WO2009113623A1 - 無線通信方法、無線通信システム、基地局、及び端末局 - Google Patents

無線通信方法、無線通信システム、基地局、及び端末局 Download PDF

Info

Publication number
WO2009113623A1
WO2009113623A1 PCT/JP2009/054786 JP2009054786W WO2009113623A1 WO 2009113623 A1 WO2009113623 A1 WO 2009113623A1 JP 2009054786 W JP2009054786 W JP 2009054786W WO 2009113623 A1 WO2009113623 A1 WO 2009113623A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
band
terminal station
bandwidth
transmission
Prior art date
Application number
PCT/JP2009/054786
Other languages
English (en)
French (fr)
Inventor
芳孝 清水
房夫 布
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN200980107262.5A priority Critical patent/CN101960905B/zh
Priority to EP09720981.1A priority patent/EP2254386B1/en
Priority to JP2010502871A priority patent/JP5185367B2/ja
Priority to US12/920,488 priority patent/US8532140B2/en
Publication of WO2009113623A1 publication Critical patent/WO2009113623A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • the present invention relates to a radio communication method, a radio communication system, a base station, and a terminal station that enable dynamic band allocation.
  • this network includes a base station 2 connected to a wired network 1 and a large number of wireless terminals 3-1, 3-2,. , An integer).
  • the wireless terminals 3-1, 3-2,..., 3-N are directly accommodated in the base station 2.
  • each of the wireless terminals 3-1 and 3-2 has established one wireless link 5 with the base station 2.
  • the wireless terminal 3-N has established two wireless links 5 with the base station 2.
  • the wireless terminals 3-1, 3-2,..., 3-N in this network are battery-activated.
  • the wireless terminals 3-1, 3-2,..., 3-N are low power consumption / low function terminals having only a minimum function such as data measurement and measurement data transmission.
  • the traffic from the wireless terminals 3-1, 3-2,..., 3-N has (1-1) a small amount of data, (1-2) a relatively long transmission interval, (1-3) data Regarding the occurrence, it has a feature of high periodicity.
  • Many such wireless terminals 3-1, 3-2,..., 3-N exist under one base station 2. Therefore, as traffic characteristics, there are many periodic traffics of uplink (information transmission from the wireless terminals 3-1, 3-2,..., 3-N to the base station 2 on the wired network 1 side).
  • the overall traffic volume tends to increase. Furthermore, the purpose of this network is to collect data from as many wireless terminals 3-1, 3-2,..., 3-N as possible, so that as many wireless terminals as possible can be transmitted to one base station 2. It is necessary to efficiently accommodate the terminals 3-1, 3-2,..., 3-N. Therefore, in these networks, a single base station 2 efficiently accommodates a large number of low-function wireless terminals 3-1, 3-2,..., 3-N, while having high throughput and low transmission delay time.
  • MAC Media Access Control
  • FIG. 2 shows an example of a MAC frame in TDMA-TDD (Time Division Multiple Access-Time Division Duplex).
  • the MAC frame has a fixed length and is divided into an uplink and a downlink.
  • the downlink includes a broadcast area (or section, the same applies hereinafter) and a demand assignment area.
  • the uplink includes a demand assignment (DA) area and a random access (RA) area.
  • DA demand assignment
  • RA random access
  • the demand assignment area is a band allocation area for each of the wireless terminals 3-1, 3-2,..., 3-N or each wireless link, and is an area that can be accessed without contention (no contention).
  • the random access area is an area used by a plurality of wireless terminals 3-1, 3-2,..., 3-N by random access, and is a contention-based access area.
  • Bch Broadcast control channel
  • RFch Random access Feedback channel
  • Fch Frerame control channel
  • Cch Control channel: control channel
  • Dch Data channel: data channel
  • Rch Random access channel
  • Bch is used for frame synchronization and for reporting the attributes (base station ID (identifier), etc.) of the base station 2 to the radio terminals 3-1, 3-2,..., 3-N.
  • Fch is a wireless terminal 3-1, 3-2,..., 3 in a demand assignment area in which bandwidth allocation is performed in units of wireless terminals 3-1, 3-2,. -Information on bandwidth allocation for each N or for each radio link (for example, ID, allocation channel, allocation for identifying the wireless terminals 3-1, 3-2, ..., 3-N or the radio link 5 to which the bandwidth is allocated (Location, allocated amount, etc.).
  • RFch to notify random access information (random access result of previous frame, random access parameters (Initial Window Size: IWS) and PF (Persistent Factor), starting position of random access in this frame, number of slots, etc.) Used.
  • Cch is used to transmit and receive control information for each wireless terminal or each wireless link such as a bandwidth request (Resource Request: RREQ) and ARQ (Automatic Repeat Request).
  • Dch is used to send and receive data.
  • Rch is a channel for random access, and is used by the radio terminals 3-1, 3-2,..., 3-N or a radio link for random access transmission of the RREQ to the base station 2.
  • FIG. 3 shows an example of an uplink data transmission sequence using this method.
  • the base station 2 transmits Bch, RFch, and Fch to the wireless terminals 3-1, 3-2,..., 3-N in order from the top of the MAC frame.
  • the wireless terminals 3-1, 3-2,..., 3 -N subordinate to the base station 2 can know the start position of random access and the number of slots in the frame by receiving the RFch.
  • the wireless terminals 3-1, 3-2,..., 3-N ,..., 3-N or RREQ bandwidth request
  • the wireless terminals 3-1, 3-2,..., 3-N indicate the back-off time that is the transmission standby time based on the Exponential (exponential function) back-off algorithm.
  • -2, ..., 3-N autonomously determined to avoid collision with Rch from N.
  • a uniform random value (integer) within 0 (WS) is generated from 0.
  • the random value is set as the number of back-off slots.
  • the time required for the number of back-off slots to pass is defined as the back-off time.
  • IWS notified by RFch is used as WS.
  • the wireless terminals 3-1, 3-2,..., 3 -N transmit RREQ to the base station 2 in the Rch slot immediately after completion of standby when the back-off time is completed. If there is a collision with Rch from other wireless terminals 3-1, 3-2,..., 3-N, the RREQ is retransmitted by applying the Exponential backoff algorithm. When the RREQ is correctly received, the base station 2 notifies successful reception of the RREQ using the RFch of the next frame, and allocates Dch corresponding to the bandwidth request value from the RREQ.
  • an ARQ (ARQ-ACK / ARQ-NACK) Cch for transmitting an arrival confirmation for the Dch to the wireless terminal 2 is assigned.
  • the wireless terminals 3-1, 3-2,..., 3-N receive CRQ for ARQ-ACK, the data transmission processing is completed.
  • the RREQ is retransmitted by applying the Exponential back-off algorithm.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to reduce overhead associated with a collision by reducing random access traffic, and to connect a base station and a radio connected to the base station via a radio line.
  • An object of the present invention is to provide a radio communication method, a radio communication system, a base station, and a terminal station that can improve throughput characteristics and delay characteristics between terminals.
  • the present invention has been made to solve the above-described problems.
  • a wireless communication method a plurality of terminal stations are connected to a base station through a common wireless line.
  • the bandwidth for bandwidth allocation in the uplink communication band in the radio frame is managed as a demand assignment section, and the remaining band is managed as a random access section, and the upstream communication band required for the bandwidth request information from the terminal station
  • the terminal station performs random access transmission of bandwidth request information to the random access section after the back-off time elapses, and allocates from the base station when the transmission is successful.
  • the base station is configured to transmit the terminal data for each terminal station or between the terminal station and the base station. Even if a bandwidth request for random access is not received from the terminal station in the demand assignment section that exists in a specific period of high transmission frequency of the transmission data specified for each link, for each terminal station or the wireless Band allocation is performed for each link, and the terminal station transmits band request information or the transmission data in the band for which the base station has allocated the band.
  • the specific period is set to start or end based on an instruction from the outside of the base station.
  • the specific period is set to start time or end time corresponding to a signal exchange sequence for each wireless link.
  • the specific period is set to start time corresponding to bandwidth allocation for the terminal station or the wireless link.
  • the specific period is a time-out of an internal timer set at the start time, or the demand assignment section where the base station exists in the specific period.
  • the specific period is based on measurement information of the transmission data transmitted to the base station for each terminal station or for each wireless link, Alternatively, the end time is estimated and set.
  • bandwidth allocation for each terminal station or each wireless link in the demand assignment section existing in the specific period satisfies a specified timing or a specified condition. It is done at the timing.
  • a plurality of terminal stations are connected to a base station through a common wireless channel, and the base station is for bandwidth allocation among uplink communication bands in a wireless frame. Is assigned as a demand assignment interval, and the remaining bandwidth is managed as a random access interval, and a requested uplink communication bandwidth is assigned to the demand assignment interval in response to bandwidth request information from the terminal station.
  • wireless communication is performed such that, after the back-off time elapses, bandwidth request information is randomly accessed and transmitted in a random access section, and when transmission is successful, the transmission data is transmitted using a bandwidth allocated from the base station.
  • the base station specifies the transmission data specified for each terminal station or for each radio link between the terminal station and the base station. Even if a bandwidth request for random access is not received from the terminal station in the demand assignment section existing in a specific period with high transmission frequency, bandwidth allocation is performed for each terminal station or each radio link, and the terminal The station transmits band request information or the transmission data in a band to which the base station has assigned a band.
  • a plurality of terminal stations are connected to the base station through a common radio channel, and the base station is used for bandwidth allocation in the uplink communication band in the radio frame.
  • the bandwidth is managed as a demand assignment section, and the remaining bandwidth is managed as a random access section, and a requested uplink communication band is allocated to the demand assignment section in response to the bandwidth request information from the terminal station.
  • a plurality of terminal stations are connected to a base station through a common radio channel, and the base station is used for bandwidth allocation in an uplink communication band in a radio frame.
  • the bandwidth is managed as a demand assignment section, and the remaining bandwidth is managed as a random access section, and the requested upstream communication bandwidth is allocated to the demand assignment section in response to the bandwidth request information from the terminal station.
  • the base station specified for each terminal station or for each radio link between the terminal station and the base station Even when a bandwidth request for random access is not transmitted in the demand assignment section existing in a specific period with high transmission frequency of communication data, the base station performs bandwidth allocation for each terminal station or each wireless link.
  • the bandwidth request information or the transmission data is transmitted in the bandwidth.
  • a period during which uplink data transmission frequency is high is specified for each radio terminal or radio link that is a terminal station, and for the specified period (specific period), the radio terminal Alternatively, a bandwidth for uplink data transmission to the radio link is allocated. Therefore, random access traffic can be reduced when the base station performs bandwidth allocation for uplink transmission in advance.
  • 6 is a flowchart of a process for releasing a bandwidth allocation link for uplink transmission according to an embodiment of the present invention.
  • 4 is a flowchart of bandwidth allocation processing for uplink transmission according to an embodiment of the present invention.
  • 6 is a flowchart of a registration determination process for a bandwidth allocation link for uplink transmission according to an embodiment of the present invention.
  • 6 is a flowchart of a process for releasing a bandwidth allocation link for uplink transmission according to an embodiment of the present invention.
  • the basic configuration of the wireless system according to the embodiment of the present invention is the same as the conventional one. That is, as shown in FIG. 1, it is composed of a base station 2 connected to the wired network 1 and a large number of wireless terminals 3-1, 3-2,. Wireless terminals 3-1, 3-2,..., 3 -N serving as terminal stations are directly accommodated in the base station 2. In this case, a server 4 is connected to the wired network 1. Further, the base station 2 and the plurality of wireless terminals 3-1, 3-2,..., 3-N are connected by wireless links 5, respectively.
  • the base station 2 dynamically allocates a band in response to a request from the wireless terminals 3-1, 3-2,..., 3-N, the TDMA-TDD shown in FIG. A case where the MAC frame in FIG.
  • a plurality of wireless terminals 3-1, 3-2,... is connected to the base station 2 by (consisting of each wireless link 5).
  • the base station 2 manages a band for band allocation among uplink communication bands in a MAC frame that is a radio frame as a demand assignment section, and manages the remaining bands as a random access section. Then, the base station 2 allocates the requested upstream communication bandwidth to the demand assignment section for the bandwidth request information from the wireless terminals 3-1, 3-2,.
  • the wireless terminals 3-1, 3-2,..., 3-N transmit the band request information to the slots in the random access section after the back-off time has elapsed.
  • the wireless terminals 3-1, 3-2,..., 3-N transmit the band request information at random after the back-off time has elapsed. If the transmission is successful, the base station 2 allocates the upstream communication band to the demand assignment section, and the wireless terminals 3-1, 3-2,..., 3-N transmit using the allocated band. Send data. In the embodiment of the present invention, as described below, it is possible to specify a period in which the transmission frequency of uplink transmission data is high.
  • the base station 2 performs dynamic bandwidth allocation for allocating bandwidth for uplink data transmission to the wireless terminals 3-1, 3-2,..., 3-N or the wireless link 5.
  • uplink transmission data is provided for each radio terminal 3-1, 3-2,..., 3-N or for each radio link 5.
  • the period in which the transmission frequency of the message is high is specified as the “specific period”.
  • an uplink data transmission band for the wireless terminals 3-1, 3-2,..., 3-N or the wireless link 5 is allocated to the specific period. This eliminates the need for RREQ (bandwidth request) transmission using random access from the wireless terminals 3-1, 3-2,..., 3-N, and reduces the amount of random access traffic.
  • This specific period is a time corresponding to one or more frames of the MAC frame in FIG.
  • FIG. 4 and 5 are diagrams showing an example of an access sequence when the bandwidth allocation method according to the embodiment of the present invention is applied to the wireless system of FIG.
  • the specific period is set as one MAC frame (MAC Frame (1)) as an example.
  • RREQ Cch is assigned to the corresponding wireless terminal 3-1, 3-2,..., 3 -N or the wireless link 5 as an uplink (UL) transmission allocated band.
  • DA uplink
  • an ARQ Cch may be assigned to that Cch.
  • the transmission data Dch is assigned to the corresponding wireless terminals 3-1, 3-2,..., 3-N or the wireless link 5 as the allocated bandwidth for uplink transmission.
  • the allocated bands (channels) for uplink (UL) transmission in a specific period include the following (i) and (ii).
  • FIG. 6 shows a basic configuration example of the base station 2.
  • the base station 2 includes a transmission unit 21, a reception unit 22, a radio control unit 23, and a band allocation unit 24 in order to realize radio communication.
  • the base station 2 includes a connection control unit 25 in order to manage communication with the wired side including the wired network 1 of FIG. 1, the transmission unit 21 and the reception unit 22 that perform wireless communication with the wireless terminals 3-1, 3-2,..., 3-N perform transmission and reception in units of wireless channels.
  • the radio control unit 23 performs radio frame generation / decomposition, control of the transmission unit 21 and the reception unit 22, and band management for each radio link.
  • the bandwidth allocation unit 24 performs scheduling.
  • the base station 2 determines a specific period according to an instruction from the wired network 1, for example, the server 4.
  • the connection control unit 25 receives an instruction from the wired network 1, specifies the wireless link 5 corresponding to the instruction, and notifies the wireless control unit 23 of a start / end instruction for a specified period for the specified wireless link 5. To do.
  • the timing at which the instruction from the wired network 1 is received may be used as the start / end instruction for the specific period, or the start / end timing of the specific period included in the instruction from the wired network 1 may be used as the start / end instruction for the specific period. It is good.
  • the timing may be time, or may represent time or information that can be calculated, for example, a frame number of a MAC frame.
  • the start / end of the specific period is the received time or the instructed time
  • the frame number is the frame in which the instruction is received or the instructed frame.
  • the wireless control unit 23 sets the start of the specific period by receiving the start instruction from the connection control unit 25 and sets the end of the specific period by receiving the end instruction.
  • FIG. 7 shows a control flow of the base station 2. In FIG. 7, the structure of the base station 2 of FIG. 6 is shown. In FIG. 7, the flow of information when a specific period is determined by an instruction from the connection control unit 25 or the wired network 1 is indicated by a broken line.
  • a broken line (f1) indicates the present embodiment, and the connection control unit 25 instructs the wireless control unit 23 to start and end the specific period in response to an instruction from the server 4 (see FIG. 1) of the wired network 1. Shows when to do.
  • the base station 2 specifies the data exchange sequence performed in the radio link 5 from the known data exchange sequence group. By doing so, the specific period is determined.
  • the connection control unit 25 receives data from the wireless side or the wired side, identifies the first data of the data exchange sequence from the data type in the data, and thus extracts the corresponding sequence from the known data exchange sequence group.
  • the wireless control unit 23 is instructed to specify the reception timing of the first data of the corresponding sequence as the start of the specific period and the reception timing of the last data as the end of the specific period.
  • the wireless control unit 23 sets the start of the specific period by receiving the start instruction from the connection control unit 25 and sets the end of the specific period by receiving the end instruction.
  • FIG. 7 shows a control flow of the base station 2.
  • a broken line (f2) indicates the present embodiment, and shows a case where the connection control unit 25 instructs the start and end of the specific period.
  • the reception timing may be time, information representing time, or information from which time can be calculated, for example, a frame number of a MAC frame. In the case of time, the start / end of the specific period is the received time, and in the case of the frame number, it is the received frame.
  • a radio link monitoring unit 26 is provided between the receiving unit 22 and the radio control unit 23, and the communication status and bandwidth of the radio link 5 at the base station 2 Monitor the allocation status and determine a specific period. That is, the start of the specific period is made according to the band allocation timing (for example, Dch allocation in the present embodiment) for the radio link 5 to be monitored. At this time, the Dch to be monitored may be (2-1) uplink Dch only, (2-2) downlink Dch only, or (2-3) uplink and downlink Dch. On the other hand, the end of the specific period may be the following cases (a) to (c).
  • the conditions described in (a) to (c) above may be used alone or in combination.
  • the timing at which the number of times of transmission of the bandwidth allocation information or transmission data for the allocated bandwidth reaches the specified number, or the reception timing of the bandwidth allocation information for the allocated bandwidth is terminated.
  • the bandwidth allocation timing, the timeout timing, the timing when the specified number is reached, and the reception timing may be time, or may be information representing the time or calculating the time, for example, the frame number of the MAC frame.
  • the bandwidth allocation time, the timeout time, the time when the specified number is reached, and the reception time In the case of the frame number, the bandwidth allocation frame, the time-out frame, the specified number
  • the received frame is the received frame.
  • a radio traffic measurement unit 27 is provided between the reception unit 22 and the radio control unit 23, and uplink transmission data of the radio link 5 at the base station 2.
  • (Dch) traffic may be measured, and the specific period may be estimated based on the measurement result. At this time, the specific period is determined from the following measurement information.
  • the wireless terminals 3-1, 3-2 to 3-N transmit the transmission data with the data generation information added thereto, and the base station 2 receives the data before receiving the data.
  • the data generation interval is calculated by taking the difference from the data generation information.
  • a specific period for the next data is determined at the time of data (Dch) reception based on a fixed interval or an occurrence interval measured for a specified number of data.
  • the start of the specific period is defined as the last received data occurrence information + minimum occurrence interval
  • the end of the specific period is defined as the last received data occurrence information + longest occurrence interval.
  • the base station 2 stores the reception information of the data, and calculates the reception interval of the transmission data at the base station 2 by taking the difference from the reception information of the previous data. Then, a specific period for the next data is determined at the time of data (Dch) reception based on a predetermined interval or a reception interval measured for a specified number of data. At this time, the start of the specific period is defined as reception information of the last received data + minimum reception interval, and the end of the specific period is defined as reception information of the last received data + longest reception interval.
  • the generation information and the reception information may be time information, or information representing time or calculating time, for example, a frame number of a MAC frame (fixed length). When the generation information and the reception information are defined by time, the generation information and the reception information are respectively the generation time and the reception time.
  • the above (III) is a combination of the above configuration (I) and (II).
  • the configuration / operation of (I) is applied to the start of a specific period, and the end is determined by monitoring of (II).
  • the start is determined by the monitoring in (II) above, and the configuration / operation of (I) is applied for the end.
  • the configurations of (I) and (II) are combined for the setting at the start and end.
  • (A) includes, for example, every frame, every specified number of frames, and after the specified number of frames from the start of a specific period.
  • (B) applies (A) when the specified condition is satisfied.
  • the specified condition the wireless terminals 3-1, 3-2,. 5, when there is data allocation of downlink (information transmission from the base station 2 to the wireless terminals 3-1, 3-2,..., 3-N), For example.
  • FIG. 10 shows a sequence example at the time of authentication processing applied in the first and second embodiments.
  • the wireless terminals 3-1, 3-2,..., 3-N perform authentication processing to start wireless communication after establishing synchronization with the base station 2.
  • the wireless terminals 3-1, 3-2,..., 3-N acquire the MAC-ID that is an ID for the base station 2 to identify the wireless terminal 2 in the wireless section.
  • a MAC-ID assignment request is randomly accessed and transmitted to the base station 2 (step S11).
  • the wireless terminal 2 receives the MAC-ID assignment response from the base station 2 (step S12).
  • an authentication processing sequence (authentication request, authentication response, authentication completion) which is one of known data exchange sequences is performed. That is, the wireless terminals 3-1, 3-2,..., 3-N transmit an authentication request to the base station 2 (step S13). Then, the wireless terminals 3-1, 3-2,..., 3-N receive an authentication response from the base station 2 (step S14). Then, the wireless terminals 3-1, 3-2,..., 3-N transmit authentication completion to the base station 2 (step S15). This process is performed at the initiative of the connection control unit 25, and data to be exchanged is sequential.
