WO2009119724A1 - アルミニウム合金厚板およびその製造方法 - Google Patents

アルミニウム合金厚板およびその製造方法 Download PDF

Info

Publication number
WO2009119724A1
WO2009119724A1 PCT/JP2009/056089 JP2009056089W WO2009119724A1 WO 2009119724 A1 WO2009119724 A1 WO 2009119724A1 JP 2009056089 W JP2009056089 W JP 2009056089W WO 2009119724 A1 WO2009119724 A1 WO 2009119724A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
less
thick plate
hot
Prior art date
Application number
PCT/JP2009/056089
Other languages
English (en)
French (fr)
Inventor
一徳 小林
友晴 加藤
隆 稲葉
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN200980106340XA priority Critical patent/CN101959625A/zh
Priority to KR1020107021535A priority patent/KR101251235B1/ko
Priority to EP09726074A priority patent/EP2263811A4/en
Publication of WO2009119724A1 publication Critical patent/WO2009119724A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Definitions

  • the present invention relates to an aluminum alloy thick plate and a manufacturing method thereof.
  • aluminum alloy materials are used in various applications such as electric and electronic parts, manufacturing equipment, daily necessities, and machine parts, in addition to semiconductor-related devices such as base substrates, transfer devices, and vacuum device chambers.
  • semiconductor-related devices such as base substrates, transfer devices, and vacuum device chambers.
  • a mold material used for a press mold steel, cast steel or the like is used for mass production, but a zinc alloy cast material, an aluminum alloy cast material or the like is used for trial production.
  • expanded materials such as aluminum alloy rolled materials or forged materials have become widespread for medium and small volume production due to the tendency to reduce the number of products.
  • the rolled material of the aluminum alloy is manufactured from the melting step S101 through the annealing step S600, and then inspected for distortion, plate thickness, surface flaws, etc. (See Kokai 2006-281348) and then covering the front and back surfaces of the roll with a resin film made of vinyl chloride or polyethylene (for example, Kobe Steel Technical Report / Vol.52 No.2, Sep. 2002, registered trademark: ALHIGHCE, a registered trademark manufactured by Furukawa-Sky Aluminum Corp., known as HIPLATE, etc.) is applied (S101 to S900).
  • a resin film made of vinyl chloride or polyethylene for example, Kobe Steel Technical Report / Vol.52 No.2, Sep. 2002, registered trademark: ALHIGHCE, a registered trademark manufactured by Furukawa-Sky Aluminum Corp., known as HIPLATE, etc.
  • the product form that covers the front and back of the rolling with resin film is because high-precision aluminum alloy thick plates are often used as parts for precision instruments. It is because it is traded through. That is, in the cut plate wholesaler, saw cutting is performed to make a small size of a dice for precision instrument parts use, and in the vacuum chamber use, end milling is partially performed, so that the non-processed part becomes the device exterior material. Therefore, for the purpose of preventing wrinkling during such cutting, the rolled front and back surfaces of high-precision aluminum alloy thick plates are distributed in the form of products covered with a resin film.
  • This rolled material of aluminum alloy is usually manufactured by hot rolling an ingot to a predetermined thickness.
  • an aluminum alloy hot-rolled plate has a plate thickness and flatness controlled only by a rolling roll, so that it is difficult to obtain good plate thickness accuracy and flatness (particularly flatness in the rolling direction).
  • a thick oxide film is formed on the rolled surface during hot rolling, it is also difficult to control the flatness.
  • a technique is disclosed in which cold rolling is performed at a rolling reduction of 5% or less that does not accumulate strain after hot rolling to improve sheet thickness accuracy (see, for example, Patent Document 1). JP 2006-316332 A (paragraphs 0027 to 0028)
  • Patent Document 1 uses an aluminum alloy material as a thin plate having a thickness of about 1 mm.
  • the surface defects described above are not only the beauty of the appearance of the product, but also a serious quality defect that impairs the function of the product, reducing the product yield, and at the same time requires a lot of man-hours to remove this defect. It is a factor that inhibits sex. For example, a customer who uses a small size of a dice, after processing the purchased product and delivering the product, discovers wrinkles at the stage where the coated resin film is peeled off at the product delivery destination. In the vacuum chamber application, if a fine flaw is a casting cavity, it becomes a functional defect, but if the flaw is fine, it is not possible to distinguish it from a damaged flaw, and it takes time to determine the flaw factor. In short, there is a problem in that sales opportunities to end customers are missed.
  • the level of wrinkles in question has recently become higher, and a wrinkle with a depth of 8 ⁇ m or more and a circle equivalent diameter of about 0.1 mm is a problem because it can be found visually. Furthermore, it is difficult to eliminate all of the above-mentioned defects by the conventional manufacturing method. Also, mainly in vacuum chamber applications, it is rarely used as it is on the surface of the material, and alumite treatment and plating treatment are performed to improve corrosion resistance and weather resistance. In recent years, despite the fact that there is no defect in the base plate, a black streak-like shape having a length of about 3 ⁇ m in the rolling parallel direction is caused after the surface treatment as described above due to the remaining undissolved Ti-B.
  • the present invention has been made in view of the above problems, and has good plate thickness accuracy and flatness that can be produced in a semiconductor-related device such as a vacuum device chamber.
  • An object of the present invention is to provide an aluminum alloy thick plate capable of suppressing surface defects caused by the above and a method for producing the same.
  • an aluminum alloy thick plate according to the present invention is an aluminum alloy thick plate obtained by smoothing the surface of an aluminum alloy hot-rolled plate, and the flatness of the surface per 1 m of the length in the rolling direction. It is 0.2 mm or less, and the variation in plate thickness is within ⁇ 0.5% of the desired plate thickness.
  • the variation in the surface flatness and the plate thickness is limited to a predetermined range, so that the semiconductor-related apparatus is not subjected to thinning processing such as cold rolling.
  • thinning processing such as cold rolling.
  • an aluminum alloy material for products requiring high accuracy in shape can be used. Furthermore, it is possible to suppress surface defects caused by wrinkles and black stripes.
  • the aluminum alloy thick plate contains Mg: 1.5 to 12.0% by mass, Si: 0.7% by mass or less, Fe: 0.8% by mass or less, Cu: 0.6 1 mass% or less, Mn: 1.0 mass% or less, Cr: 0.5 mass% or less, Zn: 0.4 mass% or less, Ti: 0.1 mass% or less, and the remainder is It consists of Al and inevitable impurities.
  • the aluminum alloy thick plate contains Mn: 0.3 to 1.6% by mass, Si: 0.7% by mass or less, Fe: 0.8% by mass or less, Cu: 0.5% 1 mass% or less, Mg: 1.5 mass% or less, Cr: 0.3 mass% or less, Zn: 0.4 mass% or less, Ti: 0.1 mass% or less, and the balance is It consists of an aluminum alloy consisting of Al and inevitable impurities.
  • the aluminum alloy thick plate contains Mg: 0.3 to 1.5% by mass, Si: 0.2 to 1.6% by mass, Fe: 0.8% by mass or less, Cu: 1.0% by mass or less, Mn: 0.6% by mass or less, Cr: 0.5% by mass or less, Zn: 0.4% by mass or less, Ti: 0.1% by mass or less
  • the balance is made of an aluminum alloy composed of Al and inevitable impurities.
  • the aluminum alloy thick plate contains Zn: 3.0 to 9.0 mass%, Mg: 0.4 to 4.0 mass%, Si: 0.7 mass% or less, Fe: 0.8 mass% or less, Cu: 3.0 mass% or less, Mn: 0.8 mass% or less, Cr: 0.5 mass% or less, Ti: 0.1 mass% or less, Zr: 0.25 mass% It consists of an aluminum alloy containing at least one of the following, the balance being Al and inevitable impurities.
  • the manufacturing method of the aluminum alloy thick plate which concerns on this invention is a manufacturing method of the aluminum alloy thick plate of Claim 1, Comprising: The melting process which melt
  • the plate thickness accuracy and flatness can be improved. Further, surface defects due to wrinkles, black stripes, etc. can be suppressed.
  • the soaking process is performed by a heat treatment of 400 ° C. or more and less than the melting point of the aluminum alloy for 1 hour or more before the hot rolling process.
  • the structure of the ingot can be refined and homogenized by subjecting the ingot to heat treatment before hot rolling.
  • the manufacturing method of the said aluminum alloy thick board performs the annealing process which anneals the said hot-rolled board cut
  • the characteristics of a hot-rolled sheet can be improved by annealing the hot-rolled sheet.
  • the smoothing step is performed by any one or more of a cutting method, a grinding method, and a polishing method.
  • a cutting method e.g., a cutting method, a grinding method, and a polishing method.
  • the thickness accuracy and flatness of the aluminum alloy thick plate are improved. Further, surface defects due to wrinkles, black stripes, etc. can be suppressed.
  • the aluminum alloy thick plate according to the present invention even a thick plate with less plastic deformation becomes a desired plate thickness and a flat thick plate, so that it is produced in a semiconductor-related device or the like that requires an accurate shape. Preferred.
  • the surface properties of the thick plate are good.
  • properties such as strength are improved, color unevenness on the surface is suppressed, and the surface properties of the thick plate are further improved.
  • an aluminum alloy thick plate having the above-described effects can be produced with high productivity.
  • the aluminum alloy thick plate according to the present invention is an aluminum alloy hot-rolled plate (aluminum alloy hot-rolled plate) with a smoothed surface, and the flatness of the surface is 0.2 mm or less per 1 m in the rolling direction length. The variation is within ⁇ 0.5% of the desired plate thickness.
  • the aluminum alloy thick plate according to the present invention is a plate material having a plate thickness of 15 to 200 mm, but is not particularly limited, and can be appropriately changed depending on the use of the aluminum alloy thick plate.
  • each element which comprises the aluminum alloy thick plate which concerns on this invention is demonstrated.
  • the flatness of the surface of the aluminum alloy thick plate according to the present invention is 0.2 mm / m or less. Moreover, since the flatness of the surface of a hot-rolled sheet is the most inferior in a rolling direction, it is set per 1 m in the rolling direction length. Such flatness is adjusted by a smoothing process and a correction process in the manufacturing method described later.
  • the aluminum alloy thick plate according to the present invention is manufactured in a product that requires high accuracy in shape, such as a member of a semiconductor-related device, high accuracy is also required in the plate thickness. In order to meet this requirement, the variation in thickness is within ⁇ 0.5% of the desired thickness. Such plate thickness accuracy is adjusted by the smoothing process in the manufacturing method described later.
  • the aluminum alloy thick plate according to the present invention preferably has an amount of hydrogen gas contained in 100 g of 0.2 ml or less, more preferably 0.1 ml or less.
  • Hydrogen gas is generated from hydrogen in fuel, water adhering to metal, etc., and other organic substances. If a large amount of hydrogen gas is contained, it may cause pinholes or weaken the product.
  • hydrogen accumulates and concentrates at the grain boundaries near the surface of the ingot, causing blisters in the ingot and peeling of the aluminum alloy thick plate due to blisters, as well as surface defects in the thick plate.
  • the concentration of hydrogen gas in the ingot is, for example, from a sample cut out from the ingot (before soaking) and ultrasonically cleaned with alcohol and acetone.
  • the hydrogen gas concentration of the aluminum alloy thick plate was obtained by, for example, cutting a sample from the aluminum alloy thick plate, dipping in NaOH, removing the oxide film on the surface with nitric acid, and performing ultrasonic cleaning with alcohol and acetone. From the above, it can be obtained by the vacuum heating extraction volume method (LIS AO6-1993).
  • the aluminum alloy thick plate according to the present invention may be made of any aluminum alloy, but Al—Mg alloy, Al—Mn alloy, Al—Mg—Si alloy, Al—Zn—Mg.
  • a material suitable for the application can be selected from any one of the alloys.
  • each element of an example of the aluminum alloy which comprises the aluminum alloy thick plate which concerns on this invention is demonstrated.
  • the Al—Mg alloy according to the present invention that is, an aluminum alloy according to the 5000 series Al alloy contains Mg: 1.5 to 12.0% by mass, Si: 0.7% by mass or less, Fe: 0 0.8 mass% or less, Cu: 0.6 mass% or less, Mn: 1.0 mass% or less, Cr: 0.5 mass% or less, Zn: 0.4 mass% or less, Ti: 0.1 mass% or less 1 or more of them, and the balance consists of Al and inevitable impurities.
  • Mg 1.5 to 12.0% by mass
  • Mg has the effect of improving the strength of the Al—Mg alloy.
  • the Mg content is less than 1.5% by mass, this effect is small.
  • the Mg content exceeds 12.0% by mass, the castability is remarkably deteriorated and the production of the product becomes impossible. Therefore, when using an Al—Mg alloy having the above component composition, the Mg content needs to be 12.0 mass%. Therefore, the Mg content is 1.5 to 12.0% by mass.
  • Si is an element unavoidably contained in the aluminum alloy as a metal base impurity. Si has the effect of improving the strength of the aluminum alloy.
  • Si is combined with Mn and Fe to produce an Al— (Fe) — (Mn) —Si intermetallic compound during casting.
  • Si content exceeds 0.7 mass%, a coarse intermetallic compound will arise in an ingot, and it will become easy to produce a color nonuniformity in the surface appearance after an alumite process. Therefore, the Si content is 0.7% by mass or less.
  • Fe 0.8% by mass or less
  • Fe is an element unavoidably contained in the aluminum alloy as a metal base impurity. Fe has the effect of refining and stabilizing the crystal grains of the aluminum alloy and improving the strength.
  • Mn Al—Fe— (Mn) — (Si) intermetallic compound.
  • the Fe content exceeds 0.8% by mass, a coarse intermetallic compound is generated in the ingot, and color unevenness tends to occur in the surface appearance after the alumite treatment. Therefore, the Fe content is 0.8% by mass or less.
  • Cu 0.6% by mass or less
  • Cu has the effect of improving the strength by dissolving in an aluminum alloy.
  • the strength for use as an Al—Mg alloy thick plate is sufficiently secured when the Cu content is 0.6% by mass, and the effect is saturated even if it is added beyond that. Therefore, Cu content shall be 0.6 mass% or less.
  • Mn 1.0% by mass or less
  • Mn has the effect of improving the strength by dissolving in an aluminum alloy.
  • the Mn content exceeds 1.0% by mass, a coarse intermetallic compound is generated in the ingot, and color unevenness is likely to occur in the surface appearance after the alumite treatment. Therefore, the Mn content is 1.0% by mass or less.
  • Cr 0.5% by mass or less
  • Cr precipitates as a fine compound during casting or heat treatment, and has the effect of suppressing crystal grain growth.
  • Cr content shall be 0.5 mass% or less.
  • Zn 0.4 mass% or less
  • Zn has the effect of improving the strength of the aluminum alloy.
