WO2009122562A1 - 建物の構築方法 - Google Patents

建物の構築方法 Download PDF

Info

Publication number
WO2009122562A1
WO2009122562A1 PCT/JP2008/056453 JP2008056453W WO2009122562A1 WO 2009122562 A1 WO2009122562 A1 WO 2009122562A1 JP 2008056453 W JP2008056453 W JP 2008056453W WO 2009122562 A1 WO2009122562 A1 WO 2009122562A1
Authority
WO
WIPO (PCT)
Prior art keywords
pca
steel
column
reverse
beam member
Prior art date
Application number
PCT/JP2008/056453
Other languages
English (en)
French (fr)
Inventor
左高啓三
Original Assignee
株式会社アイ・アイ・イー国際環境研究所
有限会社ルネイズム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・アイ・イー国際環境研究所, 有限会社ルネイズム filed Critical 株式会社アイ・アイ・イー国際環境研究所
Priority to JP2010505219A priority Critical patent/JP5357862B2/ja
Priority to PCT/JP2008/056453 priority patent/WO2009122562A1/ja
Priority to CN2008801285241A priority patent/CN101999021A/zh
Priority to KR1020107023504A priority patent/KR101411033B1/ko
Publication of WO2009122562A1 publication Critical patent/WO2009122562A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • E04B1/06Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material the elements being prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/34Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability
    • E04B1/3404Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability supported by masts or tower-like structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2406Connection nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2448Connections between open section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2484Details of floor panels or slabs

