WO2009113576A1 - 固定子コイルの製造方法 - Google Patents

固定子コイルの製造方法 Download PDF

Info

Publication number
WO2009113576A1
WO2009113576A1 PCT/JP2009/054667 JP2009054667W WO2009113576A1 WO 2009113576 A1 WO2009113576 A1 WO 2009113576A1 JP 2009054667 W JP2009054667 W JP 2009054667W WO 2009113576 A1 WO2009113576 A1 WO 2009113576A1
Authority
WO
WIPO (PCT)
Prior art keywords
built
straight
winding
preliminary alignment
portions
Prior art date
Application number
PCT/JP2009/054667
Other languages
English (en)
French (fr)
Inventor
哲也 五郎畑
啓吾 森口
敦朗 石塚
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US12/677,224 priority Critical patent/US8132315B2/en
Priority to CN200980108570XA priority patent/CN101971466B/zh
Priority to DE112009000566.7T priority patent/DE112009000566B4/de
Publication of WO2009113576A1 publication Critical patent/WO2009113576A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0025Shaping or compacting conductors or winding heads after the installation of the winding in the core or machine ; Applying fastening means on winding heads
    • H02K15/0037Shaping or compacting winding heads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/066Windings consisting of complete sections, e.g. coils, waves inserted perpendicularly to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53143Motor or generator