  • Bandwidth allocation for uplink (UL) transmission is performed for this sequence.
  • the determination of the specific period can be applied based on monitoring of the data exchange sequence of the radio link 5 (corresponding to FIG. 7) or based on monitoring of the bandwidth allocation status of the radio link 5 (corresponding to FIG. 8).
  • the connection control unit 25 in FIG. 7 issues a start instruction after receiving the authentication request that is the first data in the authentication processing sequence.
  • the wireless control unit 23 is notified (step S16).
  • the connection control unit 25 notifies the end instruction after receiving the authentication completion, which is the last data in the authentication processing sequence (step S17).
  • the wireless control unit 23 regards the start instruction and the end instruction as the start and end of the specific period.
  • the wireless link 5 that performs the authentication process is monitored, and the start of the Dch bandwidth allocation for the wireless link 5 is set as the start of the specific period.
  • the base station 2 counts the number of unaccessed bandwidths assigned to the wireless link 5 in a specific period, and when the specified value is reached, the communication of the wireless link 5 is considered to be completed, and the specific period ends.
  • the end time is not determined at the start of the specific period (when a method other than the method for determining the specific period by estimation is used), and the specific period is set for the authentication processing sequence.
  • a case where frame allocation is performed will be described.
  • the bandwidth allocation method for uplink (UL) transmission in the specific period described above is set to each frame in (A) above, and the bandwidth allocated for uplink (UL) transmission is set to RREQ in (i) above.
  • An allocation process in the case of allocating one Cch per frame as a Cch for (bandwidth request) will be described.
  • FIG. 11 shows registration determination processing for a bandwidth allocation link for uplink (UL) transmission.
  • step Sa1 It is determined whether or not the wireless link 5 for which the specific period has started can be registered as a bandwidth allocation link for uplink (UL) transmission (step Sa1). If registration is possible, an RREQ Cch band is allocated to the radio link 5 until the specific period ends (step Sa2). At this time, the Cch band for RREQ is regarded as a priority reserved band.
  • the priority reserved bandwidth is a bandwidth that is always secured.
  • the priority reserved total bandwidth value (the RREQ Cch bandwidth for the wireless link 5 added to the already registered priority reserved bandwidth) and its maximum value (preset value) are obtained. Compare. If it is equal to or less than the maximum value, the bandwidth for RREQ is determined as a priority secured bandwidth in step Sa2, and the link is registered as a bandwidth allocation link for uplink (UL) transmission. At the time of scheduling by the bandwidth allocation unit 24, Cch for RREQ is allocated to all links registered as bandwidth allocation links for uplink (UL) transmission. When the maximum value is exceeded, the added Cch band is subtracted from the priority secured total band value and returned to the value before comparison.
  • Fig. 12 shows the cancellation processing of the bandwidth allocation link for uplink (UL) transmission. This process is performed at the end of the specific period, and the link is released from the bandwidth allocation link for uplink (UL) transmission (step Sb1). Then, the priority total bandwidth value is updated by subtracting the RREQ bandwidth for the link from the priority total bandwidth value (step Sb2).
  • the end time is not determined at the start of the specific period (when a method other than the method for determining the specific period by estimation is used), and the specific period is set for the authentication processing sequence.
  • An example of assignment when assignment conditions are provided will be described.
  • a case will be described in which a bandwidth allocation method for uplink (UL) transmission in a specific period matches the allocation condition (B).
  • the allocation condition is when downlink Dch transmission occurs, and the UL transmission band is allocated only once after the same frame. In FIG. 10, it corresponds to the message transmission of the authentication response.
  • an allocation process when the allocated bandwidth for uplink (UL) transmission is Dch for data transmission of (ii) will be described.
  • the allocated bandwidth is not Dch for RREQ but Dch for data transmission, but is not limited to this.
  • the exchanged message has a fixed length and is sequential as in the authentication processing sequence, direct allocation of Dch is possible.
  • a radio link that has started a specific period is registered as a bandwidth allocation link for uplink (UL) transmission.
  • the radio link whose specific period has ended is released from the uplink (UL) transmission bandwidth allocation link.
  • the allocation to the priority reserved bandwidth described in the first embodiment is performed, and then the allocated bandwidth is subtracted to calculate an allocatable bandwidth (remaining bandwidth).
  • the bandwidth allocation processing for uplink (UL) transmission shown in FIG. 13 is performed for all links of the bandwidth allocation link for uplink (UL) transmission.
  • it is determined whether or not the allocation condition is met is met (step Sc1). If they match, it is determined whether the bandwidth for uplink (UL) transmission can be secured by comparing the remaining bandwidth with the allocated bandwidth for uplink (UL) transmission (step Sc2).
  • the allocated bandwidth value for uplink (UL) transmission is equal to or less than the remaining bandwidth value, allocation is possible, and as the bandwidth allocation processing for uplink (UL) transmission, Dch for data transmission to the corresponding radio link 5 Is assigned (step Sc3). At this time, the remaining bandwidth is updated by subtracting the allocated bandwidth value from the remaining bandwidth value.
  • step Sc1 if the allocation condition is not satisfied (“No” in step Sc1), the bandwidth allocation processing for uplink (UL) transmission to the radio link is not performed.
  • step Sc4 bandwidth allocation for uplink (UL) transmission in the next and subsequent frames.
  • This process secures the allocated bandwidth for the uplink (UL) bandwidth allocation link satisfying the allocation condition as the priority secured bandwidth (described in the first embodiment) after the next frame, and allocates it reliably after the next frame.
  • the priority is reserved.
  • the allocated bandwidth for uplink (UL) transmission is Dch for data transmission, but it can also be applied to Cch for RREQ.
  • the end time is determined at the start of the specific period (when the method for determining the specific period by estimation is used), and data uplink (UL) transmission is performed in the communication of the radio link 5.
  • the determination of the specific period is performed based on traffic estimation using the generation information (II).
  • the data generation interval is calculated by taking the difference from the previous data generation information.
  • the generation period of the next data is predicted from the measured generation interval, and the prediction period is set as the specific period.
  • the generation intervals are measured by wireless terminals 3-1, 3-2,..., 3-N attaching generation information to data and transmitting the data. Hold for minutes and calculate.
  • the start of the specific period is defined as the last received data generation information + the shortest generation interval.
  • the end of the specific period is defined as the last received data generation information + the longest generation interval.
  • a threshold that is an upper limit value of the specific period may be provided for the specific period in the present embodiment, and the following uplink (UL) transmission band allocation may be performed for the radio link 5 that is equal to or less than the threshold. .
  • UL uplink
  • the bandwidth allocation method for uplink (UL) transmission in a specific period is set to each frame of (A) above, and the allocated bandwidth for uplink (UL) transmission is set to Cch for RREQ in (i) above.
  • An allocation process when one Cch is allocated for each frame will be described.
  • FIG. 14 shows registration determination processing for a bandwidth allocation link for uplink (UL) transmission. First, it is determined whether or not the wireless link 5 whose specific period has started can be registered as a bandwidth allocation link for uplink (UL) transmission (step Sd1). If registration is possible, an RREQ Cch band is allocated to the radio link in all frames in a specific period.
  • the CREQ band for RREQ is regarded as a priority reserved band.
  • the priority reserved bandwidth it is determined whether or not the priority reserved bandwidth can be secured in all the frames in the specific period.
  • the method described in the first embodiment can be used to determine the priority reserved bandwidth. If the RREQ bandwidth can be determined as the priority secured bandwidth in all frames, the link is registered as a bandwidth allocation link for uplink (UL) transmission (step Sd2). At the time of scheduling by the bandwidth allocation unit 24, Cch for RREQ is allocated to all links registered as bandwidth allocation links for uplink (UL) transmission.
  • FIG. 15 shows a process for releasing a bandwidth allocation link for uplink (UL) transmission. This process is performed when the specific period expires or when the specific period ends midway. At the time of uplink reception, the link is released from the bandwidth allocation link for uplink (UL) transmission (step Se1). Then, it is determined whether or not the specific period has expired (step Se2). When the specific period has expired (“Yes” in step Se2), the processing illustrated in FIG. 15 is terminated.
  • step Se2 If it ends in the middle of a specific period (“No” in step Se2), that is, if a bandwidth request is received by random access, or if a bandwidth request is received by bandwidth allocation for uplink transmission, unallocated
  • the priority secured total bandwidth value is updated by subtracting the RREQ bandwidth for the link from the priority secured total bandwidth value for the frame (step Se3).
  • the above embodiment is a communication method in the case where, for example, a plurality of wireless terminals 3-1, 3-2,..., 3-N share a wireless line composed of a plurality of wireless links 5.
  • DSA dynamic slot
  • a demand assignment section and a random access section are set in the uplink section in the MAC frame.
  • the wireless terminals 3-1, 3-2,..., 3-N transmit a bandwidth allocation request to the base station 2 in the random access section.
  • the wireless terminals 3-1, 3-2,..., 3-N transmit the transmission data in the allocated bandwidth to the base station 2. Send to.
  • the wireless terminals 3-1, 3-2,..., 3 -N repeat transmitting the bandwidth allocation request again after the back-off time has elapsed. Then, a period in which the transmission frequency of uplink transmission data is high is analyzed and determined for each of the wireless terminals 3-1, 3-2,..., 3-N or for each wireless link 5. In this specific period, the base station 2 allocates a demand assign band to the wireless terminals 3-1, 3-2 to 3 -N or the wireless link 5. That is, the base station 2 identifies (specific period) a period in which the uplink data transmission frequency is high for each of the radio terminals 3-1, 3-2,.
  • an uplink data transmission band for the wireless terminals 3-1, 3-2,..., 3-N or the wireless link 5 is allocated to the period.
  • a method for determining the specific period a method based on an instruction from the outside, a method of monitoring a bandwidth allocation state or estimating traffic in the base station 2 can be used.
  • the base station 2 since the base station 2 performs bandwidth allocation for uplink (UL) transmission in advance, the wireless terminals 3-1, 3-2,. It is not necessary to transmit a bandwidth allocation request. Therefore, random access (RA) traffic can be reduced. That is, according to the embodiment of the present invention, there is an effect that data collision in a random access section can be suppressed even during a period in which traffic is concentrated, and throughput can be improved.
  • each said embodiment was demonstrated based on the frame structure of the prior art shown in FIG. 2, it is not limited to this.
  • the present invention can be applied even to a frame in which the order of Bch, RFch, Fch, etc. is switched.
  • Each configuration of the above-described embodiment of the present invention (each block shown in FIGS. 6 to 9) can be realized by a combination of a computer and its peripheral devices and a program executed by the computer. Changes such as division and integration of the components can be made as appropriate.
  • the present invention can reduce overhead due to collision by reducing random access traffic, and improve throughput characteristics and delay characteristics between a base station and a radio terminal connected to the base station by a radio channel. It can be applied to a wireless communication method, a wireless communication system, a base station, a terminal station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

 基地局は、端末局毎又は端末局と基地局間の無線リンク毎に特定されたデータ送信頻度の高い特定期間に存在するデマンドアサイン区間に、端末局からランダムアクセスでの帯域要求を受信していない場合でも、端末局毎又は無線リンク毎の帯域割当を行い、端末局は、基地局から割り当てられた帯域にて帯域要求情報又は送信データを送信する。

Description

無線通信方法、無線通信システム、基地局、及び端末局
 本発明は、動的な帯域の割り当てを可能とする無線通信方法、無線通信システム、基地局、及び端末局に関する。
 本願は、2008年3月12日に、日本に出願された特願2008-062531号に基づき優先権を主張し、その内容をここに援用する。
 近年、設備制御、交通、流通、環境保全、食・農業、地震モニタリング、医療福祉などを中心とした分野において、無線タグ、Bluetooth(登録商標)、Zigbee(登録商標)等の短距離の無線通信システムによるユビキタスネットワークが普及し始めている。今後、アプリケーションやサービスの開発に伴い、それらのネットワークの利用ユーザ数の増加が期待される。そこで、様々なアプリケーションやサービスをより多くのユーザに提供可能とし、さらに、サービスエリアを拡大できる広域ユビキタスネットワークが注目されている。
 図1に示すように、本ネットワークは、有線ネットワーク1に接続された基地局2と、広域に点在する多数の無線端末3-1、3-2、・・・、3-N(Nは、整数)から構成される。無線端末3-1、3-2、・・・、3-Nは、基地局2に直接収容される。図1では、無線端末3-1、3-2は、基地局2とそれぞれ1つの無線リンク5を確立している。また、無線端末3-Nは、基地局2と2つの無線リンク5を確立している。
 なお、有線ネットワーク1に接続される基地局2は複数であってもよい。
 本ネットワーク内の無線端末3-1、3-2、・・・、3-Nは、バッテリィ起動される。無線端末3-1、3-2、・・・、3-Nは、データの測定と測定データの送信等の最小限の機能しか有していない低消費電力・低機能の端末である。無線端末3-1、3-2、・・・、3-Nからのトラヒックは、(1-1)データ量が少ない、(1-2)送信間隔が比較的長い、(1-3)データ発生に関しては周期性が高い、という特徴を有する。このような無線端末3-1、3-2、・・・、3-Nが一つの基地局2の配下に多数存在する。そのため、トラヒック特性としては、アップリンク(無線端末3-1、3-2、・・・、3-Nから有線ネットワーク1側の基地局2への情報の伝送)の周期性トラヒックが多く存在し、全体のトラヒック量は増大する傾向にある。さらに、本ネットワークでは、できるだけ多くの無線端末3-1、3-2、・・・、3-Nからのデータを収集することを目的としているため、一台の基地局2にできるだけ多くの無線端末3-1、3-2、・・・、3-Nを効率良く収容する必要がある。従って、これらのネットワークでは、一台の基地局2で多数の低機能な無線端末3-1、3-2、・・・、3-Nを効率良く収容しつつ、高スループット、低伝送遅延時間を実現できるMAC(Media Access Control)プロトコルが要求される。
 上記要求条件を満たすMACプロトコルとしては、リソース利用効率が高い集中制御手法の一つである動的スロット割当(DSA: Dynamic Slot Assignment)が知られている。この手法では、基地局2が無線端末3-1、3-2、・・・、3-Nからの要求に応じた帯域(スロット)を動的に割り当てる。
 図2に、TDMA-TDD(Time Division Multiple Access - Time Division Duplex)におけるMACフレームの一例を示す。MACフレームは、固定長であり、上りリンクと下りリンクの2つに分かれている。下りリンクは、報知領域(あるいは区間、以下同じ)とデマンドアサイン領域で構成されている。上りリンクは、デマンドアサイン(DA)領域とランダムアクセス(RA)領域で構成されている。
 デマンドアサイン領域は、無線端末3-1、3-2、・・・、3-N或いは無線リンク毎の帯域割当領域であり、コンテンションフリー(競合なし)でアクセス可能な領域である。一方、ランダムアクセス領域は、複数の無線端末3-1、3-2、・・・、3-Nがランダムアクセスにより使用する領域であり、コンテンションベースのアクセス領域である。また、データや制御情報を送受信するために、Bch(Broadcast control channel:ブロードキャスト制御チャネル)、RFch(Random access Feedback channel:ランダムアクセスフィードバックチャネル)、Fch(Frame control channel:フレーム制御チャネル)、Cch(Control channel:制御チャネル)、Dch(Data channel:データチャネル)、Rch(Random access channel:ランダムアクセスチャネル)が使用される。Bchは、フレーム同期用で、かつ、無線端末3-1、3-2、・・・、3-Nに基地局2の属性(基地局ID(識別子)等)を報知するために用いられる。Fchは、無線端末3-1、3-2、・・・、3-N単位或いは無線リンク単位で帯域割当を行うデマンドアサイン領域での無線端末3-1、3-2、・・・、3-N毎或いは無線リンク毎の帯域割当に関する情報(例えば、帯域を割り当てた無線端末3-1、3-2、・・・、3-Nあるいは無線リンク5を特定可能なID、割当チャネル、割当位置、割当量等)を通知するために用いられる。RFchは、ランダムアクセス情報(前フレームのランダムアクセス結果、ランダムアクセスパラメータ(Initial Window Size: IWS)とPF(Persistent Factor)、本フレームでのランダムアクセスの開始位置及びスロット数等)を通知するために用いられる。Cchは、帯域要求(Resource Request: RREQ)やARQ(Automatic Repeat Request)等の無線端末毎あるいは無線リンク毎の制御情報を送受信するために使用される。Dchはデータを送受信するために使用される。Rchは、ランダムアクセスのためのチャネルであり、無線端末3-1、3-2、・・・、3-N或いは無線リンクが上記RREQを基地局2へランダムアクセス送信するために使用される。
 動的スロット割当(DSA)には、無線端末3-1、3-2、・・・、3-Nが基地局2に対して帯域要求を行うためにランダムアクセスを用いる方法がある。この方法は、バースト的に発生する非周期のデータを柔軟かつ効率よく収容できるため、広く適用されている。
 図3は、この方法を用いたアップリンクのデータ送信シーケンスの一例を示している。本例では、基地局2は、MACフレーム(MAC Frame)の先頭から順にBch、RFch、Fchを無線端末3-1、3-2、・・・、3-Nに送信する。基地局2配下の無線端末3-1、3-2、・・・、3-Nは、RFchを受信することで、そのフレームでのランダムアクセスの開始位置、スロット数を知ることができる。無線端末3-1、3-2、・・・、3-Nは、基地局2にデータを送信する場合、送信データのための帯域を要求するために、無線端末3-1、3-2、・・・、3-Nあるいは無線リンク5を特定するIDを含むRREQ(帯域要求)をRchで送信する。このとき、無線端末3-1、3-2、・・・、3-NはExponential(指数関数)バックオフアルゴリズムに基づいた送信待機時間であるバックオフ時間を、他無線端末3-1、3-2、・・・、3-NからのRchとの衝突を回避するために自律的に決定する。このアルゴリズムでは、0からWS(Window Size)内の一様乱数値(整数)を生成する。そして、その乱数値を、バックオフスロット数とする。そして、そのバックオフスロット数の経過に要する時間を、バックオフ時間とする。また、最初のランダムアクセス時には、RFchで通知されているIWSをWSとして用いる。
 無線端末3-1、3-2、・・・、3-Nは、バックオフ時間が完了した時点で、RREQを待機完了直後のRchスロットで基地局2に送信する。もし、他の無線端末3-1、3-2、・・・、3-NからのRchと衝突した場合、Exponentialバックオフアルゴリズムを適用してRREQを再送する。基地局2では、RREQを正しく受信できた場合に、次フレームのRFchでRREQの受信成功を通知し、RREQから帯域要求値に相当するDchを割り当てる。また、そのDchを割り当てた次のフレームにおいて、そのDchに対する到達確認を無線端末2に送信するためのARQ(ARQ - ACK / ARQ - NACK)用のCchを割り当てる。
 無線端末3-1、3-2、・・・、3-Nは、ARQ - ACK用のCchを受信した場合は、そのデータの送信処理を完了する。一方、ARQ - NACK用のCchを受信した場合は、Exponentialバックオフアルゴリズムを適用してRREQを再送する。
 上記のランダムアクセスによる動的スロット割当(DSA)では、特に、基地局2の配下に多数の無線端末3-1、3-2、・・・、3-Nが存在する。そのため、ランダムアクセス(RA)へのアクセスが増加し、RCH(ランダムアクセスチャネル)が衝突する可能性が高くなり、衝突に伴うオーバーヘッドが増加する。このオーバーヘッドは、Exponentialバックオフアルゴリズムに基づいた送信待機時間であり、これがスループット特性及び遅延特性を劣化させる。
太田厚、布房夫、望月伸晃ほか、"5GHz帯アドバンスドワイヤレスアクセス(AWA)システムの開発-MAC/DCL機能"、2000年電子情報通信学会ソサイエティ大会、B-5-39、P. 327、2000年
 本発明は、上記の事情に鑑みてなされたものであり、その目的は、ランダムアクセストラヒックを低減することで衝突に伴うオーバーヘッドを削減し、基地局と、基地局と無線回線により接続される無線端末との間のスループット特性及び遅延特性を改善することを可能とする無線通信方法、無線通信システム、基地局、及び端末局を提供することにある。
(1) 本発明は、上記課題を解決するためになされたもので、本発明の一態様による無線通信方法は、複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信方法において、前記基地局は、前記端末局毎又は前記端末局と当該基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、当該端末局毎又は当該無線リンク毎の帯域割当を行い、前記端末局は、前記基地局が帯域割当を行った帯域にて帯域要求情報又は前記送信データを送信する。
(2) また、本発明の一態様による無線通信方法では、前記特定期間は、前記基地局の外部からの指示に基づいて開始時、あるいは終了時が設定される。
(3) また、本発明の一態様による無線通信方法では、前記特定期間は、無線リンク毎の信号交換シーケンスに対応して開始時、あるいは、終了時が設定される。
(4) また、本発明の一態様による無線通信方法では、前記特定期間は、前記端末局又は前記無線リンクに対する帯域割当に対応して開始時が設定される。
(5) また、本発明の一態様による無線通信方法では、前記特定期間は、開始時に設定する内部のタイマのタイムアウト時、あるいは、前記基地局が前記特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、前記端末局毎又は前記無線リンク毎に前記基地局が帯域割当を行った帯域に対する前記帯域要求情報又は前記送信データのアクセス状況に応じて、或いは、ランダムアクセスでの帯域要求受信時に、終了時が設定される。
(6) また、本発明の一態様による無線通信方法では、前記特定期間は、前記端末局毎又は前記無線リンク毎に前記基地局へ伝送される前記送信データの測定情報に基づいて開始時、あるいは終了時が推定され設定される。
(7) また、本発明の一態様による無線通信方法では、前記特定期間に存在する前記デマンドアサイン区間における前記端末局毎又は前記無線リンク毎の帯域割当が、規定タイミング、あるいは、規定条件を満たすタイミングで行われる。
(8) また、本発明の一態様による無線通信システムは、複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信システムにおいて、前記基地局は、前記端末局毎又は前記端末局と当該基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、当該端末局毎又は当該無線リンク毎の帯域割当を行い、前記端末局は、前記基地局が帯域割当を行った帯域にて帯域要求情報又は前記送信データを送信する。
(9) また、本発明の一態様による基地局は、複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信システムにおける基地局において、前記端末局毎又は前記端末局と当該基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、当該端末局毎又は当該無線リンク毎の帯域割当を行い、前記端末局から前記帯域割当を行った帯域にて送信された帯域要求情報又は前記送信データを受信する。
(10) また、本発明の一態様による端末局は、複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信システムにおける端末局において、前記基地局によって当該端末局毎又は当該端末局と前記基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、ランダムアクセスでの帯域要求を送信していない場合でも、当該端末局毎又は当該無線リンク毎に基地局が帯域割当を行った帯域にて帯域要求情報又は前記送信データを送信する。
 本発明によれば、基地局において、端末局である無線端末あるいは無線リンク毎に、アップリンクのデータ送信頻度が高い期間を特定し、その特定した期間(特定期間)に対して、当該無線端末あるいは無線リンクに対するアップリンクのデータ送信用の帯域が割り当てられる。したがって、基地局が事前にアップリンク送信用の帯域割当を実施することで、ランダムアクセストラヒックを低減することができる。
本発明の実施形態及び従来技術における無線通信システムの基本構成を示す概略ブロック図である。 MACフレーム構成を示す図である。 従来技術でのアップリンクデータのデータ送信シーケンスの例を示す図である。 本発明の実施形態の適用時のアクセスシーケンス例(アップリンクデータ送信用の帯域割当をRREQ用のCchで行う場合)を示す図である。 本発明の実施形態の適用時のアクセスシーケンス例(アップリンクデータ送信用の帯域割当をデータ用のDchで行う場合)を示す図である。 本発明の実施形態における基地局2の構成例(基本構成)を示すブロック図である。 本発明の実施形態における基地局2の構成例(特定期間を通知に従い決定する場合)を示すブロック図である。 本発明の実施形態における基地局2の構成例(特定期間を無線リンクの監視により決定する場合)を示すブロック図である。 本発明の実施形態における基地局2の構成例(特定期間を無線リンクのトラヒック測定により決定する場合)を示すブロック図である。 認証処理時のシーケンス例を示す図である。 本発明の実施形態によるアップリンク送信用の帯域割当リンクの登録判定処理のフローチャートである。 本発明の実施形態によるアップリンク送信用の帯域割当リンクの解除処理のフローチャートである。 本発明の実施形態によるアップリンク送信用の帯域割当処理のフローチャートである。 本発明の実施形態によるアップリンク送信用の帯域割当リンクの登録判定処理のフローチャートである。 本発明の実施形態によるアップリンク送信用の帯域割当リンクの解除処理のフローチャートである。
符号の説明
1・・・有線ネットワーク、
2・・・基地局、
3-1、3-2~3-N・・・無線端末、
4・・・サーバ、
5・・・無線リンク、
21・・・送信部、
22・・・受信部、
23・・・無線制御部、
24・・・帯域割当部、
25・・・コネクション制御部、
26・・・無線リンク監視部、
27・・・無線トラヒック測定部
 以下、図面を参照して本発明の各実施形態について説明する。本発明の実施形態の無線システムの基本構成は、従来と同様である。つまり、図1に示すように、有線ネットワーク1に接続された基地局2と、広域に点在する多数の無線端末3-1、3-2、・・・、3-Nから構成される。端末局となる無線端末3-1、3-2、・・・、3-Nは、基地局2に直接収容される。この場合、有線ネットワーク1にはサーバ4が接続されている。また、基地局2と複数の無線端末3-1、3-2、・・・、3-Nとの間は、それぞれ無線リンク5で接続されている。
 なお、以下の説明では、基地局2が無線端末3-1、3-2、・・・、3-Nからの要求に応じて帯域を動的に割り当てる際に、図2に示すTDMA-TDDにおけるMACフレームを用いる場合について説明する。
 すなわち、本発明の実施形態の無線システムでは、上記従来の無線システムと同様に、複数の無線端末3-1、3-2、・・・、3-Nが、時分割される共通の無線回線(各無線リンク5から構成されるもの)によって基地局2と接続される。基地局2は、無線フレームであるMACフレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間として管理し、残りの帯域をランダムアクセス区間として管理する。そして、基地局2は、無線端末3-1、3-2、・・・、3-Nからの帯域要求情報に対して要求分の上り通信用帯域をデマンドアサイン区間に割り当てる。無線端末3-1、3-2、・・・、3-Nは、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間内のスロットにランダムアクセス送信する。送信に失敗した場合には、無線端末3-1、3-2、・・・、3-Nは、再度バックオフ時間経過後に帯域要求情報をランダムアクセス送信する。送信に成功した場合には基地局2から上り通信用帯域がデマンドアサイン区間に割り当てられ、無線端末3-1、3-2、・・・、3-Nは、割り当てられた帯域を用いて送信データを送信する。
 本発明の実施形態においては、以下に述べるようにして、アップリンクの送信データの送信頻度が高い期間を特定できる。また、基地局2は、その特定した期間のデマンドアサイン区間に、無線端末3-1、3-2、・・・、3-Nからランダムアクセスでの帯域要求を受信していない場合でも、当該無線端末3-1、3-2、・・・、3-N或いは無線リンク5に対するアップリンクのデータ送信用の帯域を割り当てる動的帯域割当を行う。
 本発明の実施形態としての無線システムにおける基地局2では、帯域割当方法として、無線端末3-1、3-2、・・・、3-N毎或いは無線リンク5毎に、アップリンクの送信データの送信頻度が高い期間を「特定期間」として特定する。そして、その特定期間に対して、当該無線端末3-1、3-2、・・・、3-N或いは無線リンク5に対するアップリンクのデータ送信用の帯域を割り当てる。これにより、無線端末3-1、3-2、・・・、3-Nからのランダムアクセスを用いたRREQ(帯域要求)の送信を不要とし、ランダムアクセスのトラヒック量の低減を図っている。この特定期間は、図2のMACフレームの1または複数のフレーム分の時間となる。
 図4及び図5は、図1の無線システムに、本発明の実施形態による帯域割当方法を適用した場合のアクセスシーケンス例を示す図である。なお、本例では、一例として特定期間をMACフレームの1フレーム(MAC Frame (1))としている。図4では、アップリンク(UL)送信用の割当帯域として、RREQ用のCchを、該当する無線端末3-1、3-2、・・・、3-N或いは無線リンク5に対してデマンドアサイン(DA)領域に割り当てている。この時、次のMACフレーム(MAC Frame (2))において、そのCchに対するARQ用のCchを割り当ててもよい。
 一方、図5では、アップリンク送信用の割当帯域として、送信データ用のDchを、該当する無線端末3-1、3-2、・・・、3-N或いは無線リンク5に対して、デマンドアサイン(DA)領域に割り当てている。図4では、特定期間において、CchでRREQ(帯域要求)を送信することで、ランダムアクセス(RA)領域への送信を行わないようにしている。一方、図5では、Dchで送信データを直接送信することで、ランダムアクセス(RA)領域への送信を行わないようにしている。本例において示したように、特定期間におけるアップリンク(UL)送信用の割当帯域(チャネル)としては、以下の(i)、(ii)がある。
(i) RREQ用のCch、
(ii) 送信データ用のDch
 次に、基地局2が、無線端末3-1、3-2、・・・、3-N或いは無線リンク5に対して、送信データの送信頻度が高い期間、すなわち、特定期間を特定する方法としては、以下の(I)~(III)がある。
(I) 基地局2の外部からの指示に従う場合、
(II) 基地局2での監視/推定に基づいて決定する場合、
(III) (I)と(II)を組み合わせる場合
 図6に基地局2の基本的な構成例を示す。図6に示すように、基地局2は、無線通信を実現するために、送信部21、受信部22、無線制御部23、および帯域割当部24を備える。また、図1の有線ネットワーク1などからなる有線側との通信及び無線リンク5毎の通信を管理するため、基地局2は、コネクション制御部25を備える。図1の無線端末3-1、3-2、・・・、3-Nとの間の無線通信を行う送信部21と受信部22は、無線チャネル単位での送受信を行なう。無線制御部23は、無線フレームの生成/分解と、送信部21と受信部22の制御及び無線リンク毎の帯域管理を行なう。帯域割当部24は、スケジューリングを実施する。
 上記(I)においては、基地局2は、有線ネットワーク1、例えば、サーバ4からの指示により特定期間を決定する。例えば、コネクション制御部25は、有線ネットワーク1からの指示を受け、その指示に該当する無線リンク5を特定し、その特定した無線リンク5に対する特定期間の開始/終了指示を無線制御部23へ通知する。
 このとき、有線ネットワーク1からの指示を受信したタイミングを特定期間の開始/終了指示としてもよいし、有線ネットワーク1からの指示に含まれる特定期間の開始/終了タイミングを特定期間の開始/終了指示としてもよい。なお、タイミングは、時間でもよいし、時間を表す、或いは、時間を算出できる情報、例えば、MACフレームのフレーム番号でもよい。時間の場合、特定期間の開始/終了は、受信した時間、或いは指示された時間となり、フレーム番号は、指示を受信したフレーム、或いは、指示されたフレームとなる。
 無線制御部23は、コネクション制御部25から開始指示を受信することで特定期間の開始を設定し、終了指示を受信することで特定期間の終了を設定する。図7に基地局2の制御フローを示す。図7では、図6の基地局2の構成を示している。また、図7では、コネクション制御部25或いは有線ネットワーク1からの指示により特定期間を決定する際の情報の流れを破線で示している。破線(f1)は、本実施形態を示しており、有線ネットワーク1のサーバ4(図1参照)からの指示を契機に、コネクション制御部25が特定期間の開始と終了を無線制御部23へ指示する場合を示している。
 上記(II)のうちで、無線リンク5毎のデータ交換シーケンスを監視する場合においては、基地局2は、既知のデータ交換シーケンス群から、その無線リンク5で行われているデータ交換シーケンスを特定することにより、特定期間を決定する。例えば、コネクション制御部25は、無線側あるいは有線側からのデータを受信し、データ中のデータ種別からデータ交換シーケンスの最初のデータを識別することで、既知のデータ交換シーケンス群から、該当シーケンスを特定し、該当シーケンスの最初のデータの受信タイミングを特定期間の開始に、最後のデータの受信タイミングを特定期間の終了とし、無線制御部23へ指示する。無線制御部23は、コネクション制御部25から開始指示を受信することで特定期間の開始を設定し、終了指示を受信することで特定期間の終了を設定する。図7に基地局2の制御フローを示す。破線(f2)は、本実施形態を示しており、コネクション制御部25が特定期間の開始と終了を指示する場合を示している。
 なお、受信タイミングは、時間でもよいし、時間を表す、或いは、時間を算出できる情報、例えば、MACフレームのフレーム番号でもよい。時間の場合、特定期間の開始/終了は、受信した時間となり、フレーム番号の場合は、受信したフレームとなる。
 上記(II)においては、他には、図8に示したように、受信部22と無線制御部23の間に無線リンク監視部26を設け、基地局2で無線リンク5の通信状況及び帯域割当状況を監視し、特定期間を決定する。すなわち、特定期間の開始を、監視対象の無線リンク5に対する帯域割当(例えば、本実施形態では、Dchの割当)タイミングに応じたものとする。このとき、監視するDchとしては、(2-1)アップリンクのDchのみ、(2-2)ダウンリンクのDchのみ、(2-3)アップリンクとダウンリンクのDchの場合がある。一方、特定期間の終了は、以下の(a)~(c)の場合がある。
(a) 開始判定後、タイマを起動し、タイムアウトのタイミングを終了とする場合(なお、開始判定後、再度開始を検出した場合、本実施形態では、監視対象のDchの割当が再度あった場合、当該タイマを再起動してもよい)、
(b) 本実施形態による基地局2が特定期間において割り当てを行ったアップリンク送信用の帯域に対する該当する無線端末からのアクセス状況に基づいて判定する場合、
(c) ランダムアクセスでの帯域要求の受信タイミングとする場合
 なお、上記(a)~(c)で説明する条件を、単独で用いてもよいし、組み合わせて用いてもよい。
 上記(b)では、割当帯域に対する、帯域割当情報又は送信データの送信がない回数が規定数に達したタイミングや、割当帯域に対する帯域割当情報の受信タイミングを終了とする。
 なお、帯域割当タイミング、タイムアウトのタイミング、規定数に達したタイミング、受信タイミングは、時間でもよいし、時間を表す、或いは、時間を算出できる情報、例えば、MACフレームのフレーム番号でもよい。時間の場合、帯域割当が行われた時間、タイムアウト時間、規定数に達した時の時間、受信時間であり、フレーム番号の場合は、帯域割当が行われたフレーム、タイムアウトしたフレーム、規定数に達したフレーム、受信フレームとなる。
 上記(II)において、他には、図9に示したように、受信部22と無線制御部23の間に無線トラヒック測定部27を設け、基地局2で無線リンク5のアップリンクの送信データ(Dch)のトラヒックを測定し、測定結果に基づき特定期間を推定しても良い。このとき、次に示す測定情報から特定期間を決定する。
(3-1) 送信データの発生情報、
(3-2) 送信データの受信情報、
 (3-1)に関しては、無線端末3-1、3-2~3-Nは、送信データに当該データの発生情報を付与して送信し、基地局2は、当該データを受信時に、前のデータの発生情報との差分をとることで、データの発生間隔を算出する。そして、一定間隔、或いは、規定のデータ数分測定した発生間隔をもとに、データ(Dch)受信時に、次のデータ用の特定期間を決定する。このとき特定期間の開始を、最後に受信したデータの発生情報+最小の発生間隔とし、特定期間の終了を、最後に受信したデータの発生情報+最長の発生間隔とする。
 (3-2)に関しては、基地局2は、当該データの受信情報を記憶し、前のデータの受信情報との差分をとることで、送信データの基地局2での受信間隔を算出する。そして、一定間隔、あるいは、規定のデータ数分測定した受信間隔をもとに、データ(Dch)受信時に、次のデータ用の特定期間を決定する。このとき特定期間の開始を、最後に受信したデータの受信情報+最小の受信間隔とし、特定期間の終了を、最後に受信したデータの受信情報+最長の受信間隔とする。
 なお、発生情報及び受信情報は、時間情報でもよいし、時間を表す、あるいは時間を算出できる情報、例えば、MACフレーム(固定長)のフレーム番号でもよい。
 発生情報および受信情報は、時間で規定される場合、それぞれ、発生時間、受信時間となり、フレームで規定される場合、発生フレーム、受信フレームとなる。
 上記(III)は、上記(I)の構成と(II)の構成を組み合わせたものである。例えば、特定期間の開始に対しては、上記(I)の構成・動作を適用し、終了に対しては、上記(II)の監視により判定する。あるいは、開始に関しては、上記(II)の監視により判定し、終了に関しては、(I)の構成・動作を適用する。このように、開始及び終了時の設定について(I)及び(II)の構成を組み合わせる。
 次に、無線制御部23により設定された特定期間における帯域割当方法に関しては、以下の(A)、(B)の場合があり、帯域割当部24にて実施される。
(A) 規定タイミング、
(B) 規定条件を満たすタイミング
 (A)は、例えば、毎フレーム、規定されたフレーム数毎、特定期間の開始から規定されたフレーム数後などがある。
 (B)は、規定した条件を満たす場合に、(A)を適用するものであり、例えば、規定条件としては、無線端末3-1、3-2、・・・、3-N或いは無線リンク5に対して、ダウンリンク(基地局2から無線端末3-1、3-2、・・・、3-Nへの情報の伝送)のデータ割当がある場合や、コネクション制御部25から指示がある場合などである。
 以下、本発明の実施形態1~3による無線システムについて説明する。
 まず、実施形態1と実施形態2に共通する処理を、図10を参照して説明する。図10に、実施形態1と実施形態2において適用する認証処理時のシーケンス例を示す。本例では、無線端末3-1、3-2、・・・、3-Nは、基地局2との同期確立後、無線通信を開始するために認証処理を実施する。
 最初に、無線端末3-1、3-2、・・・、3-Nは、無線区間において、基地局2が無線端末2を特定するためのIDであるMAC-IDを取得するために、MAC-ID割当要求を基地局2にランダムアクセス送信する(ステップS11)。そして、無線端末2は、基地局2からのMAC-ID割当応答を受信する(ステップS12)。
 そして、既知のデータ交換シーケンスの1つである認証処理シーケンス(認証要求、認証応答、認証完了)を実施する。つまり、無線端末3-1、3-2、・・・、3-Nは、基地局2に認証要求を送信する(ステップS13)。そして、無線端末3-1、3-2、・・・、3-Nは、基地局2から認証応答を受信する(ステップS14)。そして、無線端末3-1、3-2、・・・、3-Nは、基地局2に認証完了を送信する(ステップS15)。本処理は、コネクション制御部25主導で行われ、かつ、交換されるデータはシーケンシャルである。
 本シーケンスに対して、アップリンク(UL)送信用の帯域割当を実施する。特定期間の決定には、無線リンク5のデータ交換シーケンスの監視に基づく場合(図7に相当)と、無線リンク5の帯域割当状況の監視に基づく場合(図8に相当)が適用できる。
 上記(II)の内のデータ交換シーケンスの監視に基づく場合では、図10に示すように、図7のコネクション制御部25は、認証処理シーケンスの最初のデータである認証要求を受信後に開始指示を無線制御部23に通知する(ステップS16)。また、コネクション制御部25は、認証処理シーケンスの最後のデータである認証完了受信後に終了指示を通知する(ステップS17)。このとき、無線制御部23は、開始指示と終了指示を特定期間の開始と終了とみなす。一方、上記(II)の無線リンク5の帯域割当状況の監視に基づく場合では、認証処理を行う無線リンク5を監視し、当該無線リンク5に対するDch帯域割当の開始を特定期間の開始とする。また、当該無線リンク5に対して、基地局2が特定期間において割り当てる割当帯域に対する未アクセス数をカウントし、規定値に達した場合に、当該無線リンク5の通信終了とみなし、特定期間の終了とする。
 特定期間の決定に関して、上記2つのどちらも実施形態1、2に対して適用可能である。
[実施形態1]
 本実施形態では、特定期間の開始時に、終了時が決まっていない場合(推定による特定期間の決定方法以外を用いる場合)であり、認証処理シーケンスに対して特定期間を設定し、その特定期間で毎フレーム割当を行う場合について説明する。
 本実施形態では、上述した特定期間におけるアップリンク(UL)送信用の帯域割当方法を上記(A)の内の毎フレームとし、アップリンク(UL)送信用の割当帯域を上記(i)のRREQ(帯域要求)用のCchとし、毎フレーム1つのCchを割り当てる場合の割当処理について説明する。
 図11に、アップリンク(UL)送信用の帯域割当リンクの登録判定処理を示す。特定期間が開始した無線リンク5に対して、アップリンク(UL)送信用の帯域割当リンクとして登録可否を判定する(ステップSa1)。
 登録可であれば、特定期間が終了するまで、当該無線リンク5に対してRREQ用のCch帯域を割り当てる(ステップSa2)。この際、RREQ用のCch帯域を優先確保帯域とみなす。ここで、優先確保帯域とは、必ず確保される帯域のことである。
 ステップSa1の登録判定処理では、(既に登録済みのリンクに対する優先確保総帯域に当該無線リンク5に対するRREQ用のCch帯域を加算した)優先確保総帯域値とその最大値(事前設定値)とを比較する。そして、最大値以下であれば、ステップSa2でRREQ用の帯域を優先確保帯域に確定し、当該リンクをアップリンク(UL)送信用の帯域割当リンクとして登録する。そして、帯域割当部24でのスケジューリング時、アップリンク(UL)送信用の帯域割当リンクとして登録されている全リンクに対して、RREQ用のCchを割り当てる。最大値を超えている場合は、加算したCch帯域を優先確保総帯域値から減算し、比較前の値に戻す。
 図12にアップリンク(UL)送信用の帯域割当リンクの解除処理を示す。本処理は、特定期間の終了時に実施され、アップリンク(UL)送信用の帯域割当リンクから当該リンクを解除する(ステップSb1)。そして、優先確保総帯域値から当該リンク用のRREQ用の帯域を減算することで優先確保総帯域値を更新する(ステップSb2)。
[実施形態2]
 本実施形態では、特定期間の開始時に、終了時が決まっていない場合(推定による特定期間の決定方法以外を用いる場合)であり、認証処理シーケンスに対して特定期間を設定し、その特定期間で、かつ、割当条件を持たす場合の割当例について説明する。
 本実施形態では、特定期間におけるアップリンク(UL)送信用の帯域割当方法が上記(B)の割当条件に一致する場合について説明する。割当条件は、ダウンリンクのDch送信発生時とし、同一フレーム以降で、UL送信用の帯域を1度だけ割り当てる。図10では、認証応答のメッセージ送信時に該当する。また、アップリンク(UL)送信用の割当帯域を上記(ii)のデータ送信用のDchとした場合の割当処理について説明する。
 本例では、割当帯域をRREQ用のCchではなく、データ送信用のDchとしているが、これに限定されるものではない。例えば、認証処理シーケンスのように、交換されるメッセージが固定長であり、かつ、シーケンシャルである場合にはDchの直接割当が可能である。特定期間が開始した無線リンクをアップリンク(UL)送信用の帯域割当リンクとして登録する。また、特定期間が終了した無線リンクをアップリンク(UL)送信用の帯域割当リンクから解除する。
 帯域割当部24でのスケジューリング開始時、最初に実施形態1において説明した優先確保帯域に対する割り当てを行った後、その割り当てた帯域を差し引き、割り当て可能な帯域(残帯域)を算出する。次に、アップリンク(UL)送信用の帯域割当リンクの全リンクに対して、図13に示すアップリンク(UL)送信用の帯域割当処理を実施する。まず、割当条件に一致するかどうかを判定する(ステップSc1)。一致する場合に、残帯域とアップリンク(UL)送信用の割当帯域とを比較することで、アップリンク(UL)送信用の帯域が確保できるかどうかを判定する(ステップSc2)。アップリンク(UL)送信用の割当帯域値が残帯域値以下であれば割当可能であり、アップリンク(UL)送信用の帯域割当処理として、該当する無線リンク5に対してデータ送信用のDchを割り当てる(ステップSc3)。このとき、残帯域値から割当帯域値を減算することで残帯域を更新する。
 他方、割当条件を満たさない場合は(ステップSc1で「No」)、当該無線リンクに対するアップリンク(UL)送信用の帯域割当処理は実施しない。
 一方、割当条件は満たすが(ステップSc1で「Yes」)、本スケジューリングフレームでの割当ができない場合は(ステップSc2で「No」)、次フレーム以降でのアップリンク(UL)送信用の帯域割当の優先処理を実施する(ステップSc4)。本処理は、割当条件を満たすアップリンク(UL)送信用の帯域割当リンクに対する割当帯域を、次フレーム以降で(実施形態1において説明した)優先確保帯域として確保し、次フレーム以降で確実に割当を実施する。割当完了時には、優先確保帯域から解除する。
 なお、本例では、アップリンク(UL)送信用の割当帯域をデータ送信用のDchとしているが、RREQ用のCchでも適用可能である。
[実施形態3]
 本実施形態では、特定期間の開始時に、終了時が決まっている場合(推定による特定期間の決定方法を用いる場合)であり、無線リンク5の通信のうちで、データのアップリンク(UL)送信(図3の「data」がデータに相当)への適用について説明する。特定期間の決定に関しては、上記(II)の発生情報を用いたトラヒック推定をもとに行なう。データの受信時に、前のデータの発生情報との差分をとることで、データの発生間隔を算出する。そして、測定した発生間隔から、次のデータの発生期間を予測し、その予測期間を特定期間とする。発生間隔の測定は、無線端末3-1、3-2、・・・、3-Nがデータに発生情報を付与して送信し、基地局2でデータの発生間隔を一定区間或いは一定データ数分保持し、算出する。そして、特定期間の開始を、最後の受信データの発生情報+最短の発生間隔とする。また、特定期間の終了を、最後の受信データの発生情報+最長の発生間隔とする。
 なお、本実施形態における特定期間に対して、特定期間の上限値である閾値を設け、閾値以下の無線リンク5に対して下記のアップリンク(UL)送信用の帯域割当を実施してもよい。これにより、発生間隔の偏りの小さい、すなわち、周期性の高いデータのアップリンク(UL)送信に対する帯域割当を優先して実施することができる。
 本実施形態では、特定期間におけるアップリンク(UL)送信用の帯域割当方法を上記(A)の毎フレームとし、アップリンク(UL)送信用の割当帯域を上記(i)のRREQ用のCchとし、毎フレーム1つのCchを割り当てる場合の割当処理について説明する。図14に、アップリンク(UL)送信用の帯域割当リンクの登録判定処理を示す。まず、特定期間が開始した無線リンク5に対して、アップリンク(UL)送信用の帯域割当リンクとして登録可否を判定する(ステップSd1)。登録可であれば、特定期間の全フレームにおいて、当該無線リンクに対してRREQ用のCch帯域を割り当てる。RREQ用のCch帯域を優先確保帯域とみなす。本登録判定処理では、特定期間の全てのフレームにおいて、優先確保帯域を確保できるかどうかを判定する。優先確保帯域の判定は実施形態1において説明した方法を用いることができる。そして、全てのフレームでRREQ用の帯域を優先確保帯域として確定できる場合に、当該リンクをアップリンク(UL)送信用の帯域割当リンクとして登録する(ステップSd2)。そして、帯域割当部24でのスケジューリング時、アップリンク(UL)送信用の帯域割当リンクとして登録されている全リンクに対して、RREQ用のCchを割り当てる。
 図15にアップリンク(UL)送信用の帯域割当リンクの解除処理を示す。本処理は、特定期間の満了時、或いは、特定期間を途中で終了する場合に実施される。アップリンク受信時に、アップリンク(UL)送信用の帯域割当リンクから当該リンクを解除する(ステップSe1)。
 そして、特定期間が満了したか否かについて判定する(ステップSe2)。
 特定期間が満了している場合(ステップSe2で「Yes」)、図15に示す処理を終了する。
 もし、特定期間の途中で終了する場合(ステップSe2で「No」)、すなわち、ランダムアクセスで帯域要求を受信した場合、或いは、アップリンク送信用の帯域割当で帯域要求を受信した場合、未割当フレームに対して、優先確保総帯域値から当該リンク用のRREQ用の帯域を減算することで優先確保総帯域値を更新する(ステップSe3)。
 以上のように、上記の実施形態は、たとえば複数の無線端末3-1、3-2、・・・、3-Nが複数の無線リンク5からなる無線回線を共有する場合の通信方法であるTDMA/TDDにおける動的スロット(帯域)割当(DSA)を行う際に用いられる。図2に示すようにして、MACフレーム内の上りリンク区間にデマンドアサイン区間とランダムアクセス区間を設定する。そして、無線端末3-1、3-2、・・・、3-Nがランダムアクセス区間において帯域割当要求を基地局2に送信する。送信に成功して基地局2からデマンドアサイン区間の帯域を割り当てられた場合には、無線端末3-1、3-2、・・・、3-Nは、割当帯域において送信データを基地局2に送信する。送信に失敗した場合には、無線端末3-1、3-2、・・・、3-Nは、バックオフ時間経過後に再度帯域割当要求を送信することを繰り返す。そして、無線端末3-1、3-2、・・・、3-N毎あるいは無線リンク5毎に上りリンクの送信データの送信頻度が高い期間を分析・決定する。この特定期間において、基地局2は、当該無線端末3-1、3-2、・・・、3-Nあるいは無線リンク5に対してデマンドアサイン帯域を割当てる。すなわち、基地局2によって、無線端末3-1、3-2、・・・、3-N或いは無線リンク5毎に、アップリンクのデータ送信頻度が高い期間を特定(特定期間)する。そして、当該期間に対して、当該無線端末3-1、3-2、・・・、3-N或いは無線リンク5に対するアップリンクのデータ送信用の帯域を割り当てる。ここで、この特定期間を決定する方法としては、外部からの指示による方法や、基地局2において、帯域割当状況の監視やトラヒックの推定を行う方法などを用いることができる。これによれば、基地局2が事前にアップリンク(UL)送信用の帯域割当を実施することで、必ずしも無線端末3-1、3-2、・・・、3-Nがランダムアクセス区間において帯域割当要求を送信しなくてもよくなる。そのため、ランダムアクセス(RA)トラヒックを低減することができる。すなわち、本発明の実施形態を用いれば、トラヒックが集中する期間であってもランダムアクセス区間のデータ衝突を抑制でき、スループットを向上させることができるという効果がある。
 なお、上記の各実施形態の説明は、図2に示した従来技術のフレーム構成に基づいて説明したが、これに限定されるものではない。例えば、Bch、RFch、Fch等の順序が入れ替わっているようなフレームであっても適用することが可能である。また、上述した本発明の実施形態の各構成(図6~図9に示すような各ブロック)は、コンピュータ及びその周辺装置とそのコンピュータによって実行されるプログラムとの組み合わせによって実現することができ、各構成の分割、統合などの変更が適宜可能である。
 本発明は、ランダムアクセストラヒックを低減することで衝突に伴うオーバーヘッドを削減し、基地局と、基地局と無線回線により接続される無線端末との間のスループット特性及び遅延特性を改善することを可能とする無線通信方法、無線通信システム、基地局、及び端末局などに適用できる。

Claims (10)

  1.  複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信方法において、
     前記基地局は、前記端末局毎又は前記端末局と当該基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、当該端末局毎又は当該無線リンク毎の帯域割当を行い、
     前記端末局は、前記基地局が帯域割当を行った帯域にて帯域要求情報又は前記送信データを送信する無線通信方法。
  2.  前記特定期間は、前記基地局の外部からの指示に基づいて開始時、あるいは終了時が設定される請求項1に記載の無線通信方法。
  3.  前記特定期間は、無線リンク毎の信号交換シーケンスに対応して開始時、あるいは、終了時が設定される請求項1に記載の無線通信方法。
  4.  前記特定期間は、前記端末局又は前記無線リンクに対する帯域割当に対応して開始時が設定される請求項1に記載の無線通信方法。
  5.  前記特定期間は、開始時に設定する内部のタイマのタイムアウト時、あるいは、前記基地局が前記特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、前記端末局毎又は前記無線リンク毎に前記基地局が帯域割当を行った帯域に対する前記帯域要求情報又は前記送信データのアクセス状況に応じて、或いは、ランダムアクセスでの帯域要求受信時に、終了時が設定される請求項1に記載の無線通信方法。
  6.  前記特定期間は、前記端末局毎又は前記無線リンク毎に前記基地局へ伝送される前記送信データの測定情報に基づいて開始時、あるいは終了時が推定され設定される請求項1に記載の無線通信方法。
  7.  前記特定期間に存在する前記デマンドアサイン区間における前記端末局毎又は前記無線リンク毎の帯域割当が、規定タイミング、あるいは、規定条件を満たすタイミングで行われる請求項1に記載の無線通信方法。
  8.  複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信システムにおいて、
     前記基地局は、前記端末局毎又は前記端末局と当該基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、当該端末局毎又は当該無線リンク毎の帯域割当を行い、
     前記端末局は、前記基地局が帯域割当を行った帯域にて帯域要求情報又は前記送信データを送信する無線通信システム。
  9.  複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信システムにおける基地局において、
     前記端末局毎又は前記端末局と当該基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、前記端末局からランダムアクセスでの帯域要求を受信していない場合でも、当該端末局毎又は当該無線リンク毎の帯域割当を行い、
     前記端末局から前記帯域割当を行った帯域にて送信された帯域要求情報又は前記送信データを受信する基地局。
  10.  複数の端末局が共通の無線回線により基地局と接続され、前記基地局は、無線フレーム内の上り通信用帯域のうち帯域割当用の帯域をデマンドアサイン区間、残りの帯域をランダムアクセス区間として管理し、前記端末局からの帯域要求情報に対して要求分の上り通信用帯域を前記デマンドアサイン区間に割り当て、前記端末局は、送信データが発生した場合、バックオフ時間経過後に帯域要求情報をランダムアクセス区間にランダムアクセス送信し、送信に成功した場合には前記基地局から割り当てられた帯域を用いて前記送信データを送信する無線通信システムにおける端末局において、
     前記基地局によって当該端末局毎又は当該端末局と前記基地局間の無線リンク毎に特定された前記送信データの送信頻度の高い特定期間に存在する前記デマンドアサイン区間に、ランダムアクセスでの帯域要求を送信していない場合でも、当該端末局毎又は当該無線リンク毎に基地局が帯域割当を行った帯域にて帯域要求情報又は前記送信データを送信する端末局。
PCT/JP2009/054786 2008-03-12 2009-03-12 無線通信方法、無線通信システム、基地局、及び端末局 WO2009113623A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980107262.5A CN101960905B (zh) 2008-03-12 2009-03-12 无线通信方法、无线通信系统、基站、及终端站
EP09720981.1A EP2254386B1 (en) 2008-03-12 2009-03-12 Wireless communication method, wireless communication system, base station, and terminal station
JP2010502871A JP5185367B2 (ja) 2008-03-12 2009-03-12 無線通信方法、無線通信システム、基地局、及び端末局
US12/920,488 US8532140B2 (en) 2008-03-12 2009-03-12 Wireless communication method, wireless communication system, base station, and terminal station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008062531 2008-03-12
JP2008-062531 2008-03-12

Publications (1)

Publication Number Publication Date
WO2009113623A1 true WO2009113623A1 (ja) 2009-09-17

Family

ID=41065283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054786 WO2009113623A1 (ja) 2008-03-12 2009-03-12 無線通信方法、無線通信システム、基地局、及び端末局

Country Status (5)

Country Link
US (1) US8532140B2 (ja)
EP (1) EP2254386B1 (ja)
JP (1) JP5185367B2 (ja)
CN (1) CN101960905B (ja)
WO (1) WO2009113623A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763469A (zh) * 2010-02-11 2012-10-31 上海贝尔股份有限公司 用户终端设备接入网络设备的方法及装置
JP2013545422A (ja) * 2010-12-10 2013-12-19 クゥアルコム・インコーポレイテッド 複数のネットワーク間の干渉管理

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE039323T2 (hu) * 2005-10-21 2018-12-28 Ericsson Telefon Ab L M Technika egy véletlen elérésû folyamat végrehajtására egy rádió interfészen
US8310921B2 (en) * 2008-09-04 2012-11-13 Lg Electronics Inc. Method of random access in a wireless system
US9516531B2 (en) 2011-11-07 2016-12-06 Qualcomm Incorporated Assistance information for flexible bandwidth carrier mobility methods, systems, and devices
US9848339B2 (en) 2011-11-07 2017-12-19 Qualcomm Incorporated Voice service solutions for flexible bandwidth systems
US20130114571A1 (en) 2011-11-07 2013-05-09 Qualcomm Incorporated Coordinated forward link blanking and power boosting for flexible bandwidth systems
US9001679B2 (en) 2011-11-07 2015-04-07 Qualcomm Incorporated Supporting voice for flexible bandwidth systems
US9055496B2 (en) 2011-12-09 2015-06-09 Qualcomm Incorporated Providing for mobility for flexible bandwidth carrier systems
US8711026B1 (en) 2013-10-10 2014-04-29 IQ-Analog Corporation Data converter with configurable functions
US10595283B2 (en) * 2016-11-22 2020-03-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data of terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173584A (ja) * 1996-12-13 1998-06-26 Nec Corp 衛星回線アクセス方式
JP2007329723A (ja) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法、動的帯域割当方法、データ送信方法、無線通信システム及び基地局並びに端末局

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570355A (en) * 1994-11-17 1996-10-29 Lucent Technologies Inc. Method and apparatus enabling synchronous transfer mode and packet mode access for multiple services on a broadband communication network
JP3518152B2 (ja) * 1996-03-27 2004-04-12 ソニー株式会社 携帯用端末装置
US5960000A (en) * 1997-05-30 1999-09-28 Motorola Inc. System, device, and method for contention-based reservation in a shared medium network
US5862452A (en) * 1997-10-20 1999-01-19 Motorola, Inc. Method, access point device and peripheral devices for low complexity dynamic persistence mode for random access in a wireless communication system
US7065779B1 (en) * 1999-10-13 2006-06-20 Cisco Technology, Inc. Technique for synchronizing multiple access controllers at the head end of an access network
KR100606064B1 (ko) * 2000-01-15 2006-07-26 삼성전자주식회사 이동통신시스템의 부가채널 할당 장치 및 방법
US7352770B1 (en) * 2000-08-04 2008-04-01 Intellon Corporation Media access control protocol with priority and contention-free intervals
US20050152397A1 (en) * 2001-09-27 2005-07-14 Junfeng Bai Communication system and techniques for transmission from source to destination
AU2003212813A1 (en) * 2002-01-22 2003-09-02 Xtremespectrum, Inc. Method of managing time slots in a wireless network through the use of contention groups
US7653532B2 (en) * 2002-01-25 2010-01-26 Sony Corporation Content recording/reproducing apparatus, storage medium and computer program
JP3746717B2 (ja) * 2002-03-01 2006-02-15 日本電信電話株式会社 ポイント・マルチポイント通信システムにおける帯域割当方法
US8233462B2 (en) * 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
KR100678941B1 (ko) * 2004-09-03 2007-02-07 삼성전자주식회사 할당된 시간 동안 양방향으로 데이터를 송수신하는 방법및 그 방법을 이용하는 무선 디바이스
US8705567B2 (en) * 2004-12-10 2014-04-22 Broadcom Corporation Upstream channel bonding using legacy maps in a cable communications system
KR100606054B1 (ko) * 2005-01-04 2006-07-31 삼성전자주식회사 이동 통신 단말의 소모 전류 감소 장치 및 방법
WO2006109934A1 (en) * 2005-03-28 2006-10-19 Pantech Co., Ltd. Multiple access digital communicating method in ultra-wideband radio access networks
US7509150B1 (en) * 2005-08-02 2009-03-24 Itt Manufacturing Enterprises, Inc. Reducing power consumption in a radio device by early receiver shut down
CN1929338B (zh) 2005-09-06 2011-08-24 都科摩(北京)通信技术研究中心有限公司 蜂窝网和泛在网的融合方法和设备
US8600336B2 (en) * 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
US7957759B2 (en) * 2006-12-08 2011-06-07 Texas Instruments Incorporated Wideband reference signal transmission in SC-FDMA communication systems
US7804799B2 (en) * 2006-12-29 2010-09-28 Intel Corporation Uplink contention based access with quick access channel
US20080165733A1 (en) * 2007-01-10 2008-07-10 Motorola, Inc. Method and apparatus for the dynamic and contention-free allocation of communication resources
KR101376838B1 (ko) * 2008-01-04 2014-03-20 엘지전자 주식회사 상향링크 제어신호 전송 방법
CN101803446B (zh) * 2008-07-15 2013-10-02 松下电器产业株式会社 控制装置、终端装置以及采用了所述装置的通信系统和通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173584A (ja) * 1996-12-13 1998-06-26 Nec Corp 衛星回線アクセス方式
JP2007329723A (ja) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法、動的帯域割当方法、データ送信方法、無線通信システム及び基地局並びに端末局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2254386A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763469A (zh) * 2010-02-11 2012-10-31 上海贝尔股份有限公司 用户终端设备接入网络设备的方法及装置
CN102763469B (zh) * 2010-02-11 2016-01-20 上海贝尔股份有限公司 用户终端设备接入网络设备的方法及装置
JP2013545422A (ja) * 2010-12-10 2013-12-19 クゥアルコム・インコーポレイテッド 複数のネットワーク間の干渉管理
US9107232B2 (en) 2010-12-10 2015-08-11 Qualcomm Incorporated Interference management between multiple networks

Also Published As

Publication number Publication date
EP2254386B1 (en) 2016-08-17
US8532140B2 (en) 2013-09-10
EP2254386A4 (en) 2014-05-21
EP2254386A1 (en) 2010-11-24
CN101960905A (zh) 2011-01-26
JPWO2009113623A1 (ja) 2011-07-21
JP5185367B2 (ja) 2013-04-17
CN101960905B (zh) 2014-06-25
US20110013578A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5185367B2 (ja) 無線通信方法、無線通信システム、基地局、及び端末局
US8422454B2 (en) Method of transmitting and receiving uplink data using transmission of profile indexes
KR20180090212A (ko) 시스템 정보를 송수신하는 방법 및 장치
JP4790462B2 (ja) 無線通信装置及び無線通信方法
EP2249613B1 (en) Wireless communication method, base station, and wireless communication system
CN106559904B (zh) 无线网络的接入方法和装置
JP2001211189A (ja) アップリンクデータメッセージ受信方法、アップリンク方法、通信方法、遠隔ユニット識別方法、通信システム、遠隔ユニット
US9867130B2 (en) System and method for ultra low power mode transmission
EP3162150B1 (en) Network node and method for supporting time-sensitive services in a communication network
CN110662201B (zh) 用于经调度上行链路多用户接入的装置和方法
Jamal et al. CR-WSN MAC: An energy efficient and spectrum aware MAC protocol for cognitive radio sensor network
JP2020500491A (ja) ネットワークアクセスのための方法、システム、コントローラ、エンティティ及びコンピュータプログラム
EP3927081A1 (en) Resource scheduling system for a wireless communication network
JP4928486B2 (ja) 無線通信方法、無線通信システム及び無線端末
EP3087763B1 (en) System and method for indicating a periodic resource allocation
Kim et al. ENC-MAC: energy-efficient non-overlapping channel MAC for cognitive radio enabled sensor networks
JP5106316B2 (ja) 無線通信方法、無線通信システム、および基地局
JP4917063B2 (ja) 無線通信方法、無線通信システム、基地局、及び無線端末
JP2022521255A (ja) 無線通信システムにおいてリソースを配分するための方法
CN116848906A (zh) 在无线通信系统中的drx操作方法及设备
JP2011223148A (ja) 無線通信方法、及び基地局装置
WO2010027207A2 (en) Method for feedback to uplink allocation request

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107262.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502871

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009720981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12920488

Country of ref document: US

Ref document number: 2009720981

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE