バネ30、カム機構32、及び本体14を備え、カム機構32により打撃部材22を鋳片1から離れる方向に移動させて圧縮バネ30を圧縮する(図5A)。
 次いで打撃時にカム機構32(回転カム33)が打撃部材22(カムフォロア26)から離れてこれを自由加速させ、これにより圧縮バネ30の圧縮エネルギーE1を打撃部材22(金型12)の運動エネルギーE2に変換して、その打撃部材22が鋳片1に衝突することで所定の打撃エネルギー(=運動エネルギーE2)を鋳片1に与える(図5B)。
 従って、本発明の連続打撃装置10は、電気制御に頼らない耐久性のある装置となる。
 すなわち、本発明の連続打撃装置10は、鋼の連続鋳造による鋳片1の相対する両側の短辺面1aを、鋳片幅方向に連続して打撃することができ、かつ高温(例えば約1200℃)の鋳片1からの輻射熱、スケール、水等に曝されながら、高頻度(4~12Hz)で大きな衝撃(30~150J)を受けても、長期間の連続使用が可能な高い耐久性を有する。
 また、圧縮バネ30が、往復動部材23(カムフォロア台25)と本体14(支持板14b)との間に挟持され、蓄積位置(図5Aの位置)で所定の圧縮エネルギーE1を保有し、打撃位置(図5Bの位置)で運動エネルギーE2を放出するようになっており、カム機構32が、往復動部材23を蓄積位置(図5Aの位置)まで所定の周期で移動し、次いで往復動部材23を打撃位置(図5Bの位置)まで自由運動させる回転カム33と、回転カム33を回転駆動する回転駆動装置とからなる構成により、回転駆動装置による回転カム33の回転速度により所定の打撃振動周波数(例えば4~12Hz)を自由に設定でき、圧縮バネ30の所定の圧縮エネルギーE1を所定の打撃エネルギーE2(例えば30~150J)に変換することができる。
 また、回転カム33のカム曲線が、回転角度と変位が比例するアルキメデス曲線であることにより、打撃時にカム機構32が打撃部材22から離れて打撃部材22を自由加速させることが容易にできる。
 また、蓄積位置(図5Aの位置)と打撃位置(図5Bの位置)における回転カム33による圧縮バネ30の変位(たわみ量)は、一定であるので、回転カム33の回転速度により打撃振動周波数を変化させても一定の打撃エネルギーで打撃できる。
 図7A、図7Bは、回転カム33とカムフォロア26との位置関係を示す図であり、図7Aは鋳片1に金型12が衝突しない場合、図7Bは鋳片1に金型12が衝突する場合を示している。
 図7A、図7Bにおいて、横軸θは、回転カム33の回転角度であり、0~2πの値を一回転毎に繰り返す。また、縦軸yは、カムフォロア26の変位である。
 この図において、回転カム33のカム曲線33aは、回転角度θと変位yが比例するアルキメデス曲線であり、図中のA-B-Cの折れ線を回転カム33の一回転毎に繰り返すようになっている。直線ABは、以下の式(1)で表すことができる。
 y=a×θ-y3・・・式(1)
 ここで、aは直線ABの傾き(=(y1+y3)/2π)である。
 図7A、図7Bにおいて、カムフォロア26の軌跡26aとカム曲線33aとが示すように、カムフォロア26は、回転カム33の回転角度θが、角度αと2πの中間角度βから2πの間は、回転カム33と接触してカム曲線33aに追従して変位し、角度0から角度βまでは、回転カム33と接触せずバネ力により自由に運動するようになっている。
 鋳片1に金型12が衝突しない場合、図7Aに示すように、カムフォロア26の軌跡26aは、a-b-c-d-e-fの曲線となる。すなわち、蓄積位置(図5Aの位置)は、点Bに対応し、圧縮バネ30は初期位置からy1の距離圧縮され、所定の圧縮エネルギーE1を保有している。
 次に、回転カム33の回転角度θが0を超えるとカムフォロア26はバネ力により加速されて曲線a-b-cの軌跡を描く。このうち、曲線a-bはバネが圧縮状態から撓み0(自然長の状態)まで延びる加速期間、曲線b-cはバネが初期位置を超えて延びる減速期間である。
