WO2009118855A1 - Socket guide, socket unit, electronic component test apparatus, and method of controlling socket temperature - Google Patents

Socket guide, socket unit, electronic component test apparatus, and method of controlling socket temperature Download PDF

Info

Publication number
WO2009118855A1
WO2009118855A1 PCT/JP2008/055843 JP2008055843W WO2009118855A1 WO 2009118855 A1 WO2009118855 A1 WO 2009118855A1 JP 2008055843 W JP2008055843 W JP 2008055843W WO 2009118855 A1 WO2009118855 A1 WO 2009118855A1
Authority
WO
WIPO (PCT)
Prior art keywords
socket
flow path
unit
fluid
guide
Prior art date
Application number
PCT/JP2008/055843
Other languages
French (fr)
Japanese (ja)
Inventor
有朋 菊池
光男 石川
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2008/055843 priority Critical patent/WO2009118855A1/en
Priority to JP2009506845A priority patent/JP5161870B2/en
Priority to TW098104917A priority patent/TW200950686A/en
Publication of WO2009118855A1 publication Critical patent/WO2009118855A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0458Details related to environmental aspects, e.g. temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers

Definitions

  • the present invention relates to a socket guide provided on a test head of an electronic component testing apparatus, a socket unit, an electronic component testing apparatus equipped with them, and a socket temperature control method.
  • an electronic component testing apparatus In the manufacturing process of electronic components such as IC devices, an electronic component testing apparatus is used to test the performance and functions of the finally manufactured electronic components.
  • the electronic component test apparatus generally includes a tester body, a handler, and a test head, and a socket on which a device under test is mounted is provided on the test head.
  • a test signal is supplied from the tester main body to the test head with the IC device mounted in the socket, the test signal is applied from the socket to the IC device, and a response signal read from the IC device is received.
  • the test head By sending the test head to the tester body, the electrical characteristics of the IC device are measured.
  • the IC device is often tested by applying high or low temperature heat stress.
  • a method of applying thermal stress to the IC device for example, there is a method of heating or cooling the IC device in advance before transporting it to the test head.
  • the IC device under test is heated or cooled in advance, and the socket in which the IC device under test is mounted is also heated or cooled. If there is a temperature difference between the IC device under test and the socket, heat transfer occurs between the IC device under test and the socket when the IC device under test is attached to the socket, and the IC device was supplied with the IC device under test. This is because thermal stress may be relieved.
  • Patent Document 1 As a method of heating the IC socket, as shown in Patent Document 1, a method of heating a socket guide in contact with the socket with a heater and a method of flowing heated gas into the socket as shown in Patent Document 2 There is. JP-A-11-271389 JP 2002-236140 A
  • the material of the socket body is usually a plastic resin having low thermal conductivity
  • the socket cannot be efficiently heated only by heating the socket guide with a heater as in Patent Document 1, and the socket It was difficult to bring the temperature to the desired temperature.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a socket guide, a socket unit, an electronic component testing apparatus, and a temperature control method capable of efficiently controlling a socket to a desired temperature.
  • the present invention is provided adjacent to a socket having a connection terminal capable of contacting an external terminal of an electronic device under test, and the electronic device under test is provided at a predetermined position of the socket.
  • a socket guide characterized in that a flow path is formed (Invention 1).
  • the fluid may be a gas such as air or a liquid such as water.
  • the socket guide is heated or cooled to a desired temperature by a heat source. Since the socket guide is adjacent to the socket, the socket is also heated or cooled by heat conduction from the heated or cooled socket guide. Second, when the fluid passes through the flow path of the socket guide heated or cooled by the heat source, the fluid is also heated or cooled, and the fluid is supplied to the socket. Because the socket guide is adjacent to the socket, the heated or cooled fluid is supplied to the socket at its original temperature, thereby heating or cooling the socket to the desired temperature.
  • a socket can be efficiently controlled to desired temperature.
  • the fluid is heated or cooled by the socket guide, it is not necessary to adjust the temperature of the fluid before being supplied to the socket guide in advance, and a heat source different from the heat source of the socket guide is not necessary.
  • the provision of the other heat source is also included in the scope of the present invention.
  • one end of the said flow path becomes a fluid inlet, and the other end of the said flow path becomes a fluid outlet opened with respect to the said socket (invention 2).
  • an introduction path for introducing the fluid from the outside into the socket and a discharge path for discharging the fluid from the socket to the outside may be formed as the flow path (Invention). 3).
  • the flow path meanders so that the fluid passing through the flow path has a desired temperature by the heat source (Invention 4).
  • the present invention provides a socket unit comprising a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test, and the socket guide (inventions 1 to 4). Invention 5).
  • the socket includes a connection terminal and a socket body that holds the connection terminal.
  • the socket body communicates with a flow path of the socket guide, and the fluid is supplied to the socket body.
  • a flow path that can be supplied to the connection terminal may be formed (invention 6).
  • the socket includes a floating member that positions and supports the electronic component under test and through which the connection terminal slidably penetrates, and is formed in the socket body. One end of the flow path may be opened toward the gap between the socket body and the floating member (Invention 7).
  • the present invention includes the socket guide (inventions 1 to 4) provided on the test head, and a fluid supply device capable of supplying a fluid to the flow path of the socket guide.
  • An electronic component testing apparatus is provided (Invention 8).
  • the present invention includes the socket unit (inventions 5 to 7) provided on the test head, and a fluid supply device capable of supplying a fluid to the flow path of the socket guide in the socket unit.
  • An electronic component testing apparatus characterized by the above is provided (Invention 9).
  • the fluid supply device may not include a heat source (Invention 10).
  • the present invention is a temperature control method for a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test, using the socket guide (Invention 1 to 4),
  • a temperature control method for a socket characterized in that a fluid is supplied to a passage (Invention 11).
  • the present invention provides a temperature control method for a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test, using the socket unit (invention 5 to 7), and Provided is a temperature control method for a socket, characterized in that a fluid is supplied to a flow path of the socket guide (Invention 12).
  • the socket can be efficiently controlled to a desired temperature. Further, the fluid supply device that supplies fluid to the socket guide does not need to include a heat source different from the heat source of the socket guide.
  • FIG. 1 is a plan view of an electronic component test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a side partial cross-sectional view (II cross-sectional view in FIG. 1) of the electronic component test apparatus according to the same embodiment. It is a plane sectional view of the socket unit in the electronic parts testing device. It is side surface sectional drawing of the socket unit in the same electronic component test apparatus.
  • FIG. 1 is a plan view of a handler according to an embodiment of the present invention
  • FIG. 2 is a side partial sectional view of the handler according to the embodiment (II sectional view in FIG. 1)
  • FIG. FIG. 4 is a side sectional view of the socket unit in the electronic component testing apparatus.
  • the form of the IC device under test shown in FIG. 4 is, for example, a BGA package or a CSP (Chip Size Package) package having solder balls as external terminals, but the present invention is not limited to this.
  • a QFP (Quad Flat Package) package or a SOP (Small Outline Package) package having lead pins as external terminals may be used.
  • the electronic component testing apparatus 1 in this embodiment includes a handler 10, a test head 300, and a tester 20, and the test head 300 and the tester 20 are connected via a cable 21.
  • the pre-test IC device on the supply tray stored in the supply tray stocker 401 of the handler 10 is conveyed and pressed against the socket 80 of the contact portion 301 of the test head 300, and the test head 300 and the cable 21 are passed through this IC device.
  • the IC device test is executed, the IC device for which the test has been completed is mounted on the classification tray stored in the classification tray stocker 402 according to the test result.
  • the handler 10 mainly includes a test unit 30, an IC device storage unit 40, a loader unit 50, and an unloader unit 60.
  • the IC device storage unit 40 is a part that stores IC devices before and after the test, and mainly includes a supply tray stocker 401, a classification tray stocker 402, an empty tray stocker 403, and a tray transport device 404. Consists of
  • the supply tray stocker 401 a plurality of supply trays loaded with a plurality of IC devices before the test are stacked and stored.
  • a stocker 401 is provided.
  • the classification tray stocker 402 is loaded with a plurality of classification trays loaded with a plurality of IC devices after the test. In this embodiment, as shown in FIG. Is provided. By providing these four classification tray stockers 402, the IC devices can be sorted and stored in a maximum of four classifications according to the test results.
  • the empty tray stocker 403 stores empty trays after all the pre-test IC devices 20 mounted on the supply tray stocker 401 have been supplied to the test unit 30.
  • the number of stockers 401 to 403 can be appropriately set as necessary.
  • the tray transfer device 404 is a transfer device that can move in the X-axis and Z-axis directions in FIG. 1, and mainly includes an X-axis direction rail 404a, a movable head 404b, and four suction pads 404c.
  • a range including the supply tray stocker 401, a part of the sorting tray stocker 402, and the empty tray stocker 403 is defined as an operation range.
  • an X-axis direction rail 404a fixed on the base 12 of the handler 10 supports the movable head unit 404b in a cantilevered manner so as to be movable in the X-axis direction.
  • the Z-axis direction actuator not to be used and four suction pads 404c are provided at the tip.
  • the tray transport device 404 sucks and holds the empty tray emptied by the supply tray stocker 401 by the suction pad 404c, lifts it by the Z-axis direction actuator, and slides the movable head portion 404b on the X-axis direction rail 404a. By moving it, it is transferred to the empty tray stocker 401.
  • the empty tray is sucked and held from the empty tray stocker 403, and is lifted by the Z-axis direction actuator.
  • the movable head unit 404b is slid on the rail 404a to be transferred to the sorting tray stocker 402.
  • the loader unit 50 is a part that supplies the IC device before the test from the supply tray stocker 401 of the IC device storage unit 40 to the test unit 30, and mainly includes a loader unit transport device 501 and two loader buffer units 502 ( In FIG. 1, it is composed of two in the negative X-axis direction) and a heat plate 503.
  • the loader unit transport device 501 moves the IC device on the supply tray of the supply tray stocker 401 of the IC device storage unit 40 onto the heat plate 503, and moves the IC device on the heat plate 503 onto the loader buffer unit 502.
  • This is a device to be moved, and mainly comprises a Y-axis direction rail 501a, an X-axis direction rail 501b, a movable head part 501c, and a suction part 501d.
  • the loader unit transport device 501 has an operation range including a supply tray stocker 401, a heat plate 503, and two loader buffer units 502.
  • the two Y-axis direction rails 501a of the loader unit transport device 501 are fixed on the base 12 of the handler 10, and the X-axis direction rail 502b slides in the Y-axis direction between them. It is supported movably.
  • the X-axis direction rail 502b supports a movable head portion 501c having a Z-axis direction actuator (not shown) so as to be slidable in the X-axis direction.
  • the movable head portion 501c includes four suction portions 501d each having a suction pad 501e at the lower end, and the four suction portions 501d are independent of each other by driving the Z-axis direction actuator. Thus, it can be moved up and down in the Z-axis direction.
  • Each suction portion 501d is connected to a negative pressure source (not shown), and can suck and hold an IC device by sucking air from the suction pad 501e to generate a negative pressure.
  • the IC device can be released by stopping the suction of air from the pad 501e.
  • the heat plate 503 is a heating source for applying a predetermined thermal stress to the IC device.
  • the heat plate 503 is a metal heat transfer plate having a heat generation source (not shown) at the bottom.
  • a plurality of recesses 503a for dropping an IC device are formed.
  • a cooling source may be provided instead of the heating source.
  • the loader buffer unit 502 is a device that reciprocates the IC device between the operation range of the loader unit transport device 501 and the operation range of the test unit transport device 310, and mainly includes a buffer stage 502a and an X-axis direction actuator. 502b.
  • a buffer stage 502a is supported at one end of an X-axis direction actuator 502b fixed on the base 12 of the handler 10, and an IC device is dropped onto the upper surface side of the buffer stage 502a as shown in FIG.
  • Four recesses 502c having a rectangular shape in plan view are formed.
  • the IC device before the test is moved from the supply tray stocker 401 to the heat plate 503 by the loader unit conveyance device 501 and heated to a predetermined temperature by the heat plate 503, and then again loaded by the loader unit conveyance device 501 by the loader buffer.
  • the loader buffer unit 502 introduces the data into the test unit 30.
  • the test unit 30 is a part that performs a test by bringing the external terminal (solder ball) of the IC device 2 under test into electrical contact with the contact pin 82 of the socket 80 of the contact unit 301.
  • the test unit 30 mainly includes a test unit transport device 310.
  • the test unit transport device 310 is a device that moves the IC device between the loader buffer unit 502 and the unloader buffer unit 602 and the test head 300.
  • the test section transport device 310 supports two X-axis direction support members 311a slidable in the Y-axis direction on two Y-axis direction rails 311 fixed on the base 12 of the handler 10.
  • a movable head portion 312 is supported at the central portion of each X-axis direction support member 311a, and the movable head portion 312 includes a loader buffer portion 502, an unloader buffer portion 602, and a test head 300. Is the operating range. Note that the movable head unit 312 supported by each of the two X-axis direction support members 311a operating simultaneously on the pair of Y-axis direction rails 311 is controlled so that the mutual operations do not interfere with each other.
  • Each movable head portion 312 includes four contact arms 315 at the lower portion thereof.
  • the four contact arms 315 are provided corresponding to the arrangement of the sockets 80, and as shown in FIG. 2, a suction portion 317 is provided at the lower end of each contact arm 315.
  • Each suction part 317 is connected to a negative pressure source (not shown), and can suck and hold an IC device by sucking air from the suction part 317 to generate a negative pressure. By stopping the suction of air from the portion 317, the IC device can be released.
  • the four IC devices 2 held by the contact arm 315 can be moved in the Y-axis direction and the Z-axis direction and pressed against the contact unit 301 of the test head 300.
  • the contact portion 301 of the test head 300 includes four sockets 80, and the four sockets 80 are substantially arranged in the arrangement of the contact arms 315 of the movable head portion 312 of the test unit conveyance device 310. Arranged so that they match. Details of the socket unit 70 including the socket 80 will be described later.
  • an opening 11 is formed in the base 12 of the handler 10, and the contact portion 301 of the test head 300 protrudes from the opening 11 and the IC device is pressed against it. It is supposed to be.
  • the four pre-test IC devices placed on the loader buffer unit 502 are moved to the contact unit 301 of the test head 300 by the test unit transport device 310 and simultaneously subjected to the test, and then the test unit again.
  • the unloader buffer unit 602 moves to the unloader buffer unit 602 and the unloader buffer unit 602 discharges the unloader unit 60 to the unloader unit 60.
  • the unloader unit 60 is a part for discharging the tested IC device from the test unit 30 to the IC device storage unit 40.
  • the unloader unit 60 mainly includes an unloader unit transport device 601 and two unloader buffer units 602 (in FIG. Two directions).
  • the unloader buffer unit 602 is a device that reciprocates the operating range of the test unit transport apparatus 310 and the IC device between the operation range of the unloader unit transport apparatus 601, and mainly includes a buffer stage 602a and an X-axis direction actuator 602b. It consists of and.
  • a buffer stage 602a is supported at one end of an X-axis direction actuator 602b fixed on the base 12 of the handler 10, and four recesses 602c for dropping an IC device are provided on the upper surface side of the buffer stage 602a. Is formed.
  • the unloader unit conveying device 601 is a device that moves and mounts the IC device on the unloader buffer unit 602 to the classification tray of the classification tray stocker 402, and mainly includes a Y-axis direction rail 601a, an X-axis direction rail 601b, and the like.
  • the movable head portion 601c and the suction portion 601d are configured.
  • the unloader transport device 601 has an operation range that includes two unloader buffers 602 and a sorting tray stocker 402.
  • the two Y-axis direction rails 601a of the unloader unit conveying device 601 are fixed on the base 12 of the handler 10, and the X-axis direction rail 602b slides in the Y-axis direction between them. It is supported movably.
  • the X-axis direction rail 602b supports a movable head portion 601c having a Z-axis direction actuator (not shown) so as to be slidable in the X-axis direction.
  • the movable head portion 601c includes four suction portions 601d each having a suction pad at the lower end portion, and the four suction portions 601d are independently raised and lowered in the Z-axis direction by driving the Z-axis direction actuator. be able to.
  • the IC device after the test placed on the unloader buffer unit 602 is ejected from the test unit 30 to the unloader unit 60, and the unloader unit transport device 601 extracts the classification tray of the classification tray stocker 402 from the unloader buffer unit 602. Mounted on.
  • the socket unit 70 in this embodiment will be described in detail.
  • the socket unit 70 shown in FIGS. 3 and 4 is provided in the contact portion 301 of the test head 300 shown in FIG. 2, and includes a socket 80 and a socket guide 90 that contacts the socket 80.
  • the socket 80 includes a plurality of contact pins 82, a socket body 81 that supports the contact pins 82, and a floating plate 83 provided on the socket body 81.
  • the socket body 81 has a concave portion at the center and a convex portion around the socket body 81, and the plurality of contact pins 82 are arranged so as to substantially match the arrangement of the solder balls of the IC device 2. It is provided in the recess.
  • the floating plate 83 is positioned in a floating state in the recess of the socket main body 81 by an elastic member (not shown), and the floating plate 83 is provided with a plurality of holes through which the contact pins 82 can slide.
  • the floating plate 83 positions and supports the IC device 2 at a predetermined position, and prevents the contact pin 82 from falling down. As shown in FIG. 4, a gap exists between the upper surface of the concave portion of the socket body 81 and the bottom surface of the floating plate 83, and the base portion of the contact pin 82 exists in the gap.
  • the socket body 81 is formed with an air flow path (air flow path) 84 that is a fluid. As shown in FIG. 4, one end of the air flow path 84 is opened at the upper surface of the convex portion of the socket body 81, and this one end is an air inlet 841. The other end of the air flow path 84 opens toward the gap between the upper surface of the concave portion of the socket body 81 and the bottom surface of the floating plate 83, and the other end serves as an air outlet 842.
  • air flow path air flow path
  • the socket guide 90 guides the contact arm 315 that holds the IC device 2 under test so that the IC device 2 under test is mounted at a predetermined position of the socket 80, as shown in FIGS. 3 and 4.
  • a socket guide main body 91 provided so as to surround the socket 80 and a heat source section 93 that contacts the socket guide main body 91 and can heat or cool the socket guide main body 91 are provided.
  • the central portion of the socket guide main body 91 is a rectangular opening, and the contact pin 82 of the socket 80 is exposed in this opening.
  • the socket guide body 91 is preferably made of a material having good thermal conductivity, for example, a metal such as an aluminum alloy. As shown in FIG. 4, the socket guide 90 is in contact with the upper surface of the convex portion of the socket body 81 at the lower surface near the opening of the socket guide body 91.
  • an air introduction path 92a for introducing air from the outside to the socket 80 and an air discharge path 92b for discharging air from the socket 80 to the outside are formed as a flow path of air that is a fluid. .
  • One end of the air introduction path 92 a is opened at the outer peripheral edge of the socket guide main body 91, and this one end is an air inlet 921.
  • a pipe connected to an air supply device (not shown) is connected to the air inlet 921.
  • the other end of the air introduction path 92 a opens at the lower surface near the opening of the socket guide body 91, and the other end serves as an air outlet 922.
  • the air outlet 922 of the air introduction path 92a formed in the socket guide body 91 is formed at a position corresponding to the air inlet 841 of the air flow path 84 formed in the socket body 81, whereby the socket guide body
  • the air introduction path 92 a 91 and the air flow path 84 of the socket main body 81 communicate with each other.
  • two air introduction paths 92a are formed across the opening of the socket guide body 91, each meandering as shown in FIG.
  • the length of the air introduction path 92a can be made about 2 to 10 times longer than when the air introduction path 92a is made straight.
  • One end of the air discharge path 92b opens at the inner peripheral edge of the socket guide main body 91, and this one end is an air inlet 923.
  • the other end of the air discharge path 92 b opens at the outer peripheral edge of the socket guide main body 91, and the other end serves as an air outlet 924.
  • two air discharge passages 92b are formed across the opening of the socket guide main body 91, and each has a linear shape as shown in FIG.
  • the air inlet 923 of the air discharge path 92b and the air outlet 922 of the air introduction path 92a are located at or near the side adjacent to the opening of the socket guide body 91, respectively.
  • Air is supplied from an air supply device (not shown) to the air inlet 921 of the air introduction path 92a through a pipe.
  • the air supply device in the present embodiment does not include a heat source for heating or cooling the air, and supplies room temperature air.
  • the heat source unit 93 includes, for example, a heater and a Peltier element, and may further include a temperature sensor as desired. Although the heat source part 93 in this embodiment is attached to the upper surface side part of the socket guide main body 91 as shown in FIG. 4, it is not limited to this.
  • a method for controlling the temperature of the socket 80 in the socket unit 70 will be described.
  • the temperature of the socket 80 is controlled to a high temperature.
  • the heat source unit 93 heats the socket guide body 91 to a desired temperature. Since the socket guide body 91 and the socket body 81 are in contact with each other, when the socket guide body 91 is heated, the socket body 81 and the contacts provided on the socket body 81 by heat conduction from the socket guide body 91 are provided. The pin 82 is also heated. However, since the socket body 81 is usually made of a plastic resin having low thermal conductivity, it may not be heated to a desired temperature by itself.
  • the air supplied from the air supply device flows into the air inlet 921 of the air introduction path 92a of the socket guide body 91, and reaches the air outlet 922 through the meandering air introduction path 92a. Since the socket guide main body 91 is heated by the heat source section 93, the air passing through the air introduction path 92a is also heated. In particular, the air introduction path 92a meanders and the staying time of the air in the socket guide body 91 becomes long, so that the air is sufficiently heated.
  • the air heated by the socket guide main body 91 flows from the air outlet 922 of the air introduction path 92 a of the socket guide main body 91 into the air inlet 841 of the air flow path 84 of the socket main body 81, and passes through the air flow path 84. It flows out from the outlet 842.
  • the air heated by the socket guide main body 91 heated air
  • the air outlet 842 of the air flow path 84 of the socket main body 81 the flow of the heated air is halfway through the flow path. There is almost no risk of temperature drop.
  • the heated air flowing out from the air outlet 842 of the air flow path 84 of the socket body 81 flows into the gap between the upper surface of the concave portion of the socket body 81 and the bottom surface of the floating plate 83 to heat the socket body 81 and the floating plate 83. Then, the base of the contact pin 82 existing in the gap is heated. The heated air passes through the gap between the contact pin 82 and the hole of the floating plate 83 and escapes to the upper side of the floating plate 83. At this time, the heated air heats the entire contact pin 82. In this way, the socket 80 is heated to a desired temperature (the same temperature as the IC device 2).
  • the heated air that has escaped to the upper side of the floating plate 83 sprays onto the IC device 2 and then opens to the inner peripheral edge of the socket guide body 91. It flows into the air inlet 923 of 92b, is discharged
  • the air discharged from the air outlet 924 may be returned to the air supply device via a pipe and circulated.
  • the socket 80 can be efficiently controlled to a desired temperature as described above. Further, the air supplied to the socket 80 is sufficiently heated by the socket guide 90 adjacent to the socket 80 and does not cool down until reaching the socket 80, so the air supply device does not need to include a heat source such as an air heater.
  • the loader unit conveyance device 501 sucks four IC devices on the supply tray located at the uppermost stage of the supply tray stocker 401 of the IC device storage unit 40 by the suction pads 501e of the four suction units 501d. Hold.
  • the loader unit transport device 501 raises the four IC devices by the Z-axis direction actuator of the movable head unit 501c while holding the four IC devices, and slides the X-axis direction rail 501b on the Y-axis direction rail 501a.
  • the movable head unit 501c is slid on the X-axis direction rail 501b and moved to the loader unit 50.
  • the loader unit transport device 501 performs positioning above the recess 503a of the heat plate 503, extends the Z-axis direction actuator of the movable head unit 501c, releases the suction pad 501e, and places the IC device in the recess of the heat plate 503. Drop into 503a.
  • the loader unit transfer device 501 holds the four IC devices that have been heated again, and moves above one of the loader buffer units 502 that is on standby. To do.
  • the loader unit transport device 501 performs positioning above the buffer stage 502a of one waiting loader buffer unit 502, extends the Z-axis direction actuator of the movable head unit 501c, and the suction pad 501e of the suction unit 501d
  • the IC device held by suction is released, and the IC device 2 is placed in the recess 502c of the buffer stage 502a.
  • the loader buffer unit 502 extends the X-axis direction actuator 502b while the four IC devices are mounted in the recess 502c of the buffer stage 502a, and tests the test unit 30 from the operating range of the loader unit transport device 501 of the loader unit 50.
  • the four IC devices are moved to the operation range of the partial transfer device 310.
  • the movable head unit 312 of the test unit transport apparatus 310 is mounted on the recess 502c of the buffer stage 502a. Move to the IC device. Then, the Z-axis direction actuator of the movable head unit 312 extends, and the four IC devices positioned in the concave portion 502c of the buffer stage 502a of the loader buffer unit 502 by the suction units 317 of the four contact arms 315 of the movable head unit 312. Adsorb and hold.
  • the movable head unit 312 holding the four IC devices is raised by the Z-axis direction actuator of the movable head unit 312.
  • test unit conveyance device 310 slides the X-axis direction support member 311 a that supports the movable head unit 312 on the Y-axis direction rail 311, and holds it by the suction unit 317 of the contact arm 315 of the movable head unit 312.
  • the four IC devices are conveyed above the four sockets 80 in the contact portion 301 of the test head 300.
  • the movable head unit 312 extends the Z-axis direction actuator.
  • the contact arm 315 holding the IC device 2 attaches the IC device 2 to the socket 80 while being guided by the socket guide 90, and brings the external terminal of the IC device 2 into contact with the contact pin 82 (see FIG. 4). ).
  • electrical signals are transmitted / received via the contact pins 82, and the IC device 2 is tested.
  • the socket 80 is heated to a desired temperature, there is no possibility that the temperature of the IC device 2 is lowered due to the mounting on the socket 80. Therefore, the IC device 2 is heated to a desired temperature. The test can be performed in a stressed state.
  • the test unit transport apparatus 310 raises the IC device after the test by contraction of the Z-axis direction actuator of the movable head unit 312 and supports the movable head unit 312 in the X-axis direction supporting member.
  • One unloader that stands by within the operating range of the test unit transporting device 310 by sliding the 311a on the Y-axis direction rail 311 and holding the four IC devices held by the contact arm 315 of the movable head unit 312 It is conveyed above the buffer stage 602a of the buffer unit 602.
  • the movable head unit 312 extends the Z-axis direction actuator and releases the suction pad 317c to drop the four IC devices into the recess 602c of the buffer stage 602a.
  • the unloader buffer unit 602 drives the X-axis actuator 602b while mounting the four IC devices after the test, and from the operating range of the test unit transport device 310 of the test unit 30, the unloader unit transport device 601 of the unloader unit 60.
  • the IC device is moved to the operation range.
  • the Z-axis direction actuator of the movable head unit 601c of the unloader unit transport device 601 located above the unloader buffer unit 602 is extended, and the four suction units 601d of the movable head unit 601c are used to expand the unloader buffer unit 602.
  • the four IC devices after the test located in the recess 602c of the buffer stage 602a are sucked and held.
  • the unloader unit transport device 601 lifts the four IC devices by the Z-axis direction actuator of the movable head unit 601c while holding the four IC devices after the test, and slides the X-axis direction rail 601b on the Y-axis direction rail 601a.
  • the movable head unit 601c is slid on the X-axis direction rail 601b and moved onto the classification tray stocker 402 of the IC device storage unit 40. Then, according to the test result of each IC device, each IC device is mounted on the classification tray located at the uppermost stage of each classification tray stocker 402. As described above, the IC device is tested once.
  • the air discharge path 92b of the socket guide main body 91 may be omitted.
  • the air flow path 84 of the socket body 81 may be omitted, and the heated air that has flowed out from the air introduction path 92a of the socket guide body 91 may be directly sprayed onto the contact pins 82 of the socket 80.
  • the socket 80 may not include the floating plate 83.
  • the present invention is useful for an electronic component test apparatus that performs a test by applying a high or low temperature thermal stress to the electronic component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Connecting Device With Holders (AREA)

Abstract

A socket guide (90) comprises a socket guide main body (91) in contact with a socket (80) and a heat source portion (93) capable of heating or cooling the socket guide main body (91). In the socket guide main body (91), air introduction channels (92a) for introducing the air into the socket (80) from outside and an air exhaust channel (92b) for exhausting the air outside from the socket (80) are formed as air passages. The socket (80) comprises a plurality of contact pins (82), a socket main body (81) for supporting the contact pins (82), and a floating plate (83) provided above the main body (81) of the socket. In the socket main body (81), air passages (84) which communicate with the air introduction channels (92a) formed in the main body (91) of the socket guide are formed.

Description

ソケットガイド、ソケットユニット、電子部品試験装置およびソケットの温度制御方法Socket guide, socket unit, electronic component test apparatus, and socket temperature control method
 本発明は、電子部品試験装置のテストヘッド上に設けられるソケットガイド、ソケットユニット、それらを備えた電子部品試験装置およびソケットの温度制御方法に関するものである。 The present invention relates to a socket guide provided on a test head of an electronic component testing apparatus, a socket unit, an electronic component testing apparatus equipped with them, and a socket temperature control method.
 ICデバイス等の電子部品の製造過程においては、最終的に製造された電子部品の性能や機能を試験するために電子部品試験装置が用いられている。 In the manufacturing process of electronic components such as IC devices, an electronic component testing apparatus is used to test the performance and functions of the finally manufactured electronic components.
 電子部品試験装置は、一般的に、テスタ本体と、ハンドラと、テストヘッドとを備えており、テストヘッド上には、被試験ICデバイスが装着されるソケットが設けられている。かかる電子部品試験装置では、ソケットにICデバイスが装着された状態で、テスタ本体からテストヘッドにテスト信号を供給し、そのテスト信号をソケットからICデバイスに印加し、ICデバイスから読み出される応答信号をテストヘッドからテスタ本体に送ることにより、ICデバイスの電気的特性を測定する。 The electronic component test apparatus generally includes a tester body, a handler, and a test head, and a socket on which a device under test is mounted is provided on the test head. In such an electronic component test apparatus, a test signal is supplied from the tester main body to the test head with the IC device mounted in the socket, the test signal is applied from the socket to the IC device, and a response signal read from the IC device is received. By sending the test head to the tester body, the electrical characteristics of the IC device are measured.
 上記ICデバイスの試験においては、ICデバイスに高温や低温の熱ストレスを与えて試験を行うことが多い。ICデバイスに熱ストレスを与える方法としては、例えば、ICデバイスをテストヘッドに搬送する前に予め加熱または冷却しておく方法等がある。 In the above-mentioned IC device test, the IC device is often tested by applying high or low temperature heat stress. As a method of applying thermal stress to the IC device, for example, there is a method of heating or cooling the IC device in advance before transporting it to the test head.
 この場合、被試験ICデバイスを予め加熱または冷却するとともに、被試験ICデバイスを装着するソケットも加熱または冷却することが好ましい。被試験ICデバイスとソケットとの間に温度差があると、被試験ICデバイスをソケットに装着したときに被試験ICデバイスとソケットとの間で熱移動が生じ、被試験ICデバイスに与えられた熱ストレスが緩和されてしまう可能性があるからである。 In this case, it is preferable that the IC device under test is heated or cooled in advance, and the socket in which the IC device under test is mounted is also heated or cooled. If there is a temperature difference between the IC device under test and the socket, heat transfer occurs between the IC device under test and the socket when the IC device under test is attached to the socket, and the IC device was supplied with the IC device under test. This is because thermal stress may be relieved.
 ICソケットを加熱する方法としては、特許文献1に示すように、ソケットに接しているソケットガイドをヒータによって加熱する方法と、特許文献2に示すように、加熱気体をソケットの中に流入させる方法とがある。
特開平11-271389 特開平2002-236140
As a method of heating the IC socket, as shown in Patent Document 1, a method of heating a socket guide in contact with the socket with a heater and a method of flowing heated gas into the socket as shown in Patent Document 2 There is.
JP-A-11-271389 JP 2002-236140 A
 ここで、ソケット本体の材質は、通常、熱伝導性の低いプラスチック樹脂であるため、特許文献1のようにソケットガイドをヒータによって加熱するだけではソケットを効率的に加熱することができず、ソケットを所望の温度にすることは困難であった。 Here, since the material of the socket body is usually a plastic resin having low thermal conductivity, the socket cannot be efficiently heated only by heating the socket guide with a heater as in Patent Document 1, and the socket It was difficult to bring the temperature to the desired temperature.
 一方、特許文献2の方法では、加熱気体を供給するために、外部に別途エアヒータが必要になる。通常、外部のエアヒータとソケットとの間の距離は長いため、エア流路の途中で加熱気体の温度が降下してしまい、ソケットにて所望の温度が得られないという問題があった。 On the other hand, in the method of Patent Document 2, a separate air heater is required to supply heated gas. In general, since the distance between the external air heater and the socket is long, the temperature of the heated gas drops in the middle of the air flow path, and a desired temperature cannot be obtained at the socket.
 本発明は、このような実状に鑑みてなされたものであり、ソケットを所望の温度に効率良く制御することのできるソケットガイド、ソケットユニット、電子部品試験装置および温度制御方法を提供することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to provide a socket guide, a socket unit, an electronic component testing apparatus, and a temperature control method capable of efficiently controlling a socket to a desired temperature. And
 上記目的を達成するために、第1に本発明は、被試験電子部品の外部端子と接触し得る接続端子を備えたソケットに隣接して設けられ、被試験電子部品が前記ソケットの所定の位置に装着されるように、前記被試験電子部品を保持する部材をガイドするソケットガイドであって、前記ソケットガイドを加熱または冷却することのできる熱源を備えるとともに、前記ソケットに流体を供給することのできる流路が形成されていることを特徴とするソケットガイドを提供する(発明1)。流体としては、例えば空気等の気体の他、水等の液体であってもよい。 In order to achieve the above object, first, the present invention is provided adjacent to a socket having a connection terminal capable of contacting an external terminal of an electronic device under test, and the electronic device under test is provided at a predetermined position of the socket. A socket guide for guiding a member for holding the electronic device under test, wherein the socket guide includes a heat source capable of heating or cooling the socket guide, and supplying a fluid to the socket. Provided is a socket guide characterized in that a flow path is formed (Invention 1). The fluid may be a gas such as air or a liquid such as water.
 上記発明(発明1)によれば、第1に、ソケットガイドは熱源によって所望の温度に加熱または冷却される。ソケットガイドはソケットに隣接しているため、加熱または冷却されたソケットガイドからの熱伝導によって、ソケットも加熱または冷却される。第2に、熱源によって加熱または冷却されたソケットガイドの流路を流体が通ることにより、流体も加熱または冷却され、その流体がソケットに供給される。ソケットガイドはソケットに隣接しているため、加熱または冷却された流体は、そのままの温度でソケットに供給され、それによりソケットは所望の温度に加熱または冷却される。このように、上記発明(発明1)によれば、ソケットを所望の温度に効率良く制御することができる。また、流体はソケットガイドで加熱または冷却されるため、ソケットガイドに供給する前の流体をあらかじめ温度調節しておく必要がなく、ソケットガイドの熱源とは別の熱源は不要である。ただし、当該別の熱源を設けることも本発明の範囲には含まれる。 According to the above invention (Invention 1), first, the socket guide is heated or cooled to a desired temperature by a heat source. Since the socket guide is adjacent to the socket, the socket is also heated or cooled by heat conduction from the heated or cooled socket guide. Second, when the fluid passes through the flow path of the socket guide heated or cooled by the heat source, the fluid is also heated or cooled, and the fluid is supplied to the socket. Because the socket guide is adjacent to the socket, the heated or cooled fluid is supplied to the socket at its original temperature, thereby heating or cooling the socket to the desired temperature. Thus, according to the said invention (invention 1), a socket can be efficiently controlled to desired temperature. Further, since the fluid is heated or cooled by the socket guide, it is not necessary to adjust the temperature of the fluid before being supplied to the socket guide in advance, and a heat source different from the heat source of the socket guide is not necessary. However, the provision of the other heat source is also included in the scope of the present invention.
 上記発明(発明1)において、前記流路の一端は流体入口となっており、前記流路の他端は前記ソケットに対して開口している流体出口となっていることが好ましい(発明2)。 In the said invention (invention 1), it is preferable that one end of the said flow path becomes a fluid inlet, and the other end of the said flow path becomes a fluid outlet opened with respect to the said socket (invention 2). .
 上記発明(発明1)においては、前記流路として、前記流体を外部から前記ソケットに導入する導入路と、前記流体を前記ソケットから外部に排出する排出路とが形成されていてもよい(発明3)。 In the above invention (Invention 1), an introduction path for introducing the fluid from the outside into the socket and a discharge path for discharging the fluid from the socket to the outside may be formed as the flow path (Invention). 3).
 上記発明(発明1,2)において、前記流路は、前記流路を通る流体が前記熱源によって所望の温度になるように、蛇行していることが好ましい(発明4)。 In the above inventions (Inventions 1 and 2), it is preferable that the flow path meanders so that the fluid passing through the flow path has a desired temperature by the heat source (Invention 4).
 第2に本発明は、被試験電子部品の外部端子と接触し得る接続端子を備えたソケットと、前記ソケットガイド(発明1~4)とを備えたことを特徴とするソケットユニットを提供する(発明5)。 Secondly, the present invention provides a socket unit comprising a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test, and the socket guide (inventions 1 to 4). Invention 5).
 上記発明(発明5)において、前記ソケットは、接続端子と、前記接続端子を保持するソケット本体とを備えており、前記ソケット本体には、前記ソケットガイドの流路に連通し、前記流体を前記接続端子に対して供給することのできる流路が形成されていてもよい(発明6)。 In the above invention (Invention 5), the socket includes a connection terminal and a socket body that holds the connection terminal. The socket body communicates with a flow path of the socket guide, and the fluid is supplied to the socket body. A flow path that can be supplied to the connection terminal may be formed (invention 6).
 上記発明(発明6)において、前記ソケットは、被試験電子部品を位置決めして支持し、前記接続端子が摺動可能に貫通するフローティング部材を前記ソケット本体上に備えており、前記ソケット本体に形成された流路の一端は、前記ソケット本体と前記フローティング部材との間の空隙に向かって開口していてもよい(発明7)。 In the above invention (invention 6), the socket includes a floating member that positions and supports the electronic component under test and through which the connection terminal slidably penetrates, and is formed in the socket body. One end of the flow path may be opened toward the gap between the socket body and the floating member (Invention 7).
 第3に本発明は、テストヘッド上に設けられた前記ソケットガイド(発明1~4)と、前記ソケットガイドの流路に流体を供給することのできる流体供給装置とを備えたことを特徴とする電子部品試験装置を提供する(発明8)。 Thirdly, the present invention includes the socket guide (inventions 1 to 4) provided on the test head, and a fluid supply device capable of supplying a fluid to the flow path of the socket guide. An electronic component testing apparatus is provided (Invention 8).
 第4に本発明は、テストヘッド上に設けられた前記ソケットユニット(発明5~7)と、前記ソケットユニットにおける前記ソケットガイドの流路に流体を供給することのできる流体供給装置とを備えたことを特徴とする電子部品試験装置を提供する(発明9)。 Fourthly, the present invention includes the socket unit (inventions 5 to 7) provided on the test head, and a fluid supply device capable of supplying a fluid to the flow path of the socket guide in the socket unit. An electronic component testing apparatus characterized by the above is provided (Invention 9).
 上記発明(発明8,9)において、前記流体供給装置は、熱源を備えていなくてもよい(発明10)。 In the above inventions (Inventions 8 and 9), the fluid supply device may not include a heat source (Invention 10).
 第5に本発明は、被試験電子部品の外部端子と接触し得る接続端子を備えたソケットの温度制御方法であって、前記ソケットガイド(発明1~4)を使用し、前記ソケットガイドの流路に流体を供給することを特徴とするソケットの温度制御方法を提供する(発明11)。 Fifthly, the present invention is a temperature control method for a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test, using the socket guide (Invention 1 to 4), Provided is a temperature control method for a socket, characterized in that a fluid is supplied to a passage (Invention 11).
 第6に本発明は、被試験電子部品の外部端子と接触し得る接続端子を備えたソケットの温度制御方法であって、前記ソケットユニット(発明5~7)を使用し、前記ソケットユニットにおける前記ソケットガイドの流路に流体を供給することを特徴とするソケットの温度制御方法を提供する(発明12)。 Sixth, the present invention provides a temperature control method for a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test, using the socket unit (invention 5 to 7), and Provided is a temperature control method for a socket, characterized in that a fluid is supplied to a flow path of the socket guide (Invention 12).
 上記発明(発明11,12)において、前記ソケットガイドの流路に供給する前の流体には、熱を印加しなくてもよい(発明13)。 In the above inventions (Inventions 11 and 12), heat may not be applied to the fluid before being supplied to the flow path of the socket guide (Invention 13).
 本発明によれば、ソケットを所望の温度に効率良く制御することができる。また、ソケットガイドに流体を供給する流体供給装置は、ソケットガイドの熱源とは別の熱源を備える必要がない。 According to the present invention, the socket can be efficiently controlled to a desired temperature. Further, the fluid supply device that supplies fluid to the socket guide does not need to include a heat source different from the heat source of the socket guide.
本発明の一実施形態に係る電子部品試験装置の平面図である。1 is a plan view of an electronic component test apparatus according to an embodiment of the present invention. 同実施形態に係る電子部品試験装置の側面部分断面図(図1におけるI-I断面図)である。FIG. 2 is a side partial cross-sectional view (II cross-sectional view in FIG. 1) of the electronic component test apparatus according to the same embodiment. 同電子部品試験装置におけるソケットユニットの平面断面図である。It is a plane sectional view of the socket unit in the electronic parts testing device. 同電子部品試験装置におけるソケットユニットの側面断面図である。It is side surface sectional drawing of the socket unit in the same electronic component test apparatus.
符号の説明Explanation of symbols
1…電子部品試験装置
2…ICデバイス(電子部品)
10…電子部品ハンドリング装置(ハンドラ)
70…ソケットユニット
80…ソケット
 81…ソケット本体
 82…コンタクトピン(接続端子)
 83…フローティングプレート(フローティング部材)
 84…エア流路
90…ソケットガイド
 91…ソケットガイド本体
 92a…エア導入路(流路)
  921…エア入口(流体入口)
  922…エア出口(流体出口)
 92b…エア排出路(流路)
 93…熱源部
315…コンタクトアーム(被試験電子部品を保持する部材)
DESCRIPTION OF SYMBOLS 1 ... Electronic component test apparatus 2 ... IC device (electronic component)
10 ... Electronic component handling device (handler)
70 ... Socket unit 80 ... Socket 81 ... Socket body 82 ... Contact pin (connection terminal)
83 ... Floating plate (floating member)
84 ... Air flow path 90 ... Socket guide 91 ... Socket guide body 92a ... Air introduction path (flow path)
921 ... Air inlet (fluid inlet)
922 ... Air outlet (fluid outlet)
92b ... Air discharge path (flow path)
93 ... Heat source unit 315 ... Contact arm (member for holding electronic device under test)
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 図1は本発明の一実施形態に係るハンドラの平面図、図2は同実施形態に係るハンドラの側面部分断面図(図1におけるI-I断面図)、図3は同電子部品試験装置におけるソケットユニットの平面断面図、図4は同電子部品試験装置におけるソケットユニットの側面断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is a plan view of a handler according to an embodiment of the present invention, FIG. 2 is a side partial sectional view of the handler according to the embodiment (II sectional view in FIG. 1), and FIG. FIG. 4 is a side sectional view of the socket unit in the electronic component testing apparatus.
 なお、図4に示す被試験ICデバイスの形態は、一例として、外部端子として半田ボールを備えるBGAパッケージやCSP(Chip Size Package)パッケージ等であるが、本発明はこれに限定されるものではなく、例えば、外部端子としてリードピンを備えるQFP(Quad Flat Package)パッケージやSOP(Small Outline Package)パッケージ等であってもよい。 The form of the IC device under test shown in FIG. 4 is, for example, a BGA package or a CSP (Chip Size Package) package having solder balls as external terminals, but the present invention is not limited to this. For example, a QFP (Quad Flat Package) package or a SOP (Small Outline Package) package having lead pins as external terminals may be used.
 図1及び図2に示すように、本実施形態における電子部品試験装置1は、ハンドラ10と、テストヘッド300と、テスタ20とを備え、テストヘッド300とテスタ20とはケーブル21を介して接続されている。そして、ハンドラ10の供給トレイ用ストッカ401に格納された供給トレイ上の試験前のICデバイスを搬送してテストヘッド300のコンタクト部301のソケット80に押し当て、このテストヘッド300及びケーブル21を介してICデバイスの試験を実行した後、試験が終了したICデバイスを試験結果に従って分類トレイ用ストッカ402に格納された分類トレイ上に搭載する。 As shown in FIGS. 1 and 2, the electronic component testing apparatus 1 in this embodiment includes a handler 10, a test head 300, and a tester 20, and the test head 300 and the tester 20 are connected via a cable 21. Has been. Then, the pre-test IC device on the supply tray stored in the supply tray stocker 401 of the handler 10 is conveyed and pressed against the socket 80 of the contact portion 301 of the test head 300, and the test head 300 and the cable 21 are passed through this IC device. After the IC device test is executed, the IC device for which the test has been completed is mounted on the classification tray stored in the classification tray stocker 402 according to the test result.
 ハンドラ10は、主にテスト部30と、ICデバイス格納部40と、ローダ部50と、アンローダ部60とから構成される。 The handler 10 mainly includes a test unit 30, an IC device storage unit 40, a loader unit 50, and an unloader unit 60.
 ICデバイス格納部40は、試験前及び試験後のICデバイスを格納する部分であり、主に供給トレイ用ストッカ401と、分類トレイ用ストッカ402と、空トレイ用ストッカ403と、トレイ搬送装置404とから構成される。 The IC device storage unit 40 is a part that stores IC devices before and after the test, and mainly includes a supply tray stocker 401, a classification tray stocker 402, an empty tray stocker 403, and a tray transport device 404. Consists of
 供給トレイ用ストッカ401には、試験前の複数のICデバイスが搭載された複数の供給トレイが積載されて収納されており、本実施形態においては、図1に示すように、2つの供給トレイ用ストッカ401が具備されている。 In the supply tray stocker 401, a plurality of supply trays loaded with a plurality of IC devices before the test are stacked and stored. In this embodiment, as shown in FIG. A stocker 401 is provided.
 分類トレイ用ストッカ402は、試験後の複数のICデバイスが搭載された複数の分類トレイが積載されて収納されており、本実施形態においては、図1に示すように4つの分類トレイ用ストッカ402が具備されている。これら4つの分類トレイ用ストッカ402を設けることにより、試験結果に応じて、最大4つの分類にICデバイスを仕分けして格納できるように構成されている。 The classification tray stocker 402 is loaded with a plurality of classification trays loaded with a plurality of IC devices after the test. In this embodiment, as shown in FIG. Is provided. By providing these four classification tray stockers 402, the IC devices can be sorted and stored in a maximum of four classifications according to the test results.
 空トレイ用ストッカ403は、供給トレイ用ストッカ401に搭載されていた全ての試験前のICデバイス20がテスト部30に供給された後の空トレイを格納する。なお、各ストッカ401~403の数は、必要に応じて適宜設定することが可能である。 The empty tray stocker 403 stores empty trays after all the pre-test IC devices 20 mounted on the supply tray stocker 401 have been supplied to the test unit 30. The number of stockers 401 to 403 can be appropriately set as necessary.
 トレイ搬送装置404は、図1においてX軸、Z軸方向に移動可能な搬送装置であり、主にX軸方向レール404aと、可動ヘッド部404bと、4つの吸着パッド404cとから構成されており、供給トレイ用ストッカ401と、一部の分類トレイ用ストッカ402と、空トレイ用ストッカ403とを包含する範囲を動作範囲とする。 The tray transfer device 404 is a transfer device that can move in the X-axis and Z-axis directions in FIG. 1, and mainly includes an X-axis direction rail 404a, a movable head 404b, and four suction pads 404c. A range including the supply tray stocker 401, a part of the sorting tray stocker 402, and the empty tray stocker 403 is defined as an operation range.
 トレイ搬送装置404においては、ハンドラ10の基台12上に固定されたX軸方向レール404aがX軸方向に移動可能に可動ヘッド部404bを片持ち支持しており、可動ヘッド部404bには図示しないZ軸方向アクチュエータと、先端部に4つの吸着パッド404cが具備されている。 In the tray transport device 404, an X-axis direction rail 404a fixed on the base 12 of the handler 10 supports the movable head unit 404b in a cantilevered manner so as to be movable in the X-axis direction. The Z-axis direction actuator not to be used and four suction pads 404c are provided at the tip.
 トレイ搬送装置404は、供給トレイ用ストッカ401にて空になった空トレイを吸着パッド404cにより吸着し保持し、Z軸方向アクチュエータにより上昇させ、X軸方向レール404a上で可動ヘッド部404bを摺動させることにより空トレイ用ストッカ401に移送する。同様に、分類トレイ用ストッカ402において分類トレイ上に試験後のICデバイスが満載された場合に、空トレイ用ストッカ403から空トレイを吸着し保持し、Z軸方向アクチュエータにより上昇させ、X軸方向レール404a上にて可動ヘッド部404bを摺動させることにより、分類トレイ用ストッカ402に移送する。 The tray transport device 404 sucks and holds the empty tray emptied by the supply tray stocker 401 by the suction pad 404c, lifts it by the Z-axis direction actuator, and slides the movable head portion 404b on the X-axis direction rail 404a. By moving it, it is transferred to the empty tray stocker 401. Similarly, when the post-test IC devices are fully loaded on the classification tray in the classification tray stocker 402, the empty tray is sucked and held from the empty tray stocker 403, and is lifted by the Z-axis direction actuator. The movable head unit 404b is slid on the rail 404a to be transferred to the sorting tray stocker 402.
 ローダ部50は、試験前のICデバイスをICデバイス格納部40の供給トレイ用ストッカ401からテスト部30に供給する部分であり、主にローダ部搬送装置501と、2つのローダ用バッファ部502(図1においてX軸負方向の2つ)と、ヒートプレート503とから構成される。 The loader unit 50 is a part that supplies the IC device before the test from the supply tray stocker 401 of the IC device storage unit 40 to the test unit 30, and mainly includes a loader unit transport device 501 and two loader buffer units 502 ( In FIG. 1, it is composed of two in the negative X-axis direction) and a heat plate 503.
 ローダ部搬送装置501は、ICデバイス格納部40の供給トレイ用ストッカ401の供給トレイ上のICデバイスをヒートプレート503上に移動させるとともに、ヒートプレート503上のICデバイスをローダ用バッファ部502上に移動させる装置であり、主にY軸方向レール501aと、X軸方向レール501bと、可動ヘッド部501cと、吸着部501dとから構成されている。このローダ部搬送装置501は、供給トレイ用ストッカ401と、ヒートプレート503と、2つのローダ用バッファ部502とを包含する範囲を動作範囲としている。 The loader unit transport device 501 moves the IC device on the supply tray of the supply tray stocker 401 of the IC device storage unit 40 onto the heat plate 503, and moves the IC device on the heat plate 503 onto the loader buffer unit 502. This is a device to be moved, and mainly comprises a Y-axis direction rail 501a, an X-axis direction rail 501b, a movable head part 501c, and a suction part 501d. The loader unit transport device 501 has an operation range including a supply tray stocker 401, a heat plate 503, and two loader buffer units 502.
 図1に示すように、ローダ部搬送装置501の2つのY軸方向レール501aは、ハンドラ10の基台12上に固定されており、それらの間にX軸方向レール502bがY軸方向に摺動可能に支持されている。X軸方向レール502bは、Z軸方向アクチュエータ(図示せず)を有する可動ヘッド部501cをX軸方向に摺動可能に支持している。 As shown in FIG. 1, the two Y-axis direction rails 501a of the loader unit transport device 501 are fixed on the base 12 of the handler 10, and the X-axis direction rail 502b slides in the Y-axis direction between them. It is supported movably. The X-axis direction rail 502b supports a movable head portion 501c having a Z-axis direction actuator (not shown) so as to be slidable in the X-axis direction.
 図2に示すように、可動ヘッド部501cは、下端部に吸着パッド501eを有する吸着部501dを4つ備えており、上記Z軸方向アクチュエータを駆動させることにより、4つの吸着部501dをそれぞれ独立してZ軸方向に昇降させることができる。 As shown in FIG. 2, the movable head portion 501c includes four suction portions 501d each having a suction pad 501e at the lower end, and the four suction portions 501d are independent of each other by driving the Z-axis direction actuator. Thus, it can be moved up and down in the Z-axis direction.
 各吸着部501dは、負圧源(図示せず)に接続されており、吸着パッド501eからエアを吸引して負圧を発生させることにより、ICデバイスを吸着保持することができ、また、吸着パッド501eからのエアの吸引を停止することにより、ICデバイスを解放することができる。 Each suction portion 501d is connected to a negative pressure source (not shown), and can suck and hold an IC device by sucking air from the suction pad 501e to generate a negative pressure. The IC device can be released by stopping the suction of air from the pad 501e.
 ヒートプレート503は、ICデバイスに所定の熱ストレスを印加するための加熱源であり、例えば下部に発熱源(図示せず)を有する金属製の伝熱プレートである。ヒートプレート503の上面側には、ICデバイスを落とし込むための凹部503aが複数形成されている。なお、かかる加熱源の替わりに、冷却源が設けられてもよい。 The heat plate 503 is a heating source for applying a predetermined thermal stress to the IC device. For example, the heat plate 503 is a metal heat transfer plate having a heat generation source (not shown) at the bottom. On the upper surface side of the heat plate 503, a plurality of recesses 503a for dropping an IC device are formed. Note that a cooling source may be provided instead of the heating source.
 ローダ用バッファ部502は、ICデバイスをローダ部搬送装置501の動作範囲と、テスト部搬送装置310の動作範囲との間を往復移動させる装置であり、主にバッファステージ502aと、X軸方向アクチュエータ502bとから構成されている。 The loader buffer unit 502 is a device that reciprocates the IC device between the operation range of the loader unit transport device 501 and the operation range of the test unit transport device 310, and mainly includes a buffer stage 502a and an X-axis direction actuator. 502b.
 ハンドラ10の基台12上に固定されたX軸方向アクチュエータ502bの片側端部にバッファステージ502aが支持されており、図1に示すように、バッファステージ502aの上面側には、ICデバイスを落とし込むための平面視矩形の凹部502cが4つ形成されている。 A buffer stage 502a is supported at one end of an X-axis direction actuator 502b fixed on the base 12 of the handler 10, and an IC device is dropped onto the upper surface side of the buffer stage 502a as shown in FIG. Four recesses 502c having a rectangular shape in plan view are formed.
 試験前のICデバイスは、ローダ部搬送装置501により供給トレイ用ストッカ401からヒートプレート503に移動され、ヒートプレート503にて所定の温度に加熱された後、再度ローダ部搬送装置501によりローダ用バッファ部502に移動され、そしてローダ用バッファ部502によって、テスト部30に導入される。 The IC device before the test is moved from the supply tray stocker 401 to the heat plate 503 by the loader unit conveyance device 501 and heated to a predetermined temperature by the heat plate 503, and then again loaded by the loader unit conveyance device 501 by the loader buffer. The loader buffer unit 502 introduces the data into the test unit 30.
 テスト部30は、被試験ICデバイス2の外部端子(半田ボール)をコンタクト部301のソケット80のコンタクトピン82に電気的に接触させることにより試験を行う部分である。このテスト部30は、主にテスト部搬送装置310を備えて構成されている。 The test unit 30 is a part that performs a test by bringing the external terminal (solder ball) of the IC device 2 under test into electrical contact with the contact pin 82 of the socket 80 of the contact unit 301. The test unit 30 mainly includes a test unit transport device 310.
 テスト部搬送装置310は、ローダ用バッファ部502及びアンローダ用バッファ部602と、テストヘッド300との間のICデバイスの移動を行う装置である。 The test unit transport device 310 is a device that moves the IC device between the loader buffer unit 502 and the unloader buffer unit 602 and the test head 300.
 テスト部搬送装置310は、ハンドラ10の基台12上に固定された2つのY軸方向レール311に、Y軸方向に摺動可能に2つのX軸方向支持部材311aを支持している。各X軸方向支持部材311aの中央部には、可動ヘッド部312が支持されており、可動ヘッド部312は、ローダ用バッファ部502及びアンローダ用バッファ部602と、テストヘッド300とを包含する範囲を動作範囲とする。なお、一組のY軸方向レール311上で同時に動作する2つのX軸方向支持部材311aのそれぞれに支持される可動ヘッド部312は、互いの動作が干渉することがないよう制御されている。 The test section transport device 310 supports two X-axis direction support members 311a slidable in the Y-axis direction on two Y-axis direction rails 311 fixed on the base 12 of the handler 10. A movable head portion 312 is supported at the central portion of each X-axis direction support member 311a, and the movable head portion 312 includes a loader buffer portion 502, an unloader buffer portion 602, and a test head 300. Is the operating range. Note that the movable head unit 312 supported by each of the two X-axis direction support members 311a operating simultaneously on the pair of Y-axis direction rails 311 is controlled so that the mutual operations do not interfere with each other.
 各可動ヘッド部312は、その下部に4つのコンタクトアーム315を具備している。4つのコンタクトアーム315は、ソケット80の配列に対応して設けられており、図2に示すように、各コンタクトアーム315の下端部には、吸着部317が設けられている。 Each movable head portion 312 includes four contact arms 315 at the lower portion thereof. The four contact arms 315 are provided corresponding to the arrangement of the sockets 80, and as shown in FIG. 2, a suction portion 317 is provided at the lower end of each contact arm 315.
 各吸着部317は、負圧源(図示せず)に接続されており、吸着部317からエアを吸引して負圧を発生させることにより、ICデバイスを吸着保持することができ、また、吸着部317からのエアの吸引を停止することにより、ICデバイスを解放することができる。 Each suction part 317 is connected to a negative pressure source (not shown), and can suck and hold an IC device by sucking air from the suction part 317 to generate a negative pressure. By stopping the suction of air from the portion 317, the IC device can be released.
 上記可動ヘッド部312によれば、コンタクトアーム315が保持した4つのICデバイス2をY軸方向及びZ軸方向に移動させ、テストヘッド300のコンタクト部301に押し付けることが可能となっている。 According to the movable head unit 312, the four IC devices 2 held by the contact arm 315 can be moved in the Y-axis direction and the Z-axis direction and pressed against the contact unit 301 of the test head 300.
 テストヘッド300のコンタクト部301は、本実施形態においては、4つのソケット80を備えており、4つのソケット80は、テスト部搬送装置310の可動ヘッド部312のコンタクトアーム315の配列に実質的に一致するような配列で配置されている。なお、ソケット80を含むソケットユニット70の詳細については、後述する。 In the present embodiment, the contact portion 301 of the test head 300 includes four sockets 80, and the four sockets 80 are substantially arranged in the arrangement of the contact arms 315 of the movable head portion 312 of the test unit conveyance device 310. Arranged so that they match. Details of the socket unit 70 including the socket 80 will be described later.
 図2に示すように、テスト部30においては、ハンドラ10の基台12に開口部11が形成されており、その開口部11からテストヘッド300のコンタクト部301が臨出し、ICデバイスが押し当てられるようになっている。 As shown in FIG. 2, in the test unit 30, an opening 11 is formed in the base 12 of the handler 10, and the contact portion 301 of the test head 300 protrudes from the opening 11 and the IC device is pressed against it. It is supposed to be.
 ローダ用バッファ部502に載置された4個の試験前のICデバイスは、テスト部搬送装置310によりテストヘッド300のコンタクト部301まで移動されて4個同時に試験に付され、その後、再度テスト部搬送装置310によりアンローダ用バッファ部602に移動され、そしてアンローダ用バッファ部602によって、アンローダ部60に排出される。 The four pre-test IC devices placed on the loader buffer unit 502 are moved to the contact unit 301 of the test head 300 by the test unit transport device 310 and simultaneously subjected to the test, and then the test unit again. The unloader buffer unit 602 moves to the unloader buffer unit 602 and the unloader buffer unit 602 discharges the unloader unit 60 to the unloader unit 60.
 アンローダ部60は、試験後のICデバイスをテスト部30からICデバイス格納部40に排出する部分であり、主にアンローダ部搬送装置601と、2つのアンローダ用バッファ部602(図1においてX軸正方向の2つ)とから構成される。 The unloader unit 60 is a part for discharging the tested IC device from the test unit 30 to the IC device storage unit 40. The unloader unit 60 mainly includes an unloader unit transport device 601 and two unloader buffer units 602 (in FIG. Two directions).
 アンローダ用バッファ部602は、テスト部搬送装置310の動作範囲とICデバイスをアンローダ部搬送装置601の動作範囲との間を往復移動する装置であり、主にバッファステージ602aと、X軸方向アクチュエータ602bとから構成されている。 The unloader buffer unit 602 is a device that reciprocates the operating range of the test unit transport apparatus 310 and the IC device between the operation range of the unloader unit transport apparatus 601, and mainly includes a buffer stage 602a and an X-axis direction actuator 602b. It consists of and.
ハンドラ10の基台12上に固定されたX軸方向アクチュエータ602bの片側端部にバッファステージ602aが支持されており、バッファステージ602aの上面側には、ICデバイスを落とし込むための凹部602cが4つ形成されている。 A buffer stage 602a is supported at one end of an X-axis direction actuator 602b fixed on the base 12 of the handler 10, and four recesses 602c for dropping an IC device are provided on the upper surface side of the buffer stage 602a. Is formed.
 アンローダ部搬送装置601は、アンローダ用バッファ部602上のICデバイスを分類トレイ用ストッカ402の分類トレイに移動させ搭載する装置であり、主に、Y軸方向レール601aと、X軸方向レール601bと、可動ヘッド部601cと、吸着部601dとから構成されている。このアンローダ部搬送装置601は、2つのアンローダ用バッファ602と、分類トレイ用ストッカ402とを包含する範囲を動作範囲としている。 The unloader unit conveying device 601 is a device that moves and mounts the IC device on the unloader buffer unit 602 to the classification tray of the classification tray stocker 402, and mainly includes a Y-axis direction rail 601a, an X-axis direction rail 601b, and the like. The movable head portion 601c and the suction portion 601d are configured. The unloader transport device 601 has an operation range that includes two unloader buffers 602 and a sorting tray stocker 402.
 図1に示すように、アンローダ部搬送装置601の2つのY軸方向レール601aは、ハンドラ10の基台12上に固定されており、それらの間にX軸方向レール602bがY軸方向に摺動可能に支持されている。X軸方向レール602bは、Z軸方向アクチュエータ(図示せず)を具備した可動ヘッド部601cをX軸方向に摺動可能に支持している。 As shown in FIG. 1, the two Y-axis direction rails 601a of the unloader unit conveying device 601 are fixed on the base 12 of the handler 10, and the X-axis direction rail 602b slides in the Y-axis direction between them. It is supported movably. The X-axis direction rail 602b supports a movable head portion 601c having a Z-axis direction actuator (not shown) so as to be slidable in the X-axis direction.
 可動ヘッド部601cは、下端部に吸着パッドを有する吸着部601dを4つ備えており、上記Z軸方向アクチュエータを駆動させることにより、4つの吸着部601dをそれぞれ独立してZ軸方向に昇降させることができる。 The movable head portion 601c includes four suction portions 601d each having a suction pad at the lower end portion, and the four suction portions 601d are independently raised and lowered in the Z-axis direction by driving the Z-axis direction actuator. be able to.
 アンローダ用バッファ部602に載置された試験後のICデバイスは、テスト部30からアンローダ部60に排出され、そして、アンローダ部搬送装置601によりアンローダ用バッファ部602から分類トレイ用ストッカ402の分類トレイに搭載される。 The IC device after the test placed on the unloader buffer unit 602 is ejected from the test unit 30 to the unloader unit 60, and the unloader unit transport device 601 extracts the classification tray of the classification tray stocker 402 from the unloader buffer unit 602. Mounted on.
 ここで、本実施形態におけるソケットユニット70について詳述する。図3及び図4に示すソケットユニット70は、図2に示すテストヘッド300のコンタクト部301に設けられており、ソケット80と、ソケット80に接触するソケットガイド90とを備えている。 Here, the socket unit 70 in this embodiment will be described in detail. The socket unit 70 shown in FIGS. 3 and 4 is provided in the contact portion 301 of the test head 300 shown in FIG. 2, and includes a socket 80 and a socket guide 90 that contacts the socket 80.
 図4に示すように、ソケット80は、複数のコンタクトピン82と、それらコンタクトピン82を支持するソケット本体81と、ソケット本体81上に設けられたフローティングプレート83とを備えている。 As shown in FIG. 4, the socket 80 includes a plurality of contact pins 82, a socket body 81 that supports the contact pins 82, and a floating plate 83 provided on the socket body 81.
 ソケット本体81は、中央部が凹部、その周りが凸部となっており、複数のコンタクトピン82は、ICデバイス2の半田ボールの配列に実質的に一致するような配列にてソケット本体81の凹部に設けられている。 The socket body 81 has a concave portion at the center and a convex portion around the socket body 81, and the plurality of contact pins 82 are arranged so as to substantially match the arrangement of the solder balls of the IC device 2. It is provided in the recess.
 フローティングプレート83は、図示しない弾性部材によってソケット本体81の凹部にフローティング状態で位置しており、フローティングプレート83には、コンタクトピン82が摺動可能に貫通する孔が複数設けられている。かかるフローティングプレート83は、ICデバイス2を所定の位置に位置決めして支持するとともに、コンタクトピン82が倒れることを防止する。なお、図4に示すように、ソケット本体81の凹部上面とフローティングプレート83の底面との間には空隙が存在し、その空隙にはコンタクトピン82の基部が存在する。 The floating plate 83 is positioned in a floating state in the recess of the socket main body 81 by an elastic member (not shown), and the floating plate 83 is provided with a plurality of holes through which the contact pins 82 can slide. The floating plate 83 positions and supports the IC device 2 at a predetermined position, and prevents the contact pin 82 from falling down. As shown in FIG. 4, a gap exists between the upper surface of the concave portion of the socket body 81 and the bottom surface of the floating plate 83, and the base portion of the contact pin 82 exists in the gap.
 ソケット本体81には、流体であるエアの流路(エア流路)84が形成されている。図4に示すように、エア流路84の一端はソケット本体81の凸部上面にて開口しており、この一端がエア入口841となっている。また、エア流路84の他端は、ソケット本体81の凹部上面とフローティングプレート83の底面との間の空隙に向かって開口しており、この他端がエア出口842となっている。 The socket body 81 is formed with an air flow path (air flow path) 84 that is a fluid. As shown in FIG. 4, one end of the air flow path 84 is opened at the upper surface of the convex portion of the socket body 81, and this one end is an air inlet 841. The other end of the air flow path 84 opens toward the gap between the upper surface of the concave portion of the socket body 81 and the bottom surface of the floating plate 83, and the other end serves as an air outlet 842.
 ソケットガイド90は、被試験ICデバイス2がソケット80の所定の位置に装着されるように、被試験ICデバイス2を保持するコンタクトアーム315をガイドするものであり、図3及び図4に示すように、ソケット80を囲繞するように設けられたソケットガイド本体91と、ソケットガイド本体91に接触し、ソケットガイド本体91を加熱または冷却することのできる熱源部93とを備えている。 The socket guide 90 guides the contact arm 315 that holds the IC device 2 under test so that the IC device 2 under test is mounted at a predetermined position of the socket 80, as shown in FIGS. 3 and 4. In addition, a socket guide main body 91 provided so as to surround the socket 80 and a heat source section 93 that contacts the socket guide main body 91 and can heat or cool the socket guide main body 91 are provided.
 ソケットガイド本体91の中央部分は矩形の開口部になっており、ソケット80のコンタクトピン82は、この開口部に露出している。ソケットガイド本体91は、熱伝導性の良好な材料、例えば、アルミニウム合金等の金属からなることが好ましい。図4に示すように、ソケットガイド90は、ソケットガイド本体91の開口部近傍の下面にてソケット本体81の凸部上面に接触している。 The central portion of the socket guide main body 91 is a rectangular opening, and the contact pin 82 of the socket 80 is exposed in this opening. The socket guide body 91 is preferably made of a material having good thermal conductivity, for example, a metal such as an aluminum alloy. As shown in FIG. 4, the socket guide 90 is in contact with the upper surface of the convex portion of the socket body 81 at the lower surface near the opening of the socket guide body 91.
 ソケットガイド本体91には、流体であるエアの流路として、エアを外部からソケット80に導入するエア導入路92aと、エアをソケット80から外部に排出するエア排出路92bとが形成されている。 In the socket guide main body 91, an air introduction path 92a for introducing air from the outside to the socket 80 and an air discharge path 92b for discharging air from the socket 80 to the outside are formed as a flow path of air that is a fluid. .
 エア導入路92aの一端はソケットガイド本体91の外周縁にて開口しており、この一端がエア入口921となっている。このエア入口921には、図示しないエア供給装置につながっている配管が接続される。エア導入路92aの他端はソケットガイド本体91の開口部近傍の下面にて開口しており、この他端がエア出口922となっている。ソケットガイド本体91に形成されたエア導入路92aのエア出口922は、上記ソケット本体81に形成されたエア流路84のエア入口841に対応する位置に形成されており、これにより、ソケットガイド本体91のエア導入路92aとソケット本体81のエア流路84とは連通している。なお、本実施形態におけるエア導入路92aは、ソケットガイド本体91の開口部を挟んで2本形成されており、それぞれ図3に示すように蛇行している。エア導入路92aをこのように蛇行させることにより、エア導入路92aを一直線状にする場合よりも、エア導入路92aの長さを2~10倍程度長くすることができる。 One end of the air introduction path 92 a is opened at the outer peripheral edge of the socket guide main body 91, and this one end is an air inlet 921. A pipe connected to an air supply device (not shown) is connected to the air inlet 921. The other end of the air introduction path 92 a opens at the lower surface near the opening of the socket guide body 91, and the other end serves as an air outlet 922. The air outlet 922 of the air introduction path 92a formed in the socket guide body 91 is formed at a position corresponding to the air inlet 841 of the air flow path 84 formed in the socket body 81, whereby the socket guide body The air introduction path 92 a 91 and the air flow path 84 of the socket main body 81 communicate with each other. In the present embodiment, two air introduction paths 92a are formed across the opening of the socket guide body 91, each meandering as shown in FIG. By meandering the air introduction path 92a in this manner, the length of the air introduction path 92a can be made about 2 to 10 times longer than when the air introduction path 92a is made straight.
 エア排出路92bの一端はソケットガイド本体91の内周縁にて開口しており、この一端がエア入口923となっている。また、エア排出路92bの他端はソケットガイド本体91の外周縁にて開口しており、この他端がエア出口924となっている。なお、本実施形態におけるエア排出路92bは、ソケットガイド本体91の開口部を挟んで2本形成されており、それぞれ図3に示すように直線状になっている。 One end of the air discharge path 92b opens at the inner peripheral edge of the socket guide main body 91, and this one end is an air inlet 923. The other end of the air discharge path 92 b opens at the outer peripheral edge of the socket guide main body 91, and the other end serves as an air outlet 924. In this embodiment, two air discharge passages 92b are formed across the opening of the socket guide main body 91, and each has a linear shape as shown in FIG.
 本実施形態では、エア排出路92bのエア入口923と、エア導入路92aのエア出口922は、それぞれソケットガイド本体91の開口部の隣接する辺またはその近傍に位置している。 In the present embodiment, the air inlet 923 of the air discharge path 92b and the air outlet 922 of the air introduction path 92a are located at or near the side adjacent to the opening of the socket guide body 91, respectively.
 エア導入路92aのエア入口921には、図示しないエア供給装置から配管を通じてエアが供給される。本実施形態におけるエア供給装置は、エアを加熱または冷却する熱源は備えておらず、常温のエアを供給する。 Air is supplied from an air supply device (not shown) to the air inlet 921 of the air introduction path 92a through a pipe. The air supply device in the present embodiment does not include a heat source for heating or cooling the air, and supplies room temperature air.
 熱源部93は、例えば、ヒータやペルチェ素子等を備えており、所望によりさらに温度センサを備えていてもよい。本実施形態における熱源部93は、図4に示すようにソケットガイド本体91の上面側部に取り付けられているが、これに限定されるものではない。 The heat source unit 93 includes, for example, a heater and a Peltier element, and may further include a temperature sensor as desired. Although the heat source part 93 in this embodiment is attached to the upper surface side part of the socket guide main body 91 as shown in FIG. 4, it is not limited to this.
 上記ソケットユニット70におけるソケット80の温度制御方法について説明する。ここでは一例として、ソケット80を高温に温度制御するものとする。 A method for controlling the temperature of the socket 80 in the socket unit 70 will be described. Here, as an example, the temperature of the socket 80 is controlled to a high temperature.
 第1に、熱源部93(例えばヒータを内蔵した熱源部)は、ソケットガイド本体91を所望の温度に加熱する。ソケットガイド本体91とソケット本体81とは接触しているため、ソケットガイド本体91が加熱されることにより、ソケットガイド本体91からの熱伝導でソケット本体81、そしてソケット本体81に設けられているコンタクトピン82も加熱される。ただし、ソケット本体81は、通常、熱伝導性の低いプラスチック樹脂からなるため、これだけでは所望の温度まで加熱されない場合がある。 First, the heat source unit 93 (for example, a heat source unit incorporating a heater) heats the socket guide body 91 to a desired temperature. Since the socket guide body 91 and the socket body 81 are in contact with each other, when the socket guide body 91 is heated, the socket body 81 and the contacts provided on the socket body 81 by heat conduction from the socket guide body 91 are provided. The pin 82 is also heated. However, since the socket body 81 is usually made of a plastic resin having low thermal conductivity, it may not be heated to a desired temperature by itself.
 第2に、エア供給装置から供給されたエアは、ソケットガイド本体91のエア導入路92aのエア入口921に流入し、蛇行しているエア導入路92aを通ってエア出口922に至る。ソケットガイド本体91は、熱源部93により加熱されているため、エア導入路92aを通過するエアも加熱される。特に、エア導入路92aは蛇行しており、エアのソケットガイド本体91での滞在時間が長くなるため、エアは十分に加熱される。 Second, the air supplied from the air supply device flows into the air inlet 921 of the air introduction path 92a of the socket guide body 91, and reaches the air outlet 922 through the meandering air introduction path 92a. Since the socket guide main body 91 is heated by the heat source section 93, the air passing through the air introduction path 92a is also heated. In particular, the air introduction path 92a meanders and the staying time of the air in the socket guide body 91 becomes long, so that the air is sufficiently heated.
 ソケットガイド本体91で加熱されたエアは、ソケットガイド本体91のエア導入路92aのエア出口922から、ソケット本体81のエア流路84のエア入口841に流入し、エア流路84を通ってエア出口842から流出する。ここで、ソケットガイド本体91で加熱されたエア(加熱エア)がソケット本体81のエア流路84のエア出口842から流出するまでの流路は非常に短いため、その流路途中で加熱エアの温度が降下するおそれは殆どない。 The air heated by the socket guide main body 91 flows from the air outlet 922 of the air introduction path 92 a of the socket guide main body 91 into the air inlet 841 of the air flow path 84 of the socket main body 81, and passes through the air flow path 84. It flows out from the outlet 842. Here, since the air heated by the socket guide main body 91 (heated air) flows out from the air outlet 842 of the air flow path 84 of the socket main body 81, the flow of the heated air is halfway through the flow path. There is almost no risk of temperature drop.
 ソケット本体81のエア流路84のエア出口842から流出した加熱エアは、ソケット本体81の凹部上面とフローティングプレート83の底面との間の空隙に流れ込み、ソケット本体81およびフローティングプレート83を加熱するとともに、当該空隙に存在するコンタクトピン82の基部を加熱する。そして加熱エアは、コンタクトピン82とフローティングプレート83の穴との間の間隙を通って、フローティングプレート83の上側に抜ける。このとき、加熱エアはコンタクトピン82全体を加熱することとなる。このようにして、ソケット80は、所望の温度(ICデバイス2と同じ温度)まで加熱される。 The heated air flowing out from the air outlet 842 of the air flow path 84 of the socket body 81 flows into the gap between the upper surface of the concave portion of the socket body 81 and the bottom surface of the floating plate 83 to heat the socket body 81 and the floating plate 83. Then, the base of the contact pin 82 existing in the gap is heated. The heated air passes through the gap between the contact pin 82 and the hole of the floating plate 83 and escapes to the upper side of the floating plate 83. At this time, the heated air heats the entire contact pin 82. In this way, the socket 80 is heated to a desired temperature (the same temperature as the IC device 2).
 この状態で、高温の熱ストレスが与えられたICデバイス2がソケット80に装着されて、ICデバイス2の外部端子がコンタクトピン82に接触したときに、当該コンタクトピン82も、ICデバイス2のパッケージに接触するフローティングプレート83も、加熱エアによって所望の温度まで加熱されているため、ICデバイス2の温度が低下するおそれはない。 In this state, when the IC device 2 to which high-temperature thermal stress is applied is mounted on the socket 80 and the external terminals of the IC device 2 come into contact with the contact pins 82, the contact pins 82 are also packaged in the IC device 2. Since the floating plate 83 that is in contact with the substrate is also heated to a desired temperature by the heated air, there is no possibility that the temperature of the IC device 2 decreases.
 ICデバイス2がソケット80に装着された状態においては、フローティングプレート83の上側に抜けた加熱エアは、ICデバイス2に噴き当ってから、ソケットガイド本体91の内周縁に開口しているエア排出路92bのエア入口923に流入し、エア排出路92bを通ってエア出口924から外部に排出される。なお、エア出口924から排出されたエアは、配管を介してエア供給装置に戻し、循環させてもよい。 In a state where the IC device 2 is mounted on the socket 80, the heated air that has escaped to the upper side of the floating plate 83 sprays onto the IC device 2 and then opens to the inner peripheral edge of the socket guide body 91. It flows into the air inlet 923 of 92b, is discharged | emitted from the air outlet 924 outside through the air discharge path 92b. The air discharged from the air outlet 924 may be returned to the air supply device via a pipe and circulated.
 本実施形態に係るソケットユニット70によれば、以上のようにして、ソケット80を所望の温度に効率良く制御することができる。また、ソケット80に供給されるエアは、ソケット80に隣接するソケットガイド90にて十分加熱され、ソケット80に至るまでに降温しないため、エア供給装置は、エアヒータ等の熱源を備える必要がない。 According to the socket unit 70 according to the present embodiment, the socket 80 can be efficiently controlled to a desired temperature as described above. Further, the air supplied to the socket 80 is sufficiently heated by the socket guide 90 adjacent to the socket 80 and does not cool down until reaching the socket 80, so the air supply device does not need to include a heat source such as an air heater.
 次に、上述したハンドラ10の搬送・試験の動作フローについて説明する。
 最初に、ローダ部搬送装置501が、4つの吸着部501dの吸着パッド501eにより、ICデバイス格納部40の供給トレイ用ストッカ401の最上段に位置する供給トレイ上の4つのICデバイスを吸着し、保持する。
Next, an operation flow of the above-described transfer / test of the handler 10 will be described.
First, the loader unit conveyance device 501 sucks four IC devices on the supply tray located at the uppermost stage of the supply tray stocker 401 of the IC device storage unit 40 by the suction pads 501e of the four suction units 501d. Hold.
 ローダ部搬送装置501は、4つのICデバイスを保持したまま可動ヘッド部501cのZ軸方向アクチュエータにより4つのICデバイスを上昇させ、Y軸方向レール501a上でX軸方向レール501bを摺動させ、X軸方向レール501b上で可動ヘッド部501cを摺動させてローダ部50に移動させる。 The loader unit transport device 501 raises the four IC devices by the Z-axis direction actuator of the movable head unit 501c while holding the four IC devices, and slides the X-axis direction rail 501b on the Y-axis direction rail 501a. The movable head unit 501c is slid on the X-axis direction rail 501b and moved to the loader unit 50.
 そして、ローダ部搬送装置501は、ヒートプレート503の凹部503aの上方で位置決めを行い、可動ヘッド部501cのZ軸方向アクチュエータを伸長させ、吸着パッド501eを解放してICデバイスをヒートプレート503の凹部503aに落とし込む。ヒートプレート503によってICデバイスが所定の温度まで加熱されたら、再度、ローダ部搬送装置501が加熱された4つのICデバイスを保持して、待機している一方のローダ用バッファ部502の上方に移動する。 Then, the loader unit transport device 501 performs positioning above the recess 503a of the heat plate 503, extends the Z-axis direction actuator of the movable head unit 501c, releases the suction pad 501e, and places the IC device in the recess of the heat plate 503. Drop into 503a. When the IC device is heated to a predetermined temperature by the heat plate 503, the loader unit transfer device 501 holds the four IC devices that have been heated again, and moves above one of the loader buffer units 502 that is on standby. To do.
 ローダ部搬送装置501は、待機している一方のローダ用バッファ部502のバッファステージ502aの上方で位置決めを行い、可動ヘッド部501cのZ軸方向アクチュエータを伸長させ、吸着部501dの吸着パッド501eが吸着保持しているICデバイスを解放し、ICデバイス2をバッファステージ502aの凹部502cに載置する。 The loader unit transport device 501 performs positioning above the buffer stage 502a of one waiting loader buffer unit 502, extends the Z-axis direction actuator of the movable head unit 501c, and the suction pad 501e of the suction unit 501d The IC device held by suction is released, and the IC device 2 is placed in the recess 502c of the buffer stage 502a.
 ローダ用バッファ部502は、4つのICデバイスをバッファステージ502aの凹部502cに搭載したまま、X軸方向アクチュエータ502bを伸長させ、ローダ部50のローダ部搬送装置501の動作範囲からテスト部30のテスト部搬送装置310の動作範囲へ4つのICデバイスを移動させる。 The loader buffer unit 502 extends the X-axis direction actuator 502b while the four IC devices are mounted in the recess 502c of the buffer stage 502a, and tests the test unit 30 from the operating range of the loader unit transport device 501 of the loader unit 50. The four IC devices are moved to the operation range of the partial transfer device 310.
 上記のようにICデバイスが載置されたバッファステージ502aがテスト部搬送装置310の動作範囲内に移動してきたら、テスト部搬送装置310の可動ヘッド部312は、バッファステージ502aの凹部502cに載置されたICデバイス上に移動する。そして、可動ヘッド部312のZ軸方向アクチュエータが伸長し、可動ヘッド部312の4つのコンタクトアーム315の吸着部317により、ローダ用バッファ部502のバッファステージ502aの凹部502cに位置する4つのICデバイスを吸着し、保持する。 When the buffer stage 502a on which the IC device is mounted as described above moves within the operation range of the test unit transport apparatus 310, the movable head unit 312 of the test unit transport apparatus 310 is mounted on the recess 502c of the buffer stage 502a. Move to the IC device. Then, the Z-axis direction actuator of the movable head unit 312 extends, and the four IC devices positioned in the concave portion 502c of the buffer stage 502a of the loader buffer unit 502 by the suction units 317 of the four contact arms 315 of the movable head unit 312. Adsorb and hold.
 4つのICデバイスを保持した可動ヘッド部312は、可動ヘッド部312のZ軸方向アクチュエータにより上昇する。 The movable head unit 312 holding the four IC devices is raised by the Z-axis direction actuator of the movable head unit 312.
 次に、テスト部搬送装置310は、可動ヘッド部312を支持するX軸方向支持部材311aをY軸方向レール311上で摺動させ、可動ヘッド部312のコンタクトアーム315の吸着部317で保持している4つのICデバイスを、テストヘッド300のコンタクト部301における4つのソケット80の上方に搬送する。 Next, the test unit conveyance device 310 slides the X-axis direction support member 311 a that supports the movable head unit 312 on the Y-axis direction rail 311, and holds it by the suction unit 317 of the contact arm 315 of the movable head unit 312. The four IC devices are conveyed above the four sockets 80 in the contact portion 301 of the test head 300.
 そして、可動ヘッド部312は、Z軸方向アクチュエータを伸長させる。これにより、ICデバイス2を保持しているコンタクトアーム315は、ソケットガイド90にガイドされつつICデバイス2をソケット80に装着し、ICデバイス2の外部端子をコンタクトピン82に接触させる(図4参照)。この接触の間に、コンタクトピン82を介して電気的な信号の送受信を行い、ICデバイス2の試験を遂行する。 The movable head unit 312 extends the Z-axis direction actuator. As a result, the contact arm 315 holding the IC device 2 attaches the IC device 2 to the socket 80 while being guided by the socket guide 90, and brings the external terminal of the IC device 2 into contact with the contact pin 82 (see FIG. 4). ). During this contact, electrical signals are transmitted / received via the contact pins 82, and the IC device 2 is tested.
 ここで、前述したように、ソケット80は所望の温度まで加熱されているため、ソケット80への装着によりICデバイス2の温度が低下するおそれはなく、したがって、ICデバイス2に所望の温度の熱ストレスを与えた状態で試験を行うことができる。 Here, as described above, since the socket 80 is heated to a desired temperature, there is no possibility that the temperature of the IC device 2 is lowered due to the mounting on the socket 80. Therefore, the IC device 2 is heated to a desired temperature. The test can be performed in a stressed state.
 ICデバイス2の試験が完了したら、テスト部搬送装置310は、可動ヘッド部312のZ軸方向アクチュエータの収縮により、試験後のICデバイスを上昇させ、可動ヘッド部312を支持するX軸方向支持部材311aをY軸方向レール311上で摺動させて、可動ヘッド部312のコンタクトアーム315で保持している4つのICデバイスを当該テスト部搬送装置310の動作範囲内で待機している一方のアンローダ用バッファ部602のバッファステージ602aの上方に搬送する。 When the test of the IC device 2 is completed, the test unit transport apparatus 310 raises the IC device after the test by contraction of the Z-axis direction actuator of the movable head unit 312 and supports the movable head unit 312 in the X-axis direction supporting member. One unloader that stands by within the operating range of the test unit transporting device 310 by sliding the 311a on the Y-axis direction rail 311 and holding the four IC devices held by the contact arm 315 of the movable head unit 312 It is conveyed above the buffer stage 602a of the buffer unit 602.
 可動ヘッド部312は、Z軸方向アクチュエータを伸長させ、吸着パッド317cを解放することによりバッファステージ602aの凹部602cに4つのICデバイスを落とし込む。 The movable head unit 312 extends the Z-axis direction actuator and releases the suction pad 317c to drop the four IC devices into the recess 602c of the buffer stage 602a.
 アンローダ用バッファ部602は、試験後の4つのICデバイスを搭載したまま、X軸アクチュエータ602bを駆動させ、テスト部30のテスト部搬送装置310の動作範囲から、アンローダ部60のアンローダ部搬送装置601の動作範囲へICデバイスを移動させる。 The unloader buffer unit 602 drives the X-axis actuator 602b while mounting the four IC devices after the test, and from the operating range of the test unit transport device 310 of the test unit 30, the unloader unit transport device 601 of the unloader unit 60. The IC device is moved to the operation range.
 次に、アンローダ用バッファ部602の上方に位置するアンローダ部搬送装置601の可動ヘッド部601cのZ軸方向アクチュエータを伸長させ、可動ヘッド部601cの4つの吸着部601dにより、アンローダ用バッファ部602のバッファステージ602aの凹部602cに位置する試験後の4つのICデバイスを吸着し、保持する。 Next, the Z-axis direction actuator of the movable head unit 601c of the unloader unit transport device 601 located above the unloader buffer unit 602 is extended, and the four suction units 601d of the movable head unit 601c are used to expand the unloader buffer unit 602. The four IC devices after the test located in the recess 602c of the buffer stage 602a are sucked and held.
 アンローダ部搬送装置601は、試験後の4つのICデバイスを保持したまま可動ヘッド部601cのZ軸方向アクチュエータにより4つのICデバイスを上昇させ、Y軸方向レール601a上でX軸方向レール601bを摺動させ、X軸方向レール601b上で可動ヘッド部601cを摺動させてICデバイス格納部40の分類トレイ用ストッカ402上に移動させる。そして、各ICデバイスの試験結果に従って、各分類トレイ用ストッカ402の最上段に位置する分類トレイ上に各ICデバイスを搭載する。
 以上のようにして、ICデバイスの試験が1回行われる。
The unloader unit transport device 601 lifts the four IC devices by the Z-axis direction actuator of the movable head unit 601c while holding the four IC devices after the test, and slides the X-axis direction rail 601b on the Y-axis direction rail 601a. The movable head unit 601c is slid on the X-axis direction rail 601b and moved onto the classification tray stocker 402 of the IC device storage unit 40. Then, according to the test result of each IC device, each IC device is mounted on the classification tray located at the uppermost stage of each classification tray stocker 402.
As described above, the IC device is tested once.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、ソケットガイド本体91のエア排出路92bは省略されてもよい。また、ソケット本体81のエア流路84は省略され、ソケットガイド本体91のエア導入路92aから流出した加熱エアを直接ソケット80のコンタクトピン82に噴き付けるようにしてもよい。さらに、ソケット80は、フローティングプレート83を具備しないものであってもよい。 For example, the air discharge path 92b of the socket guide main body 91 may be omitted. Further, the air flow path 84 of the socket body 81 may be omitted, and the heated air that has flowed out from the air introduction path 92a of the socket guide body 91 may be directly sprayed onto the contact pins 82 of the socket 80. Further, the socket 80 may not include the floating plate 83.
 本発明は、電子部品に高温または低温の熱ストレスを与えて試験を行う電子部品試験装置に有用である。 The present invention is useful for an electronic component test apparatus that performs a test by applying a high or low temperature thermal stress to the electronic component.

Claims (13)

  1.  被試験電子部品の外部端子と接触し得る接続端子を備えたソケットに隣接して設けられ、被試験電子部品が前記ソケットの所定の位置に装着されるように、前記被試験電子部品を保持する部材をガイドするソケットガイドであって、
     前記ソケットガイドを加熱または冷却することのできる熱源を備えるとともに、
     前記ソケットに流体を供給することのできる流路が形成されている
    ことを特徴とするソケットガイド。
    Provided adjacent to a socket having a connection terminal that can come into contact with an external terminal of the electronic device under test, and holds the electronic device under test so that the electronic device under test is mounted at a predetermined position of the socket A socket guide for guiding members,
    A heat source capable of heating or cooling the socket guide;
    A socket guide characterized in that a flow path capable of supplying a fluid to the socket is formed.
  2.  前記流路の一端は流体入口となっており、前記流路の他端は前記ソケットに対して開口している流体出口となっていることを特徴とする請求項1に記載のソケットガイド。 The socket guide according to claim 1, wherein one end of the flow path is a fluid inlet, and the other end of the flow path is a fluid outlet opening to the socket.
  3.  前記流路として、前記流体を外部から前記ソケットに導入する導入路と、前記流体を前記ソケットから外部に排出する排出路とが形成されていることを請求項1に記載のソケットガイド。 The socket guide according to claim 1, wherein an introduction path for introducing the fluid from the outside into the socket and a discharge path for discharging the fluid from the socket to the outside are formed as the flow path.
  4.  前記流路は、前記流路を通る流体が前記熱源によって所望の温度になるように、蛇行していることを特徴とする請求項1または2に記載のソケットガイド。 3. The socket guide according to claim 1, wherein the flow path is meandering so that the fluid passing through the flow path has a desired temperature by the heat source.
  5.  被試験電子部品の外部端子と接触し得る接続端子を備えたソケットと、
     請求項1~4のいずれかに記載のソケットガイドと
    を備えたことを特徴とするソケットユニット。
    A socket having a connection terminal that can come into contact with an external terminal of the electronic device under test;
    A socket unit comprising the socket guide according to any one of claims 1 to 4.
  6.  前記ソケットは、接続端子と、前記接続端子を保持するソケット本体とを備えており、
     前記ソケット本体には、前記ソケットガイドの流路に連通し、前記流体を前記接続端子に対して供給することのできる流路が形成されている
    ことを特徴とする請求項5に記載のソケットユニット。
    The socket includes a connection terminal and a socket body that holds the connection terminal,
    The socket unit according to claim 5, wherein the socket body is formed with a flow path that communicates with a flow path of the socket guide and that can supply the fluid to the connection terminal. .
  7.  前記ソケットは、被試験電子部品を位置決めして支持し、前記接続端子が摺動可能に貫通するフローティング部材を前記ソケット本体上に備えており、
     前記ソケット本体に形成された流路の一端は、前記ソケット本体と前記フローティング部材との間の空隙に向かって開口している
    ことを特徴とする請求項6に記載のソケットユニット。
    The socket positions and supports the electronic device under test, and includes a floating member on the socket main body through which the connection terminal is slidable,
    The socket unit according to claim 6, wherein one end of the flow path formed in the socket body is open toward a gap between the socket body and the floating member.
  8.  テストヘッド上に設けられた請求項1~4のいずれかに記載のソケットガイドと、
     前記ソケットガイドの流路に流体を供給することのできる流体供給装置と
    を備えたことを特徴とする電子部品試験装置。
    The socket guide according to any one of claims 1 to 4, provided on the test head;
    An electronic component testing apparatus comprising: a fluid supply device capable of supplying a fluid to the flow path of the socket guide.
  9.  テストヘッド上に設けられた請求項5~7のいずれかに記載のソケットユニットと、
     前記ソケットユニットにおける前記ソケットガイドの流路に流体を供給することのできる流体供給装置と
    を備えたことを特徴とする電子部品試験装置。
    A socket unit according to any one of claims 5 to 7 provided on a test head;
    An electronic component testing apparatus comprising: a fluid supply device capable of supplying a fluid to a flow path of the socket guide in the socket unit.
  10.  前記流体供給装置は、熱源を備えていないことを特徴とする請求項8または9に記載の電子部品試験装置。 10. The electronic component test apparatus according to claim 8, wherein the fluid supply apparatus does not include a heat source.
  11.  被試験電子部品の外部端子と接触し得る接続端子を備えたソケットの温度制御方法であって、
     請求項1~4のいずれかに記載のソケットガイドを使用し、前記ソケットガイドの流路に流体を供給することを特徴とするソケットの温度制御方法。
    A temperature control method for a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test,
    A socket temperature control method using the socket guide according to any one of claims 1 to 4, wherein fluid is supplied to a flow path of the socket guide.
  12.  被試験電子部品の外部端子と接触し得る接続端子を備えたソケットの温度制御方法であって、
     請求項5~7のいずれかに記載のソケットユニットを使用し、前記ソケットユニットにおける前記ソケットガイドの流路に流体を供給することを特徴とするソケットの温度制御方法。
    A temperature control method for a socket having a connection terminal that can come into contact with an external terminal of an electronic device under test,
    A socket temperature control method using the socket unit according to any one of claims 5 to 7, wherein fluid is supplied to a flow path of the socket guide in the socket unit.
  13.  前記ソケットガイドの流路に供給する前の流体には、熱を印加しないことを特徴とする請求項11または12に記載のソケットの温度制御方法。 13. The socket temperature control method according to claim 11 or 12, wherein heat is not applied to the fluid before being supplied to the flow path of the socket guide.
PCT/JP2008/055843 2008-03-27 2008-03-27 Socket guide, socket unit, electronic component test apparatus, and method of controlling socket temperature WO2009118855A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/055843 WO2009118855A1 (en) 2008-03-27 2008-03-27 Socket guide, socket unit, electronic component test apparatus, and method of controlling socket temperature
JP2009506845A JP5161870B2 (en) 2008-03-27 2008-03-27 Socket guide, socket unit, electronic component test apparatus, and socket temperature control method
TW098104917A TW200950686A (en) 2008-03-27 2009-02-17 Socket guide, socket unit, electronic component test apparatus, and method of controlling socket temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055843 WO2009118855A1 (en) 2008-03-27 2008-03-27 Socket guide, socket unit, electronic component test apparatus, and method of controlling socket temperature

Publications (1)

Publication Number Publication Date
WO2009118855A1 true WO2009118855A1 (en) 2009-10-01

Family

ID=41113096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055843 WO2009118855A1 (en) 2008-03-27 2008-03-27 Socket guide, socket unit, electronic component test apparatus, and method of controlling socket temperature

Country Status (3)

Country Link
JP (1) JP5161870B2 (en)
TW (1) TW200950686A (en)
WO (1) WO2009118855A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013051099A1 (en) * 2011-10-04 2015-03-30 富士通株式会社 Test jig and test method for semiconductor device
CN106185259A (en) * 2014-09-30 2016-12-07 精工爱普生株式会社 Electronic component handling apparatus and electronic component inspection device
CN106185301A (en) * 2014-09-30 2016-12-07 精工爱普生株式会社 Electronic component handling apparatus and electronic component inspection device
JP2018087790A (en) * 2016-11-30 2018-06-07 三菱電機株式会社 Positioning pressurization mechanism of semiconductor device
EP3527994A1 (en) * 2018-02-20 2019-08-21 Rasco GmbH Contactor socket and ic test apparatus
IT201800007609A1 (en) * 2018-07-30 2020-01-30 Microtest Srl An integrated machine for conducting temperature tests on electronic components such as chips
JP2020144039A (en) * 2019-03-07 2020-09-10 株式会社東芝 Ic tray and test tool
WO2021132488A1 (en) * 2019-12-25 2021-07-01 株式会社エンプラス Air blow guide member, test device unit, test device, electrical component socket, and test device having a plurality of the electrical component sockets
CN114296493A (en) * 2022-03-11 2022-04-08 杭州长川智能制造有限公司 Chip temperature adjusting method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133414B1 (en) * 2014-04-24 2020-07-15 (주)테크윙 Handler for electric device test and the operation method tthereof
JP6361346B2 (en) * 2014-07-17 2018-07-25 セイコーエプソン株式会社 Electronic component conveying device and electronic component inspection device
JP2016075550A (en) * 2014-10-06 2016-05-12 セイコーエプソン株式会社 Electronic component conveyance device and electronic component inspection device
TWI600911B (en) * 2015-08-27 2017-10-01 Seiko Epson Corp Electronic parts conveying apparatus and electronic parts inspection apparatus
US10782316B2 (en) 2017-01-09 2020-09-22 Delta Design, Inc. Socket side thermal system
KR102332664B1 (en) * 2020-05-14 2021-12-01 주식회사 티에프이 Apparatus for testing semiconductor package and apparatus for testing socket used for testing semiconductor package
KR20220011885A (en) 2020-07-22 2022-02-03 삼성전자주식회사 Test handler and semiconductor device equipment including same
CN117837278A (en) 2021-06-30 2024-04-05 三角设计公司 Temperature control system including contactor assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271389A (en) * 1998-03-23 1999-10-08 Advantest Corp Ic testing device
JP2000040571A (en) * 1998-07-23 2000-02-08 Nec Ibaraki Ltd Ic socket
JP2002236140A (en) * 2000-12-07 2002-08-23 Advantest Corp Electronic part testing socket and electronic part testing device using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271389A (en) * 1998-03-23 1999-10-08 Advantest Corp Ic testing device
JP2000040571A (en) * 1998-07-23 2000-02-08 Nec Ibaraki Ltd Ic socket
JP2002236140A (en) * 2000-12-07 2002-08-23 Advantest Corp Electronic part testing socket and electronic part testing device using it

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013051099A1 (en) * 2011-10-04 2015-03-30 富士通株式会社 Test jig and test method for semiconductor device
CN106185259A (en) * 2014-09-30 2016-12-07 精工爱普生株式会社 Electronic component handling apparatus and electronic component inspection device
CN106185301A (en) * 2014-09-30 2016-12-07 精工爱普生株式会社 Electronic component handling apparatus and electronic component inspection device
JP2018087790A (en) * 2016-11-30 2018-06-07 三菱電機株式会社 Positioning pressurization mechanism of semiconductor device
EP3527994A1 (en) * 2018-02-20 2019-08-21 Rasco GmbH Contactor socket and ic test apparatus
IT201800007609A1 (en) * 2018-07-30 2020-01-30 Microtest Srl An integrated machine for conducting temperature tests on electronic components such as chips
WO2020026092A1 (en) * 2018-07-30 2020-02-06 Microtest S.R.L. Built-in machinery to carry out temperature- dependent tests on electronic components such as chips
JP2020144039A (en) * 2019-03-07 2020-09-10 株式会社東芝 Ic tray and test tool
JP7191735B2 (en) 2019-03-07 2022-12-19 株式会社東芝 test fixture
WO2021132488A1 (en) * 2019-12-25 2021-07-01 株式会社エンプラス Air blow guide member, test device unit, test device, electrical component socket, and test device having a plurality of the electrical component sockets
CN114296493A (en) * 2022-03-11 2022-04-08 杭州长川智能制造有限公司 Chip temperature adjusting method
WO2023168893A1 (en) * 2022-03-11 2023-09-14 杭州长川科技股份有限公司 Chip temperature regulating method

Also Published As

Publication number Publication date
JPWO2009118855A1 (en) 2011-07-21
JP5161870B2 (en) 2013-03-13
TWI377005B (en) 2012-11-11
TW200950686A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
JP5161870B2 (en) Socket guide, socket unit, electronic component test apparatus, and socket temperature control method
US6932635B2 (en) Electronic component testing socket and electronic component testing apparatus using the same
KR100708283B1 (en) Testing device and testing method of a semiconductor device
JP4146839B2 (en) PRESSING MEMBER AND ELECTRONIC COMPONENT HANDLING DEVICE
JP4537394B2 (en) Contact pusher, contact arm and electronic component testing equipment
KR20000052440A (en) Testing Apparatus for Electronic Device
JP2002148303A (en) Holding device for electronic part test, electronic part testing device and electronic part test method
US7486094B2 (en) Apparatus for testing un-moulded IC devices using air flow system and the method of using the same
KR20080009186A (en) Integrated circuit testing apparatus
US20090206856A1 (en) Wafer burn-in system with probe cooling
JPWO2006059553A1 (en) Electronic component handling device and defective terminal determination method
CN104597384A (en) Semiconductor evaluation apparatus
KR101222505B1 (en) Socket guide, socket, pusher and electronic part testing device
CN111323068A (en) Sensor testing device
JPWO2008142754A1 (en) Electronic component testing apparatus and electronic component testing method
US11181576B2 (en) Electronic component handling apparatus and electronic component testing apparatus
JP4222442B2 (en) Insert for electronic component testing equipment
CN111323739A (en) Sensor testing system
JP7273656B2 (en) How to pre-cool the prober and probe card
JP4306895B2 (en) Electronic component testing equipment
JP5423627B2 (en) Semiconductor device test apparatus and test method
JP2002181887A (en) Testing device for electronic component
JP7143491B1 (en) Test carrier and electronic component test equipment
JP7265211B2 (en) Conveyor
KR20200143064A (en) Semiconductor device inspection apparatus, and device pressing tool

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009506845

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08738993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08738993

Country of ref document: EP

Kind code of ref document: A1