  • the strength for use as an Al—Mg alloy thick plate is sufficiently secured when the Zn content is 0.4% by mass, and the effect is saturated even if it is added beyond that. Therefore, Zn content shall be 0.4 mass% or less.
  • Ti 0.1% by mass or less
  • Ti has the effect of refining the crystal grains of the aluminum alloy. Even if the Ti content exceeds 0.1% by mass, the effect is saturated. Therefore, the Ti content is 0.1% by mass or less.
  • the Al—Mn alloy according to the present invention contains Mn: 0.3 to 1.6 mass%, Si: 0.7 mass% or less, Fe: 0 0.8 mass% or less, Cu: 0.5 mass% or less, Mg: 1.5 mass% or less, Cr: 0.3 mass% or less, Zn: 0.4 mass% or less, Ti: 0.1 mass% or less 1 or more of them, and the balance consists of Al and inevitable impurities.
  • Mn 0.3 to 1.6% by mass
  • Mn has the effect of improving the strength by dissolving in an aluminum alloy.
  • the Mn content is less than 0.3% by mass, this effect is small.
  • the Mn content exceeds 1.6% by mass, coarse Al— (Fe) —Mn— (Si) -based intermetallic compounds are formed. It occurs in the ingot and color unevenness tends to occur in the surface appearance after the anodized treatment. Therefore, the Mn content is set to 0.3 to 1.6% by mass.
  • Mg has the effect of improving the strength of the aluminum alloy.
  • the strength for use as an Al—Mn alloy thick plate is sufficiently secured when the Mg content is 1.5% by mass, and the effect is saturated even if it is added beyond that. Therefore, Mg content shall be 1.5 mass% or less.
  • Si 0.7% by mass or less, Fe: 0.8% by mass or less, Cu: 0.5% by mass or less, Cr: 0.3% by mass or less, Zn: 0.4% by mass or less, Ti: 0. 1% by mass or less. Since the effects of Si, Fe, Cu, Cr, Zn, and Ti are the same as those in the Al—Mg alloy, they are omitted.
  • the Al—Mg—Si alloy according to the present invention contains Mg: 0.3 to 1.5 mass%, Si: 0.2 to 1.6 mass%, Furthermore, Fe: 0.8 mass% or less, Cu: 1.0 mass% or less, Mn: 0.6 mass% or less, Cr: 0.5 mass% or less, Zn: 0.4 mass% or less, Ti: 0 1 or more of 1% by mass or less, with the balance being Al and inevitable impurities.
  • Mg 0.3-1.5% by mass
  • Mg has an effect of improving the strength of the aluminum alloy, and further coexists with Si to form Mg 2 Si and improve the strength of the aluminum alloy. If the Mg content is less than 0.3% by mass, these effects are small. On the other hand, when the Mg content exceeds 1.5% by mass, the characteristics of an Al—Mg-based (5000-based Al) alloy may be obtained. Therefore, the Mg content is set to 0.3 to 1.5% by mass.
  • Si 0.2-1.6% by mass
  • Si has the effect of improving the strength of the aluminum alloy, and further coexists with Mg to form Mg 2 Si and improve the strength of the aluminum alloy.
  • Si content is less than 0.2% by mass, these effects are small.
  • Si content exceeds 1.6% by mass, a coarse intermetallic compound is generated in the Al—Mg—Si based alloy, and the surface appearance after the alumite treatment tends to cause color unevenness. Therefore, the Si content is 0.2 to 1.6 mass%.
  • Cu 1.0% by mass or less
  • Cu has the effect of improving the strength by solid solution in the aluminum alloy.
  • the Cu content exceeds 1.0% by mass, the corrosion resistance of the Al—Mg—Si alloy decreases. Therefore, the Cu content is 1.0% by mass or less.
  • Zn 0.4 mass% or less
  • Zn content shall be 0.4 mass% or less.
  • Fe 0.8 mass% or less
  • Mn 0.6 mass% or less
  • Cr 0.5 mass% or less
  • Ti 0.1 mass% or less
  • the Al—Zn—Mg alloy according to the present invention contains Zn: 3.0 to 9.0% by mass, Mg: 0.4 to 4.0% by mass, Furthermore, Si: 0.7 mass% or less, Fe: 0.8 mass% or less, Cu: 3.0 mass% or less, Mn: 0.8 mass% or less, Cr: 0.5 mass% or less, Ti: 0 1 mass% or less, Zr: One or more of 0.25 mass% or less are contained, and the balance consists of Al and inevitable impurities.
  • Zn 3.0 to 9.0% by mass
  • Zn has the effect of improving the strength of the aluminum alloy.
  • the Zn content is less than 3.0% by mass, this effect is small.
  • the Zn content exceeds 9.0% by mass, a coarse intermetallic compound is produced, and the surface appearance after the alumite treatment is colored. Unevenness is likely to occur, and resistance to SCC (stress corrosion cracking) is reduced. Therefore, the Zn content is set to 3.0 to 9.0% by mass.
  • Mg 0.4-4.0% by mass
  • Mg has the effect of improving the strength of the aluminum alloy.
  • Mg content is less than 0.4% by mass, this effect is small.
  • Mg content exceeds 4.0% by mass, a coarse intermetallic compound is produced, and the surface appearance after the alumite treatment is uneven in color. It tends to occur, and the resistance to SCC (stress corrosion cracking) decreases. Therefore, the Mg content is set to 0.4 to 4.0% by mass.
  • Cu 3.0% by mass or less
  • Cu has the effect of improving the strength by solid solution in the aluminum alloy.
  • the Cu content exceeds 3.0% by mass, the corrosion resistance of the Al—Zn—Mg alloy decreases. Therefore, the Cu content is 3.0% by mass or less.
  • Zr 0.25 mass% or less
  • Zr has the effect of refining and stabilizing the crystal grains of the aluminum alloy.
  • the Zr content exceeds 0.25% by mass, a coarse intermetallic compound is produced, and color unevenness is likely to occur on the surface appearance after the alumite treatment. Therefore, the Zr content is 0.25% by mass or less.
  • Si 0.7 mass% or less, Fe: 0.8 mass% or less, Mn: 0.8 mass% or less, Cr: 0.5 mass% or less, Ti: 0.1 mass% or less
  • the contents of V, B, etc. as inevitable impurities are 0 respectively. If it is 0.01 mass% or less, it does not affect the characteristics of the aluminum alloy thick plate of the present invention.
  • Ti may be added as a refiner consisting of a master alloy with B. As will be described later, if coarse Ti-B particles remain undissolved, anodized Black streaks may occur after surface treatment such as treatment or plating. For this reason, it is preferable not to add B, such as by using an Al—Ti finer, but even if black streaks occur due to the addition of B, by performing an appropriate smoothing treatment as described later, It is possible to remove black stripes.
  • FIG. 1 is a flowchart showing a method of manufacturing an aluminum alloy thick plate according to the present invention.
  • an aluminum alloy having any one of the above compositions is melted to form a molten aluminum alloy (melting step S11), and hydrogen gas and inclusions are respectively removed from the molten aluminum alloy. (Dehydrogenation step S12, filtration step S13).
  • the molten aluminum alloy is cast to produce an ingot (casting step S14), and the ingot is hot-rolled to a predetermined thickness to produce a hot-rolled sheet (hot-rolling step S30). And a hot-rolled board is cut
  • the aluminum alloy thick plate manufactured in this way becomes a product form in which the front and back surfaces are covered with a resin film through an inspection step S80 and a resin film coating step S90.
  • finishes through resin film coating process S90 for convenience the aluminum alloy thick board which concerns on this invention is a thing of the stage which finished smoothing process S70. Details of each step will be described below.
  • the melting step S11 is a step of melting an aluminum alloy having a predetermined composition to form a molten aluminum alloy, and is performed by a known facility and method.
  • the dehydrogenation step S12 is a step of removing hydrogen gas from the molten aluminum alloy, and the hydrogen gas can be suitably removed by performing fluxing, chlorine refining, in-line refining or the like on the molten aluminum alloy. Further, if the dehydrogenation gas apparatus is a rotary dehydrogenation gas apparatus such as SNIFF or a porous plug (see Japanese Patent Application Laid-Open No. 2002-146447), the removal can be performed more suitably. it can.
  • Filtration process S13 is a process of removing mainly an oxide and a nonmetallic inclusion from aluminum alloy molten metal with a filtration apparatus.
  • the filter device is provided with a ceramic tube using alumina having a particle size of about 1 mm, for example, and the oxides and inclusions can be removed by passing molten aluminum alloy through the ceramic tube.
  • the dehydrogenation step S12 and the filtration step S13 it is possible to obtain a high-quality aluminum alloy ingot in which internal defects are suppressed in the subsequent casting step S14. Further, since deposition of oxide deposits (dross) can be suppressed, the dross removal work can be reduced.
  • the casting step S14 is a step for producing an aluminum alloy ingot by forming and solidifying a molten aluminum alloy into a predetermined shape such as a rectangular parallelepiped shape, for example, with a casting apparatus configured to include a water-cooled mold.
  • a semi-continuous casting method can be used as a casting method.
  • molten metal is poured from above into a metal water-cooled mold with an open bottom, and the solidified metal is continuously removed from the bottom of the water-cooled mold to obtain an ingot of a predetermined thickness. It is.
  • This semi-continuous casting method may be performed either vertically or horizontally.
  • Soaking process-treatment temperature 400 ° C or higher and lower than the melting point of the aluminum alloy, treatment time: 1 hour or more
  • heat treatment is performed on the aluminum alloy ingot, thereby removing internal stress, homogenizing the solute elements segregated during casting, and diffusing and dissolving the intermetallic compound crystallized during casting to form a structure.
  • This is a process for homogenization.
  • the heat treatment is performed according to a conventional method by holding at 400 ° C. or higher and lower than the melting point of the aluminum alloy for 1 hour or longer. If the soaking temperature is less than 400 ° C., the above effect is insufficient.
  • the solid solution of an intermetallic compound is inadequate and it precipitates easily.
  • the soaking temperature reaches the melting point of the aluminum alloy according to the present invention, a phenomenon called burning, in which a part of the surface of the aluminum alloy ingot is melted, causes surface defects of the aluminum alloy thick plate. It is easy to become. Therefore, the soaking temperature is 400 ° C. or higher and lower than the melting point of the aluminum alloy, and the annealing is performed for 1 hour or longer.
  • the hot rolling step S30 is a step of hot rolling an aluminum alloy ingot to obtain a plate material (aluminum alloy hot rolled plate) having a predetermined thickness.
  • a reverse (reversible) hot rolling mill can be used as the hot rolling method.
  • the aluminum alloy ingot is heated to a predetermined temperature and rolled down by a reverse hot rolling mill to produce an aluminum alloy hot rolled sheet having a predetermined thickness.
  • the plate thickness in this step (the plate thickness of the aluminum alloy hot-rolled plate) is a plate thickness obtained by adding a decrease in the smoothing step S70 described later to the desired plate thickness of the aluminum alloy thick plate. About 200 mm is preferable.
  • the correction step S40 is a step of correcting and flattening the distortion generated by hot rolling of the aluminum alloy hot-rolled sheet, and is performed by a known facility or method such as a stretcher or a tension leveler.
  • the cutting step S50 is a step of cutting the aluminum alloy hot-rolled sheet into a desired length (and width).
  • the annealing step S60 is a step of removing the internal stress or homogenizing the internal structure by applying a heat treatment to the aluminum alloy thick plate. Moreover, you may give the tempering by a solution treatment and an aging treatment. These processes may be performed after the smoothing process step S70. For example, as shown in Japanese Patent Laid-Open No. 63-115617, the flatness of the surface can be improved by heat treatment.
  • the smoothing treatment step S70 is a step of smoothing the surface (rolled surface) of the aluminum alloy hot-rolled plate and adjusting the plate thickness.
  • the removal thickness of the surface of the hot-rolled sheet is 2 to 5 mm per side.
  • a black streak-like surface defect having a length of about 3 ⁇ m in the rolling parallel direction after surface treatment such as alumite treatment or plating treatment has been carried out in recent years, even though the base plate has no defect.
  • Ti-B an ingot refiner (crystal grain refiner) at the time of casting, rapidly solidifies in the vicinity of the slab ingot mold. The inventors have found out that this is due to the fact that it was not dissolved in the part. Therefore, by setting the removal thickness to 2 mm or more, it is possible to remove the undissolved portion of the ingot refining agent Ti-B, so black streaks can be obtained even if alumite treatment or plating treatment is performed. No surface defects occur.
  • the removal thickness is 5 mm or less from the viewpoint of yield and cost performance.
  • a cutting method such as end mill cutting or diamond bite cutting, a grinding method in which the surface is ground with a grindstone, or a polishing method such as buffing polishing can be used.
  • a cutting method such as end mill cutting or diamond bite cutting, a grinding method in which the surface is ground with a grindstone, or a polishing method such as buffing polishing can be used.
  • a polishing method such as buffing polishing
  • hairline processing may be further performed.
  • a hairline process By applying a hairline process, the surface of the thick plate can be rolled.
  • a polishing method such as a belt type or a wheel type is known, but any method may be adopted, and a polishing nonwoven fabric used for a hairline processing such as a belt type or a wheel type
  • the abrasive grain type it is known that it consists of a single substance such as alumina, silicon carbide, zirconia, or a mixture thereof, and an adhesive such as resin or glue. Coarse # 120 to # 220.
  • an abrasive non-woven fabric having a rotating outer diameter of a belt or wheel of ⁇ 400 mm, it contains a grease for preventing seizure and is preferably subjected to hairline processing at a rotational speed of 1500 rpm or less, but is limited to these conditions. It is not something.
  • the size of wrinkles that can be visually recognized by the human eye is a depth of 8 ⁇ m or more, and the size of wrinkles that are difficult to determine during inspection is up to 20 ⁇ m.
  • the depth of 20 ⁇ m is an indentation caused by foreign matter or roll wrinkles, and such a defect is not originally a functional defect.
  • such indented wrinkles can be distinguished from functional defects because the smooth surface, wrinkles, and borders on the surface of the thick plate can be made smooth by applying hairline processing (2 to 3 ⁇ m in processing allowance). There is an effect that can be easily.
  • the effect of the present invention can be obtained if only 2 mm or more of hairline processing is performed per side.
  • the aluminum alloy thick plate thus manufactured is then inspected for distortion, plate thickness, surface flaws, etc. in the inspection step S80, and then the front and back surfaces are made of resin film in the resin film coating step S90. Covered.
  • Example 1 Preparation of test material
  • Al-Mg alloy Alloy No. shown in Table 1
  • An aluminum alloy having a composition of 5a to 5v (5k: JIS5052 alloy, 5l: JIS5083 alloy, 5v: no addition of Ti and B) is melted, dehydrogenated and filtered, and then cast into a casting having a thickness of 500 mm. A lump was made. This ingot was heated at 500 ° C. for 4 hours and soaked, and then hot-rolled to produce an aluminum alloy hot-rolled sheet having a thickness of about 25 mm and a thickness of about 20 mm.
  • the end mill processing was performed by modifying an end mill processing machine (milling machine) manufactured by WASSER GmbH (German machine manufacturer, GmbH is a company).