Definitions

  • the present invention is a construction method of a low-rise to middle-high-rise building in which the ceiling height of the indoor space is different on the upper and lower adjacent floors while the dimensions between the tops of the beams located on the upper and lower floors are the same. Therefore, in the building construction method in which the beam on the upper and lower floors adjacent to each other is alternately repeated with the forward beam and the reverse beam, the connection position of the forward beam and the reverse beam and the pillar integrated therewith It is related with the construction method of the building which can raise construction efficiency by specifying beforehand in a factory, and can respond to a consumer's various needs in the completed building.
  • buildings Conventional buildings, office buildings, store buildings, special buildings, or combinations of these buildings (hereinafter collectively referred to as buildings) have the same slab dimensions on the upper and lower floors. Therefore, the floor height of each building is configured with the same dimension, and the ceiling height of each building is generally set to the same dimension.
  • the reverse beam method is a method of constructing a beam at a position on the upper surface side of the slab.
  • the reason for adopting this method is that the top end of the beam is arranged on the finished floor A as shown in the conventional example of FIG. Since the space B generated between the slab and the finished floor surface is used as the underfloor storage space, piping and wiring space for various equipment, or there is no beam protruding downward on the ceiling surface C.
  • the main factor was that it was possible to make a flat ceiling instead of a stepped ceiling where a part of the ceiling was lowered, at the stage of constructing the slab.
  • the reverse beam construction method is adopted only for a predetermined floor or constructed for the entire building, so the slab formed by the reverse beam and the slab formed by the forward beam are adjacent to each other. There was no idea to build a building with a relative relationship between the two, which are alternately arranged on the floor, and there was no construction method that would change the ceiling height of the indoor space on the adjacent upper and lower floors .
  • JP 2005-139866 A Japanese Patent Laid-Open No. 11-50527
  • the present invention repeats the entire beam so that the forward beam and the reverse beam are alternately positioned despite the fact that the dimension between the top ends of the beams located on the adjacent upper and lower floors is constructed with the same dimensions.
  • the slab located between the forward beam slabs in the vertical direction is a reverse beam slab
  • the indoor space located below the reverse beam slab has a lower ceiling height than the indoor space located above.
  • the present invention provides a building construction method that makes it possible to obtain an indoor space with a high ceiling height.
  • the ceiling height dimension can be set high in any of the upper and lower floors, making it possible to form a rich and diverse three-dimensional space, and because the ceiling height dimension has increased.
  • PCa precast reinforced concrete
  • steel frames are used to pre-determine the joint positions where the forward and reverse beams are located at the factory, and these parts are manufactured. It provides a construction method for construction.
  • the present invention solves the above-mentioned problems, and its configuration is as follows.
  • the construction method of a low-rise or middle-rise building in which the dimensions between the top ends of the beams located on the upper and lower floors are the same, and the whole is constructed by repeating the upper and lower beams so that the forward and reverse beams are alternately positioned.
  • a PCa column / beam joint is provided on the upper part of the PCa column member, and a PCa forward beam member extending in the X direction is disposed between the adjacent PCa column / beam joint, and the side of the PCa column / beam joint is disposed.
  • the end part and the side end part of the forward beam member are fixed, and the PCa forward beam member extending in the Y direction is fixed between the PCa column / beam joint part and, in some cases, the side part between the PCa forward beam members.
  • the process of 2. The PCa column member on the adjacent upper floor is fixed to the upper part of the PCa column / beam joint, the PCa column / beam joint is provided on the upper part of the PCa column member, and the X direction between the adjacent PCa column / beam joints is provided in the X direction.
  • the extending PCa reverse beam member is disposed at a position where the height between the upper end of the PCa forward beam member and the upper end of the PCa reverse beam member is the same as the height of the lower floor, and the PCa column / beam joint side
  • a PCa reverse beam member extending in the Y direction is fixed between the PCa column / beam joint and, in some cases, the side between the PCa reverse beam members.
  • the space surrounded by the PCa forward beam member by the above process constructs a slab whose floor is the top end side of the PCa forward beam member, and the space surrounded by the PCa reverse beam member is the lower end side of the PCa reverse beam member. Building a slab with a ceiling surface, The building construction method is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • a steel column / beam joint is provided on the upper part of the steel column member, and a steel forward beam member extending in the X direction is disposed between the adjacent steel column / beam joints, on the side of the steel column / beam joint.
  • An end portion and a side end portion of the steel forward beam member are fixed, and a steel forward beam member extending in the Y direction is provided between the steel column / beam joint portion and, in some cases, a side portion between the steel forward beam members.
  • Fixing process 2.
  • a steel column member on an adjacent upper floor is fixed to the upper part of the steel column / beam joint, a steel column / beam joint is provided on the upper part of the steel column member, and the X-direction is provided between the adjacent steel column / beam joints.
  • the extending steel reverse beam member is disposed at a position where the height between the upper end of the steel forward beam member and the upper end of the steel reverse beam member is the same as the height of the lower floor, and the steel column / beam joint side An end portion and a side end portion of the steel reverse beam member are fixed, and a steel reverse beam member extending in the Y direction is provided between the steel column / beam joint portion and, in some cases, a side portion between the steel reverse beam members. Fixing process, 3.
  • the space surrounded by the steel forward beam member by the above process constructs a slab having the top surface of the steel forward beam member as the floor, and the space surrounded by the steel reverse beam member is the lower end side of the steel reverse beam member.
  • Building a slab with a ceiling surface The building construction method is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • the building between the top and bottom of the upper and lower floors is the same size, and the upper and lower beams are repeated so that the reverse beam and the forward beam are alternately positioned.
  • a PCa column / beam joint is provided on the upper part of the PCa column member, and a PCa reverse beam member extending in the X direction is disposed between the adjacent PCa column / beam joints.
  • a PCa reverse beam member extending in the Y direction is fixed between the PCa column / beam joint and, in some cases, the side between the PCa reverse beam members. Fixing process, 2.
  • the PCa column member on the adjacent upper floor is fixed to the upper part of the PCa column / beam joint, the PCa column / beam joint is provided on the upper part of the PCa column member, and the X direction is set between the adjacent PCa column / beam joints.
  • the PCa forward beam member extending to the PCa forward beam member is disposed at a position where the height between the upper end of the PCa reverse beam member and the upper end of the PCa forward beam member is the same as the height of the lower floor.
  • a PCa forward beam member which fixes a side end portion and a side end portion of the PCa forward beam member and extends in the Y direction between the PCa column / beam joint portion and, in some cases, between the PCa forward beam members. Fixing process, 3.
  • the space surrounded by the PCa reverse beam member by the above process constructs a slab with the lower end side of the PCa reverse beam member as a ceiling surface, and the space surrounded by the PCa forward beam member is the top end side of the PCa forward beam member Building a slab with a floor
  • the building construction method is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • a steel column / beam joint is provided on the upper part of the steel column member, and a steel reverse beam member extending in the X direction is disposed between the adjacent steel column / beam joints. An end portion and a side end portion of the steel reverse beam member are fixed, and a steel reverse beam member extending in the Y direction is provided between the steel column / beam joint portion and, in some cases, a side portion between the steel reverse beam members. Fixing process, 2.
  • the steel column member on the adjacent upper floor is fixed to the upper part of the steel column / beam joint, a steel column / beam joint is provided on the upper part of the steel column member, and the X direction is set between the adjacent steel column / beam joints.
  • the steel forward beam member extending to the steel floor is disposed at a position where the height between the upper end of the steel reverse beam member and the upper end of the steel forward beam member is the same as the height of the lower floor.
  • a steel forward beam member that extends in the Y direction between the steel column / beam joints and, in some cases, between the steel forward beam members, is fixed to the side end portion and the side end portion of the forward beam member. Fixing process, 3.
  • the space surrounded by the steel reverse beam member by the above process constructs a slab with the lower end side of the steel reverse beam member as the ceiling surface, and the space surrounded by the steel forward beam member is the top end side of the steel forward beam member Building a slab with a floor
  • the building construction method is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • a PCa beam joint is provided at an intermediate portion of the PCa column member, a PCa forward beam member extending in the X direction is disposed between the adjacent PCa beam joints, and a side end of the PCa beam joint and the PCa Fixing the side ends of the forward beam members and fixing the PCa forward beam members extending in the Y direction between the PCa beam joints and in some cases between the PCa forward beam members; 2.
  • a PCa column / beam joint is provided on the upper part of the PCa column member, and the PCa reverse beam member extending in the X direction between the adjacent PCa column / beam joints is connected to the upper end of the PCa forward beam member and the PCa reverse beam member.
  • the PCa column is disposed at a position where the height between the upper ends of the PCa is the same as the height of the lower floor, and the side end of the PCa column / beam joint and the side end of the PCa reverse beam member are fixed. Fixing the PCa reverse beam members extending in the Y direction between the beam joints and, in some cases, between the PCa reverse beam members; 3.
  • the space surrounded by the PCa forward beam member by the above process constructs a slab whose floor is the top end side of the PCa forward beam member, and the space surrounded by the PCa reverse beam member is the lower end side of the PCa reverse beam member.
  • Building a slab with a ceiling surface The building construction method is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • a steel beam joint is provided at an intermediate portion of the steel column member, a steel forward beam member extending in the X direction is disposed between the adjacent steel beam joints, and a side end of the steel beam joint and the steel frame Fixing a steel forward beam member extending in the Y direction between the steel beam joints and, in some cases, between the steel forward beam members; 2.
  • a steel column / beam joint is provided above the steel column member, and the steel reverse beam member extending in the X direction between the adjacent steel column / beam joints is connected to the upper end of the steel forward beam member and the steel reverse beam member.
  • the steel reverse beam member extending in the Y direction between the beam joints and, in some cases, between the steel reverse beam members; 3.
  • the space surrounded by the forward beam member by the above process constructs a slab with the top end side of the forward beam member as the floor surface, and the space surrounded by the steel reverse beam member ceilings the lower end side of the steel reverse beam member
  • the process of building a slab as a surface is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • a PCa beam joint is provided at an intermediate portion of the PCa column member, a PCa reverse beam member extending in the X direction is disposed between the adjacent PCa beam joints, and a side end of the PCa beam joint and the PCa Fixing the side ends of the reverse beam members and fixing the PCa reverse beam members extending in the Y direction between the PCa beam joints and, in some cases, between the PCa reverse beam members; 2.
  • a PCa column / beam joint is provided on the upper part of the PCa column member, and the PCa forward beam member extending in the X direction between the adjacent PCa column / beam joints is connected to the upper end of the PCa reverse beam member and the PCa forward beam member. Is arranged at a position where the height between the upper ends of the PCa column is equal to the height of the lower floor, and the side end of the PCa column / beam joint and the side end of the PCa forward beam member are fixed, Fixing the PCa forward beam member extending in the Y direction between the beam joints and possibly between the PCa forward beam members; 3.
  • the space surrounded by the PCa reverse beam member by the above process constructs a slab with the lower end side of the PCa reverse beam member as a ceiling surface, and the space surrounded by the PCa forward beam member is the top end side of the PCa forward beam member Building a slab with a floor
  • the building construction method is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • a steel beam joint is provided at an intermediate portion of the steel column member, a steel reverse beam member extending in the X direction is disposed between the adjacent steel beam joints, and a side end of the steel beam joint and the steel frame Fixing the opposite ends of the reverse beam members and fixing the steel reverse beam members extending in the Y direction between the steel beam joints and, in some cases, between the steel reverse beam members; 2.
  • a steel column / beam joint is provided on the upper part of the steel column member, and a steel forward beam member extending in the X direction between the adjacent steel column / beam joints is connected to the upper end of the steel reverse beam member and the steel forward beam member.
  • a steel forward beam member extending in the X direction between the adjacent steel column / beam joints is connected to the upper end of the steel reverse beam member and the steel forward beam member.
  • the space surrounded by the steel reverse beam member by the above process constructs a slab with the lower end side of the steel reverse beam member as the ceiling surface, and the space surrounded by the steel forward beam member is the top end side of the steel forward beam member Building a slab with a floor
  • the building construction method is characterized by constructing the indoor spaces on the upper and lower floors adjacent to each other by repeating the above steps.
  • the building construction method is characterized in that a floor surface is constructed so that a part or all of the indoor space with a high height becomes two or three layers.
  • a solar panel is disposed in front of the beam located on the side where sunlight is obtained, and the solar energy obtained by the solar panel is adjusted to the height of the dwelling space. It is connected to a power storage device installed in an article storage space constructed using a high three-dimensional space obtained by different wiring and stored as electrical energy, and the stored energy is supplied to various load devices in the residential unit space in each unit. It is characterized by the building construction method.
  • the power storage device includes a storage battery, a control device, and a service distribution board, and is characterized by a building construction method for supplying stored energy to various load devices in the dwelling space in a predetermined time zone by a timer.
  • the power storage means of the power storage device is a lithium battery.
  • the building construction method according to the present invention makes it possible to obtain indoor spaces having different ceiling heights in the adjacent upper and lower floors even though the dimension between the top ends of the beams on the upper and lower floors is constant. Therefore, as a building construction method for that purpose, the joints are determined in advance at the installation positions of the forward beam and the reverse beam for obtaining the indoor space by the PCa member or the steel frame member, and the position of the joint is determined. It was possible to build a building early by using it.
  • the forward beam and the reverse beam will appear alternately, but the installation position is naturally determined by the position of the joint part manufactured in advance, so there is no construction error, The work efficiency can be increased without confusion, and the construction method that mainly consists of assembly work has become possible.
  • the ceiling height of the indoor space can be changed in the adjacent upper and lower floors to meet the diverse needs of consumers. It was possible to obtain a rich interior space that can be used.
  • Sectional drawing which shows one Example of the completion state of the building by this invention.
  • the perspective view which showed the construction example of the 1 layer part by the PCa member used as 1 Example of the building by this invention.
  • FIG. 1 shows a cross-sectional view of a mid-rise building.
  • 1 shows an embodiment of a building 1 constructed by the building construction method of the present invention, showing a basement 1 and an eight-story building 1, where the basement 1 and the first floor are a parking lot, an entrance hall, The related space, the second floor to the eighth floor, is the dwelling unit or office.
  • the first-floor parking lot is a mechanical two-story parking lot
  • the first floor is the entrance hall 2
  • stairway 3 evacuator 4, approaching the upper floor, turntable space and parking in the first-floor parking lot
  • a parking lot 5 and the like are provided.
  • the reference floor is the common space 6 that becomes the stairs 3, the elevator 4, and the front hall and passage of the stairs.
  • the individual spaces 7 are arranged symmetrically across the shared space 6.
  • the dimension H between the top and bottom beams of the upper and lower beams on the reference floor excluding the basement floor and the first floor is fixed because of its economic efficiency and appearance.
  • the floor slab 8 and the underground beam 9 on the first floor are constructed as a forward beam so as to be a T-shaped beam, and the finished surface of the floor slab 8 and the finished top end of the underground beam 9 are finished to be flush with each other.
  • the floor slab 10 and the first floor beam 11 in the second floor space are constructed as reverse beams in which the lower surface of the floor slab 10 and the lower surface of the first floor beam are flush with each other.
  • the floor slab 12 and the beam 13 on the second floor are constructed as forward beams, and the surface of the floor slab 12 and the finishing top of the beam 13 are finished to be flush with each other.
  • the slab 14 and the beam 15 on the third floor are constructed as reverse beams.
  • the slabs with the forward beams and the slabs with the reverse beams are constructed alternately on the adjacent upper and lower floors. Therefore, even if the beam ceiling ends of each floor have the same dimension, for example, if the third floor and the fourth floor are taken as an example, the dimension between the slabs H1 and H2 of each floor will be different.
  • the dimension H between the top ends of the beams on the upper and lower floors is made the same, the floor slab surface of the even floor is constructed as a floor surface by the reverse beam, and the dimension H2 between the slabs of the even floor is constructed to be high. And since the floor slab of odd-numbered floors is constructed as a floor surface by forward beams, the dimension between slabs of odd-numbered floors is constructed lower than the dimension between slabs of even-numbered floors.
  • FIG. 2 is a perspective view showing a joint portion between the PCa column 16 and the PCa beams 17 and 18.
  • a rebar 19 protrudes upward from the upper end of the PCa column 16, and the rebar 19 penetrates a PCa column / beam joint 20 for constructing PCa forward beams 17 and 18 mounted and fixed on the column 16. It is inserted through the hole 21 and inserted into the hole on the bottom side of the other PCa pillar 22 located on the upper side.
  • the PCa beams 17 and 18 mainly extend in the horizontal direction (column row direction) and the vertical direction (beam row direction), which are hereinafter referred to as X direction and Y direction for convenience.
  • the PCa column / beam joint 20 has a mounting portion 20a mounted on the column 16 and a joint portion 20b, 20c projecting from the mounting portion 20a in the left-right direction which is the X direction.
  • Connecting portions 23a, 23b for connecting to the PCa forward beam 17 in the X direction protrude from the ends of the joint portions 20b, 20c, respectively, and the connecting portions 24a protrude from both ends of the PCa forward beam 17, It will be connected with 24b.
  • a reinforcing portion 25 is projected from the upper end portion of the PCa column 16, and an end portion 26 of the PCa forward beam 18 arranged in the Y direction is placed thereon, and the placement portion 20 a of the PCa column / beam joint portion 20 is placed.
  • the connector provided at the reinforcing portion 25 and the connector provided at the end of the PCa forward beam 18 are firmly connected by bolts, pins, welding, or the like.
  • the building frame is constructed by the PCa column 16 and the PCa column / beam joint 20, the PCa forward beam 17 in the X direction, and the PCa forward beam 18 in the Y direction.
  • the connecting portions 23a and 23b of the PCa column / beam joint 20 protrude from the lower position, in order to install and fix the PCa forward beam 17 from the upper side. It goes without saying that the strength can be obtained by increasing the thickness of the connecting portions 23a and 23b.
  • Each is designed to be firmly connected using an auxiliary metal fitting, etc., but a protruding rebar is provided on the opposite side, and the protruding rebar is inserted on the other side, both of which are concrete, mortar, sleeve hardware, etc. You may make it connect by.
  • the floor slab 27 is constructed in the upper part of the PCa forward beams 17 and 18.
  • the floor slab 27 is constructed so as to be bridged between the upper ends of the PCa forward beams 17 and 18.
  • the floor slab 27 is constructed by laying a plate-like floor plate made of an ALC plate or the like, or floor finishing using a deck plate or the like.
  • the connecting portions 28, 29a, 29b for constructing the floor slab are protruded in the Y direction from the upper portions of the side walls of the PCa forward beam 17 and the joint portions 20b, 20c of the PCa column / beam joint portion 20, respectively.
  • the connecting portions 30a and 30b are also projected in the X direction from above the PCa forward beam 18. Using the connecting portions 28, 29a, 29b, 30a, 30b, etc., it is possible to construct a floor slab 27 on the forward beam side surrounded by the PCa forward beam 17 in the X direction and the PCa forward beam 18 in the Y direction. It becomes.
  • the reinforcing bar 19 that protrudes upward through the through hole 21 of the PCa column / beam joint 20 on the PCa column 16 is connected to the PCa column 22 on the upper floor located above the PCa column / beam joint 20. Will be. It is possible to firmly connect the reinforcing bar 19 by inserting the reinforcing bar 19 into a hole formed in the lower portion of the PCa column 22 and filling and fixing the reinforcing bar 19 and the hole with a filler. Filling can be performed from a hole formed in the side wall of the PCa column 22 or the PCa column / beam joint 20 side. Moreover, it will be firmly connected by an auxiliary
  • FIG. 3 is a perspective view showing the relationship between the PCa column 22 on the upper side and the PCa reverse beams 31 and 32.
  • a reinforcing bar 33 protrudes from the upper end of the PCa column 22, and the reinforcing bar 33 is inserted into a through-hole 35 of a PCa column / beam joint 34 that is placed and fixed on the PCa column 22, and is located on the upper side.
  • the PCa pillar 36 is inserted into the hole on the bottom side.
  • the PCa column / beam joint 34 includes a mounting portion 34a and joints 34b and 34c projecting in the left-right direction, and is connected to the PCa reverse beam 31 from the ends of the joints 34b and 34c. Therefore, the connecting portions 37a and 37b are protruded and connected to the connecting portions 38a and 38b protruding from both ends of the PCa reverse beam 31.
  • a reinforcing portion 39 protrudes from the upper end portion of the PCa column 22, and an end portion 40 of the PCa reverse beam 32 arranged in the Y direction is placed thereon, and a placement portion 34 a of the PCa column / beam joint portion 34 is placed.
  • the connecting tool provided at the reinforcing portion 39 and the connecting tool provided at the end of the PCa reverse beam 32 are firmly connected by bolts, pins, welding, or the like.
  • the PCa reverse beam members 31 and 32 are installed at a position where the height between the upper ends of the PCa forward beam members 17 and 18 and the upper ends of the PCa reverse beam members 31 and 32 is the same as the height of the lower floor. .
  • the building frame is constructed by the PCa column 22 and the PCa column / beam joint 34, the PCa reverse beam 31 in the X direction, and the PCa reverse beam 32 in the Y direction.
  • the opposing members can be connected by connecting the protruding reinforcing bars on one side with concrete, mortar, or sleeve hardware so that the protruding reinforcing bars on one side enter the other member. .
  • the floor slab 41 is constructed in the lower part of the PCa reverse beams 31, 32.
  • a floor slab 41 is constructed so as to be attached between the lower ends of the PCa reverse beams 31 and 32.
  • the floor slab 41 is constructed by attaching a plate-like floor board made of an ALC plate or the like, or finishing the floor using a deck plate or the like.
  • Connecting portions 42, 43a and 43b for constructing a floor slab are provided from the lower side walls of the PCa reverse beam 31 and the joint portions 34b and 34c of the PCa column / beam joint 34, and the PCa reverse beam in the Y direction is provided.
  • the connecting portions 44a and 44b are also protruded in the X direction from the lower portion of the side wall 32.
  • the reinforcing bars 33 that protrude upward through the through holes 35 of the PCa pillar / beam joint 34 are connected to the upper PCa pillars 36 located above the PCa pillar / beam joint 34. .
  • the PCa forward beam side is the lowest floor, but it goes without saying that the PCa reverse beam side can be constructed as the lowest floor.
  • FIG. 4 shows the construction of a building using long members straddling the PCa pillar 45 in two layers, which are upper and lower floors.
  • a PCa column / beam joint 46 is provided in the middle portion of the PCa column 45 in the longitudinal direction.
  • joints 46a and 46b are formed to project from the left and right in the X direction.
  • Connecting portions 48a and 48b for connecting to the PCa forward beam 47 protrude from the ends of the joint portions 46a and 46b, and are connected to the connecting portions 49a and 49b protruding from both ends of the PCa forward beam 47. It will be.
  • a reinforcing portion 50 protrudes from the upper end portion of the PCa column 45, and an end portion 52 of a PCa forward beam 51 arranged in the Y direction is placed thereon.
  • the PCa column / beam joining portion 46 and the reinforcing portion 50 are mounted on the upper end portion.
  • the connection tool provided and the connection tool provided at the end 52 of the PCa forward beam 51 are firmly connected by bolts, pins, welding, or the like.
  • the frame corresponding to one layer is constructed by the PCa pillar 45, the PCa forward beam 47 in the X direction, and the PCa forward beam 51 in the Y direction.
  • a reinforcing bar 53 protrudes from the upper end portion of the long PCa column 45 extending upward from the PCa column / beam joint 46, and the reinforcing bar 53 constructs a PCa reverse beam mounted and fixed on the PCa column 45. Is inserted into the through hole 55 of the PCa column / beam joint 54 for insertion, and is inserted into the hole on the bottom side of the other PCa column located on the upper floor, and is firmly connected by a reinforcing metal fitting or a connector. .
  • the PCa column / beam joint portion 54 includes a central mounting portion 54a and joint portions 54b and 54c protruding from the left and right in the X direction. From the ends of the joint portions 54b and 54c, The connecting portions 57a and 57b for connecting to the PCa reverse beam 56 are projected, and connected to the connecting portions 58a and 58b protruding from both ends of the PCa reverse beam 56.
  • a reinforcing portion 59 protrudes from the upper end portion of the PCa column 45, and an end portion 61 of the PCa reverse beam 60 arranged in the Y direction is placed thereon, and the center of the PCa column / beam joint portion 54 is placed.
  • the PCa column 45 and the PCa reverse beam 60 are firmly connected to each other by the connecting tool provided at the portion 54a or the reinforcing part 59, the connecting tool provided at the end 61 of the PCa reverse beam 60, and bolts, pins, welding, or the like. It will be.
  • the PCa reverse beam members 56 and 60 are installed at a position where the height between the upper ends of the PCa forward beam members 47 and 51 and the upper ends of the PCa reverse beam members 56 and 60 is the same as the height of the lower floor. .
  • the PCa pillar 45, the PCa forward beam 47 in the X direction, the PCa reverse beam 56, the PCa forward beam 51 in the Y direction, and the PCa reverse beam 60 form a two-layer building frame.
  • the opposing members can be connected by connecting the protruding reinforcing bars on one side into the other member by using concrete, mortar, or a sleeve hardware. .
  • the floor slab After the construction of the above frame, or after the construction of the forward beams on the lower floor side, or at the same time, the floor slab will be constructed.
  • the floor slab 62 is constructed above the PCa forward beams 47 and 51.
  • the floor slab 62 is constructed so as to be bridged between the upper ends of the PCa forward beams 47 and 51.
  • the floor slab 62 is constructed by laying a plate-like floor board made of an ALC plate or the like, or floor finishing using a deck plate or the like.
  • the floor slab connecting portions 63, 64a, 64b are projected in the Y direction from the upper portions of the respective side walls of the PCa forward beam 47 and the joint portion of the PCa column / beam joint portion 46 on the lower floor side, respectively.
  • the connecting portions 65a and 65b are also protruded in the X direction from the upper side wall of the PCa forward beam 51 in the direction.
  • the floor slab 66 is constructed in the lower part of the PCa reverse beams 56 and 60 on the upper floor side.
  • a floor slab 66 is constructed so as to be attached between the lower ends of the PCa reverse beams 56 and 60.
  • the floor slab 66 is constructed by attaching a plate-like floor board made of an ALC plate or the like, or finishing the floor using a deck plate or the like.
  • Floor slab connecting portions 67, 68 a, 68 b are provided in the Y direction from the lower side of the joint side wall of the PCa reverse beam 56 and the PCa column / beam joint 54 on the upper floor side, and the PCa reverse beam 60 in the Y direction is provided.
  • the connecting portions 69a and 69b are also protruded in the X direction from the lower portion of the side wall.
  • FIG. 5 is a perspective view showing a joint between a steel column and a steel beam in which each member of the construction method of the present invention is made of steel, and a frame made by them.
  • the steel column 70 is made of H-shaped steel, and a beam joint 71 for constructing a forward beam is formed in the upper part thereof.
  • the column / beam joint 71 is integrally attached to the steel column 70, and the joints 71a and 71b protrude from the left and right in the X direction.
  • the H-section steel protrudes from both flange sides of the H-section steel to be the steel column 70 to form the joint portions 71a and 71b.
  • the left and right joints 71a and 71b are connected to the steel forward beam 72 in the X direction. As shown in FIG. 6, the connection is performed by bolting or welding over the flange plate 73 and the web plate 74.
  • the joint portion 71c protrudes from the column / beam joint portion 71 in the Y direction.
  • the H-section steel is projected on the web side of the H-section steel to be the steel column 70, and the joint portion 71c is integrally formed.
  • the steel forward beam 75 in the Y direction is connected to the joint portion 71c protruding in the Y direction.
  • the connection is performed by bolting or welding over the flange plate 73, the web plate 74, etc., as described above.
  • the building frame is constructed by the steel forward beams 72 and 75 in the X direction and the Y direction with respect to the steel column 70.
  • a plate-like floor plate made of an ALC plate or the like on the flanges of the steel forward beams 72 and 75, floor finishing using a deck rate or the like, or other methods, the steel forward beam 72 in the X direction and the steel frame in the Y direction
  • the floor slab 76 on the side of the forward beam surrounded by the forward beam 75 is constructed.
  • the upper end of the steel column 70 is connected to the joint 71d of the column / beam joint 71 and the steel column 77 on the upper floor. Similar to the connection of the beams, the connection is firmly made by bolting or welding over the flange plate and the web plate.
  • FIG. 7 is a perspective view showing the relationship between the steel column 77 on the upper side and the steel reverse beams 78 and 79.
  • a steel column / beam joint 80 is formed above the steel column 77.
  • the steel column / beam joint 80 has joints 80a, 80b projecting in the left-right direction, and bolts that span the flange plate, web plate, etc. across both ends of the steel reverse beam 78. It will be connected by welding or the like.
  • Another joint 80c projects in the Y direction from the steel column / beam joint 80, and the joint 80c is connected to the end of the steel reverse beam 79 disposed in the Y direction, a flange plate, a web plate, and the like. It is connected by bolting or welding over the bridge.
  • the steel reverse beam members 78 and 79 are installed at a position where the height between the upper ends of the steel forward beam members 72 and 75 and the upper ends of the steel reverse beam members 78 and 79 is the same as the height of the lower floor. .
  • the building frame is constructed by the steel column 77, the steel column / beam junction 80, the steel reverse beam 78 in the X direction, and the steel reverse beam 79 in the Y direction.
  • the floor slab 81 on the reverse beam side is constructed in a space surrounded by the steel reverse beam 78, the steel column / beam joint 80 lower portion, and the Y direction steel reverse beam 79 lower portion.
  • the joint 80d located above the steel column / beam joint 80 is connected to the steel column 82 on the upper floor.
  • the steel forward beam side is the bottom floor, but it goes without saying that the steel reverse beam side can be the bottom floor.
  • FIG. 8 shows the construction of a building using long members straddling the steel column 83 and the two layers of upper and lower floors.
  • a steel column / beam joint 84 is provided at an intermediate portion in the longitudinal direction of the steel column 83.
  • joint portions 84a and 84b are formed so as to protrude on the left and right sides in the X direction.
  • the end portions of the joint portions 84a and 84b are connected to both end portions of the steel forward beam 85 by bolting or welding over a flange plate and a web plate.
  • a joint 84c protrudes from the steel column / beam joint 84 in the Y direction, and the joint 84c bridges the end of the steel forward beam 86 arranged in the Y direction, a flange plate, a web plate, and the like. All bolts and welding are connected.
  • the frame corresponding to one layer is constructed by the steel column 83, the steel forward beam 85 in the X direction, and the steel forward beam 86 in the Y direction.
  • the upper part of the long steel column 83 is connected to a steel column / beam joint 87 for constructing a reverse steel beam.
  • the steel column / beam joint 87 is bolted by bridging the ends of the joints 87a and 87b projecting in the X direction from the left and right sides and the steel reverse beam 88 in the X direction across a flange plate and a web plate. It will be connected by welding or the like.
  • a joint 87c projects in the Y direction from the center of the steel column / beam joint 87, and the joint 87c is an end of a steel reverse beam 89 disposed in the Y direction, a flange plate, a web plate, and the like. It is connected by bolting or welding over the bridge.
  • the steel reverse beam members 88 and 89 are installed at a position where the height between the upper ends of the steel forward beam members 85 and 86 and the upper ends of the steel reverse beam members 88 and 89 is the same as the height of the lower floor. .
  • the above-mentioned steel column 83, the steel forward beam 85 in the X direction, the steel reverse beam 88, the steel forward beam 86 in the Y direction, and the steel reverse beam 89 form a two-layer building frame.
  • a floor slab will be constructed after the construction of the frame, or after construction of a steel forward beam on the lower floor side, or simultaneously with the construction.
  • the space surrounded by the upper portion of 84c is constructed as a floor slab 90 on the steel forward beam side.
  • the lower part of the joints 87a and 87b of the steel frame reverse beam 88 and the steel column / beam joint 87 in the X direction on the upper floor side, the steel reverse beam 89 and the steel column / beam joint 87 of the Y direction are arranged.
  • a space surrounded by the joint portion 87c is constructed as a floor slab 91 on the steel reverse beam side.
  • the joint 87d of the column / beam joint 87 in the upper part of the steel column 83 is connected to another steel column 92 positioned above by bolting or welding over a flange plate and a web plate. Is done.
  • the steel forward beam side is the bottom floor, but it goes without saying that the steel reverse beam side can be the bottom floor.
  • Examples 2 and 4 described above an example of building a building using a long pillar member straddling two layers has been shown. However, if road conditions, weight, cranes, etc. are relaxed, three layers are used. It is also possible to use a long column member straddling and to form a single member in which a forward beam, a reverse beam, a forward beam, or a reverse beam, a forward beam, and a reverse beam are repeated.
  • the building constructed according to the above embodiment can bring about a change in the height of the indoor space, so as shown in FIG. can do. Further, as shown in FIG. 10, an effective wind passage in the room can be secured by using the height of the indoor space.
  • the space can be made into two layers using the height of the indoor space, and the lower layer side can be used as a storage space for various ecological measures.
  • Ecological measures include a treatment system that handles waste that can be handled in each room, a system that absorbs CO 2 and discharges oxygen, power generation facilities and storage means for emergencies, etc. .
  • solar panels 100, 101 are arranged in front of the outer surface of the beam on the upper part of the veranda provided outside the room serving as each individual space and on the handrail of the veranda, and the solar panels 100, 101.
  • the solar energy obtained by the above is stored as electrical energy by wiring connection with the power storage equipment 103 installed in the article storage space 102 that can be provided by using a high three-dimensional space obtained by the difference in height of each indoor space.
  • the stored energy can be supplied to various load devices of each dwelling unit.
  • Solar panels 100 and 101 are disposed in front of the outer surface of the beam, which is an upper part of a veranda, a balcony or the like (hereinafter, simply referred to as a veranda) from which sunlight is obtained in each individual space, and on a handrail of the veranda.
  • a rod-like body is suspended from the lower part of the veranda located on the upper floor, and the solar panels 100 and 101 are attached to the front surface of the stick-like body or a small wall formed at the lower part of the veranda or a handrail raised from the end of the veranda. It is installed so as to be incorporated inside.
  • the solar panels 100 and 101 are formed as solar power generation panels, and are solar cells laid in order to convert sunlight into electric energy.
  • the solar panels 100 and 101 are connected to a power storage facility 103 arranged in an article storage space 102 under the floor obtained by forming a space with a height up to the ceiling by wiring.
  • the solar panels 100 and 101 are wired to the article storage spaces 102 provided in the individual rooms through the lower part or wall of the veranda, and are connected to the power storage facilities 103 provided in the article storage spaces 102.
  • the power storage facility 103 is connected to the control device 104, and the control device 104 controls the amount of power supply, the supply time, switching between the conventional power supply and the like.
  • the conventional power is also connected to the control device 104 via the lead-in distribution board 105, and the control device 104 controls the amount of power supply, the supply time, and switching thereof.
  • Capacitors made of activated carbon and barium titanate as the main raw materials do not contain substances that are large and heavy, have a short life span, and are susceptible to pollution such as lead electrodes and sulfuric acid, as in conventional lead capacitors. It is desirable to use a capacitor of the (capacitor) type.
  • the power storage facility 103 can store the electric power obtained in the daytime and supply it for the night, and emergency power including emergency lights can be used as an emergency response when the conventional power supply stops due to some circumstances.

Abstract

 本発明は、梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築することにより隣接する上下階に位置する建物室内の天井高寸法を、各々異なるように設定でき、需要者の多様なニーズに応えることのできる室内空間を得ることを可能とした建物の構築方法を提供するものである。  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、 PCa柱部材の上部のX方向及びY方向にPCa順梁部材を配設する工程、隣接上階のPCa柱部材の上部のX方向及びY方向にPCa逆梁部材を配設する工程、上記工程のPCa順梁部材及びPCa逆梁部材で囲まれた空間にスラブを構築する工程、の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。

Description

建物の構築方法
 本発明は、低層から中高層の建物の構築方法において、上下階に位置する梁の天端間の寸法を同一寸法としながら、その上下の隣接階で室内空間の天井高を異なるように構築したもので、そのために隣接する上下階の梁を順梁と逆梁とが交互に繰り返されるようにした建物の構築方法で、該順梁と逆梁と、それらと一体化される柱との連結位置を予め工場にて特定することにより、施工効率を上昇させ、且つ完成した建物においては需要者の多様なニーズに応えることのできる建物の構築方法に関する。
 従来の集合住宅、事務所建築物、店舗建築物、特殊建築物或いはそれらの併用建築物等の各種建築物(以下、それらを総称して建物という)は、上下階のスラブ間寸法が同一であり、従って、各建物の階高は同一寸法で構成され、各建物の天井高も同一寸法に設定されていることが一般的であった。
 それら各建物の室内空間となる天井高に変化を与えるためには、スラブと天井面或いはスラブと床面との間に適宜天井高に影響を与えるスペースを形成することにより対応していた。
 従って、天井高を有効に確保し、且つ需要者の多様なニーズに応えることのできる異なった高さの天井高を有する室内空間を建物の構築の段階で積極的に考える構築方法はなかった。
 建物の構造形態から把握すると、床構造梁を逆梁構造とする例は知られている。該逆梁工法はスラブの上面側となる位置に梁を構築する工法であるが、該工法を採用する理由は、図12の従来例に示すように、梁の天端を仕上げ床Aの配置面とし、スラブと該仕上げ床面との間に生じる空間Bを床下収納空間や各種設備機器の配管や配線空間とすること、或いは天井面Cに下方へ突出する梁が存在しないことになるので、天井の一部が低くなる段付き天井ではなく、フラット天井とすることがスラブを構築する段階で可能であること等が主な要因であった。
 更に、上記逆梁工法は、単に所定の階のみに採用するとか、建物全体に採用して構築しているので、逆梁によって形成されるスラブと順梁で形成されるスラブとを隣接する上下階において交互に配置するという両者間に相対的な関連性を持たせて建物を構築する考え方はなかったし、隣接する上下階において室内空間にその天井高さに変化を与える構築方法はなかった。
特開2005-139866号公報 特開平11-50527号公報
 本発明は、隣接上下階に位置する梁の天端間の寸法を同一寸法の状態で構築しているにもかかわらず、梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築することにより隣接する上下階に位置する建物室内の天井高寸法を、各々異なるように設定でき、需要者の多様なニーズに応えることのできる室内空間を得ることを可能とした建物の構築方法を提供するものである。
 また、上下方向での順梁スラブ間に位置するスラブは逆梁スラブとなり、該逆梁スラブの下方に位置する室内空間は、その天井高寸法が上方に位置する室内空間より低くなるが、階高が所定高確保されること及び天井面と床面の両面がフラット面となり上下両面に凹凸の無い室内空間を得ることが可能となり、有効な天井高寸法を確保することができる建物の構築方法を提供するものである。
 他方、上方或いは下方に位置する階の室内空間は、その床側が逆梁スラブにより下方に位置し、天井側が順梁スラブにより上方に位置することになり、それらのスラブ面を床や天井の仕上げ面とすることにより、天井高寸法の高い室内空間を得ることを可能とする建物の構築方法を提供するものである。
 上記のように上下階のいずれにしても、天井高寸法を高く設定することができ、多様性のある豊かな立体空間を形成することを可能とし、また、天井高寸法が高くなったことにより、各室内空間を複数層とし、必要となる床面積を増加させると同時に、収納スペースを確保することもでき、有効な立体空間を形成することを可能とする建物の構築方法を提供するものである。
 更に、上記隣接上下階において異なる室内空間を得るための建物の構築を建築現場での現場施工のみに頼ると、順梁と逆梁との位置関係に誤りが生じること及び現場施工業者の作業効率を高めること等のために、プレキャスト鉄筋コンクリート(以下、PCaという)や鉄骨により順梁及び逆梁が位置する接合部位置を予め工場において決定してそれら部材を製造し、現場での作業は主として組み立て施工となる構築方法を提供するものである。
 本発明は、上記課題を解決したもので、その構成は下記の通りである。
 上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa順梁部材を配設し、該PCa柱・梁接合部の側端部と該順梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
2.上記PCa柱・梁接合部の上部に隣接上階のPCa柱部材を固定し、該PCa柱部材の上部にPCa柱・梁接合部設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa逆梁部材を該PCa順梁部材の上端とPCa逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
3.上記工程によりPCa順梁部材により囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築し、PCa逆梁部材で囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 また、上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨順梁部材を配設し、該鉄骨柱・梁接合部の側端部と該鉄骨順梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
2.上記鉄骨柱・梁接合部の上部に隣接上階の鉄骨柱部材を固定し、該鉄骨柱部材の上部に鉄骨柱・梁接合部設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨逆梁部材を該鉄骨順梁部材の上端と鉄骨逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
3.上記工程により鉄骨順梁部材により囲まれた空間は該鉄骨順梁部材の天端側を床面とするスラブを構築し、鉄骨逆梁部材で囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 更に、上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa逆梁部材を配設し、該PCa柱・梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
2.上記PCa柱・梁接合部の上部に隣接上階のPCa柱部材を固定し、該PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa順梁部材を該PCa逆梁部材の上端とPCa順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa順梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
3.上記工程によりPCa逆梁部材により囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築し、PCa順梁部材で囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 また、上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨逆梁部材を配設し、該鉄骨柱・梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
2.上記鉄骨柱・梁接合部の上部に隣接上階の鉄骨柱部材を固定し、該鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨順梁部材を該鉄骨逆梁部材の上端と鉄骨順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該順梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
3.上記工程により鉄骨逆梁部材により囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築し、鉄骨順梁部材で囲まれた空間は該鉄骨順梁部材の天端側を床面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 更に、上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.PCa柱部材の中間部にPCa梁接合部を設け、隣接する該PCa梁接合部間にX方向に延出するPCa順梁部材を配設し、該PCa梁接合部の側端部と該PCa順梁部材の側端部とを固定し、該PCa梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
2.上記PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa逆梁部材を該PCa順梁部材の上端とPCa逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
3.上記工程によりPCa順梁部材により囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築し、PCa逆梁部材で囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 また、上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.鉄骨柱部材の中間部に鉄骨梁接合部を設け、隣接する該鉄骨梁接合部間にX方向に延出する鉄骨順梁部材を配設し、該鉄骨梁接合部の側端部と該鉄骨順梁部材の側端部とを固定し、該鉄骨梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
2.上記鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨逆梁部材を該鉄骨順梁部材の上端と鉄骨逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
3.上記工程により順梁部材により囲まれた空間は該順梁部材の天端側を床面とするスラブを構築し、鉄骨逆梁部材で囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 更に、上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.PCa柱部材の中間部にPCa梁接合部を設け、隣接する該PCa梁接合部間にX方向に延出するPCa逆梁部材を配設し、該PCa梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
2.上記PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa順梁部材を該PCa逆梁部材の上端とPCa順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa順梁部材の側端部を固定し、該PCa柱・梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
3.上記工程によりPCa逆梁部材により囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築し、PCa順梁部材で囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 また、上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
1.鉄骨柱部材の中間部に鉄骨梁接合部を設け、隣接する該鉄骨梁接合部間にX方向に延出する鉄骨逆梁部材を配設し、該鉄骨梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
2.上記鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨順梁部材を該鉄骨逆梁部材の上端と鉄骨順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該順梁部材の側端部を固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
3.上記工程により鉄骨逆梁部材により囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築し、鉄骨順梁部材で囲まれた空間は該鉄骨順梁部材の天端側を床面とするスラブを構築する工程、
の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなる建物の構築方法を特徴とする。
 更に、上記によって得られた空間において、風の吹き抜け或いはエコシステムのための空間を構築してなる建物の構築方法を特徴とする。
 また、上記によって得られた空間において、その高さの高い室内空間の一部或いは全部を2層又は3層となるように床面を構築してなる建物の構築方法を特徴とする。
 更に、上記によって得られた空間において、太陽光が得られる側に位置する梁の外側前方にソーラーパネルを配設し、該ソーラーパネルによって得られた太陽光エネルギーを、上記住戸空間の高さの異なりによって得られる高い立体空間を利用して構築した物品収納スペースに設置した蓄電装置と配線接続して電気エネルギーとして蓄電し、各住戸においてその蓄電エネルギーを住戸空間内の各種負荷機器に供給してなる建物の構築方法を特徴とする。
 また、蓄電装置は、蓄電池、制御装置及び引込分電盤よりなり、タイマーによる所定の時間帯に住戸空間内の各種負荷機器に蓄電エネルギーを供給する建物の構築方法を特徴とする。
 更に、蓄電装置の蓄電手段をリチウム電池とした建物の構築方法を特徴とする。
 本発明の建物の構築方法は、上下階の梁の天端間の寸法が一定であるにもかかわらず、異なった天井高を有する室内空間を、その隣接する上下階において得ることを可能としたもので、そのための建物の構築方法として、PCa部材或いは鉄骨部材により上記室内空間を得るための順梁と逆梁の設置位置にそれらの接合部を予め工場において決定し、その接合部の位置を利用することにより早期に建物を構築することを可能とした。
 また、順梁と逆梁とが交互に出現することになるが、その設置位置が予め製造されている接合部の位置により自ずと決定されるため、施工誤りが生じることはなく、現場施工業者が戸惑うことなく作業効率を高めることができ、現場での作業は組み立て作業を主とした構築方法を可能とした。
 更に、上記建物の構築方法によって得られた建物は、外観は従来と同じであっても室内空間の天井高にその隣接上下階において変化を得ることができ、需要者の多様なニーズに応えることのできる豊かな室内空間を得ることを可能とした。
本発明による建物の完成状態の1実施例を示す断面図。 本発明による建物の1実施例となるPCa部材による1層部分の構築例を示した斜視図。 本発明による建物の他の実施例となるPCa部材による他の1層部分の構築例を示した斜視図。 本発明による建物の他の実施例となるPCa部材による2層の構築例を示した斜視図。 本発明による建物の他の実施例となる鉄骨部材による1層部分の構築例を示した斜視図。 鉄骨部材の柱と梁との接合部の1実施例を示した斜視図。 本発明による建物の他の実施例となる鉄骨部材による他の1層部分の構築例を示した斜視図。 本発明による建物の他の実施例となる鉄骨部材による2層の構築例を示した斜視図。 本発明による建物の完成状態の他の実施例を示す断面図。 本発明による建物の完成状態の他の実施例を示す断面図。 本発明により得られた空間を利用した蓄電設備の概略断面図。 建物の従来例の断面図
符号の説明
 1  集合住宅
 2  エントランスホール
 3  階段
 4  エレベータ
 5  駐車場
 6  共有スペース
 7  住戸
 8  1階床スラブ
 9  地中梁
10  2階床スラブ
11  1階梁
12  3階床スラブ
13  2階梁
14  4階床スラブ
15  3階梁
16、22、36、45  PCa柱
17、18、47、51  PCa順梁
19、33、53  鉄筋
20、34、46、54  PCa柱・梁接合部
20a、34a、54a  載置部
20b、20c、34b、34c、54b、54c、71a、71b、71c、71d、80a、80b、80c、80d、84a、84b、84c、87a、87b、87c、87d  仕口部
21、55  貫通孔
23a、23b、24a、24b、28、29a、29b、30a、30b、37a、37b、38a、38b、42、43a、43b、44a、44b、48a、48b、49a、49b、57a、57b、58a、58b、63、64a、64b、65a、65b、67、68a、68b、69a、69b  連結部
25、39、50、59  補強部
26、40、61  端部
27、41、62、66、76、81、90、91  床スラブ
31、32、56、60  PCa逆梁
70、77、82、83、92  鉄骨柱
71、80、84、87  鉄骨柱・梁接合部
72、76  鉄骨順梁
73  フランジプレート
74  ウェブプレート
78、79、88、89  鉄骨逆梁
100、101  ソーラーパネル
102  スペース
103  蓄電設備
104  制御装置
105  引込分電盤
 本発明を実施例に基づいて以下に説明する。
 図1は、中層建物の断面図を示している。
 本発明の建物の構築方法によって構築された建物1の一実施例を示したもので、地下1階、地上8階建ての建物1を示し、地下1階及び1階は駐車場、エントランスホール及びその関連スペース、2階~8階の基準階は住戸或いは事務室としている。
 地下1階の駐車場は、機械式2層の駐車場とし、1階は上層階へのアプローチとなるエントランスホール2、階段3、エラベータ4、地下一階の駐車場へのターンテーブルスペース及び駐車場5等が配設されている。
 基準階は、上記階段3、エレベータ4及びその前面ホールや通路となる共有スペース6としている。該共有スペース6を挟んで各個別空間7が対称に配置されている。
 該建物1の構造計画において、その経済性及び外観上等より地下階や1階等を除いた基準階の上下の梁の天端間の寸法Hは一定としている。
 1階の床スラブ8と地中梁9とはT形梁となるように順梁として構築され、該床スラブ8の仕上げ表面と地中梁9の仕上げ天端とは面一として仕上げている。2階の空間の床スラブ10と1階の梁11とは、床スラブ10の下面と1階の梁の下面とが面一となる逆梁として構築されている。
 そして、3階の空間となる床スラブ12と2階の梁13とは順梁として構築され、床スラブ12の表面と梁13の仕上げ天端とは面一として仕上げ、4階の空間の床スラブ14と3階の梁15とは逆梁として構築されている。
 上記のように順梁によるスラブと逆梁によるスラブとを隣接上下階において交互に構築している。従って、各階の梁天端間が同一寸法であっても、例えば3階と4階とを例にとるならば、その各々の階のスラブ間寸法H1、H2は異なることになる。
 本実施例では、上下階の梁の天端間の寸法Hを同一とし、偶数階の床スラブ面を逆梁による床面として構築し、当該偶数階のスラブ間寸法H2を高くなるように構築し、奇数階の床スラブを順梁による床面として構築しているので、奇数階のスラブ間寸法は偶数階のスラブ間寸法より低く構築されることになる。
 以下に、上記建物1を構築する方法について詳述する。
 本発明の構築方法で採用する各部材は、鉄筋コンクリート製としたもので、それら各部材は予め工場においてPCa製部材として製造したものである。図2は、PCa柱16とPCa梁17、18との接合部を示している斜視図である。該PCa柱16の上端部からは鉄筋19が上方へ突出し、該鉄筋19は該柱16上に載置固定されるPCa順梁17、18を構築するためのPCa柱・梁接合部20の貫通孔21に挿通され、上部側に位置する他のPCa柱22の底部側の孔に挿通されることになる。
 該PCa梁17、18は、主として横方向(桁行方向)及び縦方向(梁行方向)へ延出しているが、それを以下、便宜上X方向及びY方向という。
 該PCa柱・梁接合部20は、柱16に載置される載置部20aと該載置部20aからX方向となる左右方向に仕口部20b、20cを各々突出形成している。該仕口部20b、20cの端部からはX方向となるPCa順梁17と連結するための連結部23a、23bが各々突出され、該PCa順梁17の両端部から突出した連結部24a、24bと連結されることになる。
 該PCa柱16の上端部には補強部25を突出構成し、Y方向に配置されるPCa順梁18の端部26が載置され、且つ該PCa柱・梁接合部20の載置部20aや該補強部25に設けた連結具と該PCa順梁18の端部に設けた連結具とをボルトやピン或いは溶接等により強固に連結されることになる。
 上記PCa柱16及びPCa柱・梁接合部20並びにX方向のPCa順梁17及びY方向のPCa順梁18により建物の架構が構築されることになる。上記PCa柱・梁接合部20の連結部23a、23bは下方位置から突出しているが、これは該PCa順梁17を上方側から設置固定するためである。また、該連結部23a、23bを厚くすることにより強度が得られることは言うまでもない。各々は補助金具等を使用して強固に連結するようにしているが、対向する一方側に突出鉄筋を設け、他方側にはその突出鉄筋が入り込むようにし、両者をコンクリートやモルタル或いはスリーブ金物等により連結するようにしてもよい。
 上記PCa順梁17、18には、その上方部に床スラブ27を構築することになる。該PCa順梁17、18の梁上端間に架け渡すようにして床スラブ27を構築する。ALC版等よりなる版状の床板の敷設、デッキプレート等を使用しての床仕上げ等により床スラブ27を構築することになる。
 上記PCa順梁17及びPCa柱・梁接合部20の仕口部20b、20cの側壁上方部から、床スラブを構築するための連結部28、29a、29bを各々Y方向へ突出させ、Y方向のPCa順梁18の上方部からも連結部30a、30bをX方向へ突出させる。該連結部28、29a、29b、30a、30b等を利用してX方向のPCa順梁17とY方向のPCa順梁18とによって囲まれた順梁側の床スラブ27を構築することが可能となる。
 上記PCa柱16上のPCa柱・梁接合部20の貫通孔21を貫通して上方へ突出した鉄筋19は、該PCa柱・梁接合部20の上方に位置する上階のPCa柱22と連結されることになる。該PCa柱22の下部に形成された孔に鉄筋19を挿入し、該鉄筋19と孔間を充填材で充填固定することにより強固に連結することが可能である。充填はPCa柱22の側壁に形成した孔やPCa柱・梁接合部20側から行うことができる。また、補助金具や連結具により強固に連結されることになる。
 図3は、上記上方部側のPCa柱22とPCa逆梁31、32との関係を示す斜視図である。該PCa柱22の上端部からは鉄筋33が突出し、該鉄筋33は該PCa柱22上に載置固定されるPCa柱・梁接合部34の貫通孔35に挿通され、上部側に位置する他のPCa柱36の底部側の孔に挿通されることになる。
 該PCa柱・梁接合部34は、載置部34aとその左右方向へ突出した仕口部34b、34cより構成され、該仕口部34b、34cの端部からはPCa逆梁31と連結するための連結部37a、37bが各々突出され、該PCa逆梁31の両端部から突出した連結部38a、38bと連結されることになる。
 該PCa柱22の上端部には補強部39を突出構成し、Y方向に配置されるPCa逆梁32の端部40が載置され、且つ該PCa柱・梁接合部34の載置部34aや補強部39に設けた連結具と該PCa逆梁32の端部に設けた連結具とボルトやピン或いは溶接等により強固に連結されることになる。上記PCa逆梁部材31、32は、該PCa順梁部材17、18の上端とPCa逆梁部材31、32の上端間の高さが下階の高さと同一となる位置に設置することになる。
 上記PCa柱22及びPCa柱・梁接合部34並びにX方向のPCa逆梁31及びY方向のPCa逆梁32により建物の架構が構築されることになる。対向する部材の連結は、上記した突出した連結具相互の連結の他、一方側の突出鉄筋を他方側の部材に入り込むようにしてコンクリートやモルタル或いはスリーブ金物等により連結することによっても可能である。
 上記PCa逆梁31、32には、その下方部に床スラブ41を構築することになる。該PCa逆梁31、32の梁下端間に取着するようにして床スラブ41を構築する。ALC版等よりなる版状の床板の取着、デッキプレート等を使用しての床仕上げ等により床スラブ41を構築することになる。
 上記PCa逆梁31及びPCa柱・梁接合部34の仕口部34b、34cの側壁下方部からは、床スラブを構築するための連結部42、43a、43bを設け、Y方向のPCa逆梁32の側壁下方部からも連結部44a、44bをX方向へ突出させる。補強部39及び該連結部42、43a、43b、44a、44bを利用してX方向のPCa逆梁31とY方向のPCa逆梁32とによって囲まれた逆梁側の床スラブ41を構築することが可能となる。
 上記PCa柱・梁接合部34の貫通孔35を貫通して上方へ突出した鉄筋33は、該PCa柱・梁接合部34の上方に位置する上階のPCa柱36と連結されることになる。
 上記PCa柱、PCa柱・梁接合部及びPCa順梁、PCa逆梁並びに床スラブの構築を繰り返すことにより、隣接上下階においてその高さの異なる室内空間を交互に出現することが可能となった。
 上記ではPCa順梁側を最下階としているが、PCa逆梁側を最下階として構築することも可能なことはいうまでもない。
 図4は、PCa柱45を上下階となる2層に跨る長尺部材を使用して建物を構築するものである。PCa柱45の長手方向の中間部にPCa柱・梁接合部46を設けている。該中間部のPCa柱・梁接合部46には、X方向となる左右に仕口部46a、46bを各々突出形成している。該仕口部46a、46bの端部からはPCa順梁47と連結するための連結部48a、48bが突出され、該PCa順梁47の両端部から突出した連結部49a、49bと連結されることになる。
 該PCa柱45の上端部には補強部50を突出構成し、Y方向に配置されるPCa順梁51の端部52が載置され、且つ該PCa柱・梁接合部46や補強部50に設けた連結具と該PCa順梁51の端部52に設けた連結具とボルトやピン或いは溶接等により強固に連結されることになる。
 上記PCa柱45及びX方向のPCa順梁47及びY方向のPCa順梁51により1層に相当する部分の架構が構築されることになる。
 上記PCa柱・梁接合部46から上方へ延出した長尺PCa柱45の上端部からは鉄筋53が突出し、該鉄筋53は該PCa柱45上に載置固定されるPCa逆梁を構築するためのPCa柱・梁接合部54の貫通孔55に挿通され、上部階に位置する他のPCa柱の底部側の孔に挿通され、補強金具や連結具等により強固に連結されることになる。
 該PCa柱・梁接合部54は、中央の載置部54aとそのX方向の左右から突出した仕口部54b、54cより構成され、該仕口部54b、54cの端部からはX方向のPCa逆梁56と連結するための連結部57a、57bが各々突出され、該PCa逆梁56の両端部から突出した連結部58a、58bと連結されることになる。
 該PCa柱45の上端部には補強部59を突出構成し、Y方向に配置されるPCa逆梁60の端部61が載置され、且つ該PCa柱・梁接合部54の中央の載置部54aや補強部59に設けた連結具と該PCa逆梁60の端部61に設けた連結具とボルトやピン或いは溶接等により該PCa柱45とPCa逆梁60とは強固に連結されることになる。上記PCa逆梁部材56、60は、該PCa順梁部材47、51の上端とPCa逆梁部材56、60の上端間の高さが下階の高さと同一となる位置に設置することになる。
 上記PCa柱45及びX方向のPCa順梁47、PCa逆梁56並びにY方向のPCa順梁51、PCa逆梁60とにより2層分の建物の架構が構築されることになる。対向する部材の連結は、上記した突出した連結部相互の連結の他、一方側の突出鉄筋を他方側の部材に入り込むようにしてコンクリートやモルタル或いはスリーブ金物等により連結することによっても可能である。
 上記架構の施工後、或いは下階側の順梁の施工後やそれらと同時施工により、床スラブを施工することになる。
 上記PCa順梁47、51にはその上方部に床スラブ62を構築することになる。該PCa順梁47、51の梁上端間に架け渡すようにして床スラブ62を構築する。ALC版等よりなる版状の床板の敷設、デッキプレート等を使用しての床仕上げ等により床スラブ62を構築することになる。
 また、上記下階側のPCa順梁47及びPCa柱・梁接合部46の仕口部の各々の側壁の上方部からY方向に床スラブ用連結部63、64a、64bを各々突出させ、Y方向のPCa順梁51の上方部側壁からも連結部65a、65bをX方向へ各々突出させる。該連結部63、64a、64b、65a、65bを利用してX方向のPCa順梁47とY方向のPCa順梁51とによって囲まれた空間をPCa順梁側の床スラブ62として構築することになる。
 次に、上記同様、上階側のPCa逆梁56、60には、その下方部に床スラブ66を構築することになる。該PCa逆梁56、60の梁下端間に取着するようにして床スラブ66を構築する。ALC版等よりなる版状の床板の取着、デッキプレート等を使用しての床仕上げ等により床スラブ66を構築することになる。
 上記上階側のPCa逆梁56及びPCa柱・梁接合部54の仕口部側壁の下方部からY方向に床スラブ用連結部67、68a、68bを設け、Y方向のPCa逆梁60の側壁下方部からも連結部69a、69bをX方向へ各々突出させる。該連結部67、68a、68b、69a、69bを利用してX方向のPCa逆梁56とY方向のPCa逆梁60とによって囲まれた空間をPCa逆梁側の床スラブ66として構築することになる。
 図5は、本発明の構築方法の各部材を鉄骨製とした鉄骨柱と鉄骨梁の接合部及びそれらによる架構を示している斜視図である。該鉄骨柱70はH形鋼とし、その上方部には順梁を構築するための梁接合部71が形成される。該柱・梁接合部71は、該鉄骨柱70に一体的に取着され、X方向となる左右には仕口部71a、71bを各々突出している。図5においては、鉄骨柱70となるH形鋼の両フランジ側から各々H形鋼を突出して仕口部71a、71bを形成している。
 上記左右の仕口部71a、71bは、各々X方向の鉄骨順梁72と連結することになる。連結は、図6に示すように、フランジプレート73及びウェブプレート74等を架け渡してのボルト締めや溶接等により行うことになる。
 該柱・梁接合部71からY方向に仕口部71cが突出している。上記同様、鉄骨柱70となるH形鋼のウェブ側にH形鋼を突出して仕口部71cを一体形成している。
 上記Y方向に突出した仕口部71cにY方向の鉄骨順梁75と連結することになる。連結は、上記同様、フランジプレート73及びウェブプレート74等を架け渡してのボルト締めや溶接等により行うことになる。
 上記鉄骨柱70に対してX方向及びY方向の鉄骨順梁72、75により建物の架構が構築されることになる。該鉄骨順梁72、75のフランジ上にALC版等よりなる版状の床板の敷設、デッキレート等を使用しての床仕上げ、或いはその他により、X方向の鉄骨順梁72とY方向の鉄骨順梁75とによって囲まれた順梁側の床スラブ76を構築することになる。
 上記鉄骨柱70の上端部には、柱・梁接合部71の仕口部71dと上階の鉄骨柱77が連結されることになる。上記梁の連結と同様、フランジプレート及びウェブプレート等を架け渡してのボルト締め或いは溶接等により強固に連結されることになる。
 図7は、上記上方部側の鉄骨柱77と鉄骨逆梁78、79との関係を示す斜視図である。該鉄骨柱77の上方部には鉄骨柱・梁接合部80が形成される。
 該鉄骨柱・梁接合部80は、その左右方向へ突出した仕口部80a、80bが各々突出され、該鉄骨逆梁78の両端部とフランジプレート及びウェブプレート等を架け渡してのボルト締めや溶接等により連結されることになる。
 該鉄骨柱・梁接合部80からY方向には他の仕口部80cが突出され、該仕口部80cはY方向に配設される鉄骨逆梁79の端部とフランジプレート及びウェブプレート等を架け渡してのボルト締めや溶接等により連結されることになる。上記鉄骨逆梁部材78、79は、該鉄骨順梁部材72、75の上端と鉄骨逆梁部材78、79の上端間の高さが下階の高さと同一となる位置に設置することになる。
 上記鉄骨柱77及び鉄骨柱・梁接合部80並びにX方向の鉄骨逆梁78及びY方向の鉄骨逆梁79により建物の架構が構築されることになる。
 上記鉄骨逆梁78及び鉄骨柱・梁接合部80下方部並びにY方向の鉄骨逆梁79の下方部とによって囲まれた空間に逆梁側の床スラブ81を構築することになる。
 上記鉄骨柱・梁接合部80の上方に位置する仕口部80dは、上階の鉄骨柱82と連結されることになる。
 上記鉄骨柱、鉄骨柱・梁接合部及び鉄骨順梁、鉄骨逆梁並びに床スラブの構築を繰り返すことにより、隣接上下階においてその高さの異なる室内空間を交互に出現することが可能となった。
 上記では鉄骨順梁側を最下階としているが、鉄骨逆梁側を最下階として構築することも可能なことはいうまでもない。
 図8は、鉄骨柱83を上下階となる2層に跨る長尺部材を使用して建物を構築するものである。鉄骨柱83の長手方向の中間部に鉄骨柱・梁接合部84を設けている。該中間部の鉄骨柱・梁接合部84には、X方向となる左右に仕口部84a、84bを各々突出形成している。該仕口部84a、84bの端部は、フランジプレート及びウェブプレート等を架け渡してのボルト締めや溶接等により、鉄骨順梁85の両端部と連結されることになる。
 該鉄骨柱・梁接合部84からはY方向に仕口部84cが突出され、該仕口部84cはY方向に配置される鉄骨順梁86の端部とフランジプレート及びウェブプレート等を架け渡してのボルト締めや溶接等により連結されることになる。
 上記鉄骨柱83及びX方向の鉄骨順梁85及びY方向の鉄骨順梁86により1層に相当する部分の架構が構築されることになる。
 上記長尺鉄骨柱83の上方部は、鉄骨逆梁を構築するための鉄骨柱・梁接合部87と連結されることになる。
 該鉄骨柱・梁接合部87は、その左右からX方向に突出した仕口部87a、87bの端部とX方向の鉄骨逆梁88とをフランジプレート及びウェブプレート等を架け渡してのボルト締めや溶接等により連結されることになる。
 該鉄骨柱・梁接合部87の中央からY方向に仕口部87cが突出され、該仕口部87cはY方向に配設される鉄骨逆梁89の端部と、フランジプレート及びウェブプレート等を架け渡してのボルト締めや溶接等により連結されることになる。上記鉄骨逆梁部材88、89は、該鉄骨順梁部材85、86の上端と鉄骨逆梁部材88、89の上端間の高さが下階の高さと同一となる位置に設置することになる。
 上記鉄骨柱83及びX方向の鉄骨順梁85、鉄骨逆梁88並びにY方向の鉄骨順梁86、鉄骨逆梁89とにより2層分の建物の架構が構築されることになる。
 上記架構の施工後、或いは下階側の鉄骨順梁の施工後やそれらと同時施工により、床スラブを施工することになる。
 上記下階側のX方向の鉄骨順梁85及び鉄骨柱・梁接合部84の仕口部84a、84bの上方部、Y方向の鉄骨順梁86及び鉄骨柱・梁接合部84の仕口部84cの上方部によって囲まれた空間を鉄骨順梁側の床スラブ90として構築することになる。
 次に、上記上階側のX方向の鉄骨逆梁88及び鉄骨柱・梁接合部87の仕口部87a、87bの下方部、Y方向の鉄骨逆梁89及び鉄骨柱・梁接合部87の仕口部87cとによって囲まれた空間を鉄骨逆梁側の床スラブ91として構築することになる。
 上記鉄骨柱83の上方部の柱・梁接合部87の仕口部87dは、上方に位置する他の鉄骨柱92と、フランジプレート及びウェブプレート等を架け渡してのボルト締めや溶接等により連結される。
 上記鉄骨柱、鉄骨柱・梁接合部及び鉄骨順梁、鉄骨逆梁並びに床スラブの構築を繰り返すことにより、隣接上下階においてその高さの異なる室内空間を交互に出現することが可能となった。
 上記では鉄骨順梁側を最下階としているが、鉄骨逆梁側を最下階として構築することも可能なことはいうまでもない。
 上記実施例2、4では、2層に跨る長尺の柱部材を使用して建物を構築する例について示したが、道路事情、重さ、クレーン等の状況がゆるされるならば、3層に跨る長尺の柱部材を使用し、順梁、逆梁、順梁となるもの或いは逆梁、順梁、逆梁となるものが繰り返される1つの部材とすることも可能である。
 また、柱と梁との連結部については、各種の方法が考えられるものであり、上記各実施例はその一実施態様を示したもので、それに限定されるものではない。
 上記実施例によって構築された建物は、室内空間の高さに変化をもたらすことができるので、図9に示すように、天井高の低い層等を利用して風の吹き抜けスペースとして有効的に活用することができる。
 また、図10に示すように、室内空間の高さを利用して当該室内の有効的な風の通り道を確保することができる。
 更に、図10に示すように、室内空間の高さを利用して当該空間を2層とし、その下層側を各種エコロジー対策のための収納空間とすることができる。エコロジー対策としては、各室内で対応可能な廃棄物を処理する処理システム、COを吸収し酸素を排出するシステム、緊急時のための発電設備や備蓄手段等々で、それらに対応できるスペースとする。
 上記のように、天井高の高い空間が得られることにより床面積には算入されない十分な物品収納スペースを得ることができるので、その具体的実施例を以下に示す。
 図11に示すように、各個別空間となる室内の外部に設けたベランダの上方部の梁の外側面前方及びベランダの手摺等にソーラーパネル100、101を配設し、該ソーラーパネル100、101によって得られた太陽光エネルギーを、各室内空間の高さの異なりによって得られる高い立体空間を利用して設けることのできる物品収納スペース102に設置した蓄電設備103と配線接続して電気エネルギーとして蓄電し、その蓄電エネルギーを各住戸の各種負荷機器に供給してなることを可能としたものである。
 各個別空間において太陽光の得られるベランダやバルコニー等(以下、単にベランダという)の上方部となる梁の外側面前方及びベランダの手摺等にソーラーパネル100、101を配設する。上方階に位置するベランダの下部から棒状体を吊り下げ、該棒状体或いはベランダの下部に形成した小壁或いはベランダ端部から立ち上げた手摺等の前面にソーラーパネル100、101を取着或いは壁内に組み込むようにして設置している。該ソーラーパネル100、101は、太陽光発電パネルとして形成され、太陽光を電気エネルギーに変換するために太陽電池を敷設したものである。該ソーラーパネル100、101は、天井までの高さを高くした空間を形成することによって得られる床下の物品収納スペース102に配備した蓄電設備103と配線により連結する。
 該ソーラーパネル100、101からベランダの下部或いは壁面を通り、各個別室内に設けた物品収納スペース102へと配線され、該物品収納スペース102に配設された蓄電設備103に接続する。該蓄電設備103は、制御装置104と接続され、該制御装置104により電力供給量、供給の時間及び従来の電力供給との切り替え等が制御される。他方、従来の電力も引込分電盤105を介し該制御装置104と連結され、該制御装置104によりその電力供給量、供給の時間及びその切り替え等が制御される。
 その制御により、各個別室内に使用されている各種照明器具、冷蔵庫、TV、洗濯機、冷暖房機器等の様々な負荷機器への電力の供給を蓄電設備103に蓄積された電力を従来の電力から切り替えること或いはその逆ができるように構成している。
 上記蓄電設備103としては、電池としてニッケル水素電池の他、小型軽量でエネルギー密度の高いリチウムイオン電池等を使用するのが望ましい。また、蓄電器として、従来の鉛蓄電器のように大きくて重く、寿命が短く、且つ鉛電極や硫酸等の公害の発生し易い物質を含むものではなく、活性炭とチタン酸バリウムを主原料としたキャパシタ(capacitor)タイプの蓄電器を使用することが望ましい。
 上記蓄電設備103は、昼間に得た電力を貯めて夜間用に供給することができるし、また、従来の電力が何等かの事情により供給がストップした時の緊急時対応として非常灯を含め緊急時に必要となる電力を確保することができる。

Claims (13)

  1.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa順梁部材を配設し、該PCa柱・梁接合部の側端部と該順梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
    2.上記PCa柱・梁接合部の上部に隣接上階のPCa柱部材を固定し、該PCa柱部材の上部にPCa柱・梁接合部設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa逆梁部材を該PCa順梁部材の上端とPCa逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
    3.上記工程によりPCa順梁部材により囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築し、PCa逆梁部材で囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  2.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨順梁部材を配設し、該鉄骨柱・梁接合部の側端部と該鉄骨順梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
    2.上記鉄骨柱・梁接合部の上部に隣接上階の鉄骨柱部材を固定し、該鉄骨柱部材の上部に鉄骨柱・梁接合部設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨逆梁部材を該鉄骨順梁部材の上端と鉄骨逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
    3.上記工程により鉄骨順梁部材により囲まれた空間は該鉄骨順梁部材の天端側を床面とするスラブを構築し、鉄骨逆梁部材で囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  3.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa逆梁部材を配設し、該PCa柱・梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
    2.上記PCa柱・梁接合部の上部に隣接上階のPCa柱部材を固定し、該PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa順梁部材を該PCa逆梁部材の上端とPCa順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa順梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
    3.上記工程によりPCa逆梁部材により囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築し、PCa順梁部材で囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  4.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨逆梁部材を配設し、該鉄骨柱・梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
    2.上記鉄骨柱・梁接合部の上部に隣接上階の鉄骨柱部材を固定し、該鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨順梁部材を該鉄骨逆梁部材の上端と鉄骨順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該順梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
    3.上記工程により鉄骨逆梁部材により囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築し、鉄骨順梁部材で囲まれた空間は該鉄骨順梁部材の天端側を床面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  5.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.PCa柱部材の中間部にPCa梁接合部を設け、隣接する該PCa梁接合部間にX方向に延出するPCa順梁部材を配設し、該PCa梁接合部の側端部と該PCa順梁部材の側端部とを固定し、該PCa梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
    2.上記PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa逆梁部材を該PCa順梁部材の上端とPCa逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa柱・梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
    3.上記工程によりPCa順梁部材により囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築し、PCa逆梁部材で囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  6.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を順梁と逆梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.鉄骨柱部材の中間部に鉄骨梁接合部を設け、隣接する該鉄骨梁接合部間にX方向に延出する鉄骨順梁部材を配設し、該鉄骨梁接合部の側端部と該鉄骨順梁部材の側端部とを固定し、該鉄骨梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
    2.上記鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨逆梁部材を該鉄骨順梁部材の上端と鉄骨逆梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
    3.上記工程により順梁部材により囲まれた空間は該順梁部材の天端側を床面とするスラブを構築し、鉄骨逆梁部材で囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  7.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.PCa柱部材の中間部にPCa梁接合部を設け、隣接する該PCa梁接合部間にX方向に延出するPCa逆梁部材を配設し、該PCa梁接合部の側端部と該PCa逆梁部材の側端部とを固定し、該PCa梁接合部間及び場合によっては該PCa逆梁部材間の側部にY方向に延出するPCa逆梁部材を固定する工程、
    2.上記PCa柱部材の上部にPCa柱・梁接合部を設け、隣接する該PCa柱・梁接合部間にX方向に延出するPCa順梁部材を該PCa逆梁部材の上端とPCa順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該PCa柱・梁接合部の側端部と該PCa順梁部材の側端部を固定し、該PCa柱・梁接合部間及び場合によっては該PCa順梁部材間の側部にY方向に延出するPCa順梁部材を固定する工程、
    3.上記工程によりPCa逆梁部材により囲まれた空間は該PCa逆梁部材の下端側を天井面とするスラブを構築し、PCa順梁部材で囲まれた空間は該PCa順梁部材の天端側を床面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  8.  上下階に位置する梁の天端間の寸法を同一寸法とし、且つ上下の梁を逆梁と順梁とが交互に位置するように繰り返して全体を構築する低層或いは中高層の建物の構築方法において、
    1.鉄骨柱部材の中間部に鉄骨梁接合部を設け、隣接する該鉄骨梁接合部間にX方向に延出する鉄骨逆梁部材を配設し、該鉄骨梁接合部の側端部と該鉄骨逆梁部材の側端部とを固定し、該鉄骨梁接合部間及び場合によっては該鉄骨逆梁部材間の側部にY方向に延出する鉄骨逆梁部材を固定する工程、
    2.上記鉄骨柱部材の上部に鉄骨柱・梁接合部を設け、隣接する該鉄骨柱・梁接合部間にX方向に延出する鉄骨順梁部材を該鉄骨逆梁部材の上端と鉄骨順梁部材の上端間の高さが下階の高さと同一となる位置に配設し、該鉄骨柱・梁接合部の側端部と該順梁部材の側端部を固定し、該鉄骨柱・梁接合部間及び場合によっては該鉄骨順梁部材間の側部にY方向に延出する鉄骨順梁部材を固定する工程、
    3.上記工程により鉄骨逆梁部材により囲まれた空間は該鉄骨逆梁部材の下端側を天井面とするスラブを構築し、鉄骨順梁部材で囲まれた空間は該鉄骨順梁部材の天端側を床面とするスラブを構築する工程、
    の上記各工程の繰り返しにより隣接する上下階の室内空間の高さを異なるように構築してなることを特徴とする建物の構築方法。
  9.  上記請求項1乃至8によって得られた空間において、風の吹き抜け或いはエコシステムのための空間を構築してなることを特徴とする建物の構築方法。
  10.  上記請求項1乃至8によって得られた空間において、その高さの高い室内空間の一部或いは全部を2層又は3層となるように床面を構築してなることを特徴とする建物の構築方法。
  11.  上記請求項1乃至8によって得られた空間において、太陽光が得られる側に位置する梁の外側前方にソーラーパネルを配設し、該ソーラーパネルによって得られた太陽光エネルギーを、上記住戸空間の高さの異なりによって得られる高い立体空間を利用して構築した物品収納スペースに設置した蓄電装置と配線接続して電気エネルギーとして蓄電し、各住戸においてその蓄電エネルギーを住戸空間内の各種負荷機器に供給してなることを特徴とする建物の構築方法。
  12.  蓄電装置は、蓄電池、制御装置及び引込分電盤よりなり、タイマーによる所定の時間帯に住戸空間内の各種負荷機器に蓄電エネルギーを供給することを特徴とする請求項11に記載の建物の構築方法。
  13.  蓄電装置の蓄電手段をリチウム電池としたことを特徴とする請求項12に記載の建物の構築方法。
PCT/JP2008/056453 2008-04-01 2008-04-01 建物の構築方法 WO2009122562A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010505219A JP5357862B2 (ja) 2008-04-01 2008-04-01 建物の構築方法
PCT/JP2008/056453 WO2009122562A1 (ja) 2008-04-01 2008-04-01 建物の構築方法
CN2008801285241A CN101999021A (zh) 2008-04-01 2008-04-01 建筑物的构筑方法
KR1020107023504A KR101411033B1 (ko) 2008-04-01 2008-04-01 건물의 건축방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056453 WO2009122562A1 (ja) 2008-04-01 2008-04-01 建物の構築方法

Publications (1)

Publication Number Publication Date
WO2009122562A1 true WO2009122562A1 (ja) 2009-10-08

Family

ID=41134982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056453 WO2009122562A1 (ja) 2008-04-01 2008-04-01 建物の構築方法

Country Status (4)

Country Link
JP (1) JP5357862B2 (ja)
KR (1) KR101411033B1 (ja)
CN (1) CN101999021A (ja)
WO (1) WO2009122562A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190121A (ja) * 2014-03-27 2015-11-02 株式会社竹中工務店 柱梁構造、及び柱梁構造の構築方法
JP2015536391A (ja) * 2012-10-18 2015-12-21 メルヒス、プロプライエタリー、リミテッドMerhis Pty Ltd 多層建築構造体の方法、システムおよびコンポーネント
CN116607820A (zh) * 2023-07-18 2023-08-18 山西一建集团有限公司 一种装配式楼板主支撑钢架结构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101387602B1 (ko) * 2011-08-04 2014-05-22 정인철 가구식과 벽식의 결구식 복합골조에 의한 복층 한식건축물의 층간구조
JP5773221B2 (ja) * 2012-08-24 2015-09-02 積水ハウス株式会社 太陽電池パネル付きバルコニー
CN105113626B (zh) * 2015-08-19 2018-01-05 广西矿建集团有限公司 现浇柱预制梁板结构施工方法
CN105839934B (zh) * 2016-03-17 2017-10-20 浙江省建筑设计研究院 高层建筑顶升纠偏水平限位结构制作方法及制作工具
CN109914668B (zh) * 2019-03-12 2020-10-30 中国核电工程有限公司 核电厂房屋面防抛起建筑结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197540A (ja) * 1986-02-24 1987-09-01 清水建設株式会社 建築物の構造体
JPH01235743A (ja) * 1988-03-16 1989-09-20 Fujita Corp プレストレス化rpc工法およびプレストレス化梁付pc柱材
JPH11206037A (ja) * 1998-01-13 1999-07-30 Et:Kk 太陽電池ユニット及び太陽電池ユニットを用いた構築物
JPH11311026A (ja) * 1998-04-28 1999-11-09 Kumagai Gumi Co Ltd 複数階層を1節とする鉄骨建方での柱と鉄骨梁との結合方法
JP2003013618A (ja) * 2001-07-03 2003-01-15 Keizo Sataka 集合住宅
JP2006265933A (ja) * 2005-03-24 2006-10-05 Fujita Corp プレキャスト鉄筋コンクリート造建築物の構築方法
JP2007107240A (ja) * 2005-10-12 2007-04-26 Ntt Facilities Inc 建物の外壁用発電システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020539A (ja) * 1999-07-08 2001-01-23 Sato Benec Co Ltd 節電・節水型建築物
JP2002285714A (ja) * 2000-04-27 2002-10-03 Sato Benec Co Ltd 集合住宅の床下構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197540A (ja) * 1986-02-24 1987-09-01 清水建設株式会社 建築物の構造体
JPH01235743A (ja) * 1988-03-16 1989-09-20 Fujita Corp プレストレス化rpc工法およびプレストレス化梁付pc柱材
JPH11206037A (ja) * 1998-01-13 1999-07-30 Et:Kk 太陽電池ユニット及び太陽電池ユニットを用いた構築物
JPH11311026A (ja) * 1998-04-28 1999-11-09 Kumagai Gumi Co Ltd 複数階層を1節とする鉄骨建方での柱と鉄骨梁との結合方法
JP2003013618A (ja) * 2001-07-03 2003-01-15 Keizo Sataka 集合住宅
JP2006265933A (ja) * 2005-03-24 2006-10-05 Fujita Corp プレキャスト鉄筋コンクリート造建築物の構築方法
JP2007107240A (ja) * 2005-10-12 2007-04-26 Ntt Facilities Inc 建物の外壁用発電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015536391A (ja) * 2012-10-18 2015-12-21 メルヒス、プロプライエタリー、リミテッドMerhis Pty Ltd 多層建築構造体の方法、システムおよびコンポーネント
JP2015190121A (ja) * 2014-03-27 2015-11-02 株式会社竹中工務店 柱梁構造、及び柱梁構造の構築方法
CN116607820A (zh) * 2023-07-18 2023-08-18 山西一建集团有限公司 一种装配式楼板主支撑钢架结构
CN116607820B (zh) * 2023-07-18 2023-10-03 山西一建集团有限公司 一种装配式楼板主支撑钢架结构

Also Published As

Publication number Publication date
CN101999021A (zh) 2011-03-30
JP5357862B2 (ja) 2013-12-04
KR20100130630A (ko) 2010-12-13
JPWO2009122562A1 (ja) 2011-07-28
KR101411033B1 (ko) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5357862B2 (ja) 建物の構築方法
RU2518580C2 (ru) Сооружение, имеющее множество уровней и способ его возведения
US6625937B1 (en) Modular building and method of construction
KR101389203B1 (ko) 프리캐스트 콘크리트 골조와 모듈러 유닛을 이용한 중고층 주거용 건축물의 시공방법
CN115126079B (zh) 筒塔式建筑物及其施工方法
CN107740530B (zh) 一种高温蒸压轻质加气混凝土整体外墙板及其施工方法
ES2333636B1 (es) Modulo semirresistente prefabricado para construccion y procedimientode montaje en obra del mismo.
CN103266662A (zh) 轻钢复合板拼装房屋
US3999355A (en) Method of constructing a transportable prefabricated room element
CN111088846A (zh) 一种可循环使用的装配式房屋及安装方法
CN112523545A (zh) 用于建筑的基本模块和低、多层模块化建筑结构体系
CN214941056U (zh) 一种重钢轻钢结合的模块化建筑装置
CN209308156U (zh) 一种可循环使用的装配式房屋
KR101086060B1 (ko) 조립식 건축모듈
JP2017066846A (ja) 柱梁架構
KR101902097B1 (ko) 규격화 모듈화한 건축구조물
US3466828A (en) Modular wall construction
CN215055686U (zh) 用于建筑的基本模块和低、多层模块化建筑结构体系
CN111350204A (zh) 一种装配式基础
CN219298527U (zh) 一种全部基于保温复合板的整体装配式房屋
CN215595078U (zh) 建筑基本模块和高层模块化建筑结构体系
CN216305145U (zh) 一种装配式建筑用预制柱
CN216665141U (zh) 一种用于铁路区间四电房屋的装配式建筑结构、装配亭
CN215167038U (zh) 一种带肋梁的密拼预制混凝土双向叠合楼板
US20220235547A1 (en) Steel and concrete building module and connections

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128524.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505219

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107023504

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08739566

Country of ref document: EP

Kind code of ref document: A1