Definitions

  • the present invention relates to a method for manufacturing a stator coil, and more particularly to a method for manufacturing a stator coil used for a stator of a rotating electrical machine.
  • a plurality of molded bodies in which a plurality of parallel straight portions are connected by a plurality of turn portions from an electric conductor wire are formed.
  • these molded bodies are assembled to form an assembled body.
  • Each molded body set constituting this built-in body is composed of a plurality of straight superpositions formed by superimposing a plurality of straight portions in one molded body and a plurality of straight portions in another one molded body, respectively.
  • the part is provided in the longitudinal direction of the built-in body. For this reason, in this assembled body, a plurality of straight overlapping portions are arranged in parallel in the longitudinal direction of the assembled body.
  • the built-in body is wound around the core member a predetermined number of times to form a wound body.
  • This winding body has a plurality of straight laminated portions formed in a circumferential direction in which a plurality of straight laminated portions in one molded body set are laminated in the radial direction.
  • each straight laminated portion is disposed in the slot of the stator core, and each turn portion is disposed outside the slot to form a stator coil.
  • the present invention has been made in view of the above circumstances, and at the time of winding and manufacturing a stator coil formed by winding each phase winding consisting of continuous windings, at least in the straight laminated portion of the winding body. It is a technical problem to be solved to improve the alignment accuracy of each straight portion.
  • the present invention made in order to solve the above problems is a method of manufacturing a stator coil in which a plurality of phase windings are wound, and a molding step of molding a plurality of molded bodies from an electric conductor wire, And a winding step of winding the built-in body around a core member to form a wound body, wherein the molded bodies extend in parallel with each other.
  • Each of the molded bodies has a plurality of straight overlapping portions formed by overlapping the straight portions with each other in the longitudinal direction of the built-in body, and the winding obtained in the winding step.
  • the body has a plurality of straight overlapping portions A plurality of straight laminated portions formed in the circumferential direction of the winding body, and in the winding step, adjacent to the built-in body in the course of transporting the built-in body to the core member.
  • a preliminary alignment member is inserted into each of a plurality of continuous gaps.
  • the preliminary alignment member is inserted into each of at least two continuous gaps, at least the straight portions in the straight overlapping portion sandwiched between the preliminary alignment members are aligned and the straight portions are aligned. It can be previously aligned in the overlapping direction.
  • the wound body obtained by winding up this built-in body it is possible to improve the accuracy with which at least the straight portions of the straight laminated portion are aligned in the radial direction of the wound body.
  • the straight portions overlap each other in the straight overlapping portion sandwiched between the preliminary alignment members, and the straight portions are overlapped. While being able to arrange in advance in the direction, the size of the interval between adjacent straight overlapping portions can be arranged in advance.
  • the winding process is a continuous winding process in which the built-in body is wound while being continuously fed to the core member.
  • the preliminary alignment member is moved in synchronization with the built-in body. It is preferable to enter and leave the gap while making the gap.
  • the winding step is a winding step for each pitch in which the built-in body is wound around the core member while feeding the built-in body at an interval between the straight overlapping portions adjacent to the core member.
  • a preliminary alignment member inserting step of inserting the preliminary alignment member into the gap of the stopped integrated body, and the integrated body together with the preliminary alignment member is spaced by the interval between the straight overlapping portions.
  • a position holding member insertion step of inserting a position holding member into the gap other than the gap into which the preliminary alignment member of the built-in body is inserted is performed.
  • a position holding member extraction step for extracting the position holding member from the gap of the assembly is performed, and the preliminary alignment member extraction step with the position holding member inserted into the gap
  • the backward movement step and the preliminary alignment member insertion step are performed, and the forward movement step is performed in a state where the position holding member is removed from the gap.
  • the pre-alignment member when the winding body is formed by winding at a pitch, the pre-alignment member is inserted into the gap of the built-in body to pre-align each straight portion in the straight superposed portion, and then the built-in body. Is fed into the core member by one pitch. Then, in a state where the preliminary alignment member is inserted into the gap of the built-in body, the position holding member is inserted into another gap of the built-in body. Then, with the position holding member holding the position of the assembled body, the preliminary alignment member is extracted from the integrated body, and the extracted preliminary alignment member is retracted by one pitch and inserted into the next gap. For this reason, the preliminary alignment member can be easily inserted into the next gap.
  • a stator coil of the present invention at the time of winding and manufacturing a stator coil in which each phase winding made of continuous winding is wound, at least in the straight laminated portion of the winding body to improve the alignment accuracy of each straight portion, or to improve the alignment accuracy of each straight portion in the straight laminate portion of the winding body and to improve the pitch accuracy between adjacent straight laminate portions it can.
  • stator coil obtained by the method for manufacturing a stator coil of the present invention is applied to a stator of a rotating electrical machine, the straight laminated portion of the winding body is reliably accommodated in each slot of the stator core. Therefore, it is possible to improve the slot occupancy rate in the stator and the output of the rotating electrical machine using the stator.
  • the straight laminated portion of the winding body can be easily accommodated in each slot of the stator core, the productivity of the stator can be improved.
  • FIG. 3 is an axial cross-sectional view schematically showing the configuration of the rotating electrical machine according to the first embodiment.
  • FIG. 3 is a plan view of the stator according to the first embodiment.
  • 3 is a plan view of a stator core according to Embodiment 1.
  • FIG. 3 is a plan view of a split laminated core according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of windings that constitute the stator coil according to the first embodiment. It is a figure which shows the connection of the stator coil which concerns on Embodiment 1.
  • FIG. FIG. 3 is a perspective view of a winding body that is a stator coil according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating a method for manufacturing the stator coil according to the first embodiment.
  • FIG. 4 is a diagram illustrating a method of manufacturing the stator coil according to the first embodiment and schematically illustrating operations of a preliminary alignment member and a position holding member.
  • FIG. 4 is a diagram illustrating a method of manufacturing the stator coil according to the first embodiment and schematically illustrating operations of a preliminary alignment member and a position holding member.
  • FIG. 5 is a side view showing the stator coil manufacturing method according to Embodiment 1 and showing the tip shapes of a preliminary alignment member and a position holding member.
  • FIG. 10 is a diagram schematically showing a stator coil manufacturing method according to Embodiment 2. It is a figure which shows the manufacturing method of the stator coil which concerns on Embodiment 2, and shows the structure which moves a preliminary alignment member by a belt conveyor system with a feed roller.
  • the rotating electricity 1 includes a housing 10 in which a pair of substantially bottomed cylindrical housing members 100 and 101 are joined at openings, and the housing 10 via bearings 110 and 111.
  • a rotating shaft 20 rotatably supported, a rotor 2 fixed to the rotating shaft 20, and a stator 3 fixed to the housing 10 at a position surrounding the rotor 2 inside the housing 10. Yes.
  • the rotor 2 is formed with a plurality of magnetic poles alternately different in the circumferential direction by permanent magnets on the outer peripheral side facing the inner peripheral side of the stator 3.
  • the number of magnetic poles of the rotor 2 is not limited because it varies depending on the rotating electric machine. In this embodiment, an 8-pole rotor (N pole: 4, S pole: 4) is used.
  • the stator 3 includes a stator core 30, a three-phase stator coil 4 formed of a plurality of phase windings, and between the stator core 30 and the stator coil 4. And an insulating paper 5 disposed on the surface.
  • the stator core 30 has an annular shape in which a plurality of slots 31 are formed on the inner periphery.
  • the plurality of slots 31 are formed such that the depth direction thereof coincides with the radial direction.
  • the stator core 30 is formed by connecting a predetermined number (24 in the present embodiment) of the split cores 32 shown in FIG. 4 in the circumferential direction.
  • the split core 32 has a shape in which one slot 31 is defined and one slot 31 is defined between the adjacent split cores 32 in the circumferential direction.
  • the split core 32 has a pair of teeth portions 320 that extend radially inward and a back core portion 321 that connects the teeth portions 320 radially outward.
  • the split core 32 constituting the stator core 30 is formed by laminating 410 electromagnetic steel hills having a thickness of 0.3 mm. An insulating thin film is disposed between the laminated electrical steel sheets.
  • the split core 32 constituting the stator core 30 may be formed not only from the laminated body of electromagnetic steel sheets but also using a conventionally known metal thin plate and insulating thin film.
  • the stator coil 4 is formed by winding a plurality of windings 40 by a predetermined winding method.
  • the winding 40 constituting the stator coil 4 includes a copper conductor 41 and an insulating coating 42 made of an inner layer 420 and an outer layer 421 covering the outer periphery of the conductor 41 and insulating the conductor 41. And is formed from.
  • the thickness of the insulating coating 42 including the inner layer 420 and the outer layer 421 is set between 100 ⁇ m and 200 ⁇ m.
  • Insulating paper may be disposed between the 40 or between the stator core 30 and the stator coil 40 as shown in FIG.
  • the winding 40 of the stator coil 4 is formed by covering the outer periphery of the insulating film 42 made of the inner layer 420 and the outer layer 421 with a fusion material 48 made of epoxy resin or the like. May be.
  • the fusion material 48 is melted faster than the insulating film 42 by the heat generated in the rotating electrical machine 1, so that the plurality of windings 40 installed in the same slot 31 are thermally bonded by the fusion material 48.
  • the plurality of windings 40 installed in the same slot 31 are integrated to form a steel body between the windings 40, so that the mechanical strength of the winding 40 in the slot 31 is improved.
  • each of the stator coils 4 is formed by two three-phase windings (U1, U2, V1, V2, W1, W2).
  • the stator coil 4 is formed by winding a plurality of windings 40 into a predetermined shape, as shown in FIG.
  • the winding 40 constituting the stator coil 4 is formed in a shape that is wave-wound along the circumferential direction on the inner peripheral side of the stator core 30.
  • the winding 40 constituting the stator coil 4 includes a linear slot accommodating portion 43 accommodated in the slot 31 of the stator core 30 and a turn portion 44 that connects the adjacent slot accommodating portions 43 to each other. ing.
  • the turn portion 44 is formed so as to protrude from the end surface of the stator core 30 in the axial direction.
  • the stator coil 4 is formed in a state in which both ends of the plurality of windings 40 protrude from the axial end face of the stator core 30 and the plurality of windings 40 are wound in a wave shape along the circumferential direction. .
  • One phase of the stator coil 4 is formed by welding the ends of the first winding portion 40a and the second winding portion 40b together by welding. That is, one phase of the stator coil 4 is formed from one assembly formed by joining the ends of two molded bodies formed from two electric conductor wires.
  • the slot accommodating portion 43 of the first winding portion 40a and the slot accommodating portion 43 of the second winding portion 40b are accommodated in the same slot 31.
  • the slot accommodating portions 43 of the first winding portion 40 a and the slot accommodating portions 43 of the second winding portion 40 b are installed so as to be alternately positioned in the depth direction of the slot 31.
  • winding part 40b is the slot accommodation in which the winding direction of the 1st coil
  • a folded portion 46 formed by the portion 43 is formed.
  • the stator coil 4 includes the first winding portion 40a having different winding directions. Six sets of the second winding portion 40b are formed, and six sets of sets are used to form a three-phase (U, V, W) ⁇ 2 (double slot) coil. In each assembly, the end on the opposite side to the end on the neutral point side (or phase terminal side) of the first winding portion 40a, and the phase terminal side (or neutral point) of the second winding portion 40b Side end) and the opposite end are connected via a slot accommodating portion 43 formed of a folded portion 46. The method of connecting the windings 40 of each phase is the same.
  • stator coil 4 is manufactured as follows.
  • the radial direction means the radial direction of the core member or the wound body
  • the circumferential direction means the circumferential direction of the core member or the wound body
  • 12 molded bodies are formed from 12 electric conductor wires.
  • Each molded body to be molded here has a plurality of straight portions 431 extending in parallel with each other and arranged in parallel in the longitudinal direction of the molded body, and adjacent straight portions 431 are connected to one end side and the other end side of the straight portion 431. And a plurality of turn portions 441 that are alternately connected to each other.
  • the built-in body 47 is formed by incorporating 12 molded bodies. In this built-in body 47, six sets of bodies are arranged in parallel in the longitudinal direction of the built-in body 47.
  • Each assembly consists of a first wire portion that becomes the first winding portion 40a and a second wire portion that becomes the second winding portion 40b.
  • the 1st line part consists of one molded object
  • the 2nd line part also consists of one molded object.
  • the end portion of the first line portion and the end portion of the second line portion in each assembly are welded to form a joint portion 45.
  • the end portion of the first line portion and the end portion of the second line portion in each assembly may be joined, or the end portion of the first line portion and the second portion. After joining the ends of the line portions to form six sets of assemblies, these six sets of assemblies may be incorporated.
  • Each assembly in the built-in body 47 includes a plurality of straight overlapping portions 471 formed by overlapping a plurality of straight portions 431 in the first line portion and a plurality of straight portions 431 in the second line portion. It is in the longitudinal direction of the built-in body 47.
  • the winding body 48 is formed by winding the built-in body 47 by a predetermined number of turns (for example, 3 times) so that the folded portion 46 is positioned on the axial center side.
  • the wound body 48 has a plurality of straight laminated portions 481 formed by laminating a plurality of straight overlapping portions 471 in one assembly by the number of turns in the radial direction in the circumferential direction of the wound body 48.
  • the number of the straight portions 431 that is twice as many as the number of turns is overlapped and aligned in a row in the radial direction (radial direction).
  • each of the straight laminated portions 481 is located in a state of being spaced apart in the circumferential direction of the winding body 48.
  • the teeth part 320 of the split core 32 is inserted into the gap between the adjacent straight laminated parts 481 from the outside in the radial direction, and the adjacent split cores 32 are connected to each other. And the stator 3.
  • the winding process in the stator coil manufacturing method of Embodiment 1 is a pitch-by-pitch winding process.
  • the built-in body 47 is fed into the core member 6 by one pitch (interval between adjacent straight overlapping portions 471 in the built-in body 47), while the built-in body 47 is turned into a cylindrical core member. (Core metal) 6 is wound up.
  • the straight portions 431 in the straight overlap portion 471 of the built-in body 47 are preliminarily aligned with each other, and adjacent straight overlaps are arranged.
  • the size of the gap 472 between the mating portions 471 is aligned in advance.
  • the conveyance to the core member 6 by the rotation of the core member 6 (clockwise rotation in FIG. 9) and the horizontal movement of the built-in body 47 (horizontal movement from left to right in FIG. 9) is a well-known driving device (not shown). And a control device for controlling this.
  • the built-in body 47 is wound around the core member 6, for example, three times to form a wound body 48.
  • the preliminary alignment device 8 includes a plurality (six in this embodiment) of preliminary alignment members 81 and a preliminary alignment member driving device 82.
  • the preliminary alignment member driving device 82 moves all the preliminary alignment members 81 forward and backward simultaneously.
  • a preliminary alignment member driving device may be provided for each preliminary alignment member 81, and each preliminary alignment member 81 may be moved forward and backward independently.
  • the advance / retreat direction of the preliminary alignment member 81 coincides with the overlapping direction of the straight portions 431 in the straight overlapping portion 471 of the built-in body 47 conveyed to the core member 6.
  • the preliminary alignment member 81 and the preliminary alignment member driving device 82 can be advanced and retracted in parallel with the conveying direction of the built-in body 47 by a horizontal driving device (not shown).
  • the amount of advance (or the amount of retreat) at this time is equal to the size of the interval between adjacent straight overlapping portions 471 in the built-in body 47, that is, the size of one pitch. Further, the advancement of the preliminary alignment member 81 and the preliminary alignment member driving device 82 (movement of the built-in body 47 in the transport direction) is performed at the same speed in synchronization with the transport of the built-in body 47.
  • the position holding device 9 includes a plurality (six in this embodiment) of position holding members 91 and a position holding member driving device 92.
  • the position holding member driving device 92 moves all the position holding members 91 forward and backward simultaneously.
  • a position holding member driving device may be provided for each position holding member 91, and each position holding member 91 may be moved forward and backward independently.
  • the advancing / retreating direction of the position holding member 91 coincides with the overlapping direction of the straight portions 431 in the straight overlapping portion 471 of the built-in body 47 conveyed to the core member 6.
  • the pair of upper and lower alignment plates 93 align the thickness of the built-in body 47 conveyed to the core member 6 (the thickness in the overlapping direction of the straight portion 431) in the turn portion 441.
  • the preliminary alignment member 81 has a width (width in the transport direction of the built-in body 47) substantially equal to the size of the gap 472 between the adjacent straight overlapping portions 471 in the built-in body 47. For this reason, when the preliminary alignment member 81 is inserted into the gap 472 and the straight overlapping portion 471 of the built-in body 47 is sandwiched between the preliminary alignment members 81, the straight portion 431 in the straight overlapping portion 471. The straight portions 431 can be aligned in the overlapping direction by aligning the overlapping.
  • the number of preliminary alignment members 81 is set to n. In some cases, the number of the preliminary alignment members 81 is more than n / 2.
  • the position holding member 91 has a width slightly smaller than the width of the preliminary alignment member 81. That is, the position holding member 91 has a width slightly smaller than the size of the gap 472 in the built-in body 47. For this reason, when the position holding member 91 is inserted into the gap 472 before the preliminary alignment member 81 with respect to the assembled body 47 that has been conveyed, the insertion becomes easy.
  • the tip end portion 81a of the preliminary alignment member 81 and the position holding member 91 is at the tip.
  • the width becomes smaller as it goes.
  • the preliminary alignment member 81 and the position holding member 91 are formed of a rectangular parallelepiped having a rectangular cross section corresponding to the shape of the gap 472 in the built-in body 47.
  • a plurality of preliminary alignment members (or position holding members) having a columnar shape or the like may be employed.
  • the preliminary alignment member driving device 82, the position holding member driving device 92, the horizontal driving device, the rotation driving device of the core member 6, and the conveyance driving device of the built-in body 47 are controlled by the control device, and the winding of the built-in body 47 is performed as follows. Can be taken.
  • the transport drive device transports the built-in body 47 until the winding tip contacts the core member 6 (or just before contact). After the conveyance of the built-in body 47 is stopped, the position holding member 91 is inserted into the gap 472 of the built-in body 47 (state shown in FIG. 11B). Thereby, the built-in body 47 is positioned at a predetermined position.
  • Preliminary alignment member insertion process The preliminary alignment member 81 is inserted into the gap 472 of the built-in body 47 held at a predetermined position by the position holding member 91 (see FIG. 11C). Thereby, on the winding front end side of the built-in body 47, the straight portions 431 in the straight overlapping portion 471 can be aligned in the radial direction, and the distance between the straight overlapping portions 471 is made uniform. Can do.
  • the first alignment piece 71 as the alignment member 7 is inserted into the gap 472 at the tip of the embedded body 47 that has started to be wound around the core member 6 after the built-in body 47 has been advanced by one pitch. At this time, since the straight portions 431 are aligned in advance and the pitch is aligned by the preliminary alignment member 81, the first alignment piece 71 can be easily inserted into the gap 472.
  • the preliminary alignment member 81 is inserted into another gap 472 (such as a gap next to the gap 472 into which the position holding member 91 is inserted) 472 in which the position holding member 91 is inserted in the gap 472.
  • the alignment member insertion step, the position holding member extraction step, the forward movement step, the position holding member insertion step, the preliminary alignment member extraction step, and the backward movement step are repeated.
  • each of the straight portions 431 in the straight overlapping portion 471 can be pre-aligned in the overlapping direction by the preliminary alignment member 81, and the size of the interval between the adjacent straight overlapping portions 471 is large. Can be prepared in advance. For this reason, in the wound body 48 obtained by winding the built-in body 47, the accuracy of aligning the respective straight portions 431 of the straight laminated portion 481 in the radial direction of the wound body 48 can be improved. The pitch accuracy between the adjacent straight laminated portions 481 can be improved.
  • the position holding member 91 is always inserted into the other gap 472 so that the built-in body 47 is positioned. That is, the preliminary alignment member 81 is extracted or inserted into the built-in body 47 positioned by the position holding member 91. For this reason, the preliminary alignment member 81 can be easily inserted into the next gap 472.
  • the alignment accuracy and pitch accuracy of the straight portion 43 in the built-in body 47 are previously increased by the preliminary alignment member 81, the effect of improving the alignment accuracy and pitch accuracy by the alignment member 7 can be further enhanced.
  • the winding process in the method for manufacturing the stator coil according to the second embodiment shown in FIGS. 13 to 14 is a continuous winding process.
  • the built-in body 47 is wound while being continuously fed to the core member 6.
  • the plurality of preliminary alignment members 81 are movable in the same direction in synchronism with the conveying direction of the built-in body 47 by a belt conveyor system while being guided by a pair of feed rollers 85 by a guide member 83.
  • the plurality of preliminary alignment members 81 are controlled to advance and retract with respect to the gap 472 of the built-in body 47 by the preliminary alignment member operation restriction member 84.
  • the pair of feed rollers 85 are controlled by the control device together with the alignment arrow driving devices 75, the rotation driving device of the core member 6, and the conveyance driving device of the built-in body 47.
  • the preliminary alignment member 81 has the same configuration as that described in the first embodiment.
  • the preliminary alignment member regulating member 84 has an entry portion, an alignment portion, and a withdrawal portion.
  • the preliminary alignment member regulating member 84 is an entry portion that gradually lowers the preliminary alignment member 81 in the transport direction of the built-in body 47 and gradually enters the pre-alignment member 81 into the gap 472 of the built-in body 47.
  • the preliminary alignment member restricting member 84 is an alignment unit, and horizontally moves the preliminary alignment member 81 in the transport direction while keeping the preliminary alignment member 81 completely in the gap 472. Thereby, within the range of this alignment portion, the straight portions 431 in the straight overlapping portion 471 of the built-in body 47 can be aligned in the radial direction, and the distance between the straight overlapping portions 471 is made uniform. be able to.
  • the preliminary alignment member 84 is a withdrawal portion, and gradually raises the preliminary alignment member 81 in the conveyance direction of the built-in body 47 to cause the pre-alignment member 81 to retreat from the gap 472 of the built-in body 47.
  • the preliminary alignment member 81 is withdrawn from the gap 472
  • the built-in body 47 starts to be wound around the core member 6.
  • a pair of alignment arrows 74 as the alignment member 7 is inserted into the gap 472 between the straight overlapping portions 471 immediately after starting to be wound around the core member 6.
  • the alignment accuracy and pitch accuracy of the straight portion 43 in the built-in body 47 are previously increased by the preliminary alignment member 81, the effect of improving the alignment accuracy and pitch accuracy by the alignment member 7 can be further enhanced.
  • the first line portion is composed of a first wire portion as one formed body formed from one electric conductor wire and a second line portion as one formed body formed from one electric conductor wire.
  • the second line portion may be independent from each other. Or it is good also considering what the 1st wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 組み込み体47を芯部材6に送り込む搬送途中で、組み込み体47の隣り合う直状重ね合わせ部471同士の間に形成された複数の隙間472のうち連続する複数の隙間472にそれぞれ予備整列部材81を挿入する。予備整列部材81により、直状重ね合わせ部471における直状部431の重ね合わせや直状重ね合わせ部471間のピッチを予め揃える。

Description

固定子コイルの製造方法
 本発明は固定子コイルの製造方法に関し、詳しくは回転電機の固定子に用いられる固定子コイルの製造方法に関する。
 近年、電動機及び発電機として使用される回転電機において、小型高出力及び高品質が求められている。
 例えば、車両に搭載される回転電機においては、回転電機を搭載するためのスペースが小さくなってきている一方で、出力の向上が求められている。
 従来の回転電機として、固定子に用いられる固定子コイルが連続巻線で形成されたものが知られている(例えば、特許文献1、2参照)。
特開2002-176752号公報 特開2004-320886号公報
 ところで、連続巻線よりなる固定子コイルを製造する一方法として、例えば以下に示すものがある。
 まず、電気導体線から、並列した複数の直状部が複数のターン部で連結されてなる成形体を複数成形する。そして、これらの成形体を組み込んで組み込み体を形成する。この組み込み体を構成する各成形体組は、一つの成形体における複数の直状部と他の一つの成形体における複数の直状部とがそれぞれ重ね合わされて形成された複数の直状重ね合わせ部を組み込み体の長手方向に有している。このため、この組み込み体においては、複数の直状重ね合わせ部が組み込み体の長手方向に並列している。そして、この組み込み体を芯部材に所定回数巻回して巻き取り、巻き取り体を形成する。この巻き取り体においては、一つの成形体組における複数の直状重ね合わせ部が径方向に積層されて形成された複数の直状積層部を周方向に有している。
 こうして得られた巻き取り体は、各直状積層部が固定子コアのスロット内に配設されるとともに、各ターン部がスロットの外部に配設されて固定子コイルとされる。
 しかしながら、上記製造方法では、芯部材に組み込み体を巻き取る際に、組み込み体の直状重ね合わせ部における直状部の重ね合わせがずれたり、あるいは隣り合う直状重ね合わせ部同士の間隔が不均一になったりしやすい。このため、得られた巻き取り体においては、直状積層部における複数の直状部の重ね合わせがずれたり、あるいは隣り合う直状積層部同士の間隔が不均一になったりしやすい。そうすると、固定子コアのスロット内に固定子コイルの直状積層部が配設されたときに、スロット内における各直状部の整列精度が低下したり、隣り合うスロットに配設された直状積層部同士の間隔(ピッチ)が不均一になったりしやすい。直状部の整列精度の低下やピッチの不均一は固定子におけるスロット占有率やこの固定子を用いた回転電機の出力低下に繋がる。
 本発明は上記実情に鑑みてなされたものであり、連続巻線よりなる各相巻線が巻回されてなる固定子コイルを巻き取り製造する際に、巻き取り体の直状積層部において少なくとも各直状部の整列精度を向上させることを解決すべき技術課題とする。
 上記課題を解決するためになされた本発明は、複数の相巻線が巻回されてなる固定子コイルの製造方法であって、電気導体線から複数の成形体を成形する成形工程と、複数の前記成形体を組み込んで組み込み体を形成する組み込み工程と、前記組み込み体を芯部材に巻き取って巻き取り体を形成する巻き取り工程と、を備え、前記成形体は、互いに平行に延びて前記組み込み体の長手方向に並列した複数の直状部と、隣り合う該直状部同士を該直状部の一端側と他端側とで交互に連結する複数のターン部とを有し、各前記成形体は、互いの前記直状部同士がそれぞれ重ね合わされて形成された複数の直状重ね合わせ部を前記組み込み体の長手方向に有し、前記巻き取り工程で得られた前記巻き取り体は、複数の前記直状重ね合わせ部が径方向に積層されて形成された複数の直状積層部を該巻き取り体の周方向に有し、前記巻き取り工程では、前記組み込み体を前記芯部材に送り込む搬送途中で、前記組み込み体の隣り合う前記直状重ね合わせ部同士の間に形成された複数の隙間のうち連続する複数の該隙間にそれぞれ予備整列部材を挿入することにより、該予備整列部材で挟まれた該直状重ね合わせ部における直状部の重ね合わせを揃えることを特徴とする。
 本発明の固定子コイルの製造方法における巻き取り工程では、組み込み体を芯部材に送り込む搬送途中で、組み込み体の隣り合う複数の直状重ね合わせ部同士の間に形成された複数の隙間のうち連続する複数の隙間にそれぞれ予備整列部材を挿入する。このとき、連続する少なくとも2個の隙間のそれぞれに予備整列部材を挿入する場合は、少なくとも予備整列部材で挟まれた直状重ね合わせ部における直状部の重ね合わせを揃えて各直状部を重ね合わせ方向に予め整列させておくことができる。このため、この組み込み体を巻き取って得られる巻き取り体において、少なくとも直状積層部の各直状部が巻き取り体の径方向に整列する精度を向上させることができる。また、連続する少なくとも3個の隙間のそれぞれに予備整列部材を挿入する場合は、予備整列部材で挟まれた直状重ね合わせ部における直状部の重ね合わせを揃えて各直状部を重ね合わせ方向に予め整列させておくことができるとともに、隣り合う直状重ね合わせ部同士の間隔の大きさを予め揃えておくことができる。このため、この組み込み体を巻き取って得られる巻き取り体において、直状積層部の各直状部が巻き取り体の径方向に整列する精度を向上させることができるとともに、隣り合う直状積層部同士のピッチ精度を向上させることができる。
 前記巻き取り工程は、前記組み込み体を前記芯部材に対して連続的に送り込みながら巻き取る連続巻き取り工程であり、前記連続巻き取り工程では、前記予備整列部材を該組み込み体と同期して移動させながら前記隙間に対して進入及び退出させることが好ましい。
 この構成によると、連続巻き取りにより巻き取り体を形成する場合において、巻き取り体の直状積層部における各直状部の整列精度や隣り合う直状積層部同士のピッチ精度を向上させることができる。
 前記巻き取り工程は、前記組み込み体を前記芯部材に対して隣り合う前記直状重ね合わせ部同士の間隔ずつ送り込みながら該組み込み体を該芯部材に巻き取るピッチ毎巻き取り工程であり、前記ピッチ毎巻き取り工程では、停止している前記組み込み体の前記隙間に前記予備整列部材を挿入する予備整列部材挿入工程と、該予備整列部材と共に該組み込み体を前記直状重ね合わせ部同士の間隔だけ前進移動させる前進移動工程と、該組み込み体の該隙間から該予備整列部材を抜き取る予備整列部材抜き取り工程と、該予備整列部材を該直状重ね合わせ部同士の間隔だけ後退移動させる後退移動工程とを繰り返すことが好ましい。
 この構成によると、ピッチ毎巻き取りにより巻き取り体を形成する場合において、巻き取り体の直状積層部における各直状部の整列精度や隣り合う直状積層部同士のピッチ精度を向上させることができる。
 前記ピッチ毎巻き取り工程では、前記前進移動工程の後に、前記組み込み体の前記予備整列部材が挿入された前記隙間以外の他の前記隙間に位置保持部材を挿入する位置保持部材挿入工程を行い、かつ、前記予備整列部材挿入工程の後に、該組み込み体の該隙間から該位置保持部材を抜き取る位置保持部材抜き取り工程を行い、前記位置保持部材を前記隙間に挿入した状態で前記予備整列部材抜き取り工程、前記後退移動工程及び前記予備整列部材挿入工程を行い、かつ、該位置保持部材を該隙間から抜き取った状態で前記前進移動工程を行うことが好ましい。
 この構成によると、ピッチ毎巻き取りにより巻き取り体を形成する場合において、組み込み体の隙間に予備整列部材を挿入して直状重ね合わせ部における各直状部を予備整列させてからこの組み込み体を芯部材に対して1ピッチ分だけ送り込む。そして、この予備整列部材が組み込み体の隙間に挿入されている状態で、組み込み体の他の隙間に位置保持部材を挿入する。そして、この位置保持部材により組み込み体の位置が保持されている状態で、組み込み体から予備整列部材を抜き取り、抜き取った予備整列部材を1ピッチ分だけ後退させて次の隙間へ挿入する。このため、予備整列部材を次の隙間に容易に挿入することができる。
 したがって、本発明の固定子コイルの製造方法によると、連続巻線よりなる各相巻線が巻回されてなる固定子コイルを巻き取り製造する際に、少なくとも巻き取り体の直状積層部において各直状部の整列精度を向上させたり、あるいは巻き取り体の直状積層部において各直状部の整列精度を向上させるとともに隣り合う直状積層部同士のピッチ精度を向上させたりすることができる。
 よって、本発明の固定子コイルの製造方法により得られた固定子コイルを回転電機の固定子に適用すれば、巻き取り体の直状積層部を固定子鉄心の各スロット内に確実に収容させることができ、固定子におけるスロット占有率やこの固定子を用いた回転電機の出力を向上させることが可能となる。
 また、巻き取り体の直状積層部を固定子鉄心の各スロット内に容易に収容させることができるので、固定子の生産性も向上させることが可能となる。
実施形態1に係る回転電機の構成を模式的に示す軸方向断面図である。 実施形態1に係る固定子の平面図である。 実施形態1に係る固定子コアの平面図である。 実施形態1に係る分割積層コアの平面図である。 実施形態1に係る固定子コイルを構成する巻線の断面図である。 実施形態1に係る固定子コイルの結線を示す図である。 実施形態1に係る固定子コイルとなる巻き取り体の斜視図である。 実施形態1に係る固定子コイルの展開図であり、組み込み体の平面図である。 実施形態1に係る固定子コイルの製造方法を模式的に示す図である。 実施形態1に係る固定子コイルの製造方法を示し、予備整列部材及び位置保持部材の動作を模式的に示す図である。 実施形態1に係る固定子コイルの製造方法を示し、予備整列部材及び位置保持部材の動作を模式的に示す図である。 実施形態1に係る固定子コイルの製造方法を示し、予備整列部材及び位置保持部材の先端形状を示す側面図である。 実施形態2に係る固定子コイルの製造方法を模式的に示す図である。 実施形態2に係る固定子コイルの製造方法を示し、予備整列部材を送りローラによりベルトコンベア方式で移動させる構成を模式的に示す図である。
符号の説明
 1…回転電機           3…固定子
30…固定子コア     31a、31b…スロット
 4…固定子コイル        43…スロット収容部
47…組み込み体         48…巻き取り体
431…直状部         441…ターン部
471…直状重ね合わせ部    472…隙間
481…直状積層部         6…芯部材
81…予備整列部材        91…位置保持部材
 以下、本発明の固定子コイルの製造方法の実施形態について詳しく説明する。なお、説明する実施形態はあくまでも実施形態の例にすぎず、本発明の固定子コイルの製造方法は、下記実施形態に限定されるものではない。本発明の固定子コイルの製造方法は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 (実施形態1)
 まず、本実施形態の固定子コイルの製造方法により得られた固定子コイルを用いた回転電気1の構成について説明する。
 この回転電気1は、図1に示されるように、略有底筒状の一対のハウジング部材100、101が開口部同士で接合されてなるハウジング10と、ハウジング10に軸受け110、111を介して回転自在に支承された回転軸20と、回転軸20に固定された回転子2と、ハウジング10の内部で回転子2を包囲する位置でハウジング10に固定された固定子3と、を備えている。
 回転子2は、永久磁石により周方向に交互に異なる磁極を、固定子3の内周側と向き合う外周側に複数形成している。回転子2の磁極の数は、回転電機により異なるため限定されるものではない。本実施形態では、8極(N極:4、S極:4)の回転子が用いられている。
 固定子3は、図2に示されるように、固定子コア30と、複数の各相巻線から形成された三相の固定子コイル4と、固定子コア30と固定子コイル4との間に配された絶縁紙5と、を備えた構成を有している。
 固定子コア30は、図3に示されるように、内周に複数のスロット31が形成された円環状を呈している。複数のスロット31は、その深さ方向が径方向と一致するように形成されている。固定子コア30に形成されたスロット31の数は、回転子2の磁極数に対し、固定子コイル4の一相あたり2個の割合で形成されている。本実施形態では、8×3×2=48より、スロット数は48個とされている。
 固定子コア30は、図4に示される分割コア32を所定の数(本実施形態では、24個)だけ周方向に連結して形成されている。分割コア32は、一つのスロット31を区画するとともに、周方向で隣接する分割コア32との間で一つのスロット31を区画する形状を呈している。具体的には、分割コア32は、径方向内方に伸びる一対のティース部320と、ティース部320を径方向外方で連結するバックコア部321とを有している。
 固定子コア30を構成する分割コア32は、0.3mmの厚さの電磁鋼坂410枚を積層させて形成されている。なお、積層された電磁鋼板の間には、絶縁薄膜が配置されている。固定子コア30を構成する分割コア32は、この電磁鋼板の積層体からだけでなく、従来公知の金属薄板及び絶縁薄膜を用いて形成してもよい。
 固定子コイル4は、複数の巻線40を所定の巻回方法で巻回してなる。固定子コイル4を構成する巻線40は、図5(A)に示されるように、銅製の導体41と、導体41の外周を覆い導体41を絶縁する内層420及び外層421からなる絶縁被膜42とから形成されている。内層420及び外層421を合わせた絶縁被膜42の厚みは、100μm~200μmの間に設定されている。このように、内層420及び外層421からなる絶縁皮膜42の厚みが厚いので、巻線40同士を絶縁するために巻線40同士の間に絶縁紙等を挟み込む必要がなくなっているが、巻線40同士の間あるいは図2に示されるように固定子コア30と固定子コイル40との間に絶縁紙を配設してもよい。
 さらに、固定子コイル4の巻線40は、図5(B)に示されるように、内層420及び外層421からなる絶縁皮膜42の外周をエポキシ樹脂等からなる融着材48で被覆して形成してもよい。この場合、回転電機1に発生する熱により融着材48が絶縁皮膜42よりも早く溶融するので、同じスロット31に設置されている複数の巻線40同士が融着材48同士により熱接着する。その結果、同じスロット31に設置されている複数の巻線40が一体化し巻線40同士が鋼体化することで、スロット31内の巻線40の機械的強度が向上する。
 固定子コイル4は、図6に示されるように、それぞれが2本の三相巻線(U1、U2、V1、V2、W1、W2)により形成されている。
 固定子コイル4は、図7に示されるように、複数の巻線40を所定の形状に巻回してなる。固定子コイル4を構成する巻線40は、固定子コア30の内周側で周方向に沿って波巻きされる形状で成形されている。
 固定子コイル4を構成する巻線40は、固定子コア30のスロット31に収容される直線状のスロット収容部43と、隣り合ったスロット収容部43同士を接続するターン部44と、を備えている。スロット収容部43は、所定のスロット数(本実施形態では、3相×2個=6個)ごとのスロット31に収容されている。ターン部44は、固定子コア30の軸方向の端面から突出して形成されている。
 固定子コイル4は、複数の巻線40の両端を固定子コア30の軸方向の端面から突出させ、かつ複数の巻線40を周方向に沿って波状に巻装した状態で形成されている。固定子コイル4の1相は、第1の巻線部40aと第2の巻線部40bとの端部同士を溶接により接合して形成されている。すなわち、2本の電気導体線から成形した2つの成形体の端部同士を接合して形成された一つの組体から固定子コイル4の1相が形成されている。第1の巻線部40aのスロット収容部43と第2の巻線部40bのスロット収容部43とは、同一スロット31に収容される。このとき、第一の巻線部40aのスロット収容部43と、第二の巻線部40bのスロット収容部43とは、スロット31の深さ方向で交互に位置するように設置されている。そして、第1の巻線部40aと第2の巻線部40bとの接合部45は、第1の巻線部40aと第2の巻線部40bの巻装される方向が反転するスロット収容部43よりなる折り返し部46に形成されている。
 固定子コイル4の展開図、すなわち巻回される前の組み込み体47の平面図が図8に示されるように、固定子コイル4は、互いに巻装方向が異なる第1の巻線部40aと第2の巻線部40bとからなる組体を6組有し、6組の組体を用いて、3相(U,V,W)×2個(倍スロット)のコイルとされている。各組体において、第1の巻線部40aの中性点側(又は相端子側)の端部と反対側の端部と、第2の巻線部40bの相端子側(又は中性点側)の端部と反対側の端部とが、折り返し部46よりなるスロット収容部43を介して接続されている。各相の巻線40の結線方法は同様である。
 以下、実施形態1の固定子コイルの製造方法について説明する。すなわち、固定子コイル4は、以下のようにして製造される。
 なお、以下の説明において、径方向は芯部材又は巻き取り体の径方向を意味し、周方向は芯部材又は巻き取り体の周方向を意味する。
 <成形工程>
 まず、12本の電気導体線から12個の成形体を成形する。ここで成形する各成形体は、互いに平行に延びて成形体の長手方向に並列した複数の直状部431と、隣り合う直状部431同士を直状部431の一端側と他端側とで交互に連結する複数のターン部441とを有する。
 <組み込み工程>
 12個の成形体を組み込むことにより、組み込み体47を形成する。この組み込み体47においては、6組の組体が組み込み体47の長手方向に並列している。
 各組体は、第1の巻線部40aとなる第1線部と、第2の巻線部40bとなる第2線部とからなる。なお、第1線部が1個の成形体よりなり、第2線部も1個の成形体よりなる。
 各組体における第1線部の端部と第2線部の端部とが溶接接合されて接合部45とされている。なお、12個の成形体を組み込んでから、各組体における第1線部の端部と第2線部の端部とを接合してもよいし、第1線部の端部と第2線部の端部とを接合して6組の組体を形成してから、この6組の組体を組み込んでもよい。
 組み込み体47における各組体は、第1線部における複数の直状部431と第2線部における複数の直状部431とがそれぞれ重ね合わされて形成された複数の直状重ね合わせ部471を組み込み体47の長手方向に有する。
 <巻き取り工程>
 組み込み体47を折り返し部46が軸心側に位置するように所定の巻数(例えば、3回)だけ巻回して巻き取り体48を形成する。巻き取り体48は、一つの組体における複数の直状重ね合わせ部471が径方向に巻数分だけ積層されて形成された複数の直状積層部481を巻き取り体48の周方向に有する。各直状積層部481においては、巻数の2倍の数の直状部431が重ね合わされて径方向(放射方向)に一列に並んでいる。このとき、各直状積層部481は、巻き取り体48の周方向で小間隔を隔てた状態で位置している。
 こうして得られた巻き取り体48に対して、径方向外方から分割コア32のティース部320を隣り合う直状積層部481同士の間の隙間に挿入し、隣り合う分割コア32同士を連結して固定子3とする。
 次に、実施形態1の固定子コイルの製造方法における巻き取り工程について、図9~図12を参照しつつ、詳しく説明する。
 実施形態1の固定子コイルの製造方法における巻き取り工程は、ピッチ毎巻き取り工程である。このピッチ毎巻き取り工程では、組み込み体47を芯部材6に対して1ピッチ(組み込み体47において隣り合う直状重ね合わせ部471同士の間隔)ずつ送り込みながら、組み込み体47を円柱状の芯部材(芯金)6に巻き取る。このとき、本実施形態では、組み込み体47を芯部材6に送り込む搬送途中で、組み込み体47の直状重ね合わせ部471における直状部431同士の重ね合わせを予め揃えるとともに、隣り合う直状重ね合わせ部471同士の隙間472の大きさを予め揃える。
 芯部材6の回転(図9における時計回り方向への回転)及び組み込み体47の水平移動(図9において左から右への水平移動)による芯部材6への搬送は、図示しない周知の駆動装置及びこれを制御する制御装置により行うことができる。
 組み込み体47は、芯部材6回りに例えば3回巻回させて巻き取り体48とされる。
 予備整列装置8は、複数(本実施形態では6個)の予備整列部材81と、予備整列部材駆動装置82とを備えている。予備整列部材駆動装置82は、全ての予備整列部材81を同時に進退動させる。なお、予備整列部材81毎に予備整列部材駆動装置を設けて、各予備整列部材81をそれぞれ独立に進退動させてもよい。予備整列部材81の進退方向は、芯部材6へ搬送される組み込み体47の直状重ね合わせ部471における直状部431の重ね合わせ方向と一致する。
 この予備整列部材81及び予備整列部材駆動装置82は、図示しない水平駆動装置により、組み込み体47の搬送方向と平行に進退可能とされている。このときの前進量(又は後退量)は、組み込み体47における隣り合う直状重ね合わせ部471同士の間隔の大きさ、すなわち1ピッチの大きさと同等である。また、予備整列部材81及び予備整列部材駆動装置82の前進(組み込み体47の搬送方向への移動)は、組み込み体47の搬送と同期して同速度で行われる。
 位置保持装置9は、複数(本実施形態では6個)の位置保持部材91と、位置保持部材駆動装置92とを備えている。位置保持部材駆動装置92は、全ての位置保持部材91を同時に進退動させる。なお、位置保持部材91毎に位置保持部材駆動装置を設けて、各位置保持部材91をそれぞれ独立に進退動させてもよい。位置保持部材91の進退方向は、芯部材6へ搬送される組み込み体47の直状重ね合わせ部471における直状部431の重ね合わせ方向と一致する。
 上下一対の整列板93は、芯部材6に搬送される組み込み体47の厚さ(直状部431の重ね合わせ方向の厚さ)をターン部441において揃える。
 ここに、予備整列部材81は、組み込み体47における隣り合う直状重ね合わせ部471同士の隙間472の大きさと略同等の幅(組み込み体47の搬送方向における幅)を有する。このため、予備整列部材81が隙間472に挿入されて、予備整列部材81同士の間で組み込み体47の直状重ね合わせ部471が挟まれることにより、直状重ね合わせ部471における直状部431同士の重ね合わせを揃えて、直状部431を重ね合わせ方向に整列させることができる。
 このように直状重ね合わせ部471における直状部431を重ね合わせ方向に整列させるためには、予備整列部材81が少なくとも2個必要である。また、予備整列部材81が3個以上あれば、両外側の予備整列部材81の間にある2個の直状重ね合わせ部471同士の間隔の大きさを揃えることができる。したがって、予備整列部材81は3個以上とすることが好ましい。ただし、直状重ね合わせ部471における直状部431の整列精度や直状重ね合わせ部471同士のピッチ精度をより向上させる観点より、組み込み体47における直状重ね合わせ部471の数をnとしたとき、予備整列部材81はn/2個以上とすることがより好ましい。
 位置保持部材91は、予備整列部材81の幅より若干小さい幅を有する。すなわち、位置保持部材91は、組み込み体47における隙間472の大きさよりも若干小さい幅を有する。このため、搬送されてきた組み込み体47に対して予備整列部材81よりも先に位置保持部材91を隙間472に挿入させる際に、その挿入が容易となる。
 また、図12に示されるように、隙間472に対する予備整列部材81及び位置保持部材91の挿入容易性をより向上させる観点より、予備整列部材81及び位置保持部材91の先端部81aは、先端に向かうほど幅が小さくなる形状とされている。
 予備整列部材81及び位置保持部材91は、組み込み体47における隙間472の形状に対応する長方形断面を有する直方体よりなる。ただし、直方体よりなる1個の予備整列部材81(又は位置保持部材91)の代わり、円柱状等の複数の予備整列部材(又は位置保持部材)を採用してもよい。
 予備整列部材駆動装置82、位置保持部材駆動装置92、水平駆動装置、芯部材6の回転駆動装置及び組み込み体47の搬送駆動装置を制御装置により制御して、以下のように組み込み体47の巻き取りを行うことができる。
 <位置保持部材挿入工程>
 搬送駆動装置により、組み込み体47の巻き取り先端が芯部材6に当接する(又は当接する直前)まで搬送する。組み込み体47の搬送停止後、位置保持部材91を組み込み体47の隙間472に挿入する(図11(B)に示す状態)。これにより、組み込み体47は所定位置に位置決めされる。
 <予備整列部材挿入工程>
 位置保持部材91により所定位置に保持された組み込み体47の隙間472に予備整列部材81を挿入する(図11(C)参照)。これにより、組み込み体47の巻き取り先端側において、直状重ね合わせ部471における直状部431を径方向に整列させることができるとともに、直状重ね合わせ部471同士の間隔の大きさを揃えることができる。
 <位置保持部材抜き取り工程>
 その後、位置保持部材91を組み込み体47の隙間472から抜き取る(図10(A)参照)。
 <前進移動工程>
 その後、予備整列部材81を隙間472に挿入させたまま組み込み体47を芯部材6に対して1ピッチ分だけ前進させる(図10(B)参照)。これにより、組み込み体47の巻き取り先端が芯部材6に1ピッチ分だけ巻き取られる。
 この組み込み体47の1ピッチ分の前進後、芯部材6に巻き取り始められた組み込み体47の先端における隙間472に整列部材7としての第1整列駒71を挿入する。このとき、予備整列部材81により予め直状部431が整列しかつピッチも揃えられているため、隙間472に対する第1整列駒71の挿入は容易に行うことができる。
 <位置保持部材挿入工程>
 その後、予備整列部材81が隙間472に挿入されたままの組み込み体47の他の隙間(予備整列部材81が挿入された隙間472から1ピッチ分だけ搬送方向反対側に隔てた隙間等)472に、位置保持部材91を挿入する(図10(C)参照)。
 <予備整列部材抜き取り工程>
 その後、位置保持部材91が隙間472に挿入されたままの組み込み体47から予備整列部材81を抜き取る(図11(A)参照)。
 <後退移動工程>
 その後、予備整列部材81を1ピッチ分だけ搬送方向反対側に後退移動させる(図11(B)参照)。
 <予備整列部材挿入工程~後退移動工程の繰り返し>
 そして、隙間472に位置保持部材91が挿入されたままの組み込み体47の他の隙間(位置保持部材91が挿入された隙間472の隣の隙間等)472に予備整列部材81を挿入する上記予備整列部材挿入工程、上記位置保持部材抜き取り工程、上記前進移動工程、上記位置保持部材挿入工程、上記予備整列部材抜き取り工程及び上記後退移動工程を繰り返す。
 このように、予備整列部材81で直状重ね合わせ部471における各直状部431を重ね合わせ方向に予め整列させておくことができるとともに、隣り合う直状重ね合わせ部471同士の間隔の大きさを予め揃えておくことができる。このため、この組み込み体47を巻き取って得られる巻き取り体48において、直状積層部481の各直状部431が巻き取り体48の径方向に整列する精度を向上させることができるとともに、隣り合う直状積層部481同士のピッチ精度を向上させることができる。
 また、予備整列部材81が組み込み体47の隙間472から抜かれた状態にあるときは、常に位置保持部材91が他の隙間472に挿入されて組み込み体47が位置決めされている。つまり、位置保持部材91により位置決めされた組み込み体47に対して、予備整列部材81の抜き取りや挿入等が行われる。このため、予備整列部材81を次の隙間472に容易に挿入することができる。
 そして、組み込み体47における直状部43の整列精度やピッチ精度を予備整列部材81により予め高めておくことから、整列部材7による整列精度やピッチ精度の向上効果をより高めることができる。
 (実施形態2)
 図13~図14に示される実施形態2の固定子コイルの製造方法における巻き取り工程は、連続巻き取り工程である。この連続巻き取り工程では、組み込み体47を芯部材6に対して連続的に送り込みながら巻き取る。
 複数の予備整列部材81は、一対の送りローラ85により、ガイド部材83でガイドされつつ、ベルトコンベア方式で、組み込み体47の搬送方向と同期して同方向に移動可能とされている。また、複数の予備整列部材81は、予備整列部材動作規制部材84により、組み込み体47の隙間472に対する進退動が制御される。
 一対の送りローラ85は、各整列矢駆動装置75、芯部材6の回転駆動装置及び組み込み体47の搬送駆動装置とともに制御装置により制御される。
 予備整列部材81は、実施形態1で説明したものと同様の構成を有する。
 予備整列部材規制部材84は、進入部と、整列部と、退出部とを有する。予備整列部材規制部材84は、進入部で、組み込み体47の搬送方向に向かって予備整列部材81を徐々に下降させて、予備整列部材81を組み込み体47の隙間472に徐々に進入させる。
 予備整列部材規制部材84は、整列部で、予備整列部材81を隙間472に完全に進入させたまま予備整列部材81を搬送方向に水平移動させる。これにより、この整列部の範囲で、組み込み体47の直状重ね合わせ部471における直状部431を径方向に整列させることができるとともに、直状重ね合わせ部471同士の間隔の大きさを揃えることができる。
 予備整列部材84は、退出部で、組み込み体47の搬送方向に向かって予備整列部材81を徐々に上昇させて、予備整列部材81を組み込み体47の隙間472から退出させる。隙間472から予備整列部材81が退出したところで組み込み体47は芯部材6に巻き取り始められる。そして、芯部材6に巻き始められた直後の直状重ね合わせ部471同士の隙間472に整列部材7としての一対の整列矢74が挿入される。
 このように組み込み体47における直状部43の整列精度やピッチ精度を予備整列部材81により予め高めておくことから、整列部材7による整列精度やピッチ精度の向上効果をより高めることができる。
 その他の構成及び作用効果は実施形態1と同様である。
 (その他の実施形態)
 実施形態1~2では、2本の電気導体線から成形した2つの成形体の端部同士を接合して組体を形成し、この組体を6組組み込んで組み込み体47とする例について説明したが、これに限定されない。
 例えば、1本の電気導体線から成形した一つの成形体としての第1線部と、1本の電気導体線から成形した1つの成形体としての第2線部とからなり、第1線部と第2線部とがそれぞれ独立しているものを一つの組体としてもよい。あるいは、1本の電気導体線から成形した一つの成形体より、第1線部と第2線部とが連続しているものを一つの組体としてもよい。

Claims (4)

  1.  複数の相巻線が巻回されてなる固定子コイルの製造方法であって、
     電気導体線から複数の成形体を成形する成形工程と、
     複数の前記成形体を組み込んで組み込み体を形成する組み込み工程と、
     前記組み込み体を芯部材に巻き取って巻き取り体を形成する巻き取り工程と、を備え、
     前記成形体は、互いに平行に延びて前記組み込み体の長手方向に並列した複数の直状部と、隣り合う該直状部同士を該直状部の一端側と他端側とで交互に連結する複数のターン部とを有し、
     各前記成形体は、互いの前記直状部同士がそれぞれ重ね合わされて形成された複数の直状重ね合わせ部を前記組み込み体の長手方向に有し、
     前記巻き取り工程で得られた前記巻き取り体は、複数の前記直状重ね合わせ部が径方向に積層されて形成された複数の直状積層部を該巻き取り体の周方向に有し、
     前記巻き取り工程では、前記組み込み体を前記芯部材に送り込む搬送途中で、前記組み込み体の隣り合う前記直状重ね合わせ部同士の間に形成された複数の隙間のうち連続する複数の該隙間にそれぞれ予備整列部材を挿入することにより、該予備整列部材で挟まれた該直状重ね合わせ部における直状部の重ね合わせを揃えることを特徴とする固定子コイルの製造方法。
  2.  前記巻き取り工程は、前記組み込み体を前記芯部材に対して連続的に送り込みながら巻き取る連続巻き取り工程であり、
     前記連続巻き取り工程では、前記予備整列部材を該組み込み体と同期して移動させながら前記隙間に対して進入及び退出させることを特徴とする請求項1に記載の固定子コイルの製造方法。
  3.  前記巻き取り工程は、前記組み込み体を前記芯部材に対して隣り合う前記直状重ね合わせ部同士の間隔ずつ送り込みながら該組み込み体を該芯部材に巻き取るピッチ毎巻き取り工程であり、
     前記ピッチ毎巻き取り工程では、停止している前記組み込み体の前記隙間に前記予備整列部材を挿入する予備整列部材挿入工程と、該予備整列部材と共に該組み込み体を前記直状重ね合わせ部同士の間隔だけ前進移動させる前進移動工程と、該組み込み体の該隙間から該予備整列部材を抜き取る予備整列部材抜き取り工程と、該予備整列部材を該直状重ね合わせ部同士の間隔だけ後退移動させる後退移動工程とを繰り返すことを特徴とする請求項1に記載の固定子コイルの製造方法。
  4.  前記ピッチ毎巻き取り工程では、前記前進移動工程の後に、前記組み込み体の前記予備整列部材が挿入された前記隙間以外の他の前記隙間に位置保持部材を挿入する位置保持部材挿入工程を行い、かつ、前記予備整列部材挿入工程の後に、該組み込み体の該隙間から該位置保持部材を抜き取る位置保持部材抜き取り工程を行い、
     前記位置保持部材を前記隙間に挿入した状態で前記予備整列部材抜き取り工程、前記後退移動工程及び前記予備整列部材挿入工程を行い、かつ、該位置保持部材を該隙間から抜き取った状態で前記前進移動工程を行うことを特徴とする請求項3に記載の固定子コイルの製造方法。
PCT/JP2009/054667 2008-03-12 2009-03-11 固定子コイルの製造方法 WO2009113576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/677,224 US8132315B2 (en) 2008-03-12 2009-03-11 Method of manufacturing stator coil
CN200980108570XA CN101971466B (zh) 2008-03-12 2009-03-11 制造定子线圈的方法
DE112009000566.7T DE112009000566B4 (de) 2008-03-12 2009-03-11 Verfahren zur Herstellung einer Statorwicklung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008063273 2008-03-12
JP2008-063273 2008-03-12
JP2009055610A JP4953032B2 (ja) 2008-03-12 2009-03-09 固定子コイルの製造方法
JP2009-055610 2009-03-09

Publications (1)

Publication Number Publication Date
WO2009113576A1 true WO2009113576A1 (ja) 2009-09-17

Family

ID=41065237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054667 WO2009113576A1 (ja) 2008-03-12 2009-03-11 固定子コイルの製造方法

Country Status (5)

Country Link
US (1) US8132315B2 (ja)
JP (1) JP4953032B2 (ja)
CN (1) CN101971466B (ja)
DE (1) DE112009000566B4 (ja)
WO (1) WO2009113576A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135952B2 (en) 2017-07-14 2021-10-05 4Knines, LLC Cover adaptable to foldable vehicle seats

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953032B2 (ja) * 2008-03-12 2012-06-13 株式会社デンソー 固定子コイルの製造方法
JP5531634B2 (ja) 2010-01-15 2014-06-25 株式会社デンソー 回転電機の固定子の製造方法
JP5621263B2 (ja) 2010-01-15 2014-11-12 株式会社デンソー 固定子巻線の製造方法及びその製造装置
JP5472057B2 (ja) 2010-01-15 2014-04-16 株式会社デンソー 固定子巻線の巻回方法,固定子巻線の巻回装置及び固定子巻線の製造装置
JP5428896B2 (ja) * 2010-01-22 2014-02-26 株式会社デンソー 固定子巻線の製造方法、その製造装置および回転電機
JP5674540B2 (ja) * 2011-04-13 2015-02-25 日立オートモティブシステムズ株式会社 固定子および回転電機
JP6135535B2 (ja) 2014-02-07 2017-05-31 株式会社デンソー 回転電機の固定子
DE102015004576A1 (de) * 2014-05-28 2015-12-03 Sew-Eurodrive Gmbh & Co Kg Elektrische Maschine, insbesondere Drehstrommotor, und Verfahren zum Herstellen einer elektrischen Maschine mit einem Aktivteil, insbesondere Stator und/oder Rotor
JP7222007B2 (ja) 2021-03-08 2023-02-14 本田技研工業株式会社 コイル成形装置及びコイル成形方法
JP7239625B2 (ja) 2021-03-08 2023-03-14 本田技研工業株式会社 コイル成形装置及びコイル成形方法
JP7239624B2 (ja) 2021-03-08 2023-03-14 本田技研工業株式会社 コイル成形装置及びコイル成形方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139048A (ja) * 1998-05-20 2000-05-16 Denso Corp 回転電機及びその製造方法
JP2002176752A (ja) * 2000-02-07 2002-06-21 Mitsubishi Electric Corp 回転電機の巻線組立およびその製造方法ならびにその巻線組立を用いた回転電機の固定子
JP2003324911A (ja) * 2002-04-30 2003-11-14 Toyota Motor Corp コイルセグメントの環状配列装置およびコイルセグメントの環状配列方法
JP2004320886A (ja) * 2003-04-16 2004-11-11 Hitachi Ltd 回転電機及びその固定子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860615A (en) * 1995-10-30 1999-01-19 Labinal Components And Systems, Inc. Tool including winding spindle for winding and forming dynamoelectric machine field windings
JP3589134B2 (ja) * 2000-01-12 2004-11-17 株式会社デンソー ステータ製造方法及びその装置
JP3546866B2 (ja) 2001-08-20 2004-07-28 三菱電機株式会社 車両用始動充電回転電機
EP1619777B1 (en) * 2003-04-28 2017-03-15 Mitsubishi Denki Kabushiki Kaisha Process for producing stator of dynamo-electric machine
DE10328955B4 (de) 2003-06-27 2008-07-24 Elmotec Statomat Vertriebs Gmbh Verfahren und Vorrichtung zum Formen von Wellenwicklungen für Rotor- und Statorblechpakete elektrischer Maschinen
US7360303B2 (en) * 2004-01-28 2008-04-22 Mitsubishi Denki Kabushiki Kaisha Method manufacturing for a winding assembly of a rotating electrical machine
JP4396761B2 (ja) * 2007-11-26 2010-01-13 株式会社デンソー 回転電機の固定子および回転電機
JP4953032B2 (ja) * 2008-03-12 2012-06-13 株式会社デンソー 固定子コイルの製造方法
JP5487761B2 (ja) * 2008-07-07 2014-05-07 株式会社デンソー 固定子コイルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139048A (ja) * 1998-05-20 2000-05-16 Denso Corp 回転電機及びその製造方法
JP2002176752A (ja) * 2000-02-07 2002-06-21 Mitsubishi Electric Corp 回転電機の巻線組立およびその製造方法ならびにその巻線組立を用いた回転電機の固定子
JP2003324911A (ja) * 2002-04-30 2003-11-14 Toyota Motor Corp コイルセグメントの環状配列装置およびコイルセグメントの環状配列方法
JP2004320886A (ja) * 2003-04-16 2004-11-11 Hitachi Ltd 回転電機及びその固定子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135952B2 (en) 2017-07-14 2021-10-05 4Knines, LLC Cover adaptable to foldable vehicle seats
US11535132B2 (en) 2017-07-14 2022-12-27 4Knines, LLC Cover adaptable to foldable vehicle seats

Also Published As

Publication number Publication date
DE112009000566B4 (de) 2023-06-07
CN101971466A (zh) 2011-02-09
CN101971466B (zh) 2013-12-18
JP2009247199A (ja) 2009-10-22
JP4953032B2 (ja) 2012-06-13
US20110000078A1 (en) 2011-01-06
US8132315B2 (en) 2012-03-13
DE112009000566T5 (de) 2010-12-30

Similar Documents

Publication Publication Date Title
JP4953032B2 (ja) 固定子コイルの製造方法
JP4962512B2 (ja) 固定子コイルの製造方法
JP4600580B2 (ja) 固定子コイルの製造方法
JP5487761B2 (ja) 固定子コイルの製造方法
US9735641B2 (en) Rotary electric machine and manufacturing method therefor
US20230109380A1 (en) Method for inserting undulated coil assemblies in slots of cores of dynamoelectric machines
EP2009768A2 (en) Rotation electric machine having a wave winding coil with cranked crossover conductor, distributed winding stator, and method and apparatus for forming same
JP5483056B2 (ja) 回転電機の固定子の製造方法
JP2006149049A (ja) 車両用回転電機
JP4502041B2 (ja) 回転電機の固定子およびその製造方法
CN108370187B (zh) 旋转电机的电枢
CN113924712B (zh) 旋转电机及制造定子核心的方法
EP2717440B1 (en) Rotary electric motor salient pole armature winding
CN107925321B (zh) 电枢的制造方法
US20220416630A1 (en) Method for manufacturing stator of rotating electrical machine, stator of rotating electrical machine, and rotating electrical machine
CN117280572A (zh) 绝缘体、定子、旋转电机、定子的制造方法以及旋转电机的制造方法
WO2015040692A1 (ja) 回転電機の固定子
EP4340183A1 (en) Coil and rotary machine
KR20230159473A (ko) 회전 전기기계 장치 및 고정자 권선의 제조 방법
JP2020078139A (ja) 回転電機及びその製造方法
JP2011130570A (ja) 回転電機の製造方法および回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108570.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12677224

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090005667

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112009000566

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09721114

Country of ref document: EP

Kind code of ref document: A1