 本発明では、図5A、図5Bに示すように、往復動部材23が打撃位置(y=0)を通過して鋳片側に移動するとき、その移動速度を減衰させるダンパー装置35を備える。ダンパー装置35は、例えば油圧ダンパー又はダンパーゴムである。図5A、図5Bの例では、ダンパー装置35は、往復移動部材23と本体14(支持板14a)との間に設けられている。
 ダンパー装置35は、曲線b-cにおいてのみ作動し、曲線b-c-dがカム曲線33aと衝突しないように減衰力を設定する。
 この構成により、往復動部材23が打撃位置(y=0)を通過して鋳片側に移動するとき、ダンパー装置35により往復動部材23の移動速度を減衰させることにより、カムフォロア26と回転カム33との衝突を防止することができ、鋳片1がなく、空振りの打撃を繰り返しても、長期間の連続使用が可能な高い耐久性を備えることができる。
 図7Aにおいて、曲線c-d-e-fは、バネの自由振動であり、圧縮バネ30の固有周期により決まる。この固有周期は、圧縮バネ30の圧縮位置(図のf点)で、回転カム33とカムフォロア26が再接触するように設定される。
 この構成により、回転カム33がカムフォロア26に再接触する際(図のf点)の衝突速度を低減でき、回転カム33とカムフォロア26の耐久性を高めることができる。
 鋳片1に金型12が衝突する場合、図7Bに示すように、カムフォロア26の軌跡26aは、a-b-g曲線とa-b-h-i-j-k曲線の間となる。
 すなわち、蓄積位置(図5Aの位置)は、点Bに対応し、圧縮バネ30は初期位置からy1の距離圧縮され、所定の圧縮エネルギーE1を保有している。
 次に、回転カム33の回転角度θが0を超えるとカムフォロア26はバネ力により加速されて曲線a-bの軌跡を描く。曲線a-bはバネが圧縮状態から撓み0(自然長の状態)まで延びる加速期間である。
 所定の位置(y=0)に鋳片1が存在し、その反発係数が0、すなわち鋳片1が完全塑性体である場合、カムフォロア26は鋳片1に衝突してその位置で停止し、直線gを維持し、角度αにおいてカム曲線33aと接触し、その後は、カム曲線33aに沿って点Bまで圧縮される。
 所定の位置(y=0)に鋳片1が存在し、その反発係数が1である場合、カムフォロア26は鋳片1に衝突して、同一速度で反発され、h-i-j-kの曲線を辿ってk点で回転カム33と衝突し、以後はカム曲線33aに沿って圧縮される。
 所定の位置(y=0)に鋳片1が存在し、その反発係数が0と1の中間である場合、カムフォロア26の軌跡26aは、a-b-g曲線とa-b-h-i-j-k曲線の間となる。
 圧縮バネの固有周期は、圧縮バネの圧縮位置(図のk点)で、回転カム33とカムフォロア26が再接触するように、設定されている。
 この構成により、回転カム33がカムフォロア26に再接触する際(図のk点)の衝突速度を低減でき、回転カム33とカムフォロア26の耐久性を高めることができる。
 上述した構成の連続打撃装置10を実際に製作し、実際の鋳片1を用いて試験した結果、本発明の連続打撃装置10は、鋼の連続鋳造による鋳片1の相対する両側の短辺面を、鋳片幅方向に連続して打撃することができ、かつ高温(例えば約1200℃)の鋳片1からの輻射熱、スケール、水等に曝されながら、高頻度(4~12Hz)で大きな衝撃(30~150J)を受けても、長期間の連続使用が可能であることが確認された。
 すなわち、打撃装置としてエアーシリンダを用い、電磁弁の電気制御により打撃を行った従来方式での設備耐久性(重故障によるメンテナンス実施)をベースとして本発明の耐久性を比較した結果を図8に示す。
 連続鋳造用セグメントは、ロール磨耗ならびに故障(軸受損傷、水漏れ等)がなければ、6ヶ月から1年程度オンラインで使用し続けるのが一般的である。設備耐久性評価は、連続打撃装置が重故障トラブルによりセグメント寿命以外に、メンテンスのために、設備休止・オフラインメンテナンスが生じたことを意味する。従来方式に対し、約12倍の長時間連続打撃を可能とした。
 なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。

Claims (8)

  1.  鋳片を打撃するための打撃部材と、
     該打撃部材を鋳片に向けて付勢する圧縮バネと、
     打撃部材を鋳片から離れる方向に移動させて前記圧縮バネを圧縮し、次いで、打撃部材を自由に運動させるカム機構と、
     前記打撃部材、圧縮バネ、及びカム機構を支持する本体とを備え、
     打撃時にカム機構が打撃部材から離れて打撃部材を自由加速させ、これにより圧縮バネの圧縮エネルギーを打撃部材の運動エネルギーに変換して、その打撃部材が鋳片に衝突することで所定の打撃エネルギーを鋳片に与える、ことを特徴とする鋳片連続鋳造用の連続打撃装置。
  2.  前記打撃部材は、鋳片の打撃面を打撃する金型と、
     該金型に一端が固定され、打撃面と接触する打撃位置と打撃面から所定距離離れた蓄積位置との間で往復動可能な往復動部材とからなり、
     前記圧縮バネは、前記往復動部材と本体との間に挟持され、前記蓄積位置で所定の圧縮エネルギーを保有し、前記打撃位置で前記運動エネルギーを放出するようになっており、
     前記カム機構は、前記本体に回転可能に支持され、前記往復動部材を前記蓄積位置まで所定の周期で移動し、次いで往復動部材を打撃位置まで自由運動させる回転カムと、該回転カムを回転駆動する回転駆動装置とからなる、ことを特徴とする請求項1に記載の鋳片連続鋳造用の連続打撃装置。
  3.  前記回転カムのカム曲線は、回転角度と変位が比例するアルキメデス曲線である、ことを特徴とする請求項2に記載の鋳片連続鋳造用の連続打撃装置。
  4.  前記往復動部材は、回転カムと接触しながら自由回転するカムフォロアを有する、ことを特徴とする請求項2に記載の鋳片連続鋳造用の連続打撃装置。
  5.  圧縮バネの圧縮位置で、回転カムとカムフォロアが再接触するように、前記圧縮バネの固有周期が設定されている、ことを特徴とする請求項4に記載の鋳片連続鋳造用の連続打撃装置。
  6.  前記往復動部材が打撃位置を通過して鋳片側に移動するとき、その移動速度を減衰させるダンパー装置を備える、ことを特徴とする請求項2に記載の鋳片連続鋳造用の連続打撃装置。
  7.  前記本体を鋳片に対して前後進させる移動装置と、
     前記本体を鋳片に対して所定の位置に位置決めする位置決め機構とを備える、ことを特徴とする請求項1に記載の鋳片連続鋳造用の連続打撃装置。
  8.  前記位置決め機構は、前記本体に回転可能に取付けられ、鋳片の打撃面と所定の位置で接触しながら自由回転する複数のガイドローラからなる、ことを特徴とする請求項7に記載の鋳片連続鋳造用の連続打撃装置。
PCT/JP2009/054485 2008-04-04 2009-03-10 鋳片連続鋳造用の連続打撃装置 WO2009122865A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801120205A CN101983113B (zh) 2008-04-04 2009-03-10 铸件连续铸造用的连续打击装置
PL09729055T PL2258499T3 (pl) 2008-04-04 2009-03-10 Urządzenie do ciągłego młotkowania odlewów wytwarzanych w procesie ciągłego odlewania
KR1020107019229A KR101242730B1 (ko) 2008-04-04 2009-03-10 주편 연속 주조용 연속 타격 장치
ES09729055.5T ES2687109T3 (es) 2008-04-04 2009-03-10 Dispositivo de martilleo continuo para la fabricación continua de piezas de fundición
EP09729055.5A EP2258499B1 (en) 2008-04-04 2009-03-10 Continuous hammering device for continuously manufacturing cast pieces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-098544 2008-04-04
JP2008098544A JP5188862B2 (ja) 2008-04-04 2008-04-04 鋳片連続鋳造用の連続打撃装置

Publications (1)

Publication Number Publication Date
WO2009122865A1 true WO2009122865A1 (ja) 2009-10-08

Family

ID=41135252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054485 WO2009122865A1 (ja) 2008-04-04 2009-03-10 鋳片連続鋳造用の連続打撃装置

Country Status (8)

Country Link
EP (1) EP2258499B1 (ja)
JP (1) JP5188862B2 (ja)
KR (1) KR101242730B1 (ja)
CN (1) CN101983113B (ja)
ES (1) ES2687109T3 (ja)
PL (1) PL2258499T3 (ja)
TW (1) TWI481455B (ja)
WO (1) WO2009122865A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107598143A (zh) * 2017-09-19 2018-01-19 上海神富机械科技有限公司 一种甩流道机
CN109655357A (zh) * 2018-12-26 2019-04-19 浙江杭机铸造有限公司 一种检测机床铸件质量的冲压装置
CN110125357A (zh) * 2019-06-13 2019-08-16 中冶京诚工程技术有限公司 连铸圆坯轻压下装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009870A1 (de) 2012-05-15 2013-11-21 Sms Siemag Ag Verfahren und Strangführung zur Beeinflussung der Erstarrung des teilweise noch flüssigen Kernes während des Stranggießens
CN103464704A (zh) * 2013-09-11 2013-12-25 钢铁研究总院 一种连铸坯用的震动锤装置及使用方法
KR101694116B1 (ko) * 2014-12-26 2017-01-09 주식회사 포스코 듀얼워엄감속기용 분해조립장치
DE102017207942A1 (de) * 2017-05-11 2018-11-15 Sms Group Gmbh Stranggießanlage und Verfahren zur Herstellung eines metallischen Produkts
CN108526423A (zh) * 2018-03-29 2018-09-14 马鞍山钢铁股份有限公司 一种改善连铸过程凝固中后期固液两相区流动性的方法、铸坯质量的控制方法及装置
DE102019206199A1 (de) * 2019-04-30 2020-11-05 Thyssenkrupp Steel Europe Ag Stranggießeinrichtung zur Beeinflussung eines erstarrenden Strangs, insbesondere einer erstarrenden Bramme, und Verfahren zur Beeinflussung eines erstarrenden Strangs
CN111941230B (zh) * 2020-06-30 2022-07-08 贵州大智动力科技有限公司 一种用于旧船改造维修的吸尘除锈装置
CN117463977B (zh) * 2023-12-28 2024-04-19 泰州万重汽车零部件有限公司 一种军工轴承生产用批量铸造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191143U (ja) * 1984-11-20 1986-06-13
JP2006110620A (ja) 2004-10-18 2006-04-27 Sumitomo Metal Ind Ltd 連続鋳造方法
JP2007229748A (ja) 2006-02-28 2007-09-13 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法及び打撃振動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1034200A (fr) * 1951-03-20 1953-07-20 Traverses En Beton Arme Sa Appareil vibrateur à fréquence réglable pendant la marche
JPS60114473A (ja) * 1983-11-28 1985-06-20 三菱重工業株式会社 浚渫船の削岩装置
US5927585A (en) * 1997-12-17 1999-07-27 Senco Products, Inc. Electric multiple impact fastener driving tool
TW572832B (en) * 2000-06-12 2004-01-21 Tomoegawa Paper Co Ltd Process for preparation of single powder film on long ruler-like film substrate and apparatus for preparing the same
JP3835158B2 (ja) * 2000-11-10 2006-10-18 トヨタ自動車株式会社 自動車用駆動装置
KR100743186B1 (ko) * 2001-08-11 2007-07-27 주식회사 포스코 용융절단설 제거장치
JP2003334641A (ja) * 2002-05-17 2003-11-25 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191143U (ja) * 1984-11-20 1986-06-13
JP2006110620A (ja) 2004-10-18 2006-04-27 Sumitomo Metal Ind Ltd 連続鋳造方法
JP2007229748A (ja) 2006-02-28 2007-09-13 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法及び打撃振動装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107598143A (zh) * 2017-09-19 2018-01-19 上海神富机械科技有限公司 一种甩流道机
CN109655357A (zh) * 2018-12-26 2019-04-19 浙江杭机铸造有限公司 一种检测机床铸件质量的冲压装置
CN109655357B (zh) * 2018-12-26 2024-04-16 浙江杭机铸造有限公司 一种检测机床铸件质量的冲压装置
CN110125357A (zh) * 2019-06-13 2019-08-16 中冶京诚工程技术有限公司 连铸圆坯轻压下装置
CN110125357B (zh) * 2019-06-13 2024-02-06 中冶京诚工程技术有限公司 连铸圆坯轻压下装置

Also Published As

Publication number Publication date
CN101983113B (zh) 2013-06-12
EP2258499B1 (en) 2018-08-15
TWI481455B (zh) 2015-04-21
TW200948512A (en) 2009-12-01
ES2687109T3 (es) 2018-10-23
EP2258499A4 (en) 2017-04-19
EP2258499A1 (en) 2010-12-08
JP2009248127A (ja) 2009-10-29
PL2258499T3 (pl) 2019-01-31
JP5188862B2 (ja) 2013-04-24
KR20100122490A (ko) 2010-11-22
CN101983113A (zh) 2011-03-02
KR101242730B1 (ko) 2013-03-11

Similar Documents

Publication Publication Date Title
WO2009122865A1 (ja) 鋳片連続鋳造用の連続打撃装置
JP3008821B2 (ja) 薄鋳片の連続鋳造方法および装置
KR101183420B1 (ko) 연속 주조시의 타격 진동 장치
JPH09511185A (ja) 金属を連続的に鋳造する方法および装置
CN106077550B (zh) 一种具有倾斜轧辊的二辊连铸坯轧角装置
JP2007517666A (ja) 鋳造装置
US3433287A (en) Dummy bar device for continuous casting machine
JP4577235B2 (ja) 鋼の連続鋳造方法及び打撃振動装置
EP0149247B1 (en) Rolling mill
KR101365524B1 (ko) 롤샤프트 교정 장치
CN202606514U (zh) 一种可逆式板材轧机防翘装置
JP5137963B2 (ja) ロールスタンド
JP2000515429A (ja) 連続鋳造法のためのガイドセグメント支持システム
EP2127778B1 (en) Operating method for twin-roll casting machine
EP4368306A1 (en) Deflector roll and method for manufacturing steel sheet using said deflector roll
JP4026927B2 (ja) 形鋼の走間切断機及びその刃物台の駆動方法
CN115815350B (zh) 一种轧钢生产用出钢机
CN209613810U (zh) 一种热连轧粗轧ⅰ架入口牌坊扭振缓冲装置
KR100939264B1 (ko) 냉연코일 초박판 스트립의 버클 방지장치
CN117680496A (zh) 一种控制钢轨端部高点的u-e连轧防甩尾装置
KR200447178Y1 (ko) 압연공정용 냉각 장치
TW201023994A (en) Hammering vibration apparatus in continuous casting
CN109731926B (zh) 导卫
JP2977453B2 (ja) 連続鋳造設備における角形鋳片の菱形変形矯正装置
RU76268U1 (ru) Шатун привода летучих ножниц

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112020.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009729055

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107019229

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE