WO2009118799A1 - 撮像装置、撮像モジュール、及び撮像システム - Google Patents

撮像装置、撮像モジュール、及び撮像システム Download PDF

Info

Publication number
WO2009118799A1
WO2009118799A1 PCT/JP2008/002346 JP2008002346W WO2009118799A1 WO 2009118799 A1 WO2009118799 A1 WO 2009118799A1 JP 2008002346 W JP2008002346 W JP 2008002346W WO 2009118799 A1 WO2009118799 A1 WO 2009118799A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
pixel
pixels
colors
imaging device
Prior art date
Application number
PCT/JP2008/002346
Other languages
English (en)
French (fr)
Inventor
今村邦博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2008801283513A priority Critical patent/CN101981937A/zh
Publication of WO2009118799A1 publication Critical patent/WO2009118799A1/ja
Priority to US12/880,572 priority patent/US20100328505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • H04N25/136Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements using complementary colours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels

Definitions

  • the present invention relates to an image pickup apparatus having a large number of pixels arranged in a shifted manner and reading out the mixed pixels, and an image pickup module and an image pickup system using the image pickup apparatus.
  • Patent Document 1 a pixel row in which green pixels and magenta pixels are alternately arranged and a pixel row in which cyan pixels and yellow pixels are alternately arranged are alternately and repeatedly formed.
  • a method is disclosed in which pixel addition is performed on a cyan pixel or a yellow pixel and a pixel addition is performed on a magenta pixel and a yellow pixel or cyan pixel. JP 2003-9166 A
  • FIG. 26 is a diagram showing an outline of a subject frequency and a point where a false color occurs in the pixel mixture and the color filter array described in Patent Document 1.
  • the point 261 indicates a point having a frequency of 1/4 on the horizontal axis when all the pixels are read out independently, and corresponds to the Nyquist frequency when the pixels are mixed and read out.
  • the color filter arranged on the pixel only supports complementary colors, and cannot cope with primary colors advantageous by the S / N of the color signal.
  • the present invention has been made in view of the above-described problems, and a problem to be solved by the present invention is an image pickup apparatus that has a large number of pixels arranged in a shifted manner and reads out the pixels by mixing the pixels. Even when sensitization is performed, the generation of false colors and the decrease in the S / N ratio of the color are suppressed to improve the resolution.
  • one embodiment of the present invention provides: A plurality of pixels that output pixel signals obtained by photoelectrically converting incident light arranged in a matrix in which the arrangement in the row direction is shifted, a color filter that filters light incident on each pixel, and pixels from a plurality of rows of pixels
  • An image pickup apparatus including a pixel mixing unit that mixes and outputs a pixel signal;
  • the color filter is configured by a repetitive pattern of a predetermined unit arrangement, and in an image obtained from an output signal after pixel mixture, a color filter that configures adjacent pixels adjacent to each other in a row direction, and
  • a color filter having the same barycentric position and constituting pixels adjacent in the column direction is characterized in that the ratio of color components is equal.
  • the color component after mixing the pixels has a phase relationship that cancels the false color.
  • an imaging device that has a large number of pixels arranged in a shifted manner and reads out the pixels by mixing, even when sensitized by pixel mixing, generation of false colors and color S / N ratio Reduction can be suppressed and resolution can be improved.
  • FIG. 1 is a block diagram showing a functional configuration of a digital video camera according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating the structure of the image sensor according to the first embodiment of the present invention.
  • FIG. 3 is a timing diagram of control pulses applied to the image sensor in order to read out the pixel signals without mixing in the first embodiment of the present invention.
  • FIG. 4 is a timing chart of control pulses applied to read out pixel signals accumulated in the horizontal transfer CCD according to the first embodiment of the present invention.
  • FIG. 5 is a timing diagram of control pulses applied to the image sensor in order to mix and read out pixel signals in the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a functional configuration of a digital video camera according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating the structure of the image sensor according to the first embodiment of the present invention.
  • FIG. 3 is a timing diagram of control pulses applied to the image sensor in
  • FIG. 6 is a diagram showing a pixel mixture shape when pixel signals are mixed and read out in the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a unit array of color filter arrays in Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing a modification of the unit array of the color filter array in Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing a modification of the unit array of the color filter array in Embodiment 1 of the present invention.
  • FIG. 10 is a diagram showing a modification of the unit array of the color filter array in Embodiment 1 of the present invention.
  • FIG. 11 is a diagram illustrating a modification of the unit array of the color filter array according to the first embodiment of the present invention.
  • FIG. 12 is a diagram showing a modification of the unit array of the color filter array in the first embodiment of the present invention.
  • FIG. 13 is a timing chart of a modified example of the control pulse applied to the image sensor in order to mix and read the pixel signals in the first embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a modification of the pixel mixture shape when the pixel signals are mixed and read according to the first exemplary embodiment of the present invention.
  • FIG. 15 is a timing diagram of a modified example of the control pulse applied to the image sensor in order to mix and read the pixel signals in the first embodiment of the present invention.
  • FIG. 16 is a diagram illustrating a modified example of the pixel mixture shape when the pixel signals are mixed and read according to the first exemplary embodiment of the present invention.
  • FIG. 17 is a timing diagram of a modified example of the control pulse applied to the image sensor in order to mix and read the pixel signals in the first embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a modification of the pixel mixture shape when the pixel signals are mixed and read in the first embodiment of the present invention.
  • FIG. 19 is a timing diagram of a modified example of the control pulse applied to the image sensor in order to mix and read out pixel signals in the first embodiment of the present invention.
  • FIG. 20 is a timing diagram of a modified example of the control pulse applied to the image sensor in order to mix and read out the pixel signals in the first embodiment of the present invention.
  • FIG. 21 is a diagram showing a modified example of the pixel mixture shape when the pixel signals are mixed and read in the first embodiment of the present invention.
  • FIG. 22 is a diagram showing the relationship between the number of pixels mixed with pixel signals and the detection level in Embodiment 2 of the present invention.
  • FIG. 23 is a diagram illustrating the structure of an image sensor according to the third embodiment of the present invention.
  • FIG. 24 is a timing diagram of control pulses applied to the image sensor in order to mix and read out pixel signals in the third embodiment of the present invention.
  • FIG. 25 is a diagram illustrating a modification of the pixel mixture shape when the pixel signals are mixed and read according to the third embodiment of the present invention.
  • FIG. 26 is a diagram illustrating a frequency at which color moire is generated according to the conventional method.
  • FIG. 27 is a diagram showing frequencies at which color moire is generated according to the present invention.
  • FIG. 28 is a diagram showing a modification of the unit array of the color filter array in Embodi
  • Imaging system Digital video camera (imaging system) 2 Imaging module 3 Lens 4 Image sensor (imaging device) 5 DSP (digital signal processing circuit) 9 Level detector 21 Pixel 22 Vertical transfer CCD 23 Horizontal transfer CCD 24 Output circuit 71, 81, 91, 101, 111, 121, 281 Unit arrangement
  • FIG. 1 is a block diagram illustrating a functional configuration of the imaging system according to the present embodiment.
  • This imaging system is configured as a digital video camera 1, and includes an imaging module 2, a DSP 5, a CPU 6, and an SDRAM 8.
  • the imaging module 2 includes a lens 3 and an image sensor 4 (imaging device). Although not shown, the imaging module 2 generates a TG (timing generator) that generates a control signal necessary for driving the image sensor 4 and an analog imaging signal output from the image sensor 4. An A / D converter for A / D converting the digital signal is also provided.
  • the image sensor 4 can perform a read operation that does not mix pixel signals and a mixed read operation that mixes pixel signals. The configuration of the image sensor 4 will be described in detail later.
  • the DSP 5 includes a memory controller 7, a level detection unit 9, a YC processing unit 10, a compression processing unit 11, and a digital signal processing unit 12, and processes output from the image sensor 4.
  • the memory controller 7 writes pixel signals in the SDRAM 8 until the pixel signals for the number of pixels necessary for processing in the respective functional blocks are obtained in the level detection unit 9, the YC processing unit 10, the compression processing unit 11, and the digital signal processing unit 12. Hold by. Then, pixel signals are read out from the SDRAM 8 as necessary, and output to the functional blocks of the level detection unit 9, YC processing unit 10, compression processing unit 11, and digital signal processing unit 12. Further, the memory controller 7 and the SDRAM 8 write and read not only pixel signals but also luminance signals and color signals obtained by YC processing, code data obtained by compression processing, and the like.
  • the level detection unit 9 calculates the level of the pixel signal from the average value of the entire pixel signal screen output from the image sensor 4 or a part of the screen, and notifies the CPU 6 of the calculation result.
  • the YC processing unit 10 generates a luminance signal and a color difference signal by performing synchronization, filtering processing, frequency correction, and the like on the pixel signal output from the image sensor 4.
  • the compression processing unit 11 compresses the pixel signal output from the image sensor 4 at the RAW data level. Further, with respect to the luminance signal and the color difference signal generated by the YC processing unit 10, JPEG is used for a still image, and H. According to the H.264 format, a still image and a moving image are compressed to generate a code.
  • the digital signal processing unit 12 reads data from and writes data to the SD card 13 which is a recording medium connected to the outside. Further, an image such as a preview is displayed on the LCD 14 which is a display medium. Further, enlargement / reduction processing by zooming for adjusting the angle of view is performed.
  • the CPU 6 switches, for example, whether to read pixel signals mixedly or read without mixing pixel signals for each functional block arranged in the imaging module 2 or the DSP 5, or performs image processing in the YC processing unit 10.
  • the external input 15 is an external input for setting the release button and the operation of the digital video camera 1.
  • FIG. 2 is a block diagram showing the configuration of the image sensor 4.
  • the image sensor 4 includes a plurality of pixels 21, a vertical transfer CCD 22, a horizontal transfer CCD 23, and an output circuit 24.
  • the pixel 21 is provided with a color filter.
  • the 2n + 1 line pixel 21 is arranged with the center of gravity shifted by 1/2 pixel with respect to the 2n line pixel 21, and the vertical transfer CCD 22 and the end of the vertical transfer CCD 22 are arranged for each column of pixels 21.
  • the horizontal transfer CCD 23 is disposed in the part, and the output circuit 24 is disposed at the end of the horizontal transfer CCD 23.
  • the vertical transfer CCD 22 and the horizontal transfer CCD 23 are provided with electrodes (gates) V1 to V4 and H1 to H4, respectively, and the same control signals are input to the V1 to V4 and H1 to H4, respectively.
  • the pixel 21 photoelectrically converts light incident on the pixel 21 to convert it into a charge signal to obtain a pixel signal.
  • the pixel signal accumulated in the pixel 21 is transferred from the pixel 21 to the vertical transfer CCD 22 by a control signal input from the TG in the imaging module 2.
  • the pixel signals transferred to the vertical transfer CCD 22 are sequentially transferred toward the horizontal transfer CCD 23 by a control signal input from the TG. Then, the pixel signal transferred to the horizontal transfer CCD 23 is transferred to the output circuit 24 by the control signal input from the TG.
  • the pixel signals transferred to the horizontal transfer CCD 23 are transferred to the output circuit 24 by horizontal forward transfer.
  • the pixel signal transferred to the horizontal transfer CCD 23 is combined with a horizontal forward transfer to be transferred to the output circuit 24 and a horizontal reverse transfer to be transferred in the reverse direction of the output circuit 24.
  • the data is transferred to the output circuit 24 by transfer.
  • the output circuit 24 converts the pixel signal, which is the charge transferred by the horizontal transfer CCD 23, into an analog voltage signal and outputs it.
  • FIG. 7 is a diagram for explaining a color filter arranged in the pixel 21 of the image sensor 4 of the present embodiment.
  • the color filter is composed of a repeating pattern of unit arrays 71.
  • filters for filtering the first to eighth colors are arranged in units of 16 pixels of 4 rows ⁇ 4 columns, and the first column includes the first color, the fifth color,
  • the filters are arranged in the order of the second color and the sixth color, and in the second column, the filters are arranged in the order of the third color, the seventh color, the fourth color, and the eighth color.
  • filters are arranged in the order of the second color, the sixth color, the first color, and the fifth color
  • the fourth column includes the fourth color, the eighth color, and the fifth color.
  • Filters are arranged in the order of the third color and the seventh color.
  • the first and fifth colors are magenta
  • the second and sixth colors are green
  • the third and seventh colors are yellow
  • the fourth and eighth colors are cyan.
  • the level detection unit 9 detects the level of the imaging signal and notifies the CPU 6 of the level of the imaging signal.
  • the YC processing unit 10 performs filtering, synchronization, and the like on the imaging signal, and converts the imaging signal into a YC signal.
  • the compression processing unit 11 outputs the image pickup signal or YC signal, for example, JPEG for a still image or H.264 for a moving image. The amount of data is compressed according to a format such as H.264.
  • the digital signal processing unit 12 performs signal processing necessary for operation as a video camera, such as zoom processing, flaw correction, and illumination light color temperature detection.
  • the CPU 6 outputs a control signal necessary for the digital video camera 1 to realize an operation expected by the user to each functional block of the image sensor 4 and the DSP 5.
  • Image sensor drive A method of driving the image sensor 4 when the image sensor 4 outputs the video signal as described above will be described.
  • the image sensor 4 has two types of operations, that is, a reading operation in which pixel signals are not mixed and an operation in which pixel signals are mixed and read.
  • FIG. 3 shows pulses applied to the gates V1 to V4 provided in the vertical transfer CCD 22 and the gates H1 to H4 provided in the horizontal transfer CCD 23, respectively.
  • a high-voltage read pulse is applied to the gate V1. With this readout pulse, the pixel signal accumulated in the pixel 21 is transferred to the gates V 1 and V 2 of the vertical transfer CCD 22.
  • the pixel signal transferred from the vertical transfer CCD 22 to the horizontal transfer CCD 23 is transferred to the output circuit 24.
  • the output circuit 24 converts the transferred pixel signal into an analog voltage signal and outputs it from the image sensor 4.
  • FIG. 5 shows pulses applied to the gates V1 to V4 provided in the vertical transfer CCD 22 and the gates H1 to H4 provided in the horizontal transfer CCD 23.
  • a high voltage read pulse is applied to V1.
  • the pixel signal accumulated in the pixel 21 is transferred to the gates V1 and V2 of the vertical transfer CCD 22, and then the control pulse shown in the period 51 is applied to V1 to V4 of the vertical transfer CCD 22.
  • the 0th line pixel signal is transferred to the horizontal transfer CCD 23.
  • the pixel signals on the 4n + 0 line and the 4n + 2 line are transferred to the gates V1 and V2 adjacent to the pixels 21 on the 4n-2 line and the 4n + 0 line. Further, the pixel signal of the first line is transferred to the gates V1 and V2 in contact with the horizontal transfer CCD 23, and the pixel signals of the 4n + 1 line and the 4n + 3 line are adjacent to the pixels 21 of the 4n-3 line and the 4n + 1 line. Transfers to V1 and V2.
  • the pixel signals transferred to the horizontal transfer CCD 23 in contact with the 4i + 0 column and the 4i + 2 column are adjacent to each other.
  • the data is transferred in the opposite direction to the output circuit 24 up to the horizontal transfer CCD 23 in contact with the 4i + 1th and 4i + 3th columns.
  • the pixel signal of the first line is transferred to the horizontal transfer CCD 23 by applying the control pulses shown in the period 53 to V 1 to V 4. Then, the 0Line 4i + 0 column pixel, the 1Line 4i + 1 column pixel, the 0Line 4i + 2 column pixel, and the 1Line 4i + 3 column pixel are mixed (first pixel mixing operation).
  • the shape of the pixel mixture corresponds to the pixel mixture shape 61 in FIG.
  • the pixel signal transferred to the vertical transfer CCD 22 is transferred to V3 to V4 adjacent in the horizontal transfer CCD 23 direction.
  • the control pulse shown in FIG. 4 the pixel signal transferred from the vertical transfer CCD 22 to the horizontal transfer CCD 23 is transferred to the output circuit 24, and the output circuit 24 converts the transferred pixel signal into an analog signal. And output from the image sensor 4.
  • the control pulse shown in the period 55 is applied to V1 to V4, whereby the pixel signal of the second line is transferred to the horizontal transfer CCD 23.
  • the pixel signal transferred to the vertical transfer CCD 22 is transferred to V1 to V2 adjacent in the horizontal transfer CCD 23 direction.
  • the pixel signals transferred to the horizontal transfer CCD 23 in contact with the 4i + 0 column and the 4i + 2 column are adjacent to each other.
  • the data is transferred in the direction of the output circuit 24 up to the horizontal transfer CCD 23 in contact with a certain 4i + 1 column and 4i + 3 column.
  • the pixel signal of the third line is transferred to the horizontal transfer CCD 23, and the pixel of the 4i + 0 column of the 2Line and the 4i ⁇ of the 3Line.
  • the pixel in the first column, the pixel in the 4i + 2 column in the second line, and the pixel in the 4i + 1 column in the third line are mixed (second pixel mixing operation).
  • the shape of the pixel mixture corresponds to the pixel mixture shape 62 in FIG.
  • the pixel signal transferred to the vertical transfer CCD 22 is transferred to V3 to V4 adjacent in the horizontal transfer CCD 23 direction. Thereafter, in the period 54, by applying the control pulse shown in FIG. 4, the pixel signal transferred from the vertical transfer CCD 22 to the horizontal transfer CCD 23 is transferred to the output circuit 24, and the output circuit 24 converts the transferred pixel signal into an analog signal. And output from the image sensor 4.
  • FIG. 27 is a diagram (spatial frequency plane) showing an outline of the frequency of a subject and a point where a false color is generated in the pixel mixture and the color filter array of this embodiment.
  • a point 261 indicates a point having a quarter frequency on the horizontal axis when all the pixels are read out independently, and corresponds to the Nyquist frequency when the pixels are read out with mixing.
  • the color component after mixing the pixels has a phase relationship for canceling the false color, so that in principle, no false color is generated.
  • the limit resolution is reduced by incorporating an optical LPF with the point 271 as a null point in an oblique direction, but the overall resolution is suppressed while suppressing the false color. It becomes possible to balance.
  • the first and fifth colors may be red
  • the second, sixth, fourth, and eighth colors may be green
  • the third and seventh colors may be blue.
  • the color filter arranged in the pixel 21 on the image sensor 4 is as shown in FIG. 7, but when the primary color filter is minimized, a unit array 81 as shown in FIG. A color filter array may be used.
  • R shown in the unit array 81 is red, G is green, and B is blue.
  • pixel signals are output as R + B (magenta), R + G (yellow), G + G (green), and B + G (cyan).
  • pixel signals are output as R (red), G (green), and B (blue).
  • the color filter arranged in the pixel 21 on the image sensor 4 is as shown in FIG. 7, but it may be a color filter array having a unit array 91 as shown in FIG.
  • pixel signals are output as R + B (magenta), R + G (yellow), G + G (green), and B + G (cyan).
  • pixel signals are output as R (red), G (green), and B (blue).
  • the color filter arranged in the pixel 21 on the image sensor 4 is as shown in FIG. 7, but it may be a color filter array having the unit array 101 as shown in FIG.
  • pixel signals are output as Mg + Ye, Gr + Cy, Mg + Cy, and Gr + Ye.
  • pixel signals are output as Mg (magenta), Cy (cyan), Ye (yellow), and Gr (green).
  • the color filter arranged in the pixel 21 on the image sensor 4 is as shown in FIG. 7, but it may be a color filter array having the unit array 111 as shown in FIG.
  • pixel signals are output as R + B (magenta), R + G (yellow), G + G (green), and B + G (cyan).
  • pixel signals are output as R (red), G (green), and B (blue).
  • the color filter arranged in the pixel 21 on the image sensor 4 is as shown in FIG. 7, but it may be a color filter array having a unit array 121 as shown in FIG. Specifically, in the unit array 121, filters for filtering the first to sixth colors are arranged in units of 16 pixels of 4 rows ⁇ 4 columns, and the first column includes the first color, the first color Filters are arranged in the order of color, third color, and fourth color. In the second column, filters are arranged in the order of third color, fifth color, first color, and sixth color.
  • filters are arranged in the order of the second color, the fourth color, the fourth color, and the first color
  • the fourth column includes the fourth color and the sixth color.
  • the filters are arranged in the order of the second color and the fifth color.
  • the first color is magenta
  • the second and sixth colors are green
  • the third and fifth colors are yellow
  • the fourth color is cyan.
  • pixel signals are output as Mg + Ye, Gr + Cy, Mg + Cy, and Gr + Ye.
  • pixel signals are output as Mg (magenta), Cy (cyan), Ye (yellow), and Gr (green).
  • a primary color filter can be used.
  • the first color is red
  • the second, third, fifth, and sixth colors are green
  • the fourth color is blue.
  • the color filter arranged in the pixel 21 on the image sensor 4 is as shown in FIG. 7, but it may be a color filter array having a unit array 281 as shown in FIG.
  • pixel signals are output as R + B (magenta), R + G (yellow), G + G (green), and B + G (cyan).
  • pixel signals are output as R (red), G (green), and B (blue).
  • the pixel mixing shape and the generation address may be the pixel mixing shapes 141 and 142.
  • the shape of pixel mixture and the generation address may be the pixel mixture shapes 161 and 162 as shown in FIG.
  • the pixel mixture shape and generation address may be the pixel mixture shapes 181 and 182.
  • the pixel mixture shapes 211 and 212 are further mixed by mixing pixel signals to mix four pixels.
  • the pixel transfer is performed by switching whether the horizontal transfer CCD 23 is transferred in the direction of the output circuit 24 or in the direction opposite to the output circuit 24.
  • the form which reverses right and left may be sufficient.
  • the number of pixels mixed with pixel signals may be varied within one vertical blanking period or may be fixed.
  • the pixel signals of lines further distant may be mixed by increasing the number of gates of the horizontal transfer CCD 23.
  • the pixel mixing may be realized by mixing the pixel signals by the horizontal transfer CCD 23 until the pixel signals are read out.
  • Embodiment 2 of the Invention An imaging system according to Embodiment 2 of the present invention will be described.
  • the imaging system according to the second embodiment of the present invention is obtained by changing a part of the configuration of the first embodiment, and will be described below by paying attention to the difference.
  • This embodiment is different in that the CPU 6 controls the number of mixed pixels of the pixel signal in the image sensor 4.
  • the CPU 6 will be specifically described.
  • the CPU 6 switches, for example, whether to read pixel signals mixedly or read without mixing pixel signals for each functional block arranged in the imaging module 2 or the DSP 5, or performs image processing in the YC processing unit 10. Set the parameters.
  • the CPU 6 notifies the number of pixel signals to be mixed to a TG (timing generator) (not shown) of the imaging module 2 according to the detection result from the level detection unit 9.
  • the TG generates a control pulse for driving the image sensor 4 based on the number of pixel signals mixed notified from the CPU 6.
  • FIG. 22 shows the relationship between the detection result of the level detection unit 9 and the number of mixed pixel signals in the imaging system of the present embodiment.
  • the horizontal axis indicates the detection result of the level detection unit 9 and indicates that the level of the imaging signal output from the image sensor 4 increases, that is, the brightness of the subject increases toward the right side of the horizontal axis.
  • the CPU 6 classifies the brightness of the subject with a plurality of threshold values. Specifically, when the detection result of the level detection unit 9 is smaller than the first threshold value, the pixel signals for 6 pixels are mixed, and the detection result of the level detection unit 9 is larger than the first threshold value and the second threshold value. When it is smaller than the threshold value, the pixel signals for four pixels are mixed. When the detection result of the level detection unit 9 is larger than the second threshold value and smaller than the third threshold value, the pixel signals for two pixels are mixed. If the detection result of the level detector 9 is greater than the third threshold value, the pixel signal is read without mixing the pixels. In this way, the number of mixed pixels can be increased according to the brightness of the subject, and the pixel signal readout speed or sensitivity can be greatly improved.
  • the combination of the number of pixel signals to be mixed is not limited to four but may be two or more.
  • the number of pixel signals to be mixed by the CPU 6 is determined based only on the result of the level detection unit 9, but may be determined according to a value directly designated from the external input 15. . Further, the value specified from the external input 15 may be combined with the detection result of the level detection unit 9, or the above threshold value may be set from the external input 15.
  • Embodiment 3 of the Invention An imaging system according to Embodiment 3 of the present invention will be described.
  • the imaging system according to the third embodiment of the present invention is obtained by changing a part of the configuration of the first embodiment, and will be described below by paying attention to the difference.
  • the structure of the horizontal transfer CCD 23 of the image sensor 4 is different.
  • the 2n + 1 line pixel 21 is arranged with the center of gravity shifted by 1/2 pixel with respect to the 2n line pixel 21, and the vertical transfer CCD 22 and the end of the vertical transfer CCD 22 are arranged for each column of pixels 21.
  • the horizontal transfer CCD 23 is arranged at the part, and the output circuit 24 is arranged at the end of the horizontal transfer CCD 23.
  • the vertical transfer CCD 22 and the horizontal transfer CCD 23 are provided with electrodes V1 to V4 and H1 to H4, respectively.
  • the same control signals are input to V1 to V4 and H1 to H4, respectively.
  • FIG. 23 shows the structure of the image sensor 4 in the present embodiment, in which the gate configuration of the horizontal transfer CCD 23 is a structure in which two combinations of H1 to H4 are continuous for each pixel column.
  • FIG. 24 shows pulses applied to V1 to V4 provided in the vertical transfer CCD 22 and H1 to H4 provided in the horizontal transfer CCD 23.
  • a high voltage read pulse is applied to V 1.
  • the pixel signal accumulated in the pixel 21 is transferred to the gates V1 and V2 of the vertical transfer CCD 22 by this readout pulse. After that, by applying the control pulse shown in the period 51 to V1 to V4 of the vertical transfer CCD 22, the pixel signal of the 0 Line is transferred to the horizontal transfer CCD 23.
  • the pixel signals on the 4n + 0 line and the 4n + 2 line are transferred to the gates V1 and V2 adjacent to the pixels 21 on the 4n-2 line and the 4n + 0 line. Further, the pixel signal of the first line is transferred to the gates V1 and V2 in contact with the horizontal transfer CCD 23, and the pixel signals of the 4n + 1 line and the 4n + 3 line are adjacent to the pixel 21 of the 4n-3 line and the 4n + 1 line. , V2 are transferred.
  • the pixel signals transferred to the horizontal transfer CCD 23 in contact with the 4i + 0 column and the 4i + 2 column are transmitted in adjacent columns.
  • the data is transferred in the opposite direction to the output circuit 24 up to H1 and H2 of the horizontal transfer CCD 23 existing at the intermediate position of the 4i + 1th and 4i + 3th columns.
  • the pixel signals transferred to the horizontal transfer CCD 23 in contact with the 4i + 0 column and the 4i + 2 column are transmitted in adjacent columns.
  • the data is transferred in the opposite direction to the output circuit 24 up to the horizontal transfer CCD 23 adjacent to a certain 4i + 1 column and 4i + 3 column.
  • the pixel signal of the first line is transferred to the horizontal transfer CCD 23, and the pixels in the 4i + 0 column of the 0Line and the 4i + 1 column of the 1Line.
  • the first pixel, the 0Line 4i + 2 column pixel, and the 1Line 4i + 3 column pixel are mixed.
  • the pixel mixture shape corresponds to the pixel mixture shape 251.
  • the pixel signal transferred to the vertical transfer CCD 22 is transferred to V3 to V4 adjacent in the horizontal transfer CCD 23 direction.
  • a pixel signal obtained by mixing a pixel in the 1Line 4i + 1 column, a pixel in the 0Line 4i + 2 column, and a pixel in the 1Line 4i + 3 column is an intermediate position between the 4i + 1 column and the 4i + 3 column that are adjacent columns.
  • the pixel signals of the second, third, and fourth lines are transferred to the horizontal transfer CCD 23 by applying control pulses indicated by periods 245, 246, and 247 to V1 to V4 of the vertical transfer CCD 22.
  • the pixel signal transferred from the vertical transfer CCD 22 to the horizontal transfer CCD 23 is transferred to the output circuit 24 by applying the control pulse shown in FIG.
  • the output circuit 24 converts the transferred pixel signal into an analog voltage signal and outputs it from the image sensor 4.
  • pixels invalid as readout pixel signals are accumulated at locations corresponding to the respective columns in the horizontal transfer CCD 23, but only pixels invalid as readout pixel signals are locally accumulated in a specific horizontal transfer CCD 23. As such, a control pulse may be applied.
  • the gate of the horizontal transfer CCD 23 is configured as H1 to H4.
  • the pixel signals are mixed as shown in the first and second embodiments of the present invention in the combination of H1 to H8, This is a mode in which a control pulse having the same potential is applied to H1 and H2, H3 and H4, H5 and H5, and H7 and H8, respectively, and the transfer method is switched to a different transfer method from that in the pixel signal mixing described in the third embodiment. May be.
  • the gate of the horizontal transfer CCD 23 has a configuration in which two combinations of H1 to H4 are continued for each pixel column, but may have a configuration in which two or more are continuous.
  • the sub voltage may be modulated according to the number of pixels to be mixed so that the saturation of the photodiodes constituting the pixel 21 is adjusted according to the number of pixels with which the pixel signals are mixed.
  • the image sensor 4 has been described as a CCD, but it may be a CMOS sensor or an NMOS sensor.
  • the unit arrangement of the color filters arranged in the image sensor 4 is not limited to the above, and may be reversed up and down, left and right, or the color components may be exchanged.
  • the imaging device has an effect of suppressing the generation of false colors and the decrease in the S / N ratio of color even when sensitized by pixel mixing, and can improve the resolution. It is useful as an imaging apparatus having a large number of arranged pixels and reading out the mixed pixels, an imaging module and an imaging system using the imaging apparatus, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 入射した光を光電変換した画素信号を出力する複数の画素(21)と、各画素(21)に入射する光を濾光するカラーフィルタと、互いに隣り合った行の画素(21)からの画素信号を画素混合して出力する画素混合部(22,23,24)とを設ける。そして、カラーフィルタを、4行×4列の16画素単位の単位配列(71)の繰り返しパターンで構成し、画素混合後の出力信号により得られる画像において、行方向に互いに隣接する隣接画素を構成するカラーフィルタと、前記隣接画素と行方向の重心位置が同じで且つ列方向に隣接する画素を構成するカラーフィルタとは、色成分の比が等しくなるようにする。

Description

撮像装置、撮像モジュール、及び撮像システム
 本発明は、画素ずらし配置された多数個の画素を有し、画素を混合して読み出す撮像装置、それを用いた撮像モジュール及び撮像システムに関するものである。
 多数個の画素ずらしされた画素からなる撮像装置において、撮像装置からの画素信号読み出しの速度の向上、或いは感度向上の手段として、画素を混合して読み出す技術がある(例えば特許文献1を参照)。
 この特許文献1には、緑色画素とマゼンタ色画素とを交互に繰り返し配置した画素行と、シアン色画素と黄色画素とを交互に繰り返し配置した画素行とを、交互に繰り返し形成し、緑色画素とシアン色画素または黄色画素とを対象に画素加算を行うと共に、マゼンタ色画素と黄色画素またはシアン色画素とを対象に画素加算を行う方法が開示されている。
特開2003-9166号公報
 ところで、上述の特許文献1のような画素混合及びカラーフィルタ配列では、画素混合をして得られる画素の水平軸上のナイキスト周波数において偽色が発生する。そのため、画素ずらし配列された撮像装置のメリットである、近傍の上下ラインの画素データを用いて水平方向の解像度を向上する処理を行っても、画質的に十分な品位を得ることができない。
 図26は、特許文献1に記載の画素混合、及びカラーフィルタ配列における、被写体の周波数と偽色の発生するポイントの概略を示した図である。
 ポイント261は、全画素を独立で読み出した場合の水平軸上の1/4の周波数のポイントを示しており、画素を混合して読み出した場合のナイキスト周波数に相当する。
 特許文献1に記載の撮像素子においては、画素を混合して読み出した場合に、ラインごとに水平オフセットサンプリングの関係をもっているので、水平軸上の解像周波数はポイント261のおよそ2倍を有することになる。そのため、水平軸上の解像度を最大限に確保した場合に、その1/2の周波数のポイントで偽色が発生し、画質的に品位が低いものになってしまう。
 一方で、ポイント261をヌル点にもつ光学LPF等を組み込む対策も考えられるが、水平軸上の解像度の劣化、及び、全画素を独立に読み出した際の解像度の劣化等に加え、コストの上昇が発生し、対策案としては現実的ではない。
 また、画素上に配置されたカラーフィルタが補色にしか対応しておらず、色信号のS/Nで有利な原色に対応することができていない。
 本発明は、上述した問題に鑑みてなされたものであり、その解決しようとする課題は、画素ずらし配置された多数個の画素を有し、画素を混合して読み出す撮像装置において、画素混合によって増感したときでも、偽色の発生及び色のS/N比の低下を抑圧し、解像度の向上を図ることである。
 上記の課題を解決するため、本発明の一態様は、
 行方向の配置がずれた行列状に配置されて入射した光を光電変換した画素信号を出力する複数の画素と、各画素に入射する光を濾光するカラーフィルタと、複数行の画素からの画素信号を画素混合して出力する画素混合部とを備えた撮像装置であって、
 前記カラーフィルタは、所定の単位配列の繰り返しパターンで構成され、画素混合後の出力信号により得られる画像において、行方向に互いに隣接する隣接画素を構成するカラーフィルタと、前記隣接画素と行方向の重心位置が同じで且つ列方向に隣接する画素を構成するカラーフィルタとは、色成分の比が等しいことを特徴とする。
 これにより、画素を混合した後の色成分が、偽色をキャンセルする位相関係となる。
 本発明によれば、画素ずらし配置された多数個の画素を有し、画素を混合して読み出す撮像装置において、画素混合によって増感したときでも、偽色の発生及び色のS/N比の低下を抑圧し、解像度の向上を図ることができる。
図1は、本発明の実施形態1におけるデジタルビデオカメラの機能構成を示すブロック図である。 図2は、本発明の実施形態1におけるイメージセンサの構造を示す図である。 図3は、本発明の実施形態1における画素信号を混合せずに読み出すためにイメージセンサに印加する制御パルスのタイミング図である。 図4は、本発明の実施形態1における水平転送CCDに蓄積された画素信号を読み出すために印加する制御パルスのタイミング図である。 図5は、本発明の実施形態1における画素信号を混合して読み出すためにイメージセンサに印加する制御パルスのタイミング図である。 図6は、本発明の実施形態1における画素信号を混合して読み出した際の画素混合形状を示す図である。 図7は、本発明の実施形態1におけるカラーフィルタ配列の単位配列を示す図である。 図8は、本発明の実施形態1におけるカラーフィルタ配列の単位配列の変形例を示す図である。 図9は、本発明の実施形態1におけるカラーフィルタ配列の単位配列の変形例を示す図である。 図10は、本発明の実施形態1におけるカラーフィルタ配列の単位配列の変形例を示す図である。 図11は、本発明の実施形態1におけるカラーフィルタ配列の単位配列の変形例を示す図である。 図12は、本発明の実施形態1におけるカラーフィルタ配列の単位配列の変形例を示す図である。 図13は、本発明の実施形態1における画素信号を混合して読み出すためにイメージセンサに印加する制御パルスの変形例のタイミング図である。 図14は、本発明の実施形態1における画素信号を混合して読み出した際の画素混合形状の変形例を示す図である。 図15は、本発明の実施形態1における画素信号を混合して読み出すためにイメージセンサに印加する制御パルスの変形例のタイミング図である。 図16は、本発明の実施形態1における画素信号を混合して読み出した際の画素混合形状の変形例を示す図である。 図17は、本発明の実施形態1における画素信号を混合して読み出すためにイメージセンサに印加する制御パルスの変形例のタイミング図である。 図18は、本発明の実施形態1における画素信号を混合して読み出した際の画素混合形状の変形例を示す図である。 図19は、本発明の実施形態1における画素信号を混合して読み出すためにイメージセンサに印加する制御パルスの変形例のタイミング図である。 図20は、本発明の実施形態1における画素信号を混合して読み出すためにイメージセンサに印加する制御パルスの変形例のタイミング図である。 図21は、本発明の実施形態1における画素信号を混合して読み出した際の画素混合形状の変形例を示す図である。 図22は、本発明の実施形態2における画素信号を混合する画素数と検知レベルの関係を示す図である。 図23は、本発明の実施形態3におけるイメージセンサの構造を示す図である。 図24は、本発明の実施形態3における画素信号を混合して読み出すためにイメージセンサに印加する制御パルスのタイミング図である。 図25は、本発明の実施形態3における画素信号を混合して読み出した際の画素混合形状の変形例を示す図である。 図26は、従来の方式による色モアレの発生する周波数を示す図である。 図27は、本発明による色モアレの発生する周波数を示す図である。 図28は、本発明の実施形態1におけるカラーフィルタ配列の単位配列の変形例を示す図である。
符号の説明
  1   デジタルビデオカメラ(撮像システム)
  2   撮像モジュール
  3   レンズ
  4   イメージセンサ(撮像装置)
  5   DSP(デジタル信号処理回路)
  9   レベル検出部
 21   画素
 22   垂直転送CCD
 23   水平転送CCD
 24   出力回路
 71,81,91,101,111,121,281   単位配列
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の各実施形態や変形例の説明において、一度説明した構成要素と同様の機能を有する構成要素については、同一の符号を付して説明を省略する。
 《発明の実施形態1》
 図1は、本実施形態における撮像システムの機能構成を示すブロック図である。この撮像システムは、デジタルビデオカメラ1として構成されており、撮像モジュール2、DSP5、CPU6、及びSDRAM8を備えている。
 (撮像モジュール2の構成)
 撮像モジュール2は、レンズ3、イメージセンサ4(撮像装置)を備えている。また、図示はしていないが、この撮像モジュール2は、イメージセンサ4を駆動するのに必要な制御信号を生成するTG(タイミングジェネレータ)や、イメージセンサ4から出力されたアナログ信号の撮像信号をデジタル信号にA/D変換するA/D変換部も備えている。このイメージセンサ4には、画素信号を混合しない読出し動作と、画素信号を混合する混合読出し動作が可能である。なお、イメージセンサ4の構成については後に詳述する。
 (DSP5及びSDRAM8)
 DSP5は、メモリコントローラ7、レベル検出部9、YC処理部10、圧縮処理部11、デジタル信号処理部12を備え、イメージセンサ4からの出力を処理する。
 メモリコントローラ7は、レベル検出部9、YC処理部10、圧縮処理部11、デジタル信号処理部12においてそれぞれの機能ブロックにおける処理に必要な画素数分画素信号が揃うまで、SDRAM8に画素信号を書き込むことで保持する。そして、適宜必要に応じてSDRAM8から画素信号を読み出し、レベル検出部9、YC処理部10、圧縮処理部11、デジタル信号処理部12の機能ブロックに出力する。また、メモリコントローラ7、及びSDRAM8は画素信号だけでなく、YC処理されることで得られる輝度信号や色信号、圧縮処理することで得られる符号データ等も、書き込み及び読み出しを行う。
 次に、レベル検出部9について説明する。レベル検出部9は、イメージセンサ4から出力される画素信号の画面全体、或いは画面の一部分の平均値等から、画素信号のレベルを算出し、その算出結果をCPU6に通知する。
 次に、YC処理部10について説明する。YC処理部10は、イメージセンサ4から出力される画素信号に対して、同時化、フィルタリング処理、周波数補正等を行うことで、輝度信号と色差信号を生成する。
 次に、圧縮処理部11について説明する。圧縮処理部11は、イメージセンサ4から出力される画素信号に対して、RAWデータのレベルで圧縮を行う。さらに、YC処理部10によって生成された輝度信号と色差信号に対して、静止画であればJPEG、動画であればH.264のフォーマットに従い、静止画、及び動画の圧縮を行って符号を生成する。
 次に、デジタル信号処理部12について説明する。デジタル信号処理部12は、外部に接続されている記録媒体であるSDカード13に対して、データの読み込みやデータの書き出しを行う。さらに、表示媒体であるLCD14に対してプレビュー等の画像を表示する。さらに、画角サイズの調整のためのズームによる拡大縮小処理等を行う。
 (CPU6の構成)
 次に、CPU6について説明する。
 CPU6は、撮像モジュール2やDSP5に配置されている各機能ブロックに対して、例えば、画素信号を混合して読み出すか画素信号を混合せずに読み出すかの切り替えや、YC処理部10における画像処理のパラメータ等を設定する。なお、外部入力15は、レリーズボタンやデジタルビデオカメラ1の動作を設定するための外部からの入力である。
 (イメージセンサ4の構成)
 次に、イメージセンサ4について説明する。図2はイメージセンサ4の構成を示すブロック図である。同図に示すように、イメージセンサ4は、複数の画素21、垂直転送CCD22、水平転送CCD23、及び出力回路24を備えている。また、図示はしていないが、画素21には、カラーフィルタが配置されている。
 イメージセンサ4は、2n+1ライン目の画素21を2nライン目の画素21に対して1/2画素分重心をずらして配置されており、画素21の列毎に垂直転送CCD22、垂直転送CCD22の端部に水平転送CCD23、水平転送CCD23の端部に出力回路24がそれぞれ配置された構成となっている。
 垂直転送CCD22、及び水平転送CCD23には、それぞれV1~V4、H1~H4の電極(ゲート)が備わっていて、V1~V4、H1~H4には、それぞれ同じ制御信号が入力される。
 画素21は、画素21に入射した光を光電変換することで、電荷信号に変換し画素信号を得る。画素21に蓄積された画素信号は、撮像モジュール2内のTGから入力された制御信号により、画素21から垂直転送CCD22へ転送される。
 垂直転送CCD22に転送された画素信号は、TGから入力された制御信号により、水平転送CCD23に向けて順次転送される。そして、水平転送CCD23に転送された画素信号は、TGから入力された制御信号により、出力回路24へ転送される。
 その際、画素信号を混合しないで読み出す場合には、水平転送CCD23に転送された画素信号は、水平順転送により出力回路24へ転送される。また、画素信号を混合して読み出す場合には、水平転送CCD23に転送された画素信号は、出力回路24へ転送する水平順転送と、出力回路24の逆方向へ転送する水平逆転送を組み合わせた転送により出力回路24へ転送される。
 出力回路24は、水平転送CCD23によって転送されてきた電荷である画素信号をアナログの電圧信号に変換して出力する。この出力回路24は、上記の垂直転送CCD22、水平転送CCD23とともに、画素混合部を構成している。
 (イメージセンサ4のカラーフィルタ)
 既述の通り、イメージセンサ4の画素21には、カラーフィルタが配置されている。図7は、本実施形態のイメージセンサ4の画素21に配置されているカラーフィルタを説明する図である。
 カラーフィルタは、単位配列71の繰り返しパターンで構成されている。詳しくは、単位配列は、第1から第8の色をそれぞれ濾光するフィルタが4行×4列の16画素単位に配列され、第1列目は、第1の色、第5の色、第2の色、第6の色の順でフィルタが配置され、第2列目は、第3の色、第7の色、第4の色、第8の色の順でフィルタが配置され、第3列目は、第2の色、第6の色、第1の色、第5の色の順でフィルタが配置され、第4列目は、第4の色、第8の色、第3の色、第7の色の順でフィルタが配置されている。そして、第1及び第5の色がマゼンダ、第2及び第6の色がグリーン、第3の色及び第7がイエロー、第4の色及び第8がシアンである。
 このカラーフィルタでは、画素信号を混合しないで読み出す場合では、被写体からの入射光がそれぞれのカラーフィルタによって濾光されて画素21において光電変換された後、Mg(マゼンダ)、Cy(シアン)、Ye(イエロー)、Gr(グリーン)の画素信号として読み出されることになる。
 一方で、画素信号を混合して読み出す場合では、被写体からの入射光がそれぞれのカラーフィルタによって濾光されて画素21において光電変換された後、Mg(マゼンダ)、Cy(シアン)、Ye(イエロー)、Gr(グリーン)の画素信号となり、出力回路24に画素信号が到達する前に、図6に示すパターンでMg+Ye、Gr+Cy、Mg+Cy、Gr+Yeのように混合され、その混合された画素信号が読み出されることになる。
 《デジタルビデオカメラ1(撮像システム)の動作》
 (全体の動作)
 デジタルビデオカメラ1により撮影を行うと、被写体はレンズ3を通してイメージセンサ4に入光し、イメージセンサ4上の画素において光電変換され、撮像信号としてDSP5へ出力される。この撮像信号は、メモリコントローラ7を介して、SDRAM8に対して読み出しと書き込みが行われ、レベル検出部9、YC処理部10、圧縮処理部11、デジタル信号処理部12、記録媒体であるSDカード13、表示媒体であるLCD14に対して、信号の入出力が実現される。
 具体的には、レベル検出部9は、撮像信号のレベルを検出し、撮像信号のレベルをCPU6に通知する。YC処理部10は、撮像信号に対してフィルタリングや同時化等を行い、撮像信号をYC信号に変換する。また、圧縮処理部11は、撮像信号、又はYC信号を、例えば静止画ならばJPEG、動画ならばH.264等のフォーマットに従いデータ量の圧縮を行う。
 デジタル信号処理部12は、ズーム処理、傷補正、照明光色温度検出等のビデオカメラとしての動作に必要な信号処理を行う。
 一方で、CPU6は、デジタルビデオカメラ1がユーザの期待する動作を実現するのに必要な制御信号を、イメージセンサ4、DSP5の各機能ブロックに対して出力する。
 (イメージセンサの駆動)
 イメージセンサ4が映像信号を上記のように出力する際の該イメージセンサ4の駆動方法について説明する。既述の通り、このイメージセンサ4には、画素信号を混合しない読出し動作と、画素信号を混合して読み出す動作の2種類の動作がある。
 -画素信号を混合しない読出し動作(第一の読出し動作)-
 まず、画素信号を混合しないで読み出す場合について説明する。
 図3は、垂直転送CCD22に備わっているゲートV1~V4、及び水平転送CCD23に備わっているゲートH1~H4にそれぞれ印加されるパルスである。図3に示すように、期間31において、画素21に蓄積されている画素信号を垂直転送CCD22に転送するために、ゲートV1に対して高電圧の読み出しパルスを印加する。この読み出しパルスにより、画素21に蓄積されている画素信号が垂直転送CCD22のゲートV1,V2に転送される。
 その後、期間32において、図3に示す制御パルスをV1~V4に印加することで、画素21から垂直転送CCD22に読み出された画素信号が水平転送CCD23に転送される。
 さらに、その後、期間33において、水平転送CCD23のH1~H4へ、図4に示す制御パルスを印加することで、垂直転送CCD22から水平転送CCD23に転送された画素信号を出力回路24へ転送し、出力回路24は転送された画素信号をアナログの電圧信号に変換してイメージセンサ4から出力する。
 なお、図3、図4では図を簡便化するために全体の期間の一部しか示していないが、イメージセンサ4の画素数に応じて、各期間、各印加パルス数は変動する。
 -混合読出し動作(第二の読出し動作)-
 次に、画素信号を混合して読み出す場合について説明する。
 図5は、垂直転送CCD22に備わっているゲートV1~V4、及び水平転送CCD23に備わっているゲートH1~H4に印加されるパルスである。
 期間51において、画素21に蓄積されている画素信号を垂直転送CCD22に転送するために、V1に対して高電圧の読み出しパルスを印加する。この読み出しパルスにより、画素21に蓄積されている画素信号が垂直転送CCD22のゲートV1,V2に転送され、その後に、垂直転送CCD22のV1~V4に期間51に示される制御パルスを印加することで、0Line目の画素信号が水平転送CCD23に転送される。
 一方で、4n+0ライン目と4n+2ライン目の画素信号は、4n-2ライン目と4n+0ライン目の画素21に隣接するゲートV1,V2まで転送される。さらに、1Line目の画素信号は、水平転送CCD23に接するゲートV1、V2まで転送され、4n+1ライン目と4n+3ライン目の画素信号は、4n-3ライン目と4n+1ライン目の画素21に隣接するゲートV1,V2まで転送される。
 その後、期間52において、期間52に示される制御パルスをH1~H4に印加することで、4i+0列目、及び、4i+2列目に接する水平転送CCD23に転送されている画素信号が、隣接する列である4i+1列目、及び、4i+3列目に接する水平転送CCD23まで出力回路24と逆の方向に転送される。
 その後、期間53において、期間53に示される制御パルスをV1~V4に印加することで、1Line目の画素信号が水平転送CCD23へ転送される。そして、0Line目の4i+0列目の画素と1Line目の4i+1列目の画素、0Line目の4i+2列目の画素と1Line目の4i+3列目の画素が混合される(第一の画素混合動作)。画素の混合の形状を示したものが図6における画素混合形状61に相当する。
 一方で、垂直転送CCD22に転送されている画素信号は、水平転送CCD23方向に隣接しているV3~V4に転送される。その後、期間54において、図4に示す制御パルスを印加することで、垂直転送CCD22から水平転送CCD23に転送された画素信号を出力回路24へ転送し、出力回路24は転送された画素信号をアナログの電圧信号に変換してイメージセンサ4から出力する。その後、期間55において、期間55に示される制御パルスをV1~V4に印加することで、2Line目の画素信号が水平転送CCD23に転送される。
 一方で、垂直転送CCD22に転送されている画素信号は、水平転送CCD23方向に隣接しているV1~V2に転送される。その後、期間56において、期間55に示される制御パルスをH1~H4に印加することで、4i+0列目、及び、4i+2列目に接する水平転送CCD23に転送されている画素信号が、隣接する列である4i+1列目、及び、4i+3列目に接する水平転送CCD23まで出力回路24の方向に転送される。
 その後、期間53において、期間53に示される制御パルスをV1~V4に印加することで、3Line目の画素信号が水平転送CCD23へ転送され、2Line目の4i+0列目の画素と3Line目の4i-1列目の画素、2Line目の4i+2列目の画素と3Line目の4i+1列目の画素が混合される(第二の画素混合動作)。画素の混合の形状を示したものが図6における画素混合形状62に相当する。
 一方で、垂直転送CCD22に転送されている画素信号は、水平転送CCD23方向に隣接しているV3~V4に転送される。その後、期間54において、図4に示す制御パルスを印加することで、垂直転送CCD22から水平転送CCD23に転送された画素信号を出力回路24へ転送し、出力回路24は転送された画素信号をアナログの電圧信号に変換してイメージセンサ4から出力する。
 以降、同様に図5に示す制御パルスを印加することで、所定の画素の混合が行われ、イメージセンサ4からは画素を混合した信号が画素信号として出力される。
 以上のように本実施形態によれば、画素混合後の出力信号により得られる画像において列方向に並んだ位置に対応した出力信号が、偽色をキャンセルする位相関係となる。図27は、本実施形態の画素混合、及びカラーフィルタ配列における、被写体の周波数と偽色の発生するポイントの概略を示した図(空間周波数平面)である。図27において、ポイント261は、全画素を独立で読み出した場合の水平軸上の1/4の周波数のポイントを示しており、画素を混合して読み出した場合のナイキスト周波数に相当する。ポイント261では、画素を混合した後の色成分が偽色をキャンセルする位相関係となるため、原理的に偽色が発生しない。そのため、水平軸上の解像度を限界まで伸ばすことが可能になる。すなわち、本実施形態によれば、画素混合によって増感したときでも、偽色の発生及び色のS/N比の低下を抑圧し、解像度の向上を図ることができる。なお、ポイント271では偽色が発生することになるが、ポイント271をヌル点とする光学LPFを斜め方向に組み込むことで、限界の解像度は減少するが、偽色を抑圧しつつ全体的な解像度のバランスをとることも可能になる。
 《実施形態1の変形例1》
 なお、単位配列71は、第1及び第5の色が赤色、第2、第6、第4、及び第8の色が緑色、第3及び第7の色が青色としてもよい。
 また、上記においては、イメージセンサ4上の画素21に配置されているカラーフィルタを、図7のようにしたが、原色のカラーフィルタを最小する場合には、図8のような単位配列81をもつカラーフィルタ配列としてもよい。単位配列81に示されているRは赤で、Gは緑で、Bは青である。
 このようにすれば、画素を混合して読み出す場合は、R+B(マゼンダ)、R+G(イエロー)、G+G(グリーン)、B+G(シアン)として画素信号が出力される。また、画素を混合しないで読み出す場合には、R(赤)、G(緑)、B(青)として画素信号が出力される。
 《実施形態1の変形例2》
 また、上記においては、イメージセンサ4上の画素21に配置されているカラーフィルタを、図7のようにしたが、図9のような単位配列91をもつカラーフィルタ配列としてもよい。
 このようにすれば、画素を混合して読み出す場合は、R+B(マゼンダ)、R+G(イエロー)、G+G(グリーン)、B+G(シアン)として画素信号が出力される。また、画素を混合しないで読み出す場合には、R(赤)、G(緑)、B(青)として画素信号が出力される。
 《実施形態1の変形例3》
 上記においては、イメージセンサ4上の画素21に配置されているカラーフィルタを、図7のようにしたが、図10のような単位配列101をもつカラーフィルタ配列としてもよい。
 このようにすれば、画素を混合して読み出す場合は、Mg+Ye、Gr+Cy、Mg+Cy、Gr+Yeとして画素信号が出力される。また、画素を混合しないで読み出す場合には、Mg(マゼンダ)、Cy(シアン)、Ye(イエロー)、Gr(グリーン)として画素信号が出力される。
 《実施形態1の変形例4》
 上記においては、イメージセンサ4上の画素21に配置されているカラーフィルタを、図7のようにしたが、図11のような単位配列111をもつカラーフィルタ配列としてもよい。
 このようにすれば、画素を混合して読み出す場合は、R+B(マゼンダ)、R+G(イエロー)、G+G(グリーン)、B+G(シアン)として画素信号が出力される。また、画素を混合しないで読み出す場合には、R(赤)、G(緑)、B(青)として画素信号が出力される。
 《実施形態1の変形例5》
 上記においては、イメージセンサ4上の画素21に配置されているカラーフィルタを、図7のようにしたが、図12のような単位配列121をもつカラーフィルタ配列としてもよい。詳しくは、この単位配列121は、第1から第6の色をそれぞれ濾光するフィルタが4行×4列の16画素単位に配列され、第1列目は、第1の色、第1の色、第3の色、第4の色の順でフィルタが配置され、第2列目は、第3の色、第5の色、第1の色、第6の色の順でフィルタが配置され、第3列目は、第2の色、第4の色、第4の色、第1の色の順でフィルタが配置され、第4列目は、第4の色、第6の色、第2の色、第5の色の順でフィルタが配置されている。そして、この例では、第1の色がマゼンダ、第2及び第6の色がグリーン、第3及び第5の色がイエロー、第4の色がシアンである。
 このようにすれば、画素を混合して読み出す場合は、Mg+Ye、Gr+Cy、Mg+Cy、Gr+Yeとして画素信号が出力される。また、画素を混合しないで読み出す場合には、Mg(マゼンダ)、Cy(シアン)、Ye(イエロー)、Gr(グリーン)として画素信号が出力される。
 また、単位配列121では、原色のカラーフィルタの採用も可能である。この場合には、第1の色を赤色、第2、第3、第5、第6の色を緑色、第4の色を青色とする。
 《実施形態1の変形例6》
 上記においては、イメージセンサ4上の画素21に配置されているカラーフィルタを、図7のようにしたが、図28のような単位配列281をもつカラーフィルタ配列としてもよい。
 このようにすれば、画素を混合して読み出す場合は、R+B(マゼンダ)、R+G(イエロー)、G+G(グリーン)、B+G(シアン)として画素信号が出力される。また、画素を混合しないで読み出す場合には、R(赤)、G(緑)、B(青)として画素信号が出力される。
 《実施形態1の変形例7》
 上記においては、イメージセンサ4上の画素信号を混合して読み出す際に印加する制御パルスを図5のようにしたが、図13のようにしてもよい。
 図13のような制御パルスを印加することで図14に示すように、画素の混合の形状と生成アドレスが画素混合形状141と142になるような形態であってもよい。
 《実施形態1の変形例8》
 上記においては、イメージセンサ4上の画素信号を混合して読み出す際に印加する制御パルスを図5のようにしたが、図15のように0ライン目を読み捨てて上述の画素を混合する動作を行う形態としてもよい。
 また、図15のような制御パルスを印加することで図16に示すように、画素の混合の形状と生成アドレスが画素混合形状161と162になるような形態であってもよい。
 《実施形態1の変形例9》
 上記においては、イメージセンサ4上の画素信号を混合して読み出す際に印加する制御パルスを図5のようにしたが、図17のように0ライン目を読み捨てて上述の画素を混合する動作を行う形態としてもよい。
 図17のような制御パルスを印加することで図18に示すように、画素の混合の形状と生成アドレスが画素混合形状181と182になるような形態であってもよい。
 《実施形態1の変形例10》
 上記においては、画素の混合する形状の変化については特に限定をしていないが、所定の垂直帰線期間毎に、実施形態1、或いはその変形例7~9で示した画素を混合する形状を、組み合わせて駆動する形態(すなわち、インタレース方式により画素信号を読み出す形態)であってもよい。このようにすれば、複数枚の画像を利用して画像を生成する際に、単一のフレーム画像では存在しないアドレスの画素を読み出すことが可能になるので、より高精細な画像を生成することが可能になる。
 《実施形態1の変形例11》
 上記においては、画素を混合してイメージセンサ4から読み出す際に、1水平帰線期間で2nライン目の画素と2n+1ライン目の画素を混合した画素信号を読み出す形態としたが、図19に示すような制御パルスを印加し、1水平帰線期間に、2nライン目の画素と2n+1ライン目の画素を混合した画素信号と、2n+2ライン目の画素と2n+3ライン目の画素を混合した画素信号を読み出す形態であってもよい。
 《実施形態1の変形例12》
 上記においては、イメージセンサ4上の画素信号を混合して読み出す際に印加する制御パルスを図5のようにしたが、図20のようにしてもよい。
 図20のような制御パルスを印加することで図21に示すように、画素の混合の形状を示したものが画素混合形状211と212と213に変更することが可能になる。特に、画素混合形状211と212は、画素信号を混合したものをさらに混合し、4画素の混合を行っている。
 図示はしていないが、画素信号を水平転送CCD23で混合する際に、水平転送CCD23を出力回路24方向に転送するか、出力回路24と逆の方向に転送するかを入れ替えることで画素混合の形状を左右反転する形態であってもよい。
 さらに、図示しているように、画素信号を混合する画素数を、一垂直帰線期間内に変動させてもよいし、固定していてもよい。
 さらに、水平転送CCD23のゲート数を増加させることでさらに離れたラインの画素信号同士を混合する形態であってもよい。
 さらに、画素信号を読み出すまでに水平転送CCD23で画素信号を混合することで、画素混合を実現する形態であってもよい。
 《発明の実施形態2》
 本発明の実施形態2における撮像システムについて説明する。本発明の実施形態2における撮像システムは、実施形態1の一部の構成を変更したものであり、以下、当該相違点に着目して説明する。
 本実施形態においては、CPU6がイメージセンサ4における画素信号の混合画素数を制御するという点で異なっている。具体的にCPU6について説明する。
 CPU6は、撮像モジュール2やDSP5に配置されている各機能ブロックに対して、例えば、画素信号を混合して読み出すか画素信号を混合せずに読み出すかの切り替えや、YC処理部10における画像処理のパラメータ等を設定する。
 本実施形態においては、レベル検出部9からの検出結果に応じて、CPU6は撮像モジュール2のTG(タイミングジェネレータ)(不図示)に対して、混合する画素信号の数を通知する。これにより、TGは、CPU6から通知された画素信号の混合数に基づいて、イメージセンサ4を駆動するための制御パルスを生成する。
 図22は、本実施形態の撮像システムにおける、レベル検出部9の検知結果と画素信号の混合数の関係を示したものである。横軸は、レベル検出部9の検知結果であり、横軸の右側になるにつれて、イメージセンサ4から出力された撮像信号のレベルが大きい、すなわち、被写体の明るさが明るいことを示している。
 CPU6は、図22に示すように、被写体の明るさを複数の閾値で場合分けを行う。具体的には、第1の閾値よりレベル検出部9の検知結果が小さい場合は、6画素分の画素信号の混合を行い、レベル検出部9の検知結果が第1の閾値より大きく第2の閾値より小さい場合は、4画素分の画素信号の混合を行い、レベル検出部9の検知結果が第2の閾値より大きく第3の閾値より小さい場合は、2画素分の画素信号の混合を行い、第3の閾値よりレベル検出部9の検知結果が大きい場合は、画素の混合を行わずに画素信号を読み出す。このようにすれば、被写体の明るさに応じて、画素の混合数を増加させることが可能になり、画素信号の読み出し速度、或いは感度の大幅な向上を行うことが可能になる。
 《実施形態2の変形例1》
 上記においては、混合する画素信号の数を6、4、2、1画素としたが、その他の組み合わせであってもよい。
 さらに、混合する画素信号の数の組み合わせを4通りではなく、2通り以上とした形態であってもよい。
 《実施形態2の変形例2》
 上記においては、CPU6が混合する画素信号の数をレベル検出部9の結果にのみ基づいて決定していたが、外部入力15から直接指定された値に応じて決定される方式であっても良い。また、外部入力15から指定された値とレベル検出部9の検出結果を組み合わせても良いし、外部入力15から上記の閾値を設定する形態であってもよい。
 《発明の実施形態3》
 本発明の実施形態3における撮像システムについて説明する。本発明の実施形態3における撮像システムは、実施形態1の一部の構成を変更したものであり、以下、当該相違点に着目して説明する。本実施形態においては、イメージセンサ4の水平転送CCD23の構造において異なっている。
 (1)イメージセンサの構成
 まず、撮像モジュール2に配置されているイメージセンサ4の構成について説明する。
 イメージセンサ4は、2n+1ライン目の画素21を2nライン目の画素21に対して1/2画素分重心をずらして配置されており、画素21の列毎に垂直転送CCD22、垂直転送CCD22の端部に水平転送CCD23、水平転送CCD23の端部に出力回路24が配置された構成となっている。
 垂直転送CCD22、及び水平転送CCD23には、それぞれV1~V4、H1~H4の電極が備わっている。V1~V4、H1~H4には、それぞれ同じ制御信号が入力される。
 図23は、本実施形態におけるイメージセンサ4の構造であって、水平転送CCD23のゲート構成が、画素列毎にH1~H4の組み合わせが二つ連続した構造となっている。
 (2)イメージセンサの駆動
 次に、イメージセンサ4の駆動方法について説明する。
 画素信号を混合しないで画素信号を読み出す場合は概ね同一であり、画素信号を混合して画素信号を読み出す場合の駆動方法が異なっている。
 図24は、垂直転送CCD22に備わっているV1~V4、及び水平転送CCD23に備わっているH1~H4に印加されるパルスである。期間241において、画素21に蓄積されている画素信号を垂直転送CCD22に転送するために、V1に対して高電圧の読み出しパルスを印加する。
 この読み出しパルスにより、画素21に蓄積されている画素信号が垂直転送CCD22のゲートV1,V2に転送される。その後に、垂直転送CCD22のV1~V4に期間51に示される制御パルスを印加することで、0Line目の画素信号が水平転送CCD23に転送される。
 一方で、4n+0ライン目と4n+2ライン目の画素信号は、4n-2ライン目と4n+0ライン目の画素21に隣接するゲートV1,V2まで転送される。さらに、1Line目の画素信号は水平転送CCD23に接するゲートV1、V2まで転送され、4n+1ライン目と4n+3ライン目の画素信号は、4n-3ライン目と4n+1ライン目の画素21に隣接するゲートV1,V2まで転送される。
 その後、期間242において、期間242に示される制御パルスをH1~H4に印加することで、4i+0列目、及び、4i+2列目に接する水平転送CCD23に転送されている画素信号が、隣接する列である4i+1列目、及び4i+3列目の中間位置に存在する水平転送CCD23のH1、H2まで出力回路24と逆の方向に転送される。
 その後、期間242において、期間242に示される制御パルスをH1~H4に印加することで、4i+0列目、及び、4i+2列目に接する水平転送CCD23に転送されている画素信号が、隣接する列である4i+1列目、及び、4i+3列目に隣接する水平転送CCD23まで出力回路24と逆の方向に転送される。
 その後、期間243において、期間243に示される制御パルスをV1~V4に印加することで、1Line目の画素信号が水平転送CCD23へ転送され、0Line目の4i+0列目の画素と1Line目の4i+1列目の画素、0Line目の4i+2列目の画素と1Line目の4i+3列目の画素が混合される。画素の混合の形状を示したものが画素混合形状251に相当する。
 一方で、垂直転送CCD22に転送されている画素信号は、水平転送CCD23方向に隣接しているV3~V4に転送される。
 その後、期間244において、期間244に示される制御パルスをH1~H4に印加することで、4i+1列目、及び4i+3列目に接する水平転送CCD23に転送されている0Line目の4i+0列目の画素と1Line目の4i+1列目の画素、0Line目の4i+2列目の画素と1Line目の4i+3列目の画素が混合された画素信号が、隣接する列である4i+1列目、及び4i+3列目の中間位置に存在する水平転送CCD23のH1、H2まで出力回路24の方向に転送される。
 その後に、垂直転送CCD22のV1~V4に期間245,246,247に示される制御パルスを印加することで、2、3、4ライン目の画素信号が水平転送CCD23まで転送される。
 その後、期間248において、図4に示す制御パルスを印加することで、垂直転送CCD22から水平転送CCD23に転送された画素信号を出力回路24へ転送する。これにより、出力回路24は転送された画素信号をアナログの電圧信号に変換してイメージセンサ4から出力する。
 以下同様に図24に示す制御パルスを印加することで、図25に示す画素信号の混合形状を実現することができる。
 なお、上記において、読み出し画素信号として無効な画素を、水平転送CCD23において各列に対応した場所で蓄積を行ったが、読み出し画素信号として無効な画素のみを特定の水平転送CCD23に局所的に蓄積するように制御パルスを印加しても良い。
 《実施形態3の変形例1》
 上記においては、水平転送CCD23のゲートをH1~H4として構成したが、H1~H8のような組み合わせにして、本発明の実施形態1や実施形態2で示した画素信号の混合を行う際には、それぞれH1とH2、H3とH4、H5とH5、H7とH8が同じポテンシャルになる制御パルスを印加し、実施形態3で示した画素信号の混合を行う際と異なる転送方法と切り替える形態であってもよい。
 《実施形態3の変形例2》
 上記においては、水平転送CCD23のゲートが、画素列毎にH1~H4の組み合わせが2つ連続した構成としたが、2つ以上連続する構成であってもよい。
 《実施形態3の変形例3》
 上記において、画素信号を混合する画素数に応じて、画素21を構成するフォトダイオードの飽和を調整するように、sub電圧(基板電圧)を、混合する画素数に応じて変調しても良い。
 《実施形態3の変形例4》
 上記において、無効ラインの画素として読み捨てるための画素信号を水平転送CCD23で混合し出力していたが、垂直転送CCD22の読み出しゲートであるV1を幾つかにグループ分けをして、画素21から読み出さない形態としてもよい。
 《その他の実施形態》
 なお、上記の説明は本発明を限定する物ではなく、発明の範囲内で種々の変更が可能である。例えば、上記の説明においては、イメージセンサ4をCCDとして説明したが、CMOSセンサであってもよいし、NMOSセンサであってもよい。
 また、イメージセンサ4に配置されているカラーフィルタの単位配列は、上記に限らず上下左右反転であってもよいし、色成分の入れ替えを行っても良い。
 本発明に係る撮像装置は、画素混合によって増感したときでも、偽色の発生及び色のS/N比の低下を抑圧し、解像度の向上を図ることができるという効果を有し、画素ずらし配置された多数個の画素を有し、画素を混合して読み出す撮像装置、それを用いた撮像モジュール及び撮像システム等として有用である。

Claims (18)

  1.  行方向の配置がずれた行列状に配置されて入射した光を光電変換した画素信号を出力する複数の画素と、各画素に入射する光を濾光するカラーフィルタと、複数行の画素からの画素信号を画素混合して出力する画素混合部とを備えた撮像装置であって、
     前記カラーフィルタは、所定の単位配列の繰り返しパターンで構成され、画素混合後の出力信号により得られる画像において、行方向に互いに隣接する隣接画素を構成するカラーフィルタと、前記隣接画素と行方向の重心位置が同じで且つ列方向に隣接する画素を構成するカラーフィルタとは、色成分の比が等しいことを特徴とする撮像装置。
  2.  請求項1の撮像装置において、
     前記単位配列は、第1から第8の色をそれぞれ濾光するフィルタが4行×4列の16画素単位に配列され、
     第1列目は、第1の色、第5の色、第2の色、第6の色の順でフィルタが配置され、
     第2列目は、第3の色、第7の色、第4の色、第8の色の順でフィルタが配置され、
     第3列目は、第2の色、第6の色、第1の色、第5の色の順でフィルタが配置され、
     第4列目は、第4の色、第8の色、第3の色、第7の色の順でフィルタが配置されていることを特徴とする撮像装置。
  3.  請求項1の撮像装置において、
     前記単位配列は、第1から第6の色をそれぞれ濾光するフィルタが4行×4列の16画素単位に配列され、
     第1列目は、第1の色、第1の色、第3の色、第4の色の順でフィルタが配置され、
     第2列目は、第3の色、第5の色、第1の色、第6の色の順でフィルタが配置され、
     第3列目は、第2の色、第4の色、第4の色、第1の色の順でフィルタが配置され、
     第4列目は、第4の色、第6の色、第2の色、第5の色の順でフィルタが配置されていることを特徴とする撮像装置。
  4.  請求項2の撮像装置において、
     前記単位配列は、第1及び第5の色がマゼンダ、第2及び第6の色がグリーン、第3の色及び第7がイエロー、第4及び第8の色がシアンであることを特徴とする撮像装置。
  5.  請求項2の撮像装置において、
     前記単位配列は、第1及び第5の色が赤色、第2、第6、第4、及び第8の色が緑色、第3及び第7の色が青色であることを特徴とする撮像装置。
  6.  請求項3の撮像装置において、
     前記単位配列は、第1の色がマゼンダ、第2及び第6の色がグリーン、第3及び第5の色がイエロー、第4の色がシアンであることを特徴とする撮像装置。
  7.  請求項3の撮像装置において、
     前記単位配列は、第1の色が赤色、第2、第3、第5、第6の色が緑色、第4の色が青色であることを特徴とする撮像装置。
  8.  請求項2の撮像装置において、
     前記単位配列は、第1及び第5の色が赤色、第2、第6、第4、及び第7の色が緑色、第3及び第8の色が青色であることを特徴とする撮像装置。
  9.  請求項3の撮像装置において、
     前記単位配列は、第1の色が赤色、第2、第3、第5、及び第6の色が緑色、第4の色が青色であることを特徴とする撮像装置。
  10.  請求項2の撮像装置において、
     前記単位配列は、第1及び第5の色が赤色、第2、第6、第4、及び第8の色が緑色、第3及び第7の色が青色であることを特徴とする撮像装置。
  11.  請求項1の撮像装置において、
     前記画素混合部は、インタレース方式により前記画素信号を読み出すように構成されていることを特徴とする撮像装置。
  12.  請求項1の撮像装置において、
     前記画素混合部は、3個以上の画素の画素信号を混合するように構成されていることを特徴とする撮像装置。
  13.  請求項1の撮像装置において、
     前記画素混合部は、所定の行を間引いて前記画素信号を読み出すように構成されていることを特徴とする撮像装置。
  14.  請求項1の撮像装置において、
     前記画素は、CCD、CMOS、又はNMOSにより構成されていることを特徴とする撮像装置。
  15.  請求項1の撮像装置において、
     さらに、各画素から読み出された画素信号のレベルを検知するレベル検出部を備え、
     前記画素混合部は、前記レベル検出部が検出した画素信号のレベルに応じて、画素混合する画素数を変更することを特徴とする撮像装置。
  16.  請求項1の撮像装置において、
     前記画素混合部は、画素混合する画素数を外部から変更できるように構成されていることを特徴とする撮像装置。
  17.  請求項1の撮像装置と、
     レンズと、
     を備えて映像信号を出力することを特徴とする撮像モジュール。
  18.  請求項17の撮像モジュールと、
     前記撮像モジュールが出力した映像信号を処理するデジタル信号処理回路と、
     を備えていることを特徴とする撮像システム。
PCT/JP2008/002346 2008-03-28 2008-08-28 撮像装置、撮像モジュール、及び撮像システム WO2009118799A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801283513A CN101981937A (zh) 2008-03-28 2008-08-28 摄像装置、摄像模块及摄像系统
US12/880,572 US20100328505A1 (en) 2008-03-28 2010-09-13 Imaging device, imaging module and imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-087795 2008-03-28
JP2008087795A JP2009246465A (ja) 2008-03-28 2008-03-28 撮像装置、撮像モジュール、及び撮像システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/880,572 Continuation US20100328505A1 (en) 2008-03-28 2010-09-13 Imaging device, imaging module and imaging system

Publications (1)

Publication Number Publication Date
WO2009118799A1 true WO2009118799A1 (ja) 2009-10-01

Family

ID=41113043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002346 WO2009118799A1 (ja) 2008-03-28 2008-08-28 撮像装置、撮像モジュール、及び撮像システム

Country Status (4)

Country Link
US (1) US20100328505A1 (ja)
JP (1) JP2009246465A (ja)
CN (1) CN101981937A (ja)
WO (1) WO2009118799A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134589B2 (en) * 2008-07-17 2012-03-13 Eastman Kodak Company Zoom by multiple image capture
EP2685725B1 (en) 2011-03-11 2016-12-07 FUJIFILM Corporation Imaging device and imaging program
EP2685726A4 (en) 2011-03-11 2014-09-03 Fujifilm Corp IMAGING DEVICE AND IMAGING PROGRAM
US8657200B2 (en) 2011-06-20 2014-02-25 Metrologic Instruments, Inc. Indicia reading terminal with color frame processing
US9002138B2 (en) * 2011-12-19 2015-04-07 Ziva Corporation Computational imaging using variable optical transfer function
FR3005226B1 (fr) * 2013-04-25 2015-04-10 Astrium Sas Saisie d'image avec addition de signaux d'accumulation pour des photodetecteurs adjacents
KR102087225B1 (ko) * 2013-05-30 2020-03-11 에스케이하이닉스 주식회사 이미지 센싱 장치
JP6483354B2 (ja) * 2014-06-05 2019-03-13 オリンパス株式会社 撮像装置および撮像方法
US10313609B2 (en) * 2016-04-14 2019-06-04 Qualcomm Incorporated Image sensors having pixel-binning with configurable shared floating diffusion
US10313610B2 (en) 2016-04-14 2019-06-04 Qualcomm Incorporated Image sensors with dynamic pixel binning
US11394934B2 (en) * 2020-09-24 2022-07-19 Qualcomm Incorporated Binned anti-color pixel value generation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167296A (ja) * 1985-01-21 1986-07-28 Toshiba Corp 固体カラ−撮像装置
JP2000184385A (ja) * 1998-12-17 2000-06-30 Sony Corp 固体撮像素子およびその駆動方法並びにカメラシステム
JP2003009166A (ja) * 2001-06-21 2003-01-10 Fuji Film Microdevices Co Ltd 撮像装置およびその駆動方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142340B2 (ja) * 2002-05-22 2008-09-03 オリンパス株式会社 撮像装置
JP3848650B2 (ja) * 2002-11-12 2006-11-22 松下電器産業株式会社 固体撮像素子およびこれを備えたカメラ
JP4088536B2 (ja) * 2003-01-28 2008-05-21 松下電器産業株式会社 固体撮像装置
JP2004266369A (ja) * 2003-02-21 2004-09-24 Sony Corp 固体撮像装置およびその駆動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167296A (ja) * 1985-01-21 1986-07-28 Toshiba Corp 固体カラ−撮像装置
JP2000184385A (ja) * 1998-12-17 2000-06-30 Sony Corp 固体撮像素子およびその駆動方法並びにカメラシステム
JP2003009166A (ja) * 2001-06-21 2003-01-10 Fuji Film Microdevices Co Ltd 撮像装置およびその駆動方法

Also Published As

Publication number Publication date
JP2009246465A (ja) 2009-10-22
CN101981937A (zh) 2011-02-23
US20100328505A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
WO2009118799A1 (ja) 撮像装置、撮像モジュール、及び撮像システム
US20100328485A1 (en) Imaging device, imaging module, electronic still camera, and electronic movie camera
JPH10234047A (ja) 単板式カラーカメラ
JP3970185B2 (ja) 固体撮像素子及びデジタルカメラ
JP5608820B2 (ja) 撮像装置及び合焦制御方法
US8111298B2 (en) Imaging circuit and image pickup device
WO2012124181A1 (ja) 撮像装置及び撮像プログラム
JP5621057B2 (ja) カラー撮像素子
JP3902525B2 (ja) 画像信号処理装置
JP2002159014A (ja) 画像生成装置および生成方法
KR20050080814A (ko) 서브 샘플링 모드에서 디스플레이 품질을 개선한 고체촬상 소자 및 그 구동 방법
JPH11262022A (ja) 単板式カラーカメラ
JP2002084548A (ja) カラー撮像素子及び撮像装置
JP3967500B2 (ja) 固体撮像装置および信号読出し方法
US8054364B2 (en) Image apparatus and drive control method for image pickup device with horizontal addition of pixel data
WO2013100097A1 (ja) 撮像装置、撮像装置の制御方法、及び制御プログラム
JP5066476B2 (ja) 撮像装置
JP4424101B2 (ja) 固体撮像装置
JP2009010540A (ja) 固体撮像素子およびその駆動方法、並びに電子情報機器
JP2000261817A (ja) 撮像装置
JPH1013846A (ja) カラー画像入力装置
JP2008042737A (ja) 固体撮像素子およびカメラ
JP2003348605A (ja) カラービデオカメラ
JP2004236028A (ja) 固体撮像装置、カメラおよびカメラシステム
WO2010137310A1 (ja) 撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128351.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08873630

Country of ref document: EP

Kind code of ref document: A1