  • the rough chip was made of carbide
  • the finishing chip was made of diamond
  • the machining allowance was the amount of pressing of the disk from the zero point, and the total tip was adjusted to about 2.5 mm / side.
  • 30 rough chips and 2 finishing chips were mounted in the vicinity of the circumference of the lower surface of the disk, the disk was lowered onto the work piece, rotated, and then cut by sending it in the longitudinal direction of the plate. Since the finish chip pop-out amount is mounted so as to protrude slightly from the rough chip, the finished chip is shaped so that the surface of the rough chip cut off is followed up.
  • an aluminum plate buffing machine manufactured by Nomizu Machine Mfg. Co., Ltd. was remodeled so that a polishing nonwoven fabric wheel could be attached to the buffing roll part.
  • the wheel is made of POLITEX; manufactured by KOYO-SHA Co., Ltd. (Registered trademark) KF wheel MA (coarse (# 150), outer diameter ⁇ 400 mm, grease impregnated, using brown fused alumina as an abrasive grain type and resin bond as an adhesive) was used. Then, polishing was performed under the condition that the machining allowance was about 3.0 ⁇ m / single side (with oscillation (two reciprocations)).
  • polishing cost WHEREIN The level
  • Al-Mn alloy Al-Mn alloy Alloy No. shown in Table 1
  • An aluminum alloy having a composition of 3a to 3e (3e is not added with Ti and B) was dissolved, subjected to dehydrogenation treatment and filtration, and then cast to produce an ingot having a thickness of 500 mm.
  • This ingot was hot-rolled to produce an aluminum alloy hot-rolled sheet having a thickness of about 25 mm and a thickness of about 20 mm. After this aluminum alloy hot-rolled sheet was cut into a rolling direction length of 2000 mm ⁇ width of 1000 mm, a smoothing process was performed on the rolled surface (both sides) to obtain a 20 mm thick aluminum alloy thick plate (cut plate).
  • a Ti-B master alloy is added to prevent ingot cracking.
  • the effect of the smoothing treatment was compared by three types of methods: end milling, end milling + hairline processing (using a belt-type abrasive nonwoven fabric), and hairline processing.
  • end milling used the aluminum alloy hot-rolled sheet of about 25 mm thickness
  • hairline processing used the aluminum alloy hot-rolled sheet of about 20 mm in thickness.
  • end milling and hairline processing methods are the same as in the case of the Al—Mg alloy.
  • Example 1 Evaluation
  • the following evaluation was performed on the obtained aluminum alloy thick plate, and the results are shown in Tables 2 and 3.
  • the aluminum alloy hot-rolled board (thickness 20mm) which does not implement a smoothing process was also manufactured, and it evaluated as a comparative example. Alloy No. Since 5n could not be produced on an aluminum alloy hot-rolled sheet as will be described later, the subsequent treatment and evaluation were not performed.
  • the plate thicknesses at a total of 6 points from the four corners of the test material and from the half of the length of the side in the rolling direction to the inner 20 mm part in the width direction were measured using a micrometer. If the thickness of all six points is in the range of 20.0 ⁇ 0.06 mm (19.94 to 20.06 mm), “ ⁇ ”, 20.0 ⁇ 0.10 mm ( 20.0 mm ⁇ 0.5%, 19.90 to 20.10 mm) was evaluated as “Good” as good.
  • Alloy No. The aluminum alloy thick plate consisting of 5a to 5l and 5v has an additive element content within an appropriate range, and has been subjected to appropriate smoothing treatment on the surface, so that strength, flatness, plate thickness accuracy, And the surface properties were good. Moreover, sufficient strength and good surface properties were obtained even when compared with an aluminum alloy hot-rolled sheet that had not been smoothed. In contrast, alloy no. The aluminum alloy thick plate made of 5 m was insufficient in strength because the Mg content was insufficient. On the other hand, Alloy No. Since the aluminum alloy thick plate made of 5n has an excessive Mg content, casting cracks occurred, and the specimens could not be produced. Alloy No.
  • the aluminum alloy thick plate made of 5o, 5p, 5r, and 5s has excessive Si, Fe, Mn, and Cr contents, so that a coarse intermetallic compound is formed, and the surface appearance after the alumite treatment is uneven in color.
  • Alloy No. The aluminum alloy thick plates made of 5q, 5t, and 5u have Cu, Zn, and Ti contents exceeding the appropriate ranges, respectively. As compared with 5f, 5j, and 5c, no improvement in strength and surface properties was observed.
  • the surface properties due to wrinkles are improved in the case of end milling + hairline processing with proper removal amount or end milling only compared to hairline processing with a small amount of removal. Confirmed to do.
  • the wrinkles found in the conventional hot-rolled sheet cutting plate are identified as including fine wrinkles of a size that can barely be found with the naked eye, but with only hairline processing. The wrinkles found on the board were clearly visible. Therefore, the effect that the functional defect can be easily distinguished only by the hairline processing was confirmed.
  • the amount of removal is small, so black streaks cannot be prevented.
  • the amount of removal is appropriate, preventing black streaks. It was confirmed that it was possible.
  • the 5v aluminum alloy thick plate does not use the ingot refining agent Ti-B at the time of slab ingoting, so any surface is not affected by the difference in the surface smoothing method. It was confirmed that black stripes can be prevented from occurring even by the smoothing method.
  • the aluminum alloy thick plate made of 3a, 3b, 3e has an additive element content within an appropriate range, and has been subjected to an appropriate smoothing treatment on the surface, so that strength, flatness, plate thickness accuracy, and The surface properties were good. Moreover, sufficient strength and good surface properties were obtained even when compared with an aluminum alloy hot-rolled sheet that had not been smoothed. In contrast, alloy no. The aluminum alloy thick plate made of 3c was insufficient in Mn content, so that sufficient strength was not obtained. On the other hand, Alloy No. Since the aluminum alloy thick plate made of 3d has an excessive Mn content, a coarse intermetallic compound was formed, and the appearance of the surface after the alumite treatment was uneven in color.
  • the surface properties due to wrinkles are improved in the case of end milling + hairline processing with proper removal amount or end milling only compared to hairline processing with a small amount of removal. Confirmed to do.
  • the wrinkles found in the conventional hot-rolled sheet cutting plate are identified as including fine wrinkles of a size that can barely be found with the naked eye, but with only hairline processing. The wrinkles found on the board were clearly visible. Therefore, the effect that the functional defect can be easily distinguished only by the hairline processing was confirmed.
  • the amount of removal is small, so black streaks cannot be prevented.
  • the amount of removal is appropriate, preventing black streaks. It was confirmed that it was possible. Note that the aluminum alloy thick plate made of 3e does not use the ingot refining agent Ti-B at the time of slab ingoting, so that any surface is not affected by the difference in surface smoothing method. It was confirmed that black stripes can be prevented from occurring even by the smoothing method.
  • the aluminum alloy hot-rolled sheet that had not been smoothed had accumulated processing strain, warped in the rolling direction, and had poor flatness.
  • the plate thickness accuracy was often inferior to that of aluminum alloy thick plates having the same composition.
  • the surface properties due to wrinkles and black stripes were poor.
  • the flatness value only for hairline processing and the evaluation of the thickness accuracy of the cut plate are almost the same as the evaluation of the flatness value of the aluminum hot rolled plate (without smoothing treatment) and the thickness accuracy of the cut plate. (If the machining allowance is 2 to 3 ⁇ m, the accumulated machining strain is not reduced, so the warpage is large in the rolling direction and the flatness is poor).
  • Example 2 Preparation of test material
  • Al-Mg-Si alloy Alloy No. shown in Table 4
  • An aluminum alloy having a composition of 6a to 6g was melted, dehydrogenated, filtered, and cast to produce an ingot having a thickness of 500 mm.
  • This ingot was hot-rolled to produce an aluminum alloy hot-rolled sheet having a thickness of about 25 mm and a thickness of about 20 mm.
  • After this aluminum alloy hot-rolled sheet was cut into a rolling direction length of 2000 mm ⁇ width of 1000 mm, a smoothing process was performed on the rolled surface (both sides) to obtain a 20 mm thick aluminum alloy thick plate (cut plate).
  • a Ti-B master alloy is added to prevent ingot cracking.
  • the effect of the smoothing treatment was compared by three types of methods: end milling, end milling + hairline processing (using a belt-type abrasive nonwoven fabric), and hairline processing.
  • end milling used the aluminum alloy hot-rolled sheet of about 25 mm thickness
  • hairline processing used the aluminum alloy hot-rolled sheet of about 20 mm in thickness.
  • the end milling and hairline processing methods are the same as in the case of the Al—Mg alloy.
  • the obtained aluminum alloy thick plate was subjected to a solution treatment at 520 ° C. and an aging treatment at 175 ° C. for 8 hours.
  • Al-Zn-Mg alloy Alloy No. shown in Table 4
  • An aluminum alloy having a composition of 7a to 7g was melted, dehydrogenated and filtered, and then cast to produce an ingot having a thickness of 500 mm.
  • This ingot was hot-rolled to produce an aluminum alloy hot-rolled sheet having a thickness of about 25 mm and a thickness of about 20 mm.
  • After this aluminum alloy hot-rolled sheet was cut into a rolling direction length of 2000 mm ⁇ width of 1000 mm, a smoothing process was performed on the rolled surface (both sides) to obtain a 20 mm thick aluminum alloy thick plate (cut plate).
  • a Ti-B master alloy is added to prevent ingot cracking.
  • the effect of the smoothing treatment was compared by three types of methods: end milling, end milling + hairline processing (using a belt-type abrasive nonwoven fabric), and hairline processing.
  • end milling used the aluminum alloy hot-rolled sheet of about 25 mm thickness
  • hairline process used the aluminum alloy hot-rolled sheet of about 20 mm in thickness.
  • the end milling and hairline processing methods are the same as in the case of the Al—Mg alloy.
  • the obtained aluminum alloy thick plate was subjected to a solution treatment at 470 ° C., and an aging treatment was performed at 120 ° C. for 48 hours.
  • Example 2 Evaluation
  • the obtained aluminum alloy thick plate was evaluated for strength and surface properties in the same manner as in Example 1, and the results are shown in Tables 5 and 6.
  • the aluminum alloy hot-rolled sheet (thickness 20 mm) which does not implement a smoothing process was also manufactured, the solution treatment and the aging treatment were performed on the same conditions, and it evaluated as a comparative example.
  • the acceptance criteria for strength is alloy no. 6a to 6g (Al—Mg—Si based alloys) have a tensile strength of 200 N / mm 2 or more, alloy no. 7a to 7g (Al—Zn—Mg alloy) had a tensile strength of 250 N / mm 2 or more.
  • strength only by end mill process + hairline process and hairline process is the same as the intensity value only by end mill process, description is abbreviate
  • surface since the value of intensity
  • Alloy No. The aluminum alloy thick plates made of 6a, 6b, and 6g had good strength and surface properties because the content of additive elements was within an appropriate range and the surface was appropriately smoothed. Moreover, sufficient strength and good surface properties were obtained even when compared with an aluminum alloy hot-rolled sheet that had not been smoothed. In contrast, alloy no. The aluminum alloy thick plates made of 6c and 6e were insufficient in Si and Mg contents, so that sufficient strength was not obtained. On the other hand, Alloy No. Since the 6d aluminum alloy thick plate has an excessive Si content, a coarse intermetallic compound was formed, and the surface appearance after the alumite treatment was uneven in color. In addition, Alloy No.
  • the aluminum alloy thick plate made of 6f has the characteristics of an Al—Mg-based (5000-based Al) alloy due to the excessive Mg content, so the effect of improving the strength by solution treatment and aging treatment cannot be obtained. Alloy No. with Mg content in proper range Compared with 6a and 6b, the strength decreased.
  • the surface properties due to wrinkles are improved in the case of end milling + hairline processing with proper removal amount or end milling only compared to hairline processing with a small amount of removal. Confirmed to do.
  • the wrinkles found in the conventional hot-rolled sheet cutting plate are identified as including fine wrinkles of a size that can barely be found with the naked eye, but with only hairline processing. The wrinkles found on the board were clearly visible. Therefore, the effect that the functional defect can be easily distinguished only by the hairline processing was confirmed.
  • the amount of removal is small, so black streaks cannot be prevented.
  • the amount of removal is appropriate, preventing black streaks. It was confirmed that it was possible. Note that the aluminum alloy thick plate made of 6 g does not use Ti-B as the ingot refining agent when slab ingot, so any surface is not affected by the difference in surface smoothing method. It was confirmed that black stripes can be prevented from occurring even by the smoothing method.
  • the aluminum alloy thick plates made of 7a, 7b, and 7g had good strength and surface properties because the content of additive elements was within an appropriate range and the surface was appropriately smoothed. Moreover, sufficient strength and good surface properties were obtained even when compared with an aluminum alloy hot-rolled sheet that had not been smoothed. In contrast, alloy no.
  • the aluminum alloy thick plates made of 7c and 7e were insufficient in Mg and Zn contents, so that sufficient strength was not obtained.
  • the surface properties due to wrinkles are improved in the case of end milling + hairline processing with proper removal amount or end milling only compared to hairline processing with a small amount of removal. Confirmed to do.
  • the wrinkles found in the conventional hot-rolled sheet cutting plate are identified as including fine wrinkles of a size that can barely be found with the naked eye, but with only hairline processing. The wrinkles found on the board were clearly visible. Therefore, the effect that the functional defect can be easily distinguished only by the hairline processing was confirmed.
  • the amount of removal is small, so black streaks cannot be prevented.
  • the amount of removal is appropriate, preventing black streaks. It was confirmed that it was possible.
  • the aluminum alloy thick plate made of 7 g does not use the ingot refining agent Ti-B at the time of slab ingot formation, any surface is not affected by the difference in the surface smoothing method. It was confirmed that black stripes can be prevented from occurring even by the smoothing method.
  • the aluminum alloy thick plate according to the present invention has good flatness and plate thickness accuracy, and surface defects caused by wrinkles and black streaks are suppressed and has good surface properties. It can also be seen that by making the composition of the various alloy components appropriate, properties such as strength can be improved, color unevenness on the surface is suppressed, and surface properties are further improved.

Abstract

 本発明は、半導体関連装置部材に好適な、板厚精度および平坦性が良好であり、さらに、表面欠陥を抑制することができるアルミニウム合金厚板、およびその製造方法を提供する。所定成分のアルミニウム合金を溶解し(溶解工程)、水素ガスおよび介在物を除去し(脱水素工程、ろ過工程)、鋳造して鋳塊とする(鋳造工程)。この鋳塊を、必要に応じて熱処理により均質化し(均熱処理工程)、所定厚さに熱間圧延し(熱間圧延工程)、切断し(切断工程)、表面を平滑化して仕上げる(平滑化処理工程)。また、必要に応じて歪矯正(矯正工程)や焼鈍等の熱処理(焼鈍工程)を施してもよい。得られたアルミニウム合金厚板は、表面の平坦度が圧延方向長さ1m当たり0.2mm以下であり、板厚バラツキが所望板厚の±0.5%以内である。

Description

アルミニウム合金厚板およびその製造方法
 本発明は、アルミニウム合金厚板およびその製造方法に関する。
 一般に、アルミニウム合金材は、ベース基板、搬送装置、真空装置用チャンバー等の半導体関連装置の他、電機電子部品やその製造装置、生活用品、機械部品等、様々な用途で使用されている。また、プレス用金型に用いる金型素材としては、量産生産用には鉄鋼、鋳鋼等が使用されるが、試作用としては、亜鉛合金鋳物材、アルミニウム合金鋳物材等が使用されている。さらに、近年においては、多品種少量化の傾向から、中少量生産用として、アルミニウム合金の圧延材あるいは鍛造材等の展伸材が普及している。
 これらのうち、アルミニウム合金の圧延材は、例えば、図2に示すように、溶解工程S101から、焼鈍工程S600を経て製造された後、歪、板厚、および表面疵等を検査(例えば、特開2006-281381号公報参照)した後に、塩化ビニール製やポリエチレン製等の樹脂フイルムで圧延表裏面を覆う処理(例えば、神戸製鋼技報/Vol.52 No.2, Sep. 2002、登録商標:アルハイス(ALHIGHCE)、古河スカイ社(Furukawa-Sky Aluminum Corp.)製の登録商標:ハイプレート(HIPLATE)等が知られている)が施される(S101~S900)。
 圧延表裏面を樹脂フイルムで覆う製品形態とされるのは、高精度アルミニウム合金厚板は、精密機器等の部品として多用されるため、小寸法・小員数で切り板問屋(cutlength sheet wholesaler)を介して取引きされているためである。すなわち、切り板問屋では、精密機器部品用途ではサイコロ大の小寸法とするための鋸切断が施され、真空チャンバー用途では部分的にエンドミル加工されるために非加工部分が装置外装材となる。そのため、そのような切削加工時の疵発生防止を目的に、高精度アルミニウム合金厚板の圧延表裏面は樹脂フイルムで覆われた製品形態で流通している。
 このアルミニウム合金の圧延材は、通常、鋳塊を所定厚さまで熱間圧延することにより製造される。しかし、このようなアルミニウム合金熱間圧延板は、板厚および平坦度が、圧延ロールのみにより制御されることから、良好な板厚精度および平坦性(特に圧延方向の平坦度)が得られ難い。また、熱間圧延時に圧延面に厚い酸化皮膜が形成されることから、同じく平坦度の制御が困難である。そこで、熱間圧延後に歪みを蓄積させない程度の圧下率5%以下で冷間圧延を施して板厚の精度を向上させる技術が開示されている(例えば、特許文献1参照)。
特開2006-316332号公報(段落0027~0028)
 しかしながら、前記特許文献1の従来技術は、アルミニウム合金材を板厚1mm程度の薄板とするものである。
 また、前記した表面疵は、製品の外観の美麗さばかりか、製品の機能を損なう重大な品質欠陥となり、製品歩留まりを低下させると同時に、この欠陥除去のために多くの工数を要し、生産性を阻害する要因となっている。例えば、サイコロ大の小寸法を使用する顧客では、購入製品を加工して製品を納入した後、製品納入先で被覆樹脂フイルムを剥がした段階で疵が発見されることで、最終顧客の販売機会を逸してしまうことや、真空チャンバー用途では、微細疵が鋳造巣であった場合には機能欠陥となるが、疵が微細であると損傷疵との区別が付かずに疵要因判断に時間を要し、これにより最終顧客への販売機会を逸してしまうという問題がある。
 また、問題となる疵レベルは近年要求レベルが高くなっており、深さが8μm以上、円相当径で約0.1mm程度の大きさの疵では、目視で発見できるため、問題となる。さらに、従来の製造方法では、前記レベルの疵を皆無化することは困難である。また、主に真空チャンバー用途では、素材表面のままで使用されることは殆どなく、耐食性、耐候性を高めるためにアルマイト処理やメッキ処理が施される。近年、元板に欠陥がないにも拘らず、前記のような表面処理を施した後に、後記するTi-Bの溶け残りが原因で、圧延平行方向に約3μm長さ程度の黒スジ状の表面欠陥が発生する不具合があり、この改善も急務となっている。これら表面欠陥の顧客要求に応えるために、このレベルの表面欠陥、あるいは表面処理により生じる表面欠陥を、樹脂フイルム被覆前に確実に排除できる高精度アルミニウ合金厚板が望まれている。
 本発明は、前記問題点に鑑みてなされたものであり、真空装置用チャンバーのような半導体関連装置等に作製することができる良好な板厚精度および平坦性を有するとともに、疵や黒スジ等による表面欠陥を抑制することができるアルミニウム合金厚板およびその製造方法を提供することを目的とする。
前記課題を解決するために、本発明に係るアルミニウム合金厚板は、アルミニウム合金熱間圧延板の表面を平滑化されてなるアルミニウム合金厚板であり、表面の平坦度が圧延方向長さ1m当たり0.2mm以下であり、板厚のバラツキが所望板厚の±0.5%以内である。
 このように、(樹脂フイルム被覆前の)表面平滑化により、表面の平坦度および板厚のバラツキを所定範囲に限定することによって、冷間圧延等の薄肉化加工を施すことなく、半導体関連装置等の、形状に高い精度が要求される製品のためのアルミニウム合金材とすることができる。さらには、疵や黒スジ等による表面欠陥の抑制を図ることも可能となる。
 好ましくは、前記アルミニウム合金厚板は、Mg:1.5~12.0質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:0.6質量%以下、Mn:1.0質量%以下、Cr:0.5質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなる。
 このような元素を所定範囲の濃度で含有することによって、板厚精度および平坦性の他、強度等の特性に優れたAl-Mg系合金厚板とすることができる。さらに、疵や黒スジ等による表面欠陥の抑制に加え、表面の色ムラ(color irregularity)の発生を抑制することもできる。
 好ましくは、前記アルミニウム合金厚板は、Mn:0.3~1.6質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:0.5質量%以下、Mg:1.5質量%以下、Cr:0.3質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなる。
 このような元素を所定範囲の濃度で含有することによって、板厚精度および平坦性の他、強度等の特性に優れたAl-Mn系合金厚板とすることができる。さらに、疵や黒スジ等による表面欠陥の抑制に加え、表面の色ムラの発生を抑制することもできる。
 好ましくは、前記アルミニウム合金厚板は、Mg:0.3~1.5質量%、Si:0.2~1.6質量%を含有し、さらに、Fe:0.8質量%以下、Cu:1.0質量%以下、Mn:0.6質量%以下、Cr:0.5質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなる。
 このような元素を所定範囲の濃度で含有することによって、板厚精度および平坦性の他、強度等の特性に優れたAl-Mg-Si系合金厚板とすることができる。さらに、疵や黒スジ等による表面欠陥の抑制に加え、表面の色ムラの発生を抑制することもできる。
 好ましくは、前記アルミニウム合金厚板は、Zn:3.0~9.0質量%、Mg:0.4~4.0質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:3.0質量%以下、Mn:0.8質量%以下、Cr:0.5質量%以下、Ti:0.1質量%以下、Zr:0.25質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなる。
 このような元素を所定範囲の濃度で含有することによって、板厚精度および平坦性の他、強度等の特性に優れたAl-Zn-Mg系合金厚板とすることができる。さらに、疵や黒スジ等による表面欠陥の抑制に加え、表面の色ムラの発生を抑制することもできる。
 また、本発明に係るアルミニウム合金厚板の製造方法は、請求項1に記載のアルミニウム合金厚板の製造方法であって、アルミニウム合金を溶解してアルミニウム合金溶湯とする溶解工程と、前記アルミニウム合金溶湯から水素ガスを除去する脱水素工程と、前記水素ガスを除去されたアルミニウム合金溶湯から介在物を除去するろ過工程と、前記介在物を除去されたアルミニウム合金溶湯を鋳造して鋳塊を製造する鋳造工程と、前記鋳塊を所定厚さに熱間圧延して熱間圧延板を製造する熱間圧延工程と、前記熱間圧延板を切断して所定の圧延方向長さおよび幅とする切断工程と、前記切断された熱間圧延板の表面を平滑化する平滑化処理工程と、を行い、前記平滑化処理工程において、前記熱間圧延板の表面の除去厚さが、片面あたり2~5mmである。
 このように、熱間圧延板の表面に、所定の除去厚さで平滑化処理を施すことにより、板厚精度および平坦性を向上させることができる。また、疵や黒スジ等による表面欠陥を抑制することができる。
 好ましくは、前記アルミニウム合金厚板の製造方法は、前記熱間圧延工程の前に、前記鋳塊を400℃以上前記アルミニウム合金の融点未満で1時間以上の熱処理による均熱処理工程を行う。
 このように、熱間圧延前に、鋳塊に熱処理を施すことにより、鋳塊の組織を微細化、均質化することができる。
 好ましくは、前記アルミニウム合金厚板の製造方法は、前記平滑化処理工程の前に、前記切断された熱間圧延板を焼鈍する焼鈍工程を行う。
 このように、熱間圧延板に焼鈍を施すことにより、熱間圧延板の特性を向上させることができる。
 好ましくは、前記アルミニウム合金厚板の製造方法は、前記平滑化処理工程が、切削法、研削法、および研磨法のいずれか1つ以上により行われる。
 このような方法により、アルミニウム合金厚板の板厚精度および平坦性が良好なものとなる。また、疵や黒スジ等による表面欠陥を抑制することができる。
 本発明に係るアルミニウム合金厚板によれば、塑性変形の少ない厚板においても、所望の板厚および平坦な厚板となるため、正確な形状が要求される半導体関連装置等に作製する場合に好適となる。また、疵や黒スジ等による表面欠陥が抑制されているため、厚板の表面性状が良好なものとなる。さらには、所定のアルミニウム合金を用いることで、強度等の特性が向上し、また、表面の色ムラの発生が抑制され、厚板の表面性状がさらに良好なものとなる。
 本発明に係るアルミニウム合金厚板の製造方法によれば、前記の効果を有するアルミニウム合金厚板を生産性よく製造することができる。
本発明に係るアルミニウム合金厚板の製造方法を示すフローチャートである。 従来技術に係るアルミニウム合金厚板の製造方法の一例を示すフローチャートである。
 以下、本発明に係るアルミニウム合金厚板を実現するための最良の形態について説明する。
〔アルミニウム合金厚板の構成〕
 本発明に係るアルミニウム合金厚板は、表面を平滑化されたアルミニウム合金熱間圧延板(アルミニウム合金熱延板)であり、表面の平坦度は圧延方向長さ1m当たり0.2mm以下、板厚のバラツキは所望板厚の±0.5%以内である。なお、本発明に係るアルミニウム合金厚板は、板厚が15~200mmの板材とするが、特に限定されるものではなく、アルミニウム合金厚板の用途に応じて適宜変更することができる。以下、本発明に係るアルミニウム合金厚板を構成する各要素について説明する。
 (表面の平坦度:圧延方向長さ1m当たり0.2mm以下)
 半導体関連装置の部材、特にプラズマ処理装置のような真空装置用チャンバーの内部部材に平坦性の劣る部材が用いられていると、高真空に減圧した際に部材表面からの吸着ガスの放出により、真空度が低下する。そのため、目標の真空度に達するまでの時間を要し、生産効率が低下する。したがって、本発明に係るアルミニウム合金厚板の表面の平坦度は0.2mm/m以下とする。また、熱間圧延板の表面の平坦性は圧延方向において最も劣るため、圧延方向長さ1m当たりとする。このような平坦性は、後記の製造方法における平滑化処理工程および矯正工程により調整される。
 (板厚のバラツキ:所望板厚の±0.5%以内)
 本発明に係るアルミニウム合金厚板は、半導体関連装置の部材等、形状に高い精度が要求される製品に作製されるため、板厚にも高い精度が要求される。この要求に対応するため、板厚のバラツキは所望板厚の±0.5%以内とする。このような板厚精度は、後記の製造方法における平滑化処理工程により調整される。
 この他に、本発明に係るアルミニウム合金厚板は、その100g当たりに含まれる水素ガス量を0.2ml以下とすることが好ましく、0.1ml以下とすることがより好ましい。水素ガスは、燃料中の水素や地金等に付着している水分、その他有機物等から発生する。水素ガスが多く含まれていると、ピンホールの原因となったり、製品の強度が弱くなったりする。また、鋳塊の表面近傍の粒界に水素が集積、濃化し、鋳塊のフクレ(blister)、およびフクレに起因するアルミニウム合金厚板のメクレ(peeling)が発生するとともに、厚板の表面欠陥として現れる厚板表面の潜在的欠陥が生じる。また、真空装置用チャンバーの内部部材にこれらの欠陥があると、高真空に減圧した際に部材に固溶しているガス原子の表面への放出により、真空度が低下する。そのため、目標の真空度に達するまでの時間を要し、生産効率が低下する。アルミニウム合金厚板に含まれる水素ガス量を減らすためには、後記の製造方法における脱水素工程で、鋳造前のアルミニウム合金溶湯から水素ガスを除去する。
 鋳塊の水素ガスの濃度は、例えば、鋳塊(均熱処理前)からサンプルを切り出して、アルコールとアセトンで超音波洗浄を行ったものから、不活性ガス気流融解熱伝導度法(LIS(Light-Metal Industrial Standard) AO6-1993)により求めることができる。また、アルミニウム合金厚板の水素ガスの濃度は、例えば、アルミニウム合金厚板からサンプルを切り出して、NaOHに浸漬後、硝酸で表面の酸化皮膜を除去し、アルコールとアセトンで超音波洗浄を行ったものから、真空加熱抽出容量法(LIS AO6-1993)により求めることができる。
 本発明に係るアルミニウム合金厚板は、どのようなアルミニウム合金からなるものであってもよいが、Al-Mg系合金、Al-Mn系合金、Al-Mg-Si系合金、Al-Zn-Mg系合金のいずれかから、その用途に適した材料を選択できる。以下、本発明に係るアルミニウム合金厚板を構成するアルミニウム合金の一例の各要素について説明する。
〔Al-Mg系合金の組成〕
 本発明に係るAl-Mg系合金、すなわち5000系Al合金に準ずるアルミニウム合金は、Mg:1.5~12.0質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:0.6質量%以下、Mn:1.0質量%以下、Cr:0.5質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなる。
 (Mg:1.5~12.0質量%)
 Mgは、Al-Mg系合金の強度を向上させる効果がある。Mg含有量が、1.5質量%未満ではこの効果は小さく、一方、Mg含有量が12.0質量%を超えると、鋳造性が著しく低下して製品製造が不可能となる。そのため、前記成分組成のAl-Mg系合金を用いる場合には、Mg含有量を12.0質量%とする必要がある。したがって、Mg含有量は1.5~12.0質量%とする。
 (Si:0.7質量%以下)
 Siは、地金不純物としてアルミニウム合金中に不可避的に含有する元素である。Siは、アルミニウム合金の強度を向上させる効果があるが、一方、鋳造時等に、Mn,Feと結び付いてAl-(Fe)-(Mn)-Si系金属間化合物を生じさせる。Si含有量が0.7質量%を超えると、粗大な金属間化合物が鋳塊中に生じて、アルマイト処理後の表面外観に色ムラが生じ易くなる。したがって、Si含有量は0.7質量%以下とする。
 (Fe:0.8質量%以下)
 Feは、地金不純物としてアルミニウム合金中に不可避的に含有する元素である。Feは、アルミニウム合金の結晶粒を微細化、安定化させるとともに、強度を向上させる効果がある。一方、鋳造時等に、Mn,Siと結び付いてAl-Fe-(Mn)-(Si)系金属間化合物を生じさせる。Fe含有量が0.8質量%を超えると、粗大な金属間化合物が鋳塊中に生じて、アルマイト処理後の表面外観に色ムラが生じ易くなる。したがって、Fe含有量は0.8質量%以下とする。
 (Cu:0.6質量%以下)
 Cuは、アルミニウム合金中に固溶して強度を向上させる効果がある。Al-Mg系合金厚板として使用するための強度はCu含有量が0.6質量%で十分に確保され、それを超えて添加しても効果は飽和する。したがって、Cu含有量は0.6質量%以下とする。
 (Mn:1.0質量%以下)
 Mnは、アルミニウム合金中に固溶して強度を向上させる効果がある。一方、Mn含有量が1.0質量%を超えると、粗大な金属間化合物が鋳塊中に生じて、アルマイト処理後の表面外観に色ムラが生じ易くなる。したがって、Mn含有量は1.0質量%以下とする。
 (Cr:0.5質量%以下)
 Crは、鋳造時や熱処理時に微細な化合物として析出し、結晶粒成長を抑制する効果がある。一方、Cr含有量が0.5質量%を超えると、初晶として粗大なAl-Cr系金属間化合物が生じ、アルマイト処理後の表面外観に色ムラが生じ易くなる。したがって、Cr含有量は0.5質量%以下とする。
 (Zn:0.4質量%以下)
 Znは、アルミニウム合金の強度を向上させる効果がある。Al-Mg系合金厚板として使用するための強度はZn含有量が0.4質量%で十分に確保され、それを超えて添加しても効果は飽和する。したがって、Zn含有量は0.4質量%以下とする。
 (Ti:0.1質量%以下)
 Tiはアルミニウム合金の結晶粒を微細化させる効果がある。Ti含有量が0.1質量%を超えてもその効果は飽和する。したがって、Ti含有量は0.1質量%以下とする。
〔Al-Mn系合金の組成〕
 次に、Al-Mn系合金の各要素について説明する。本発明に係るAl-Mn系合金、すなわち3000系Al合金に準ずるアルミニウム合金は、Mn:0.3~1.6質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:0.5質量%以下、Mg:1.5質量%以下、Cr:0.3質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなる。
(Mn:0.3~1.6質量%)
 Mnは、アルミニウム合金中に固溶して強度を向上させる効果がある。Mn含有量が、0.3質量%未満ではこの効果は小さく、一方、Mn含有量が1.6質量%を超えると、粗大なAl-(Fe)-Mn-(Si)系金属間化合物が鋳塊中に生じて、アルマイト処理後の表面外観に色ムラが生じ易くなる。したがって、Mn含有量は0.3~1.6質量%とする。
 (Mg:1.5質量%以下)
 Mgは、アルミニウム合金の強度を向上させる効果がある。Al-Mn系合金厚板として使用するための強度はMg含有量が1.5質量%で十分に確保され、それを超えて添加しても効果は飽和する。したがって、Mg含有量は1.5質量%以下とする。
 (Si:0.7質量%以下、Fe:0.8質量%以下、Cu:0.5質量%以下、Cr:0.3質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下)
Si,Fe,Cu,Cr,Zn,Tiのそれぞれの効果は、Al-Mg系合金におけるものと同様であるので省略する。
〔Al-Mg-Si系合金の組成〕
 次に、Al-Mg-Si系合金の各要素について説明する。本発明に係るAl-Mg-Si系合金、すなわち6000系Al合金に準ずるアルミニウム合金は、Mg:0.3~1.5質量%、Si:0.2~1.6質量%を含有し、さらに、Fe:0.8質量%以下、Cu:1.0質量%以下、Mn:0.6質量%以下、Cr:0.5質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなる。
 (Mg:0.3~1.5質量%)
 Mgは、アルミニウム合金の強度を向上させる効果があり、さらに、Siと共存することでMgSiを形成してアルミニウム合金の強度を向上させる。Mg含有量が、0.3質量%未満ではこれらの効果は小さい。一方、Mg含有量が1.5質量%を超えると、Al-Mg系(5000系Al)合金の特性になる場合がある。したがって、Mg含有量は0.3~1.5質量%とする。
 (Si:0.2~1.6質量%)
 Siは、アルミニウム合金の強度を向上させる効果があり、さらに、Mgと共存することでMgSiを形成してアルミニウム合金の強度を向上させる。Si含有量が、0.2質量%未満ではこれらの効果は小さい。一方、Si含有量が1.6質量%を超えると、粗大な金属間化合物がAl-Mg-Si系合金中に生じて、アルマイト処理後の表面外観に色ムラが生じ易くなる。したがって、Si含有量は0.2~1.6質量%とする。
 (Cu:1.0質量%以下)
 Cuは、アルミニウム合金中に固溶して強度を向上させる効果があるが、一方、Cu含有量が1.0質量%を超えると、Al-Mg-Si系合金の耐食性が低下する。したがって、Cu含有量は1.0質量%以下とする。
 (Zn:0.4質量%以下)
 Znは、アルミニウム合金の強度を向上させる効果があるが、一方、Zn含有量が0.4質量%を超えると、Al-Mg-Si系合金の耐食性が低下する。したがって、Zn含有量は0.4質量%以下とする。
 (Fe:0.8質量%以下、Mn:0.6質量%以下、Cr:0.5質量%以下、Ti:0.1質量%以下)
 Fe,Mn,Cr,Tiのそれぞれの効果は、Al-Mg系合金におけるものと同様であるので省略する。
〔Al-Zn-Mg系合金の組成〕
 次に、Al-Zn-Mg系合金の各要素について説明する。本発明に係るAl-Zn-Mg系合金、すなわち7000系Al合金に準ずるアルミニウム合金は、Zn:3.0~9.0質量%、Mg:0.4~4.0質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:3.0質量%以下、Mn:0.8質量%以下、Cr:0.5質量%以下、Ti:0.1質量%以下、Zr:0.25質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなる。
 (Zn:3.0~9.0質量%)
 Znは、アルミニウム合金の強度を向上させる効果がある。Znの含有量が、3.0質量%未満ではこの効果は小さく、一方、Znの含有量が9.0質量%を超えると、粗大な金属間化合物が生じてアルマイト処理後の表面外観に色ムラが生じ易くなったり、耐SCC(耐応力腐食割れ)性が低下したりする。したがって、Zn含有量は3.0~9.0質量%とする。
 (Mg:0.4~4.0質量%)
 Mgは、アルミニウム合金の強度を向上させる効果がある。Mg含有量が、0.4質量%未満ではこの効果は小さく、一方、Mg含有量が4.0質量%を超えると、粗大な金属間化合物が生じてアルマイト処理後の表面外観に色ムラが生じ易くなったり、耐SCC(耐応力腐食割れ)性が低下したりする。したがって、Mg含有量は0.4~4.0質量%とする。
 (Cu:3.0質量%以下)
 Cuは、アルミニウム合金中に固溶して強度を向上させる効果があるが、一方、Cu含有量が3.0質量%を超えると、Al-Zn-Mg系合金の耐食性が低下する。したがって、Cu含有量は3.0質量%以下とする。
 (Zr:0.25質量%以下)
 Zrは、アルミニウム合金の結晶粒を微細化させるとともに、安定化させる効果がある。一方、Zr含有量が0.25質量%を超えると、粗大な金属間化合物が生じてアルマイト処理後の表面外観に色ムラが生じ易くなる。したがって、Zr含有量は0.25質量%以下とする。
 (Si:0.7質量%以下、Fe:0.8質量%以下、Mn:0.8質量%以下、Cr:0.5質量%以下、Ti:0.1質量%以下)
 Si,Fe,Mn,Cr,Tiのそれぞれの効果は、Al-Mg系合金におけるものと同様であるので省略する。
 なお、Al-Mg系合金、Al-Mn系合金、Al-Mg-Si系合金、Al-Zn-Mg系合金のいずれにおいても、不可避的不純物としてのV,B等の含有量は、それぞれ0.01質量%以下であれば、本発明のアルミニウム合金厚板の特性に影響しない。しかしながら、スラブ造塊時の鋳塊割れ防止を目的にTiをBとの母合金からなる微細化剤で添加することもあるが、後記するように、粗大なTi-B粒子は溶け残るとアルマイト処理あるいはメッキ処理等の表面処理後に黒スジを生ずることがある。このため、Al-Tiの微細化剤を使う等、Bは添加しないことが好ましいが、Bの添加により黒スジが生じたとしても、後記するように、適正な平滑化処理を行うことで、黒スジを除去することが可能である。
〔アルミニウム合金厚板の製造方法〕
 次に、本発明に係るアルミニウム合金厚板の製造方法を、図面を参照して説明する。図1は、本発明に係るアルミニウム合金厚板の製造方法を示すフローチャートである。本発明に係るアルミニウム合金厚板の製造方法は、まず、前記いずれかの組成のアルミニウム合金を溶解してアルミニウム合金溶湯とし(溶解工程S11)、アルミニウム合金溶湯から、水素ガスおよび介在物をそれぞれ除去する(脱水素工程S12、ろ過工程S13)。このアルミニウム合金溶湯を鋳造して鋳塊を製造し(鋳造工程S14)、鋳塊を所定厚さに熱間圧延して熱間圧延板を製造する(熱間圧延工程S30)。そして、熱間圧延板を、切断し(切断工程S50)、表面を平滑化して仕上げる(平滑化処理工程S70)。また、熱間圧延する前に、鋳塊を熱処理により均質化してもよい(均熱処理工程S20)。また、熱間圧延板の歪みを矯正してもよい(矯正工程S40)。さらに、熱間圧延板を焼鈍してもよい(焼鈍工程S60)。なお、このようにして製造されたアルミニウム合金厚板は、その後、検査工程S80、樹脂フイルム被覆工程S90を経て、表裏面が樹脂フイルムで覆われた製品形態となる。また、図1では、便宜上、樹脂フイルム被覆工程S90を経て終了としているが、本発明に係るアルミニウム合金厚板は、平滑化処理工程S70を終えた段階のものである。以下に、各工程の詳細を説明する。
 (溶解工程)
溶解工程S11は、所定の組成のアルミニウム合金を溶解してアルミニウム合金溶湯にする工程であり、公知の設備、方法で行われる。
 (脱水素工程)
 脱水素工程S12は、アルミニウム合金溶湯から水素ガスを除去する工程であり、アルミニウム合金溶湯をフラクシング(fluxing)、塩素精錬、またはインライン精錬等を行うことによって好適に水素ガスを除去できる。また、脱水素ガス装置として、スニフ(SNIFF)等の回転式脱水素ガス装置やポーラスプラグ(porous plug)(特開2002-146447号公報参照)を用いて行うと、より好適に除去することができる。
 (ろ過工程)
ろ過工程S13は、ろ過装置により、アルミニウム合金溶湯から主として酸化物や非金属の介在物を除去する工程である。ろ過装置には、例えば1mm程度の粒子のアルミナが用いられたセラミックチューブが設けられており、これにアルミニウム合金溶湯を通すことによって前記の酸化物や介在物を除去することができる。
 脱水素工程S12およびろ過工程S13により、後続の鋳造工程S14において、内部欠陥を抑制された高品質のアルミニウム合金鋳塊とすることができる。また、酸化物の堆積物(ドロス(dross))の堆積を抑制できるので、ドロス除去の作業を低減することができる。
 (鋳造工程)
鋳造工程S14は、例えば、水冷鋳型を含んで構成されている鋳造装置で、アルミニウム合金溶湯を直方体形状等の所定の形状に形成、凝固させてアルミニウム合金鋳塊を製造するための工程である。鋳造方法としては、半連続鋳造法を用いることができる。半連続鋳造法は、底部が開放された金属製の水冷鋳型に、上方より金属の溶湯を注入し、水冷鋳型の底部より凝固した金属を連続的に取り出して所定厚さの鋳塊を得るものである。この半連続鋳造法は、縦向き、横向きのどちらで行ってもよい。
 (均熱処理工程-処理温度:400℃以上アルミニウム合金の融点未満、処理時間:1時間以上)
均熱処理工程S20は、アルミニウム合金鋳塊に熱処理を施すことによって、内部応力を除去し、鋳造時に偏析した溶質元素を均質化し、鋳造時に晶出した金属間化合物を拡散固溶させて、組織を均質化するための工程である。熱処理は、常法にしたがって、400℃以上、アルミニウム合金の融点未満の温度で、1時間以上保持することにより行う。均熱処理温度が400℃未満では、前記効果が不十分である。また、処理時間が1時間未満では、金属間化合物の固溶が不十分であり析出し易い。一方、均熱処理温度が本発明に係るアルミニウム合金の融点に至ると、アルミニウム合金鋳塊の表面の一部が溶解するバーニング(burning)と呼ばれる現象が生じ、アルミニウム合金厚板の表面欠陥の原因になり易い。したがって、均熱処理温度は400℃以上、アルミニウム合金の融点未満とし、1時間以上行う。
 (熱間圧延工程)
 熱間圧延工程S30は、アルミニウム合金鋳塊を熱間圧延して所定厚さの板材(アルミニウム合金熱延板)とする工程である。熱間圧延方法としては、リバース式(可逆)熱間圧延機を用いることができる。アルミニウム合金鋳塊を、所定の温度まで昇温し、リバース式熱間圧延機により圧下することによって所定厚さのアルミニウム合金熱延板が製造される。この工程での板厚(アルミニウム合金熱延板の板厚)は、アルミニウム合金厚板の所望の板厚に対して後記の平滑化処理工程S70による減少分を加算した板厚であり、15~200mm程度が好ましい。
 (矯正工程)
 矯正工程S40は、アルミニウム合金熱延板の熱間圧延で生じた歪みを矯正して平坦化する工程であり、ストレッチャー(stretcher)やテンションレベラー等の公知の設備、方法で行われる。
 (切断工程)
 切断工程S50は、アルミニウム合金熱延板を所望の長さ(および幅)に切断する工程である。
 (焼鈍工程)
 焼鈍工程S60は、アルミニウム合金厚板に熱処理を施すことによって、内部応力を除去したり、内部組織を均一化したりする工程である。また、溶体化処理および時効処理による調質を施してもよい。また、これらの処理は平滑化処理工程S70の後に行ってもよい。なお、例えば特開昭63-115617号公報に示されるように、熱処理を施すことによって表面の平坦度を向上させることができる。
 (平滑化処理工程)
 平滑化処理工程S70は、アルミニウム合金熱延板の表面(圧延面)を平滑化し、また板厚を調整する工程である。
 ここで、熱延板の表面の除去厚さは、片面あたり2~5mmとする。除去厚さを2mm以上とすることで、平坦度、板厚のバラツキを所望に調整でき、かつ疵による表面欠陥を抑制することができる。
 また、前記したように、近年、元板に欠陥がないにも拘らず、アルマイト処理やメッキ処理等の表面処理を施した後に圧延平行方向に約3μm長さ程度の黒スジ状の表面欠陥が発生する不具合があるが、この原因を鋭意調査した結果、鋳塊割れ防止や鋳造時の鋳塊微細化剤(結晶粒微細化剤)のTi-Bが、スラブ造塊の鋳型近傍の急冷凝固部で溶け残ったことによるものであることを発明者らは究明した。そこで、除去厚さを2mm以上とすることで、鋳塊微細化剤のTi-Bの溶け残りがあっても、これを除去することができるため、アルマイト処理やメッキ処理を行っても黒スジ状の表面欠陥が発生することがない。なお、歩留まりやコストパフォーマンスの観点から、除去厚さは5mm以下とする。
 平滑化処理方法としては、エンドミル(end mill)切削やダイヤモンドバイト(diamond bite)切削等の切削法、表面を砥石等で削る研削法、バフ(buffing)研磨等の研磨法等を用いることができるが、これらに限定されるものではない。
 また、平滑化処理工程S70において、平坦度、板厚のバラツキ、疵や黒スジ等による表面欠陥を抑制した後、さらに、ヘアライン加工(hair line process)を施してもよい。ヘアライン加工を施すことで、厚板表面に圧延目を付すことができる。ヘアライン加工の方法としては、ベルト式、あるいはホイール式等の研磨方法が知られているが、いずれの方法を採用してもよく、ベルト式、あるいはホイール式等のヘアライン加工に使用される研磨不織布としては、砥粒種としてアルミナ、シリコンカーバイド、ジルコニア等の単体、あるいはそれらの混合物と、レジンやニカワ等の接着剤と、からなるものが知られており、砥粒番手としては市販品で比較的粗めの#120~#220が挙げられる。また、ベルトやホイールの回転外径がφ400mmの研磨不織布を使う場合には、焼き付き防止のグリースを含有したもので、1500rpm以下の回転数でヘアライン加工することが好ましいが、これらの条件に限定されるものではない。
 なお、疵による表面の欠陥に関しては、人が肉眼で視認できる疵の大きさは、深さ8μm以上であり、検査の際に判定することが難しい疵の大きさも20μm迄であるが、8~20μm深さは異物やロール疵により発生する押し込みであり、このような欠陥は本来機能欠陥ではない。このため、このような押し込み疵は、ヘアライン加工(加工代で2~3μm)相当を施すことによって厚板表面の平滑部と疵と境界を滑らかな状態にできることから、機能的な欠陥との判別を容易にできる効果がある。また、経済性を無視すれば、ヘアライン加工のみでも、片面あたり2mm以上削れば、本願発明の効果は得られる。
 そして、このようにして製造されたアルミニウム合金厚板は、その後、検査工程S80により、歪、板厚、および表面疵等について検査された後、樹脂フイルム被覆工程S90により、表裏面が樹脂フイルムで覆われる。
 以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。
〔実施例1:供試材作製〕
 (Al-Mg系合金)
 表1に示す合金No.5a~5vの組成のアルミニウム合金(5k:JIS5052合金、5l:JIS5083合金、5vはTi、B無添加)を、溶解し、脱水素処理、ろ過を行った後、鋳造して板厚500mmの鋳塊を作製した。この鋳塊を500℃で4時間加熱して均熱処理した後、熱間圧延して、厚さ約25mmと、厚さ約20mmのアルミニウム合金熱延板を作製した。このアルミニウム合金熱延板を、圧延方向長さ2000mm×幅1000mmに切断した後、圧延面(両面)に対して平滑化処理を行い、厚さ20mmのアルミニウム合金厚板(切断板)とした。なお、Tiを含有するものについては、鋳塊割れ防止のため、Ti-B母合金を添加している。平滑化処理は、エンドミル加工、エンドミル加工+ヘアライン加工(ベルト式研磨不織布による)、ヘアライン加工の3種類の方法にて効果を比較した。なお、エンドミル加工を施すものは、厚さ約25mmのアルミニウム合金熱延板を使用し、ヘアライン加工のみを施すものは、厚さ約20mmのアルミニウム合金熱延板を使用した。
 エンドミル加工は、WASSER GmbH製(ドイツの機械メーカー、GmbHは株式会社)のエンドミル加工機(フライス)を改造して使用した。粗チップは超硬、仕上チップはダイヤモンドとして、加工代は、ゼロ点からの円盤の押込み量とし、トータル約2.5mm/片面になるように調整して加工した。
 具体的には、円盤下面の円周近傍に粗チップ30ヶ、仕上チップ2ヶを装着して、円盤を被加工物に降ろしてから回転させ、板長手方向に送ることより切削加工した。なお、仕上げチップ飛び出し量は、粗チップよりも若干飛び出すように装着しているため、粗チップの切削した面を仕上げチップが後追いで削るような形となる。
 ヘアライン加工は、野水機械株式会社(Nomizu Machine Mfg. Co., Ltd)製のアルミ板バフ研磨機を、バフ研磨ロール部に研磨不織布ホイールを装着できるように改造して使用した。ホイールは、株式会社光陽社(KOYO-SHA Co., Ltd.)製のポリテックス(POLITEX;
登録商標) KFホイール MA(粗目(♯150)、外径φ400mm、グリース含浸であり、砥粒種として褐色溶融アルミナ、接着剤としてレジンボンドを使用したもの)を使用した。
 そして、加工代が約3.0μm/片面となる条件(オシレート有り(2往復))で研磨を実施した。なお、研磨代は、試し研磨部の段差を、Vecoo instruments Inc.製(米国)の「WYKO NT3300(表面形状測定システム)」にて形状測定して、凹凸の深さを測定して計測確認した。
 (Al-Mn系合金)
 表1に示す合金No.3a~3eの組成のアルミニウム合金(3eはTi、B無添加)を、溶解し、脱水素処理、ろ過を行った後、鋳造して板厚500mmの鋳塊を作製した。この鋳塊を熱間圧延して、厚さ約25mmと、厚さ約20mmのアルミニウム合金熱延板を作製した。このアルミニウム合金熱延板を、圧延方向長さ2000mm×幅1000mmに切断した後、圧延面(両面)に対して平滑化処理を行い、厚さ20mmアルミニウム合金厚板(切断板)とした。なお、Tiを含有するものについては、鋳塊割れ防止のため、Ti-B母合金を添加している。平滑化処理は、エンドミル加工、エンドミル加工+ヘアライン加工(ベルト式研磨不織布による)、ヘアライン加工の3種類の方法にて効果を比較した。なお、エンドミル加工を施すものは、厚さ約25mmのアルミニウム合金熱延板を使用し、ヘアライン加工のみを施すものは、厚さ約20mmのアルミニウム合金熱延板を使用した。また、エンドミル加工、ヘアライン加工の方法については、前記Al-Mg系合金の場合と同様である。
Figure JPOXMLDOC01-appb-T000001
〔実施例1:評価〕
 得られたアルミニウム合金厚板にて以下の評価を行い、結果を表2、3に示す。また、平滑化処理を実施しないアルミニウム合金熱延板(厚さ20mm)も製作して、比較例として評価した。なお、合金No.5nは、後記するようにアルミニウム合金熱延板に作製できなかったため、以降の処理および評価は実施しなかったので、表2、3に「-」で示す。
 (平坦性)
 平坦性評価は、供試材の圧延方向1m当たりの反り量(平坦度)を測定した。平坦性の合格基準は、平坦度が0.2mm/m以下とした。
 (板厚精度)
 供試材の4隅、および圧延方向の辺の長さの半分の部位から幅方向への内側20mmの部位の計6点における板厚を、マイクロメータを用いて測定した。6点すべての板厚が、20.0±0.06mm(19.94~20.06mm)の範囲であるものを板厚精度が優れているとして「◎」、20.0±0.10mm(20.0mm±0.5%、19.90~20.10mm)の範囲であるものを良好であるとして「○」で評価した。
 (強度)
 供試材から、JIS5号による引張試験片を切り出した。この試験片で、JISZ2241による引張試験を実施し、引張強さおよび耐力(0.2%耐力)を測定した。強度の合格基準は、合金No.5a~5u(Al-Mg系合金)は引張強さが180N/mm以上、合金No.3a~3d(Al-Mn系合金)は引張強さが90N/mm以上とした。
 (表面性状)
 平滑化処理による表面性状への影響を評価するため、供試材(各40枚)にアルマイト処理を施し、その表面の外観を観察した。
 供試材の表面に、硫酸アルマイト処理(15%硫酸、20℃、電流密度2A/dm)にて厚さ10μmのアルマイト皮膜を形成した。そして、表面の疵による表面性状および黒スジによる表面性状を調べた。
<アルマイト処理後の疵による表面性状評価>
 このアルマイト処理された表面の外観を観察し、肉眼で疵が判別された切断板が40枚中1枚もないものを疵による表面性状評価が非常に良好であるとして「◎」、肉眼で疵が判別された切断板が40枚中1~4枚のものを疵による表面性状評価が良好であるとして「○」、肉眼で疵が判別された切断板が40枚中5枚以上のものを疵による表面性状評価が不良であるとして「×」で評価した。
<アルマイト処理後の黒スジによる表面性状評価>
 前記のアルマイト処理された表面の黒スジ(機能欠陥ではない)を観察し、肉眼で黒スジが発見されなかったものを、黒スジによる表面性状評価が良好であるとして「○」、肉眼で黒スジが発見されたものを、黒スジによる表面性状評価が不良であるとして「×」で評価した。
 さらに、表面の色ムラによる表面性状についても調べた。なお、この表面性状は、本発明としてはあくまで望ましい表面性状に過ぎないため、この表面性状を満たさない場合でも、疵および黒スジによる表面性状を満たしているものは、表面性状に関しては、本発明の最低限の目的は達するものである。
<アルマイト処理後の色ムラによる表面性状評価>
 前記のアルマイト処理された表面の外観を観察し、外観に色ムラがないものを色ムラによる表面性状評価が良好であるとして「○」、色ムラがあるものを色ムラによる表面性状評価が不良であるとして「×」で評価した。
 なお、エンドミル加工+ヘアライン加工、および、ヘアライン加工のみの強度の値は、エンドミル加工のみの強度の値と同じであるため、表中、記載を省略する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 合金No.5a~5l、および5vからなるアルミニウム合金厚板は、添加元素の含有量が適正な範囲内であり、表面に適正な平滑化処理を施されているので、強度、平坦性、板厚精度、および表面性状が良好であった。また、平滑化処理を施していないアルミニウム合金熱延板と比較しても、十分な強度および良好な表面性状が得られた。これに対して、合金No.5mからなるアルミニウム合金厚板は、Mg含有量が不足しているため、強度が十分に得られなかった。一方、合金No.5nからなるアルミニウム合金厚板は、Mg含有量が過剰なため、鋳造割れが発生し、供試材の作製ができなかった。合金No.5o,5p,5r,5sからなるアルミニウム合金厚板は、Si,Fe,Mn,Cr含有量がそれぞれ過剰なため、粗大な金属間化合物が形成されて、アルマイト処理後の表面の外観に色ムラを生じた。合金No.5q,5t,5uからなるアルミニウム合金厚板は、Cu,Zn,Ti含有量がそれぞれ適正な範囲を超えるが、これらの元素が適正な範囲内である合金No.5f,5j,5cと比較して強度および表面性状に効果の向上は見られなかった。
 また、表面平滑化処理の方法の違いについては、除去量の少ないヘアライン加工のみに比べ、除去量が適正なエンドミル加工+ヘアライン加工、または、エンドミル加工のみの場合のほうが、疵による表面性状が向上することが確認された。なお、従来の熱延板の切断板で発見された疵は、肉眼でかろうじて発見できるサイズの機能的には全く問題のない微小な疵が含まれて判別されるものの、ヘアライン加工のみ施した切断板で発見された疵は、目視ではっきり判別できる疵であった。従い、ヘアライン加工のみでも機能欠陥の区別が容易である効果が確認された。
 さらに、ヘアライン加工のみの場合は、除去量が少ないため、黒スジ発生を防止できないが、エンドミル加工のみ、または、エンドミル加工+ヘアライン加工の場合は、除去量が適正なため、黒スジ発生を防止できることが確認された。なお、5vからなるアルミニウム合金厚板は、スラブ造塊時に鋳塊微細化剤のTi-Bを使用していないために、表面平滑化処理の方法の違いに影響されることなく、いずれの表面平滑化処理の方法でも黒スジ発生を防止するできることが確認された。
 合金No.3a,3b,3eからなるアルミニウム合金厚板は、添加元素の含有量が適正な範囲内であり、表面に適正な平滑化処理を施されているので、強度、平坦性、板厚精度、および表面性状が良好であった。また、平滑化処理を施していないアルミニウム合金熱延板と比較しても、十分な強度および良好な表面性状が得られた。これに対して、合金No.3cからなるアルミニウム合金厚板は、Mn含有量が不足しているため、強度が十分に得られなかった。一方、合金No.3dからなるアルミニウム合金厚板は、Mn含有量が過剰なため、粗大な金属間化合物が形成されて、アルマイト処理後の表面の外観に色ムラを生じた。
 また、表面平滑化処理の方法の違いについては、除去量の少ないヘアライン加工のみに比べ、除去量が適正なエンドミル加工+ヘアライン加工、または、エンドミル加工のみの場合のほうが、疵による表面性状が向上することが確認された。なお、従来の熱延板の切断板で発見された疵は、肉眼でかろうじて発見できるサイズの機能的には全く問題のない微小な疵が含まれて判別されるものの、ヘアライン加工のみ施した切断板で発見された疵は、目視ではっきり判別できる疵であった。従い、ヘアライン加工のみでも機能欠陥の区別が容易である効果が確認された。
 さらに、ヘアライン加工のみの場合は、除去量が少ないため、黒スジ発生を防止できないが、エンドミル加工のみ、または、エンドミル加工+ヘアライン加工の場合は、除去量が適正なため、黒スジ発生を防止できることが確認された。なお、3eからなるアルミニウム合金厚板は、スラブ造塊時に鋳塊微細化剤のTi-Bを使用していないために、表面平滑化処理の方法の違いに影響されることなく、いずれの表面平滑化処理の方法でも黒スジ発生を防止するできることが確認された。
 平滑化処理を施していないアルミニウム合金熱延板は、加工歪みが蓄積され、圧延方向に反りが大きく平坦性が不良であった。また、板厚精度は、同じ組成のアルミニウム合金厚板に比べてやや劣るものが多かった。さらに、疵および黒スジによる表面性状が不良であった。また、ヘアライン加工のみの平坦度の値および切断板の板厚精度の評価は、アルミニウム熱延板(平滑化処理なし)の平坦度の値および切断板の板厚精度の評価とほぼ同じであった(加工代が2~3μmでは、蓄積された加工歪みが軽減されないため、圧延方向に反りが大きく平坦性が不良となる)。
〔実施例2:供試材作製〕
 (Al-Mg-Si系合金)
 表4に示す合金No.6a~6gの組成のアルミニウム合金を、溶解し、脱水素処理、ろ過を行った後、鋳造して板厚500mmの鋳塊を作製した。この鋳塊を熱間圧延して、厚さ約25mmと、厚さ約20mmのアルミニウム合金熱延板を作製した。このアルミニウム合金熱延板を、圧延方向長さ2000mm×幅1000mmに切断した後、圧延面(両面)に対して平滑化処理を行い、厚さ20mmアルミニウム合金厚板(切断板)とした。なお、Tiを含有するものについては、鋳塊割れ防止のため、Ti-B母合金を添加している。平滑化処理は、エンドミル加工、エンドミル加工+ヘアライン加工(ベルト式研磨不織布による)、ヘアライン加工の3種類の方法にて効果を比較した。なお、エンドミル加工を施すものは、厚さ約25mmのアルミニウム合金熱延板を使用し、ヘアライン加工のみを施すものは、厚さ約20mmのアルミニウム合金熱延板を使用した。また、エンドミル加工、ヘアライン加工の方法については、前記Al-Mg系合金の場合と同様である。さらに、得られたアルミニウム合金厚板を520℃で溶体化処理し、175℃で8時間の時効処理を施した。
 (Al-Zn-Mg系合金)
 表4に示す合金No.7a~7gの組成のアルミニウム合金を、溶解し、脱水素処理、ろ過を行った後、鋳造して板厚500mmの鋳塊を作製した。この鋳塊を熱間圧延して、厚さ約25mmと、厚さ約20mmのアルミニウム合金熱延板を作製した。このアルミニウム合金熱延板を、圧延方向長さ2000mm×幅1000mmに切断した後、圧延面(両面)に対して平滑化処理を行い、厚さ20mmアルミニウム合金厚板(切断板)とした。なお、Tiを含有するものについては、鋳塊割れ防止のため、Ti-B母合金を添加している。平滑化処理は、エンドミル加工、エンドミル加工+ヘアライン加工(ベルト式研磨不織布による)、ヘアライン加工の3種類の方法にて効果を比較した。なお、エンドミル加工を施すものは、厚さ約25mmのアルミニウム合金熱延板を使用し、ヘアライン加工のみを施すものは、厚さ約20mmのアルミニウム合金熱延板を使用した。また、エンドミル加工、ヘアライン加工の方法については、前記Al-Mg系合金の場合と同様である。さらに、得られたアルミニウム合金厚板を470℃で溶体化処理し、120℃で48時間の時効処理を施した。
Figure JPOXMLDOC01-appb-T000004
〔実施例2:評価〕
 得られたアルミニウム合金厚板にて、実施例1と同様の方法で強度および表面性状の評価を行い、結果を表5、6に示す。また、平滑化処理を実施しないアルミニウム合金熱延板(厚さ20mm)も製作して、同じ条件で溶体化処理および時効処理を施し、比較例として評価した。強度の合格基準は、合金No.6a~6g(Al-Mg-Si系合金)は引張強さが200N/mm以上、合金No.7a~7g(Al-Zn-Mg系合金)は引張強さが250N/mm以上とした。
 なお、エンドミル加工+ヘアライン加工、および、ヘアライン加工のみの強度の値は、エンドミル加工のみの強度の値と同じであるため、表中、記載を省略する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 合金No.6a,6b,6gからなるアルミニウム合金厚板は、添加元素の含有量が適正な範囲内であり、表面に適正な平滑化処理を施されているので、強度および表面性状が良好であった。また、平滑化処理を施していないアルミニウム合金熱延板と比較しても、十分な強度および良好な表面性状が得られた。これに対して、合金No.6c,6eからなるアルミニウム合金厚板は、Si,Mg含有量がそれぞれ不足しているため、強度が十分に得られなかった。一方、合金No.6dからなるアルミニウム合金厚板は、Si含有量が過剰なため、粗大な金属間化合物が形成されて、アルマイト処理後の表面の外観に色ムラを生じた。また、合金No.6fからなるアルミニウム合金厚板は、Mg含有量が過剰であることで、Al-Mg系(5000系Al)合金の特性となったため、溶体化処理および時効処理による強度向上効果が得られず、Mg含有量が適正な範囲内である合金No.6a,6bと比較して強度が低下した。
 また、表面平滑化処理の方法の違いについては、除去量の少ないヘアライン加工のみに比べ、除去量が適正なエンドミル加工+ヘアライン加工、または、エンドミル加工のみの場合のほうが、疵による表面性状が向上することが確認された。なお、従来の熱延板の切断板で発見された疵は、肉眼でかろうじて発見できるサイズの機能的には全く問題のない微小な疵が含まれて判別されるものの、ヘアライン加工のみ施した切断板で発見された疵は、目視ではっきり判別できる疵であった。従い、ヘアライン加工のみでも機能欠陥の区別が容易である効果が確認された。
 さらに、ヘアライン加工のみの場合は、除去量が少ないため、黒スジ発生を防止できないが、エンドミル加工のみ、または、エンドミル加工+ヘアライン加工の場合は、除去量が適正なため、黒スジ発生を防止できることが確認された。なお、6gからなるアルミニウム合金厚板は、スラブ造塊時に鋳塊微細化剤のTi-Bを使用していないために、表面平滑化処理の方法の違いに影響されることなく、いずれの表面平滑化処理の方法でも黒スジ発生を防止するできることが確認された。
 合金No.7a,7b,7gからなるアルミニウム合金厚板は、添加元素の含有量が適正な範囲内であり、表面に適正な平滑化処理を施されているので、強度および表面性状が良好であった。また、平滑化処理を施していないアルミニウム合金熱延板と比較しても、十分な強度および良好な表面性状が得られた。これに対して、合金No.7c,7eからなるアルミニウム合金厚板は、Mg,Zn含有量がそれぞれ不足しているため、強度が十分に得られなかった。一方、合金No.7d,7fからなるアルミニウム合金厚板は、Mg,Zn含有量がそれぞれ過剰なため、粗大な金属間化合物が形成されて、アルマイト処理後の表面の外観に色ムラを生じた。
 また、表面平滑化処理の方法の違いについては、除去量の少ないヘアライン加工のみに比べ、除去量が適正なエンドミル加工+ヘアライン加工、または、エンドミル加工のみの場合のほうが、疵による表面性状が向上することが確認された。なお、従来の熱延板の切断板で発見された疵は、肉眼でかろうじて発見できるサイズの機能的には全く問題のない微小な疵が含まれて判別されるものの、ヘアライン加工のみ施した切断板で発見された疵は、目視ではっきり判別できる疵であった。従い、ヘアライン加工のみでも機能欠陥の区別が容易である効果が確認された。
 さらに、ヘアライン加工のみの場合は、除去量が少ないため、黒スジ発生を防止できないが、エンドミル加工のみ、または、エンドミル加工+ヘアライン加工の場合は、除去量が適正なため、黒スジ発生を防止できることが確認された。なお、7gからなるアルミニウム合金厚板は、スラブ造塊時に鋳塊微細化剤のTi-Bを使用していないために、表面平滑化処理の方法の違いに影響されることなく、いずれの表面平滑化処理の方法でも黒スジ発生を防止するできることが確認された。
 以上説明したように、本発明に係るアルミニウム合金厚板は、良好な平坦性および板厚精度を有するとともに、疵および黒スジによる表面欠陥が抑制され、良好な表面性状を有することがわかる。また、各種合金の成分組成を適正にすることで、強度等の特性を向上させることができ、また、表面の色ムラが抑制され、表面性状がさらに良好なものとなることがわかる。

Claims (10)

  1.  アルミニウム合金熱間圧延板の表面を平滑化されてなるアルミニウム合金厚板であり、
     表面の平坦度が圧延方向長さ1m当たり0.2mm以下であり、
     板厚のバラツキが所望板厚の±0.5%以内であることを特徴とするアルミニウム合金厚板。
  2.  Mg:1.5~12.0質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:0.6質量%以下、Mn:1.0質量%以下、Cr:0.5質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなることを特徴とする請求項1に記載のアルミニウム合金厚板。
  3.  Mn:0.3~1.6質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:0.5質量%以下、Mg:1.5質量%以下、Cr:0.3質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなることを特徴とする請求項1に記載のアルミニウム合金厚板。
  4.  Mg:0.3~1.5質量%、Si:0.2~1.6質量%を含有し、さらに、Fe:0.8質量%以下、Cu:1.0質量%以下、Mn:0.6質量%以下、Cr:0.5質量%以下、Zn:0.4質量%以下、Ti:0.1質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなることを特徴とする請求項1に記載のアルミニウム合金厚板。
  5.  Zn:3.0~9.0質量%、Mg:0.4~4.0質量%を含有し、さらに、Si:0.7質量%以下、Fe:0.8質量%以下、Cu:3.0質量%以下、Mn:0.8質量%以下、Cr:0.5質量%以下、Ti:0.1質量%以下、Zr:0.25質量%以下のうち1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなることを特徴とする請求項1に記載のアルミニウム合金厚板。
  6.  請求項1に記載のアルミニウム合金厚板の製造方法であって、
     アルミニウム合金を溶解してアルミニウム合金溶湯とする溶解工程と、前記アルミニウム合金溶湯から水素ガスを除去する脱水素工程と、前記水素ガスを除去されたアルミニウム合金溶湯から介在物を除去するろ過工程と、前記介在物を除去されたアルミニウム合金溶湯を鋳造して鋳塊を製造する鋳造工程と、前記鋳塊を所定厚さに熱間圧延して熱間圧延板を製造する熱間圧延工程と、前記熱間圧延板を切断して所定の圧延方向長さおよび幅とする切断工程と、前記切断された熱間圧延板の表面を平滑化する平滑化処理工程と、を行い、
     前記平滑化処理工程において、前記熱間圧延板の表面の除去厚さが、片面あたり2~5mmであることを特徴とするアルミニウム合金厚板の製造方法。
  7.  前記熱間圧延工程の前に、前記鋳塊を400℃以上前記アルミニウム合金の融点未満で1時間以上の熱処理による均熱処理工程を行うことを特徴とする請求項6に記載のアルミニウム合金厚板の製造方法。
  8.  前記平滑化処理工程の前に、前記切断された熱間圧延板を焼鈍する焼鈍工程を行うことを特徴とする請求項6に記載のアルミニウム合金厚板の製造方法。
  9.  前記平滑化処理工程が、切削法、研削法、および研磨法のいずれか1つ以上により行われることを特徴とする請求項6に記載のアルミニウム合金厚板の製造方法。
  10.  前記アルミニウム合金が請求項2ないし請求項5のいずれか1項に記載のアルミニウム合金であることを特徴とする請求項6に記載のアルミニウム合金厚板の製造方法。
PCT/JP2009/056089 2008-03-28 2009-03-26 アルミニウム合金厚板およびその製造方法 WO2009119724A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980106340XA CN101959625A (zh) 2008-03-28 2009-03-26 铝合金厚板及其制造方法
KR1020107021535A KR101251235B1 (ko) 2008-03-28 2009-03-26 알루미늄 합금 후판 및 그 제조 방법
EP09726074A EP2263811A4 (en) 2008-03-28 2009-03-26 ALUMINUM ALLOY PLATE AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-085283 2008-03-28
JP2008085283 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119724A1 true WO2009119724A1 (ja) 2009-10-01

Family

ID=41113912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056089 WO2009119724A1 (ja) 2008-03-28 2009-03-26 アルミニウム合金厚板およびその製造方法

Country Status (6)

Country Link
EP (1) EP2263811A4 (ja)
JP (1) JP4410835B2 (ja)
KR (1) KR101251235B1 (ja)
CN (1) CN101959625A (ja)
TW (1) TWI355301B (ja)
WO (1) WO2009119724A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
CN113751503A (zh) * 2021-08-19 2021-12-07 山东南山铝业股份有限公司 一种航空用7系铝合包覆薄板的焊合方法
CN115786749A (zh) * 2022-12-23 2023-03-14 苏州宇上实业有限公司 5系铝合金板材及其制备方法
US11932928B2 (en) 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248234B1 (ko) * 2010-12-23 2013-04-02 이희만 원스톱 철받침 생산 시스템
CN103173629A (zh) * 2011-12-23 2013-06-26 秦皇岛开发区美铝合金有限公司 锻造轮毂专用铝合金洁净度处理工艺
CN102553917A (zh) * 2012-02-17 2012-07-11 西南铝业(集团)有限责任公司 一种铝合金板材的生产方法
CN102634686B (zh) * 2012-03-13 2014-10-08 浙江永杰铝业有限公司 一种船用铝合金铸造方法
EP2653577B2 (en) * 2012-04-20 2023-02-15 UACJ Corporation Method for producing an aluminum alloy sheet that exhibits excellent surface quality after anodizing
JP5678213B2 (ja) * 2012-06-15 2015-02-25 株式会社Uacj アルミニウム合金板
JP5944862B2 (ja) * 2012-08-08 2016-07-05 株式会社Uacj 陽極酸化処理後の表面品質に優れたアルミニウム合金板およびその製造方法
US9315885B2 (en) * 2013-03-09 2016-04-19 Alcoa Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
CN103436755B (zh) * 2013-08-23 2015-09-23 北京艾路浦科技发展有限公司 一种防锈铝合金材料
CN103484736B (zh) * 2013-10-10 2016-05-11 东北大学 一种超高强6000系铝合金及其制备方法
CN104988360A (zh) * 2015-05-29 2015-10-21 柳州普亚贸易有限公司 高强度耐腐蚀门窗用铝合金
KR101816202B1 (ko) * 2015-12-31 2018-01-09 최창민 아노다이징성과 내압성 및 내식성이 우수한 알루미늄합금
CN105543520B (zh) * 2015-12-31 2017-11-03 广西南南铝加工有限公司 一种电子产品外壳用铝合金基材的制备方法
CN107287478A (zh) * 2017-05-26 2017-10-24 温州兴锐成科技有限公司 一种铝y牙线及其制备方法
CN107557624B (zh) * 2017-08-29 2019-03-26 河南明泰科技发展有限公司 一种铝合金集装箱用铝板及其生产方法
CN107541623A (zh) * 2017-08-30 2018-01-05 宁波华源精特金属制品有限公司 一种防倾杆
CN108715958A (zh) * 2018-05-30 2018-10-30 澳洋集团有限公司 一种镁铝合金材料及其制备方法
JP6492218B1 (ja) * 2018-07-25 2019-03-27 株式会社Uacj 磁気ディスク用アルミニウム合金板及びその製造方法、ならびに、この磁気ディスク用アルミニウム合金板を用いた磁気ディスク
CN109596711B (zh) * 2019-01-10 2021-12-28 无锡透平叶片有限公司 一种检测大规格铸造铝合金冶金缺陷的方法
FR3101641B1 (fr) 2019-10-04 2022-01-21 Constellium Issoire Tôles de précision en alliage d’aluminium
CN111534729B (zh) * 2020-06-11 2022-05-10 东北轻合金有限责任公司 一种高强铝合金板材横向不平度控制方法
CN113798321A (zh) * 2021-09-11 2021-12-17 百色学院 一种铝合金厚板及其制造方法
CN114457264A (zh) * 2022-01-28 2022-05-10 邹平宏发铝业科技有限公司 一种冲压灯具用5系铝合金带材及其加工方法
FR3136242B1 (fr) 2022-06-01 2024-05-03 Constellium Valais Tôles pour éléments de chambres à vide en alliage d’aluminium
CN115029592B (zh) * 2022-06-14 2023-12-01 天津忠旺铝业有限公司 一种用于汽车结构件的5052-h32铝合金板材生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115617A (ja) 1986-10-31 1988-05-20 Kobe Steel Ltd 金属製大板シ−ト材の焼鈍方法
JPH1052740A (ja) * 1996-08-06 1998-02-24 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法及び製造装置
JPH10137814A (ja) * 1996-11-11 1998-05-26 Kawasaki Steel Corp 熱間板材の表面切削装置
JP2000219996A (ja) * 1999-02-01 2000-08-08 Kobe Steel Ltd 電子部品用銅又は銅合金板の製造方法
JP2001335812A (ja) * 2000-03-24 2001-12-04 Senju Metal Ind Co Ltd 鉛フリー平軸受およびその製造方法
JP2002146447A (ja) 2000-11-01 2002-05-22 Daido Steel Co Ltd 非鉄金属用脱ガス装置
JP2005074453A (ja) * 2003-08-29 2005-03-24 Nippon Light Metal Co Ltd アルミニウム合金厚板の製造方法
JP2006281381A (ja) 2005-03-31 2006-10-19 Kobe Steel Ltd 吸引パッドおよび板材検査装置
JP2006316332A (ja) 2005-05-16 2006-11-24 Sumitomo Light Metal Ind Ltd 絞り成形性に優れたアルミニウム合金板材およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118252A (en) * 1974-08-06 1976-02-13 Nippon Kokan Kk Atsuenkinzokubanno choryokubunpunyoru keijoseigyoho
US4406717A (en) * 1980-12-23 1983-09-27 Aluminum Company Of America Wrought aluminum base alloy product having refined Al-Fe type intermetallic phases
JPH06218495A (ja) * 1992-09-03 1994-08-09 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法
US5338510A (en) * 1993-10-04 1994-08-16 Zuech Romeo A Cast aluminum alloy and tooling fixture therefrom
KR101151563B1 (ko) * 2007-03-30 2012-05-30 가부시키가이샤 고베 세이코쇼 알루미늄 합금 후판의 제조 방법 및 알루미늄 합금 후판

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115617A (ja) 1986-10-31 1988-05-20 Kobe Steel Ltd 金属製大板シ−ト材の焼鈍方法
JPH1052740A (ja) * 1996-08-06 1998-02-24 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法及び製造装置
JPH10137814A (ja) * 1996-11-11 1998-05-26 Kawasaki Steel Corp 熱間板材の表面切削装置
JP2000219996A (ja) * 1999-02-01 2000-08-08 Kobe Steel Ltd 電子部品用銅又は銅合金板の製造方法
JP2001335812A (ja) * 2000-03-24 2001-12-04 Senju Metal Ind Co Ltd 鉛フリー平軸受およびその製造方法
JP2002146447A (ja) 2000-11-01 2002-05-22 Daido Steel Co Ltd 非鉄金属用脱ガス装置
JP2005074453A (ja) * 2003-08-29 2005-03-24 Nippon Light Metal Co Ltd アルミニウム合金厚板の製造方法
JP2006281381A (ja) 2005-03-31 2006-10-19 Kobe Steel Ltd 吸引パッドおよび板材検査装置
JP2006316332A (ja) 2005-05-16 2006-11-24 Sumitomo Light Metal Ind Ltd 絞り成形性に優れたアルミニウム合金板材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2263811A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
US11920229B2 (en) 2015-12-18 2024-03-05 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US11932928B2 (en) 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same
CN113751503A (zh) * 2021-08-19 2021-12-07 山东南山铝业股份有限公司 一种航空用7系铝合包覆薄板的焊合方法
CN115786749A (zh) * 2022-12-23 2023-03-14 苏州宇上实业有限公司 5系铝合金板材及其制备方法

Also Published As

Publication number Publication date
KR20100116698A (ko) 2010-11-01
KR101251235B1 (ko) 2013-04-08
JP2009256782A (ja) 2009-11-05
TW201006578A (en) 2010-02-16
TWI355301B (en) 2012-01-01
EP2263811A1 (en) 2010-12-22
CN101959625A (zh) 2011-01-26
EP2263811A4 (en) 2011-05-04
JP4410835B2 (ja) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4410835B2 (ja) アルミニウム合金厚板およびその製造方法
JP4174524B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
EP2034035B2 (en) Process for producing aluminum alloy plate
JP4231529B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
CN105324500B (zh) 磁盘用铝合金板、磁盘用铝合金坯体和磁盘用铝合金基底
CA2717372C (en) Side material and method for producing the same and method for producing clad member for heat exchanger
TWI383053B (zh) 鋁合金厚板之製造方法以及鋁合金厚板
JP4174526B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP2000119782A (ja) アルミニウム合金板及びその製造方法
JP4231530B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP4174525B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP4174527B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP4242429B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP4250030B2 (ja) 光輝性ホイールリム用アルミニウム合金板およびその製造方法
JP2006052436A (ja) アルマイト処理用アルミニウム合金熱間仕上げ厚板及びそれを用いたアルミニウム合金部品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106340.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009726074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107021535

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE