WO2009113329A1 - 通信装置、歪み補償回路、および歪み補償方法 - Google Patents

通信装置、歪み補償回路、および歪み補償方法 Download PDF

Info

Publication number
WO2009113329A1
WO2009113329A1 PCT/JP2009/050949 JP2009050949W WO2009113329A1 WO 2009113329 A1 WO2009113329 A1 WO 2009113329A1 JP 2009050949 W JP2009050949 W JP 2009050949W WO 2009113329 A1 WO2009113329 A1 WO 2009113329A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
reception
circuit
processing unit
Prior art date
Application number
PCT/JP2009/050949
Other languages
English (en)
French (fr)
Inventor
誠 赤石
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN200980107604.3A priority Critical patent/CN102089987B/zh
Priority to US12/920,762 priority patent/US20110019658A1/en
Priority to EP09721054A priority patent/EP2264909A1/en
Publication of WO2009113329A1 publication Critical patent/WO2009113329A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0433Circuits with power amplifiers with linearisation using feedback

Definitions

  • the present invention relates to a technique for detecting or compensating for the characteristics of a transmission circuit in a communication device provided with the transmission circuit and the reception circuit.
  • non-linear distortion occurs in the transmission circuit.
  • This non-linear distortion mainly occurs in the amplifier in the transmission circuit. Because non-linear distortion degrades the communication performance of the system, it is desirable to detect or compensate within the communication device. Therefore, a communication apparatus having a function of compensating for non-linear distortion may be used (see Japanese Patent Laid-Open No. 2002-208979).
  • One common non-linear distortion compensation circuit feeds back the output signal from the transmission circuit by a feedback circuit, detects non-linear distortion as compared to the input signal to the transmission circuit, and detects the input signal to the transmission circuit, It is the structure which performs compensation based on the detected value of nonlinear distortion.
  • FIG. 1 is a block diagram showing a configuration example of a wireless communication apparatus having a general non-linear distortion compensation circuit.
  • the wireless communication apparatus is, as an example, a communication apparatus that performs signal transmission and reception in a time division manner.
  • the wireless communication apparatus includes a signal processing unit 91, a transmission amplifier 92, an antenna port 93, a reception amplifier 94, a switch 95, a waveform monitor 96, and a feedback amplifier 97.
  • the signal processing unit 91 performs signal processing on the transmission side and the reception side. On the transmission side, the signal processing unit 91 performs signal processing on the input transmission signal, and sends the transmission signal after signal processing to the transmission amplifier 92.
  • the reception side performs signal processing on the reception signal from the reception amplifier 94 and outputs the reception signal after signal processing. Further, the signal processing unit 91 detects the non-linear distortion generated in the transmission amplifier 92 by comparing the feedback signal from the feedback amplifier 97 with the transmission signal, and compensates the transmission signal based on the detection value of the non-linear distortion. Do.
  • the transmission amplifier 92 amplifies the transmission signal from the signal processing unit 91 and sends it to the switch 95.
  • the transmission amplifier 92 requires a large output power to wirelessly transmit the transmission signal. And since the transmission amplifier 92 for transmitting a transmission signal by radio generally operates in a state close to the saturation level, it is easy to generate nonlinear distortion.
  • the switch 95 is a switch that switches the transmission circuit and the reception circuit in a time division manner.
  • the switch 95 connects the antenna port 93 to the transmission amplifier 92 at transmission timing, and connects the antenna port 93 to the reception amplifier 94 at reception timing.
  • the transmission signal from the transmission amplifier 92 is sent from the antenna port 93 to the antenna (not shown) via the switch 95.
  • the reception signal from the antenna port 93 is sent to the reception amplifier 94 via the switch 95.
  • the reception amplifier 94 amplifies the reception signal from the switch 95, which has been attenuated by wireless transmission, and sends it to the signal processing unit 91.
  • the waveform monitor 96 monitors the transmission signal from the transmission amplifier 92 and sends a feedback signal having the same waveform as the transmission signal to the feedback amplifier 97.
  • the feedback signal includes non-linear distortion generated by the transmission amplifier 92.
  • the feedback amplifier 97 amplifies the feedback signal from the waveform monitor 96 and sends it to the signal processing unit 91.
  • the wireless communication device having the function of compensating for non-linear distortion includes a feedback circuit including a feedback amplifier 97 in addition to a transmitting circuit including a transmitting amplifier 92 and a receiving circuit including a receiving amplifier 94.
  • This feedback circuit increases the circuit scale of the device and increases the device cost.
  • An object of the present invention is to provide a technology that makes it possible to detect or compensate for the characteristics of a transmitter circuit with a small circuit scale.
  • a communication device Signal processing for performing predetermined signal processing on a transmission signal transmitted at time-division transmission timing and a reception signal received at reception timing, and comparing the transmission signal with a feedback signal of the transmission signal Department, A transmission circuit for transmitting a transmission signal from the signal processing unit to an external port; A receiving circuit for sending a signal received from the external port to the signal processing unit; A waveform monitor that generates the feedback signal by monitoring a waveform of a transmission signal sent from the transmission circuit to the external port; For the transmission timing, the transmission signal from the transmission circuit is connected to the external port, and the feedback signal from the waveform monitor is connected to the reception circuit, and for the reception timing, the external signal from the external port And a switch unit for connecting the reception signal to the reception circuit.
  • the distortion compensation circuit is A signal processing unit that processes a reception signal and a transmission signal and compensates for distortion of the transmission signal to be output based on a feedback signal to which the output transmission signal is fed back; A shared circuit that outputs the received signal to the signal processing unit at the time of reception, and feeds back part of the transmission signal output from the signal processing unit to the signal processing unit as a feedback signal at the time of transmission; Is equipped.
  • a distortion compensation method is The signal processing unit that processes the reception signal and the transmission signal in the time-division multiplexing communication apparatus inputs the reception signal at the time of reception by the common circuit, and the transmission signal output from the signal processing unit at the time of transmission Input a part of the signal as a feedback signal, The signal processing unit detects the amount of distortion from the feedback signal, The signal processing unit compensates for the distortion of the transmission signal based on the distortion amount.
  • FIG. 1 is a block diagram showing the configuration of a wireless communication apparatus according to a first embodiment.
  • FIG. 7 is a diagram showing changes in the frequency spectrum of the transmission signal before and after the transmission amplifier 12; It is a figure which shows the state of the switch in the reception timing of the radio
  • It is a block diagram which shows the structure of the radio
  • FIG. 2 is a block diagram showing the configuration of the wireless communication apparatus according to the first embodiment.
  • the wireless communication apparatus includes a signal processing unit 11, a transmission amplifier 12, an antenna port 13, a reception amplifier 14, switches 15 and 16, and a waveform monitor 17.
  • the present wireless communication apparatus is an apparatus for switching transmission timing and reception timing in time division.
  • this type of device there is a base station device of WiMAX (Worldwide Interoperability for Microwave Access).
  • the signal processing unit 11 performs signal processing on the transmission side and the reception side. On the transmission side, the signal processing unit 11 performs signal processing on the transmission signal input from the left in the figure, and sends the transmission signal after signal processing to the transmission amplifier 12. On the reception side, the signal processing unit 11 performs signal processing on the reception signal from the reception amplifier 14 and outputs the reception signal after signal processing. Further, the signal processing unit 11 detects non-linear distortion generated in the transmission amplifier 12 by comparing the feedback signal input from the reception amplifier 14 with the transmission signal at the transmission timing, and detects non-linear distortion with respect to the transmission signal. Compensate based on the detected value (distortion amount).
  • the transmission amplifier 12 amplifies the transmission signal from the signal processing unit 11 and sends it to the switch 15.
  • the transmission amplifier 12 requires a large output power to transmit the transmission signal wirelessly.
  • non-linear distortion includes third-order distortion and fifth-order distortion.
  • FIG. 3 is a diagram showing changes in the frequency spectrum of the transmission signal before and after the transmission amplifier 12. As shown in FIG. 3A, the distortion which was not present in the transmission signal before being input to the transmission amplifier 12 is included in the transmission signal after being output from the transmission amplifier 12.
  • the switch 15 is a switch that switches the transmission circuit and the reception circuit in a time division manner.
  • the transmission circuit is a circuit between the signal processing unit 11 and the switch 15 and includes a transmission amplifier 12.
  • the receiving circuit is a circuit between the switch 16 and the signal processing unit 11 and includes a receiving amplifier 14.
  • the switch 15 connects the antenna port 13 to the transmission amplifier 12 at transmission timing, and connects the antenna port 13 to the switch 16 connected to the reception amplifier 14 at reception timing.
  • the switch 16 is a switch that switches the transmission circuit and the reception circuit in a time division manner, similarly to the switch 15.
  • the switch 16 connects the waveform monitor 17 to the reception amplifier 14 at transmission timing, and connects the antenna port 13 to the reception amplifier 14 via the switch 15 at reception timing.
  • the receiving circuit between the switch 16 and the signal processing unit 11 is a shared circuit used as a feedback circuit at the time of transmission and as a receiving circuit at the time of reception.
  • the reception amplifier 14 amplifies the input signal and sends it to the signal processing unit 11. At transmission timing, the feedback signal from the waveform monitor 17 is input, so the reception amplifier 14 amplifies it. At the reception timing, the signal processing unit 11 amplifies the reception signal from the antenna port 13 which is attenuated by wireless transmission and is input.
  • the waveform monitor 17 monitors the transmission signal from the transmission amplifier 12 and sends a feedback signal having the same waveform as the transmission signal to the switch 16.
  • the feedback signal includes non-linear distortion generated in the transmission amplifier 12.
  • the transmission signal from the signal processing unit 11 is amplified by the transmission amplifier 12 by the switching of the switches 15 and 16, and is sent from the antenna port 13 to the antenna (not shown) via the switch 15.
  • the feedback signal from the waveform monitor 17 is amplified by the reception amplifier 14 and input to the signal processing unit 11.
  • the signal from the antenna port 13 is amplified by the reception amplifier 14 and input to the signal processing unit 11.
  • the switches 15 and 16 at transmission timing are shown in FIG. At the reception timing, the switches 15 and 16 are switched as shown in FIG.
  • the signal processing unit 11 performs the detection and the compensation of the non-linear distortion by the feedback circuit which diverts the reception circuit at the transmission timing. Because of the input, it is possible to compensate for non-linear distortion with a small circuit scale.
  • the second embodiment is an example in the case where a band limiting filter is included in the receiving circuit.
  • a band limiting filter In a wireless communication system, adjacent frequencies in a frequency band assigned to a system may be used in another system. In that case, in order to remove signals of other systems, a band-limiting filter with a bandwidth similar to that of the system is inserted in the receiving circuit.
  • the feedback signal for compensating non-linear distortion needs to include non-linear distortion such as third-order distortion or fifth-order distortion.
  • non-linear distortion such as third-order distortion or fifth-order distortion.
  • the receiving circuit is used as a feedback circuit, if the feedback circuit has a band-limiting filter with a bandwidth similar to the signal bandwidth of the system, third-order distortion or fifth-order distortion necessary to compensate for nonlinear distortion Such non-linear distortion is eliminated by the band limiting filter. So, in this embodiment, a band limiting filter is bypassed at the transmission timing which uses a receiving circuit as a feedback circuit.
  • FIG. 5 is a block diagram showing the configuration of the wireless communication apparatus according to the second embodiment.
  • the wireless communication apparatus includes a signal processing unit 21, a transmission amplifier 22, an antenna port 23, a band limit filter 24, a reception amplifier 25, switches 26 to 29, and a waveform monitor 210.
  • the signal processing unit 21 performs signal processing on the transmission side and the reception side. On the transmission side, the signal processing unit 21 performs signal processing on the input transmission signal, and sends the transmission signal after signal processing to the transmission amplifier 22.
  • the reception side performs signal processing on the reception signal from the reception amplifier 25 and outputs the reception signal after signal processing. Further, the signal processing unit 21 detects non-linear distortion generated in the transmission amplifier 22 by comparing the feedback signal input from the reception amplifier 25 with the transmission signal at transmission timing, and detects non-linear distortion with respect to the transmission signal. Compensate based on the detected value.
  • the transmission amplifier 22 amplifies the transmission signal from the signal processing unit 21 and sends it to the switch 26.
  • the transmission amplifier 22 requires a large output power to wirelessly transmit the transmission signal. Then, in general, the transmission amplifier 22 for wirelessly transmitting the transmission signal operates at a level close to the saturation level, so that non-linear distortion is likely to occur.
  • Non-linear distortion includes third-order distortion and fifth-order distortion.
  • the switch 26 is a switch that switches the transmission circuit and the reception circuit in a time division manner.
  • the switch 26 connects the antenna port 23 to the transmission amplifier 22 at transmission timing, and connects the antenna port 23 to the switch 27 connected to the reception amplifier 25 at reception timing.
  • the switch 27 is a switch for switching between the transmission circuit and the reception circuit in a time division manner, similarly to the switch 26.
  • the switch 27 connects the waveform monitor 210 to the switch 28 at transmission timing, and connects the antenna port 23 to the switch 28 via the switch 26 at reception timing.
  • the receiving circuit between the switch 27 and the signal processing unit 21 is a shared circuit used as a feedback circuit at the time of transmission and as a receiving circuit at the time of reception.
  • the band limiting filter 24 in the shared circuit is used only at the reception timing.
  • the band limiting filter 24 is a filter that limits the frequency band of the reception signal, and is inserted between the switch 27 and the reception amplifier 25 only at reception timing.
  • the band limiting filter 24 band-limits the received signal input from the switch 26 via the switch 27 and sends it to the switch 29 at the reception timing.
  • the reception amplifier 25 amplifies the input signal and sends it to the signal processing unit 21. At the transmission timing, since the feedback signal from the waveform monitor 210 is input, the reception amplifier 25 amplifies it. At the reception timing, since the reception signal from the antenna port 23 attenuated by wireless transmission is inputted, the reception amplifier 25 amplifies it.
  • the switches 28 and 29 are switches for switching between the transmission circuit and the reception circuit in a time division manner, similarly to the switches 26 and 27.
  • the switches 28 and 29 bypass the band limiting filter 24 at transmission timing and directly connect the waveform monitor 210 to the receiving amplifier 25, and are connected to the band limiting filter 24 at reception timing, and the antenna port 23 is connected to the switch 26. , 27 to the reception amplifier 25.
  • the waveform monitor 210 monitors the transmission signal from the transmission amplifier 22 and sends to the switch 27 a feedback signal of the same waveform as the transmission signal.
  • the feedback signal includes non-linear distortion generated by the transmission amplifier 22.
  • the transmission signal from the signal processing unit 21 is amplified by the transmission amplifier 22 and sent from the antenna port 23 to the antenna (not shown) via the switch 26.
  • the feedback signal from the waveform monitor 210 is amplified by the reception amplifier 25 and input to the signal processing unit 21.
  • the signal from the antenna port 23 is filtered by the band limit filter 24, amplified by the reception amplifier 25, and input to the signal processing unit 21.
  • the band limiting filter 24 is bypassed when the receiving circuit is diverted to the feedback circuit at the transmission timing. Even when it is included, accurate non-linear distortion can be detected and compensated by the signal processing unit 21.
  • the third embodiment is an example of a communication apparatus that performs double conversion frequency conversion.
  • An intermediate frequency (IF) signal is used between a baseband signal used in the signal processing unit and a radio frequency (RF) signal used in a radio channel.
  • IF intermediate frequency
  • RF radio frequency
  • the processing into signals at each frequency signal level is omitted for the sake of simplicity.
  • FIG. 6 is a block diagram showing the configuration of a wireless communication apparatus according to the third embodiment.
  • the wireless communication apparatus includes a signal processing unit 31, transmission amplifiers 32, 34, 36, transmission mixers 33, 35, an antenna port 37, reception mixers 38, 311, a band limiting filter 39, reception amplifiers 310, 312. , A waveform monitor 317, switches 313 to 316, and local oscillators 318 and 319.
  • the signal processing unit 31 performs signal processing on the transmission side and the reception side. On the transmission side, the signal processing unit 31 performs signal processing on the input transmission signal, and sends the transmission signal after signal processing to the transmission amplifier 32.
  • the reception side performs signal processing on the reception signal from the reception amplifier 312 and outputs the reception signal after signal processing.
  • the signal processing unit 31 detects non-linear distortion generated in the transmission circuit (mainly, the transmission amplifier 36) by comparing the feedback signal input from the reception amplifier 312 with the transmission signal at the transmission timing, and transmits the transmission signal. , Compensation based on the detected non-linear distortion.
  • the transmission amplifier 32 amplifies the transmission signal from the signal processing unit 31 and sends it to the transmission mixer 33.
  • the transmission mixer 33 frequency-converts the transmission signal from the signal processing unit 31 to IF using the frequency signal from the local oscillator 319, and sends the transmission signal after frequency conversion to the transmission amplifier 34.
  • the transmission amplifier 34 amplifies the transmission signal from the transmission mixer 33 and sends it to the transmission mixer 35.
  • the transmission mixer 35 frequency-converts the transmission signal from the transmission amplifier 34 to RF using the frequency signal from the local oscillator 318, and sends the transmission signal after frequency conversion to the transmission amplifier 36.
  • the transmission amplifier 36 amplifies the transmission signal from the transmission mixer 35 and sends it to the switch 313.
  • the transmission amplifier 36 requires a large output power to transmit the transmission signal wirelessly.
  • a transmission amplifier for transmitting a transmission signal by radio operates at a level close to the saturation level, and thus non-linear distortion is likely to occur.
  • Non-linear distortion includes third-order distortion and fifth-order distortion.
  • the switch 313 is a switch that switches the transmission circuit and the reception circuit in a time division manner.
  • the switch 313 connects the antenna port 37 to the transmission amplifier 36 at transmission timing, and connects the antenna port 37 to the switch 314 at reception timing.
  • the switch 314 is a switch for switching between the transmission circuit and the reception circuit in a time division manner, similarly to the switch 313.
  • the switch 314 connects the waveform monitor 317 to the reception mixer 38 at transmission timing, and connects the switch 313 connected to the antenna port 37 to the reception mixer 38 at reception timing.
  • the receiving circuit between the switch 314 and the signal processing unit 31 is a shared circuit used as a feedback circuit at the time of transmission and as a receiving circuit at the time of reception.
  • the band limiting filter 39 in the shared circuit is used only at the reception timing.
  • the reception mixer 38 frequency-converts the signal input from the switch 314 to IF using the frequency signal from the local oscillator 318, and sends the frequency-converted signal to the switch 315.
  • the reception mixer 38 converts the frequency of the feedback signal.
  • the reception mixer 38 converts the frequency of the reception signal.
  • the band limiting filter 39 is inserted into the receiving circuit only at the receiving timing, band-limits the signal from the receiving mixer 38 via the switch 315, and sends it to the receiving amplifier 310 via the switch 316.
  • the reception amplifier 310 amplifies the signal input from the switch 316 and sends the amplified signal to the reception mixer 311.
  • the switch 316 outputs a feedback signal at transmission timing and a reception signal at reception timing.
  • the reception mixer 311 further frequency-converts the signal from the reception amplifier 310 using the frequency signal from the local oscillator 319, and sends the frequency-converted signal to the reception amplifier 312.
  • the reception mixer 311 converts the IF frequency converted by the reception mixer 38 into a lower IF frequency.
  • the reception amplifier 312 amplifies the signal from the reception mixer 311 and sends it to the signal processing unit 31.
  • the switches 315 and 316 are switches for switching between the transmission circuit and the reception circuit in a time division manner, similarly to the switches 313 and 314.
  • the switches 315 and 316 bypass the band limiting filter 39 and directly connect the receiving mixer 38 and the receiving amplifier 310 at transmission timing, and insert the band limiting filter 39 between the receiving mixer 38 and the receiving amplifier 310 at reception timing. Do.
  • the waveform monitor 317 monitors the transmission signal from the transmission amplifier 36 and sends a feedback signal having the same waveform as that of the transmission signal to the switch 314.
  • the feedback signal contains non-linear distortion generated by the transmission amplifier 36.
  • the transmission signal is amplified by the transmission amplifier 36 by the switching of the switches 313 to 316, and is sent from the antenna port 37 to the antenna (not shown) via the switch 313.
  • the feedback signal from the waveform monitor 317 is input to the signal processing unit 31 without passing through the band limiting filter 39.
  • the signal from the antenna port 37 is filtered by the band limiting filter 39 and input to the signal processing unit 31.
  • the waveform monitor 317 is provided at the output of the transmission amplifier 36. Since the reception mixer 38, the reception amplifier 310, the mixer 311, and the reception amplifier 312 are shared by the reception circuit and the feedback circuit, compensation of non-linear distortion is realized with a small circuit scale. In addition, even when the band limiting filter 39 is included in the receiving circuit, accurate non-linear distortion can be detected and compensated.
  • the fourth embodiment is an example of a communication apparatus that performs frequency conversion of the double conversion method.
  • An intermediate frequency (IF) signal is used between a baseband signal used in the signal processing unit and a radio frequency (RF) signal used in a radio channel.
  • IF intermediate frequency
  • RF radio frequency
  • the present embodiment there is a receiving amplifier for level adjustment at the position where the band limiting filter was present in the third embodiment.
  • This receive amplifier is bypassed when using the receive circuit as a feedback circuit. This is in consideration of a device configuration in which the level of the feedback signal is higher than that of the reception signal attenuated by the wireless channel.
  • the basic device configuration other than that is the same as that of the third embodiment.
  • FIG. 7 is a block diagram showing the configuration of a wireless communication apparatus according to the fourth embodiment.
  • the wireless communication apparatus includes a signal processing unit 41, transmission amplifiers 42, 44, 46, transmission mixers 43, 45, an antenna port 47, reception mixers 48, 411, reception amplifiers 49, 410, 412, and waveform monitor. 417, switches 413 to 416, and local oscillators 418 and 419.
  • the receiving circuit between the switch 414 and the signal processing unit 41 is a shared circuit used as a feedback circuit at the time of transmission and as a receiving circuit at the time of reception.
  • the switches 415 and 416 bypass the reception amplifier 49 and directly connect the reception mixer 48 and the reception amplifier 410 at transmission timing, and insert the reception amplifier 49 between the reception mixer 48 and the reception amplifier 410 at reception timing. According to this configuration, when the reception circuit is used as a feedback circuit, the reception amplifier 49 for level adjustment of the reception signal is bypassed.
  • the fifth embodiment is an example of a communication apparatus that performs frequency conversion of a double conversion scheme.
  • both the band limiting filter and the receiving amplifier are bypassed.
  • the reason why the band limiting filter is bypassed is the same as the reason why the band limiting filter is bypassed in the third embodiment.
  • the reason why the reception amplifier is bypassed is the same as the reason why the reception amplifier is bypassed in the fourth embodiment.
  • FIG. 8 is a block diagram showing the configuration of a wireless communication apparatus according to the fifth embodiment.
  • the wireless communication apparatus includes a signal processing unit 51, transmission amplifiers 52, 54, 56, transmission mixers 53, 55, an antenna port 57, reception mixers 58, 512, reception amplifiers 59, 511, 513, band limitation.
  • a filter 510, a waveform monitor 518, switches 514 to 517, and local oscillators 519 and 520 are included.
  • the receiving circuit between the switch 515 and the signal processing unit 51 is a shared circuit used as a feedback circuit at the time of transmission and as a receiving circuit at the time of reception.
  • Signal processing unit 51, transmission amplifiers 52, 54, 56, transmission mixers 53, 55, antenna port 57, reception mixers 58, 512, reception amplifiers 511, 513, waveform monitor 518, switches 514 to 517, and local oscillators 519, 520 Are the signal processing unit 31, the transmission amplifiers 32, 34, 36, the transmission mixers 33, 35, the antenna port 37, the reception mixers 38, 311, the reception amplifiers 310, 312, the waveform monitor 317, the switch 313-. 316 and local oscillators 318 and 319 respectively.
  • the receiving amplifier 59 for level adjustment of the received signal and the band limiting filter 510 for limiting the band of the received signal are bypassed as in the fourth embodiment. Ru.
  • the sixth embodiment is an example of a communication apparatus that performs frequency conversion of a double conversion scheme.
  • a receiving mixer that performs frequency conversion from RF to IF is provided in each of the receiving circuit and the feedback circuit.
  • both the band limiting filter and the receiving amplifier are bypassed.
  • one of the band limiting filter and the receiving amplifier may be bypassed.
  • FIG. 9 is a block diagram showing the configuration of a wireless communication apparatus according to the sixth embodiment.
  • the wireless communication apparatus includes a signal processing unit 61, transmission amplifiers 62, 64, 66, transmission mixers 63, 65, an antenna port 67, reception mixers 68, 611, reception amplifiers 610, 612, a band limiting filter 69. , A waveform monitor 615, a feedback mixer 616, switches 613 and 614, and local oscillators 617 and 618.
  • a circuit between the switch 614 and the signal processing unit 61 is a shared circuit used as a feedback circuit at the time of transmission and as a reception circuit at the time of reception.
  • the signal processing unit 61 performs signal processing on the transmission side and the reception side. Further, the signal processing unit 61 detects non-linear distortion generated in the transmission circuit by comparing the feedback signal input from the reception amplifier 612 with the transmission signal at the transmission timing, and detects non-linear distortion with respect to the transmission signal. Make value based compensation.
  • the transmission amplifier 62 amplifies the transmission signal from the signal processing unit 61 and sends it to the transmission mixer 63.
  • the transmission mixer 63 frequency-converts the transmission signal from the signal processing unit 61 to IF using the frequency signal from the local oscillator 618, and sends the transmission signal after frequency conversion to the transmission amplifier 64.
  • the transmission amplifier 64 amplifies the transmission signal from the transmission mixer 63 and sends it to the transmission mixer 65.
  • the transmission mixer 65 frequency-converts the transmission signal from the transmission amplifier 64 into RF using the frequency signal from the local oscillator 617, and sends the transmission signal after frequency conversion to the transmission amplifier 66.
  • the transmission amplifier 66 amplifies the transmission signal from the transmission mixer 65 and sends it to the switch 613.
  • This transmission amplifier 66 is a main source of non-linear distortion as in the other embodiments.
  • the reception mixer 68 frequency-converts the reception signal input from the switch 613 into IF using the frequency signal from the local oscillator 617, and sends the reception signal after frequency conversion to the band limit filter 69.
  • the band limiting filter 69 band-limits the received signal from the receiving mixer 68 and sends it to the receiving amplifier 610.
  • the reception amplifier 610 amplifies the signal input from the band limit filter 69 and sends it to the switch 614.
  • the switch 614 is a switch that switches between the transmission circuit and the reception circuit in time division.
  • the switch 614 connects the feedback mixer 616 and the reception mixer 611 at transmission timing, and connects the reception amplifier 610 and the reception mixer 611 at reception timing.
  • the reception mixer 611 further frequency-converts the signal from the reception amplifier switch 614 using the frequency signal from the local oscillator 618, and sends the frequency-converted signal to the reception amplifier 612.
  • the reception amplifier 612 amplifies the signal from the reception mixer 611 and sends it to the signal processing unit 61.
  • the waveform monitor 615 monitors the transmit signal from the transmit amplifier 66 and sends a feedback signal of similar waveform to the transmit signal to the feedback mixer 616.
  • the feedback signal includes non-linear distortion generated by the transmission amplifier 66.
  • the feedback mixer 616 frequency-converts the feedback signal from the waveform monitor 615 to IF, and sends the frequency-converted feedback signal to the switch 614.
  • the transmission signal is amplified by the transmission amplifier 66 by switching of the switches 613 and 614, and is transmitted from the antenna port 67 to the antenna (not shown) via the switch 613.
  • the feedback signal from the waveform monitor 615 is input to the signal processing unit 61 without passing through the band limiting filter 69 and the receiving amplifier 610.
  • the signal from the antenna port 67 is filtered by the band limit filter 69, level-adjusted by the reception amplifier 610, and input to the signal processing unit 61.
  • the present embodiment is advantageous in that the number of switches can be reduced as compared with the third to fifth embodiments. In addition, since the number of operating points is reduced, there is also an effect that the reliability and the operation stability of the circuit are improved.
  • the communication devices according to the first to sixth embodiments assume a configuration of an outdoor unit of a wireless base station.
  • the outdoor unit of the radio base station is used in connection with the indoor unit.
  • the present invention can also be applied to an integrated wireless base station having the functions of an outdoor unit and an indoor unit.
  • the communication apparatus of the seventh embodiment is an integrated wireless base station apparatus having a control function including wireless resource management and mobility management.
  • FIG. 10 is a block diagram showing the configuration of a radio base station apparatus according to the seventh embodiment.
  • the radio base station apparatus includes a signal processing unit 71, a transmission amplifier 72, an antenna port 73, a reception amplifier 74, switches 75 and 76, a waveform monitor 77, and a control unit 78.
  • the signal processing unit 71, the transmission amplifier 72, the antenna port 73, the reception amplifier 74, the switches 75 and 76, and the waveform monitor 77 are the signal processing unit 11, the transmission amplifier 12, the antenna port 13, the reception amplifier 14 in the first embodiment.
  • the switches 15 and 16 correspond to the waveform monitor 17 respectively.
  • the control unit 78 performs management of radio resources used for connection with a mobile station (not shown) by a radio channel via the antenna port 73, and mobility management of each mobile station connected by the radio channel. At this time, the control unit 78 transmits and receives control signals to and from each mobile station. The control unit 78 also relays user data transmitted and received between each mobile station and a higher-level device (not shown).
  • the integrated wireless base station apparatus corresponding to the wireless communication apparatus of the first embodiment is illustrated, but the present invention is not limited to this.
  • the wireless base station devices corresponding to the wireless communication devices of the second to sixth embodiments can be configured in the same manner.
  • the present invention is not limited to only the embodiment, and the embodiment may be used in combination within the scope of the technical idea of the present invention. , And may change some configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)

Abstract

 送信回路は、信号処理部からの送信信号をポートに送る。受信回路は、ポートからの受信信号を信号処理部に送る。波形モニターは、送信回路からポートに送られる送信信号の波形をモニターすることにより、帰還信号を生成する。スイッチ部は、送信タイミングには、波形モニターからの帰還信号を受信回路に接続する。信号処理部は、送信信号と、その送信信号の帰還信号とを比較する。

Description

通信装置、歪み補償回路、および歪み補償方法
 本発明は、送信回路および受信回路を備えた通信装置において送信回路の特性を検出あるいは補償する技術に関する。
 移動体通信システムの無線基地局のような通信装置では送信回路において非線形歪みが発生する。この非線形歪みは主に送信回路内の増幅器で発生する。非線形歪みはシステムの通信性能を劣化させるので、通信装置内で検出あるいは補償するのが望ましい。そこで非線形歪みを補償する機能を備えた通信装置が用いられることがある(特開2002-208979号公報参照)。
 一般的な非線形歪み補償回路のひとつは、送信回路からの出力信号を帰還回路によって帰還させ、送信回路への入力信号と比較して非線形歪みを検出し、送信回路への入力信号に対して、非線形歪みの検出値に基づく補償を行う構成である。
 図1は、一般的な非線形歪み補償回路を有する無線通信装置の構成例を示すブロック図である。この無線通信装置は、一例として、信号の送信と受信を時分割で行う通信装置である。図1を参照すると、無線通信装置は、信号処理部91、送信増幅器92、アンテナポート93、受信増幅器94、スイッチ95、波形モニター96、および帰還増幅器97を有している。
 信号処理部91は送信側および受信側の信号処理を行う。送信側では、信号処理部91は、入力した送信信号に対して信号処理を施し、信号処理後の送信信号を送信増幅器92に送る。受信側では、受信増幅器94からの受信信号に対して信号処理を施し、信号処理後の受信信号を出力する。また、信号処理部91は帰還増幅器97からの帰還信号を送信信号と比較することにより、送信増幅器92で発生する非線形歪みを検出し、送信信号に対して、非線形歪みの検出値に基づく補償を行う。
 送信増幅器92は、信号処理部91からの送信信号を増幅してスイッチ95に送る。送信増幅器92は、送信信号を無線で送出するために大きな出力パワーが要求される。そして、一般に送信信号を無線で送出するための送信増幅器92は飽和レベルに近い状態で動作しているため、非線形歪みを発生させやすい。
 スイッチ95は、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ95は、送信タイミングではアンテナポート93を送信増幅器92と接続し、受信タイミングではアンテナポート93を受信増幅器94と接続する。送信増幅器92からの送信信号はスイッチ95を経由してアンテナポート93からアンテナ(不図示)に送られる。また、アンテナポート93からの受信信号はスイッチ95を経由して受信増幅器94に送られる。
 受信増幅器94は、無線伝送で減衰した、スイッチ95からの受信信号を増幅して信号処理部91に送る。
 波形モニター96は、送信増幅器92からの送信信号をモニターし、送信信号と同じ波形の帰還信号を帰還増幅器97に送る。この帰還信号には送信増幅器92で発生した非線形歪みが含まれている。
 帰還増幅器97は、波形モニター96からの帰還信号を増幅して信号処理部91に送る。
 図1を見て分かるように、非線形歪みを補償する機能を持った無線通信装置は、送信増幅器92を含む送信回路、受信増幅器94を含む受信回路に加えて、帰還増幅器97を含む帰還回路を備えている。この帰還回路によって装置の回路規模が増大し、装置コストが高くなっていた。
 本発明の目的は、少ない回路規模で送信回路の特性を検出あるいは補償することを可能にする技術を提供することである。
 上記目的を達成するために、本発明の一態様による通信装置は、
 時分割の送信タイミングで送信される送信信号と、受信タイミングで受信される受信信号とに対して所定の信号処理を行うとともに、前記送信信号と、該送信信号の帰還信号とを比較する信号処理部と、
 前記信号処理部からの送信信号を外部ポートに送るための送信回路と、
 前記外部ポートからの受信信号を前記信号処理部に送るための受信回路と、
 前記送信回路から前記外部ポートに送られる送信信号の波形をモニターすることにより、前記帰還信号を生成する波形モニターと、
 前記送信タイミングには、前記送信回路からの前記送信信号を前記外部ポートに接続するとともに、前記波形モニターからの前記帰還信号を前記受信回路に接続し、前記受信タイミングには、前記外部ポートからの前記受信信号を前記受信回路に接続するスイッチ部と、を有している。
 本発明の一態様による歪み補償回路は、
 受信信号および送信信号を処理すると共に、出力した前記送信信号が帰還された帰還信号に基づいて、出力する前記送信信号の歪みを補償する信号処理部と、
 受信時に前記受信信号を前記信号処理部へ出力し、送信時に、前記信号処理部から出力された前記送信信号の一部を帰還信号として前記信号処理部へ帰還させる共用回路と、
を備えている。
 本発明の一態様による歪み補償方法は、
 時分割多重方式の通信装置において受信信号および送信信号を処理する信号処理部に対して、共用回路により、受信時には前記受信信号を入力し、送信時には、前記信号処理部から出力された前記送信信号の一部を帰還信号として入力し、
 前記信号処理部で前記帰還信号から歪み量を検出し、
 前記信号処理部で前記歪み量に基づいて前記送信信号の歪みを補償する。
一般的な非線形歪み補償回路を有する無線通信装置の構成例を示すブロック図である。 第1の実施形態による無線通信装置の構成を示すブロック図である。 送信増幅器12の前後における送信信号の周波数スペクトルの変化を示す図である。 第1の実施形態による無線通信装置の受信タイミングでのスイッチの状態を示す図である。 第2の実施形態による無線通信装置の構成を示すブロック図である。 第3の実施形態による無線通信装置の構成を示すブロック図である。 第4の実施形態による無線通信装置の構成を示すブロック図である。 第5の実施形態による無線通信装置の構成を示すブロック図である。 第6の実施形態による無線通信装置の構成を示すブロック図である。 第7の実施形態による無線基地局装置の構成を示すブロック図である。
 本発明の実施形態について図面を参照して詳細に説明する。
 (第1の実施形態)
 図2は、第1の実施形態による無線通信装置の構成を示すブロック図である。図2を参照すると、無線通信装置は、信号処理部11、送信増幅器12、アンテナポート13、受信増幅器14、スイッチ15,16、および波形モニター17を有している。本無線通信装置は時分割で送信タイミングと受信タイミングを切り替える装置である。この種の装置の例としてWiMAX(Worldwide Interoperability for Microwave Access)の基地局装置がある。
 信号処理部11は送信側および受信側の信号処理を行う。送信側では、信号処理部11は、図の左から入力した送信信号に対して信号処理を施し、信号処理後の送信信号を送信増幅器12に送る。受信側では、信号処理部11は、受信増幅器14からの受信信号に対して信号処理を施し、信号処理後の受信信号を出力する。また、信号処理部11は、送信タイミングで受信増幅器14から入力される帰還信号を送信信号と比較することにより、送信増幅器12で発生する非線形歪みを検出し、送信信号に対して、非線形歪みの検出値(歪み量)に基づく補償を行う。
 送信増幅器12は、信号処理部11からの送信信号を増幅してスイッチ15に送る。送信増幅器12は、送信信号を無線で送出するために大きな出力パワーが要求される。そして、一般に送信信号を無線で送出するための送信増幅器12は飽和レベルに近い状態で動作しているため、非線形歪みが発生しやすい。非線形歪みには3次歪みや5次歪みが含まれている。図3は、送信増幅器12の前後における送信信号の周波数スペクトルの変化を示す図である。図3(a)に示すように、送信増幅器12に入力される前の送信信号には無かった歪みが、送信増幅器12から出力された後の送信信号には含まれている。
 スイッチ15は、時分割で送信回路と受信回路を切り替えるスイッチである。送信回路とは、信号処理部11とスイッチ15の間にある回路であり、送信増幅器12を含む。受信回路とは、スイッチ16と信号処理部11の間にある回路であり、受信増幅器14を含む。ここでは説明を簡略化するために、送信回路および受信回路に含まれる他の回路や素子を省略している。スイッチ15は、送信タイミングではアンテナポート13を送信増幅器12と接続し、受信タイミングではアンテナポート13を、受信増幅器14に接続されたスイッチ16に接続する。
 スイッチ16は、スイッチ15と同様に、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ16は、送信タイミングでは波形モニター17を受信増幅器14と接続し、受信タイミングでは、スイッチ15を介して、アンテナポート13を受信増幅器14に接続する。これにより、スイッチ16と信号処理部11の間にある受信回路は、送信時には帰還回路として用いられ、受信時には受信回路として用いられる共用回路となる。
 受信増幅器14は、入力された信号を増幅して信号処理部11に送る。送信タイミングでは、波形モニター17からの帰還信号が入力されるので、受信増幅器14は、それを増幅する。受信タイミングでは、無線伝送で減衰された、アンテナポート13からの受信信号が入力されるので、信号処理部11はそれを増幅する。
 波形モニター17は、送信増幅器12からの送信信号をモニターし、送信信号と同様な波形の帰還信号をスイッチ16に送る。この帰還信号には送信増幅器12で発生した非線形歪みが含まれている。
 上記スイッチ15,16の切り替えによって、送信タイミングでは、信号処理部11からの送信信号が送信増幅器12で増幅され、スイッチ15を経由してアンテナポート13からアンテナ(不図示)に送られる。また、それとともに、波形モニター17からの帰還信号が受信増幅器14で増幅されて信号処理部11に入力される。受信タイミングでは、アンテナポート13からの信号が受信増幅器14で増幅されて信号処理部11に入力される。図2には、送信タイミングにおけるスイッチ15,16が示されている。受信タイミングには、スイッチ15,16が図4に示されているように切り替わる。
 本実施形態によれば、時分割で送信タイミングと受信タイミングが切り替わる通信装置において、送信タイミングで受信回路を転用した帰還回路によって、帰還信号を、非線形歪みの検出および補償を行う信号処理部11に入力するので、少ない回路規模で非線形歪みを補償することが可能である。
 (第2の実施形態)
 第2の実施形態は、受信回路に帯域制限フィルタが含まれている場合の例である。無線通信システムでは、システムに割り当てられた周波数帯の隣接周波数が他のシステムで用いられていることがある。その場合、他のシステムの信号を除去するために、受信回路にシステムの信号帯域幅と同程度の帯域幅の帯域制限フィルタが挿入される。
 非線形歪みを補償するための帰還信号は3次歪みや5次歪みといった非線形歪みを含んだままである必要がある。しかし、受信回路を帰還回路として用いる場合に、帰還回路にシステムの信号帯域幅と同程度の帯域幅の帯域制限フィルタがあると、非線形歪みを補償するために必要な3次歪みや5次歪みといった非線形歪みが、帯域制限フィルタによって除去されてしまう。そこで本実施形態では、受信回路を帰還回路として用いる送信タイミングには、帯域制限フィルタをバイパスする。
 図5は、第2の実施形態による無線通信装置の構成を示すブロック図である。図5を参照すると、無線通信装置は、信号処理部21、送信増幅器22、アンテナポート23、帯域制限フィルタ24、受信増幅器25、スイッチ26~29、および波形モニター210を有している。
 信号処理部21は送信側および受信側の信号処理を行う。送信側では、信号処理部21は、入力した送信信号に対して信号処理を施し、信号処理後の送信信号を送信増幅器22に送る。受信側では、受信増幅器25からの受信信号に対して信号処理を施し、信号処理後の受信信号を出力する。また、信号処理部21は、送信タイミングで受信増幅器25から入力される帰還信号を送信信号と比較することにより、送信増幅器22で発生する非線形歪みを検出し、送信信号に対して、非線形歪みの検出値に基づく補償を行う。
 送信増幅器22は、信号処理部21からの送信信号を増幅してスイッチ26に送る。送信増幅器22は、送信信号を無線で送出するために大きな出力パワーが要求される。そして、一般に送信信号を無線で送出するための送信増幅器22は飽和レベルに近い状態で動作しているため、非線形歪みが発生しやすい。非線形歪みには3次歪みや5次歪みが含まれている。
 スイッチ26は、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ26は、送信タイミングではアンテナポート23を送信増幅器22と接続し、受信タイミングではアンテナポート23を、受信増幅器25に接続されたスイッチ27に接続する。
 スイッチ27は、スイッチ26と同様に、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ27は、送信タイミングでは波形モニター210をスイッチ28と接続し、受信タイミングでは、スイッチ26を介して、アンテナポート23をスイッチ28に接続する。本実施形態では、スイッチ27と信号処理部21の間にある受信回路は、送信時には帰還回路として用いられ、受信時には受信回路として用いられる共用回路である。ただし、本実施形態では共用回路内の帯域制限フィルタ24は受信タイミング時だけ用いられる。
 帯域制限フィルタ24は、受信信号の周波数帯域を制限するフィルタであり、受信タイミングでのみ、スイッチ27と受信増幅器25の間に挿入される。帯域制限フィルタ24は、受信タイミングには、スイッチ26からスイッチ27を介して入力された受信信号を、帯域制限してスイッチ29に送る。
 受信増幅器25は、入力された信号を増幅して信号処理部21に送る。送信タイミングでは、波形モニター210からの帰還信号が入力されるので、受信増幅器25は、それを増幅する。受信タイミングでは、無線伝送で減衰された、アンテナポート23からの受信信号が入力されるので、受信増幅器25はそれを増幅する。
 スイッチ28,29は、スイッチ26,27と同様に、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ28,29は、送信タイミングでは、帯域制限フィルタ24をバイパスして波形モニター210を受信増幅器25に直接接続し、受信タイミングでは、帯域制限フィルタ24側に接続され、アンテナポート23を、スイッチ26,27を経由して受信増幅器25に接続する。
 波形モニター210は、送信増幅器22からの送信信号をモニターし、送信信号と同様な波形の帰還信号をスイッチ27に送る。この帰還信号には送信増幅器22で発生した非線形歪みが含まれている。
 上記スイッチ26~29の切り替えによって、送信タイミングでは、信号処理部21からの送信信号が送信増幅器22で増幅され、スイッチ26を経由してアンテナポート23からアンテナ(不図示)に送られる。また、それとともに、波形モニター210からの帰還信号が受信増幅器25で増幅されて信号処理部21に入力される。受信タイミングでは、アンテナポート23からの信号が帯域制限フィルタ24でフィルタリングされ、受信増幅器25で増幅されて信号処理部21に入力される。
 本実施形態によれば、時分割で送信タイミングと受信タイミングが切り替わる通信装置において、送信タイミングで受信回路を帰還回路に転用するとき帯域制限フィルタ24をバイパスするので、受信回路に帯域制限フィルタ24が含まれている場合でも信号処理部21にて正確な非線形歪みを検出し、補償することができる。
 (第3の実施形態)
 第3の実施形態は、ダブルコンバージョン方式の周波数変換を行う通信装置の例である。信号処理部で用いられるベースバンド信号と無線回線で用いられる無線周波数(RF)信号の間に中間周波数(IF)信号が用いられている。各周波数信号レベルでの信号への加工は説明簡略化のために省略する。また、本実施形態では、第2の実施形態と同様、受信回路に帯域制限フィルタがある。
 図6は、第3の実施形態による無線通信装置の構成を示すブロック図である。図6を参照すると、無線通信装置は、信号処理部31、送信増幅器32,34,36、送信ミキサ33,35、アンテナポート37、受信ミキサ38,311、帯域制限フィルタ39、受信増幅器310,312、波形モニター317、スイッチ313~316、および局部発振器318,319を有している。
 信号処理部31は送信側および受信側の信号処理を行う。送信側では、信号処理部31は、入力された送信信号に対して信号処理を施し、信号処理後の送信信号を送信増幅器32に送る。受信側では、受信増幅器312からの受信信号に対して信号処理を施し、信号処理後の受信信号を出力する。また、信号処理部31は、送信タイミングで受信増幅器312から入力される帰還信号を送信信号と比較することにより、送信回路(主に、送信増幅器36)で発生する非線形歪みを検出し、送信信号に対して、非線形歪みの検出値に基づく補償を行う。
 送信増幅器32は、信号処理部31からの送信信号を増幅して送信ミキサ33に送る。
 送信ミキサ33は、局部発振器319からの周波数信号を用いて、信号処理部31からの送信信号をIFに周波数変換し、周波数変換後の送信信号を送信増幅器34に送る。
 送信増幅器34は、送信ミキサ33からの送信信号を増幅して送信ミキサ35に送る。
 送信ミキサ35は、局部発振器318からの周波数信号を用いて、送信増幅器34からの送信信号をRFに周波数変換し、周波数変換後の送信信号を送信増幅器36に送る。
 送信増幅器36は、送信ミキサ35からの送信信号を増幅してスイッチ313に送る。この送信増幅器36は、送信信号を無線で送出するために大きな出力パワーが要求される。そして、一般に送信信号を無線で送出するための送信増幅器は飽和レベルに近い状態で動作しているため、非線形歪みが発生しやすい。非線形歪みには3次歪みや5次歪みが含まれている。
 スイッチ313は、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ313は、送信タイミングではアンテナポート37を送信増幅器36と接続し、受信タイミングではアンテナポート37をスイッチ314に接続する。
 スイッチ314は、スイッチ313と同様に、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ314は、送信タイミングでは波形モニター317を受信ミキサ38と接続し、受信タイミングでは、アンテナポート37に接続されたスイッチ313を受信ミキサ38に接続する。本実施形態では、スイッチ314と信号処理部31の間にある受信回路は、送信時には帰還回路として用いられ、受信時には受信回路として用いられる共用回路である。ただし、本実施形態では共用回路内の帯域制限フィルタ39は受信タイミング時だけ用いられる。
 受信ミキサ38は、局部発振器318からの周波数信号を用いて、スイッチ314から入力された信号をIFに周波数変換し、周波数変換後の信号をスイッチ315に送る。送信タイミングでは、波形モニター317からの帰還信号が入力されるので、受信ミキサ38は、その帰還信号を周波数変換する。受信タイミングでは、無線伝送で減衰された、アンテナポート37からの受信信号が入力されるので、受信ミキサ38はその受信信号を周波数変換する。
 帯域制限フィルタ39は、受信タイミングでのみ受信回路に挿入され、受信ミキサ38からの信号をスイッチ315経由で帯域制限した後、スイッチ316経由で受信増幅器310に送る。
 受信増幅器310は、スイッチ316から入力される信号を増幅して受信ミキサ311に送る。スイッチ316からは、送信タイミングには帰還信号が出力され、受信タイミングには受信信号が出力される。
 受信ミキサ311は、局部発振器319からの周波数信号を用いて受信増幅器310からの信号を更に周波数変換し、周波数変換後の信号を受信増幅器312に送る。この受信ミキサ311は受信ミキサ38で変換されたIF周波数を、更に低いIF周波数へ変換するものである。
 受信増幅器312は、受信ミキサ311からの信号を増幅して信号処理部31に送る。
 スイッチ315,316は、スイッチ313,314と同様に、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ315,316は、送信タイミングでは、帯域制限フィルタ39をバイパスして受信ミキサ38と受信増幅器310を直接接続し、受信タイミングでは、受信ミキサ38と受信増幅器310の間に帯域制限フィルタ39を挿入する。
 波形モニター317は、送信増幅器36からの送信信号をモニターし、送信信号と同様な波形の帰還信号をスイッチ314に送る。この帰還信号には送信増幅器36で発生した非線形歪みが含まれている。
 上記スイッチ313~316の切り替えによって、送信タイミングでは、送信信号が送信増幅器36で増幅され、スイッチ313を経由してアンテナポート37からアンテナ(不図示)に送られる。また、それとともに、波形モニター317からの帰還信号が帯域制限フィルタ39を介さず信号処理部31に入力される。受信タイミングでは、アンテナポート37からの信号が帯域制限フィルタ39でフィルタリングされて信号処理部31に入力される。
 以上説明したように、本実施形態では、RFの送信増幅器36が主な非線形歪みの発生源となるので、波形モニター317は送信増幅器36の出力に設けられる。受信回路と帰還回路とで、受信ミキサ38、受信増幅器310、ミキサ311、および受信増幅器312が兼用されるので、非線形歪みの補償が少ない回路規模で実現されている。また、受信回路に帯域制限フィルタ39が含まれている場合でも、正確な非線形歪みを検出し、補償することができる。
 (第4の実施形態)
 第4の実施形態は、第3の実施形態と同様に、ダブルコンバージョン方式の周波数変換を行う通信装置の例である。信号処理部で用いられるベースバンド信号と無線回線で用いられる無線周波数(RF)信号の間に中間周波数(IF)信号が用いられている。各周波数信号レベルでの信号への加工は説明簡略化のために省略する。
 ただし、本実施形態では、第3の実施形態において帯域制限フィルタがあった位置に、レベル調整用の受信増幅器がある。この受信増幅器は、受信回路を帰還回路として用いるときにバイパスされる。これは無線回線で減衰した受信信号に比べて帰還信号のレベルが高くなる装置構成を考慮したものである。本実施形態の通信装置において、それ以外の基本的な装置構成は第3の実施形態と同様である。
 図7は、第4の実施形態による無線通信装置の構成を示すブロック図である。図7を参照すると、無線通信装置は、信号処理部41、送信増幅器42,44,46、送信ミキサ43,45、アンテナポート47、受信ミキサ48,411、受信増幅器49,410,412、波形モニター417、スイッチ413~416、および局部発振器418,419を有している。本実施形態では、スイッチ414と信号処理部41の間にある受信回路が、送信時には帰還回路として用いられ、受信時には受信回路として用いられる共用回路である。
 信号処理部41、送信増幅器42,44,46、送信ミキサ43,45、アンテナポート47、受信ミキサ48,411、受信増幅器410,412、波形モニター417、スイッチ413~416、および局部発振器418,419が、それぞれ第3の実施形態の信号処理部31、送信増幅器32,34,36、送信ミキサ33,35、アンテナポート37、受信ミキサ38,311、受信増幅器310,312、波形モニター317、スイッチ313~316、および局部発振器318,319に相当する。スイッチ415,416は、送信タイミングでは、受信増幅器49をバイパスして受信ミキサ48と受信増幅器410を直接接続し、受信タイミングでは、受信ミキサ48と受信増幅器410の間に受信増幅器49を挿入する。この構成により、受信回路が帰還回路として用いられるとき、受信信号のレベル調整用の受信増幅器49がバイパスされる。
 (第5の実施形態)
 第5の実施形態は、第3,4の実施形態と同様に、ダブルコンバージョン方式の周波数変換を行う通信装置の例である。
 ただし、本実施形態では、受信回路を帰還回路として用いるときに、帯域制限フィルタと受信増幅器の両方がバイパスされる。帯域制限フィルタがバイパスされる理由は第3の実施形態において帯域制限フィルタがバイパスされた理由と同じである。受信増幅器がバイパスされる理由は第4の実施形態において受信増幅器がバイパスされた理由と同じである。
 図8は、第5の実施形態による無線通信装置の構成を示すブロック図である。図8を参照すると、無線通信装置は、信号処理部51、送信増幅器52,54,56、送信ミキサ53,55、アンテナポート57、受信ミキサ58,512、受信増幅器59,511,513、帯域制限フィルタ510、波形モニター518、スイッチ514~517、および局部発振器519,520を有している。本実施形態では、スイッチ515と信号処理部51の間にある受信回路が、送信時には帰還回路として用いられ、受信時には受信回路として用いられる共用回路である。
 信号処理部51、送信増幅器52,54,56、送信ミキサ53,55、アンテナポート57、受信ミキサ58,512、受信増幅器511,513、波形モニター518、スイッチ514~517、および局部発振器519,520は、第3の実施形態の信号処理部31、送信増幅器32,34,36、送信ミキサ33,35、アンテナポート37、受信ミキサ38,311、受信増幅器310,312、波形モニター317、スイッチ313~316、および局部発振器318,319にそれぞれに相当する。この構成により、受信回路が帰還回路として用いられるとき、受信信号のレベル調整用の受信増幅器59と、受信信号の帯域を制限するための帯域制限フィルタ510が第4の実施形態と同様にバイパスされる。
 (第6の実施形態)
 第6の実施形態は、第3~5の実施形態と同様に、ダブルコンバージョン方式の周波数変換を行う通信装置の例である。ただし、本実施形態では、RFからIFへ周波数変換する受信ミキサを受信回路と帰還回路のそれぞれに設けている。
 また、本実施形態では、第5の実施形態と同様に、受信回路を帰還回路として用いるときに、帯域制限フィルタと受信増幅器の両方がバイパスされる。ただし、他の例として、帯域制限フィルタと受信増幅器のいずれか一方がバイパスされる構成であってもよい。
 図9は、第6の実施形態による無線通信装置の構成を示すブロック図である。図9を参照すると、無線通信装置は、信号処理部61、送信増幅器62,64,66、送信ミキサ63,65、アンテナポート67、受信ミキサ68,611、受信増幅器610,612、帯域制限フィルタ69、波形モニター615、帰還ミキサ616、スイッチ613,614、および局部発振器617,618を有している。本実施形態では、スイッチ614と信号処理部61の間にある回路が、送信時には帰還回路として用いられ、受信時には受信回路として用いられる共用回路である。
 信号処理部61は送信側および受信側の信号処理を行う。また、信号処理部61は、送信タイミングで受信増幅器612から入力される帰還信号を送信信号と比較することにより、送信回路で発生する非線形歪みを検出し、送信信号に対して、非線形歪みの検出値に基づく補償を行う。
 送信増幅器62は、信号処理部61からの送信信号を増幅して送信ミキサ63に送る。
 送信ミキサ63は、局部発振器618からの周波数信号を用いて、信号処理部61からの送信信号をIFに周波数変換し、周波数変換後の送信信号を送信増幅器64に送る。
 送信増幅器64は、送信ミキサ63からの送信信号を増幅して送信ミキサ65に送る。
 送信ミキサ65は、局部発振器617からの周波数信号を用いて、送信増幅器64からの送信信号をRFに周波数変換し、周波数変換後の送信信号を送信増幅器66に送る。
 送信増幅器66は、送信ミキサ65からの送信信号を増幅してスイッチ613に送る。この送信増幅器66は、他の実施形態と同様、非線形歪みの主な発生源である。
 受信ミキサ68は、局部発振器617からの周波数信号を用いて、スイッチ613から入力された受信信号をIFに周波数変換し、周波数変換後の受信信号を帯域制限フィルタ69に送る。
 帯域制限フィルタ69は、受信ミキサ68からの受信信号を帯域制限して受信増幅器610に送る。
 受信増幅器610は、帯域制限フィルタ69から入力される信号を増幅してスイッチ614に送る。
 スイッチ614は、スイッチ613と同様に、時分割で送信回路と受信回路を切り替えるスイッチである。スイッチ614は、送信タイミングでは、帰還ミキサ616と受信ミキサ611を接続し、受信タイミングでは、受信増幅器610と受信ミキサ611を接続する。
 受信ミキサ611は、局部発振器618からの周波数信号を用いて受信増幅器スイッチ614からの信号を更に周波数変換し、周波数変換後の信号を受信増幅器612に送る。
 受信増幅器612は、受信ミキサ611からの信号を増幅して信号処理部61に送る。
 波形モニター615は、送信増幅器66からの送信信号をモニターし、送信信号と同様な波形の帰還信号を帰還ミキサ616に送る。この帰還信号には送信増幅器66で発生した非線形歪みが含まれている。
 帰還ミキサ616は、波形モニター615からの帰還信号をIFに周波数変換し、周波数変換後の帰還信号をスイッチ614に送る。
 上記スイッチ613,614の切り替えによって、送信タイミングでは、送信信号が送信増幅器66で増幅され、スイッチ613を経由してアンテナポート67からアンテナ(不図示)に送られる。また、それとともに、波形モニター615からの帰還信号が帯域制限フィルタ69および受信増幅器610を介さず信号処理部61に入力される。受信タイミングでは、アンテナポート67からの信号が帯域制限フィルタ69でフィルタリングされ、受信増幅器610でレベル調整されて信号処理部61に入力される。
 本実施形態は、第3から第5の実施形態と比較してスイッチの数を低減することができるという効果がある。また、動作する箇所が少なくなることから、回路の信頼性や動作安定性が向上するという効果もある。
 (第7の実施形態)
 第1~6の実施形態の通信装置は、無線基地局の屋外ユニットを想定した構成である。無線基地局の屋外ユニットは屋内ユニットと接続して用いられる。しかし、本発明は、屋外ユニットと屋内ユニットの機能を備えた一体型の無線基地局にも適用することができる。
 第7の実施形態の通信装置は、無線リソース管理や移動管理を含む制御機能を備えた一体型の無線基地局装置である。図10は、第7の実施形態による無線基地局装置の構成を示すブロック図である。図10を参照すると、無線基地局装置は、信号処理部71、送信増幅器72、アンテナポート73、受信増幅器74、スイッチ75,76、波形モニター77、および制御部78を有している。
 信号処理部71、送信増幅器72、アンテナポート73、受信増幅器74、スイッチ75,76、波形モニター77は、第1の実施形態における信号処理部11、送信増幅器12、アンテナポート13、受信増幅器14、スイッチ15,16、波形モニター17のそれぞれに相当する。
 制御部78は、アンテナポート73経由で無線回線により移動局(不図示)との接続に用いられる無線リソースの管理、および無線回線で接続されている各移動局の移動管理を行う。その際、制御部78は、各移動局との間で制御信号を送受信する。また、制御部78は、各移動局と上位装置(不図示)の間で送受信されるユーザデータの中継も行う。
 本実施形態では、第1の実施形態の無線通信装置に対応する一体型の無線基地局装置を例示したが、本発明はこれに限定されるものではない。第2~6の実施形態の無線通信装置に対応する無線基地局装置も同様に構成することができる。
 以上、本発明の実施形態について述べてきたが、本発明は、これらの実施形態だけに限定されるものではなく、本発明の技術思想の範囲内において、これらの実施形態を組み合わせて使用したり、一部の構成を変更したりしてもよい。
 以上、実施形態を参照して本発明を説明したが、本発明は、これらの実施形態に限定されるものではない。クレームに定義された本発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2008年3月11日に出願された日本出願特願2008-061428を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
 

Claims (23)

  1.  時分割の送信タイミングで送信される送信信号と、受信タイミングで受信される受信信号とに対して所定の信号処理を行うとともに、前記送信信号と、該送信信号の帰還信号とを比較する信号処理部と、
     前記信号処理部からの送信信号を外部ポートに送るための送信回路と、
     前記外部ポートからの受信信号を前記信号処理部に送るための受信回路と、
     前記送信回路から前記外部ポートに送られる送信信号の波形をモニターすることにより、前記帰還信号を生成する波形モニターと、
     前記送信タイミングには、前記送信回路からの前記送信信号を前記外部ポートに接続するとともに、前記波形モニターからの前記帰還信号を前記受信回路に接続し、前記受信タイミングには、前記外部ポートからの前記受信信号を前記受信回路に接続するスイッチ部と、を有する通信装置。
  2.  前記スイッチ部は、前記送信タイミングに、前記波形モニターからの前記帰還信号を前記受信回路に接続するとき、前記受信回路の一部の回路をバイパスする、請求項1に記載の通信装置。
  3.  前記受信回路は、前記受信信号の帯域を制限するための帯域制限フィルタを含んでおり、
     前記スイッチ部は、前記送信タイミングに、前記波形モニターからの前記帰還信号を前記受信回路に接続するとき、前記受信回路内の前記帯域制限フィルタをバイパスする、請求項2に記載の通信装置。
  4.  前記受信回路は、レベルを調整するための受信増幅器を含んでおり、
     前記スイッチ部は、前記送信タイミングに、前記波形モニターからの前記帰還信号を前記受信回路に接続するとき、前記受信回路内の前記受信増幅器をバイパスする、請求項2に記載の通信装置。
  5.  前記送信回路は前記送信信号の周波数を変換するための送信ミキサを含み、
     前記受信回路は前記受信信号の周波数を変換するための受信ミキサを含み、
     前記波形モニターは、前記送信信号を前記送信ミキサよりも後ろの位置でモニターし、
     前記スイッチ部は、前記波形モニターからの前記帰還信号を、前記受信回路の前記受信ミキサよりも前の位置に接続する、
    請求項1から4のいずれか1項に記載の通信装置。
  6.  前記送信回路は前記送信信号の周波数を変換するための送信ミキサを含み、
     前記受信回路は前記受信信号の周波数を変換するための受信ミキサを含み、
     前記通信装置は、前記波形モニターからの前記帰還信号の周波数を変換する帰還ミキサを更に有し、
     前記波形モニターは、前記送信信号を前記送信ミキサよりも後ろの位置でモニターし、
     前記スイッチ部は、前記波形モニターからの前記帰還信号を、前記受信回路の前記受信ミキサよりも後ろの位置に接続する、
    請求項1から4のいずれか1項に記載の通信装置。
  7.  前記信号処理部は、前記送信信号と前記帰還信号の比較によって、前記送信回路において前記送信信号に生じた非線形歪みを検出する、1から6のいずれか1項に記載の通信装置。
  8.  前記信号処理部は、検出した前記非線形歪みに基づいて、前記送信回路に送る前記送信信号に対して補償を施す、請求項7に記載の通信装置。
  9.  前記通信装置は無線通信装置であり、前記外部ポートはアンテナに接続されるアンテナポートである、請求項1から8のいずれか1項に記載の通信装置。
  10.  無線回線で接続される移動局に関する制御信号およびユーザデータを前記信号処理部との間で送受信する制御部を更に有する、請求項9に記載の通信装置。
  11.  受信信号および送信信号を処理すると共に、出力した前記送信信号が帰還された帰還信号に基づいて、出力する前記送信信号の歪みを補償する信号処理部と、
     受信時に前記受信信号を前記信号処理部へ出力し、送信時に、前記信号処理部から出力された前記送信信号の一部を帰還信号として前記信号処理部へ帰還させる共用回路と、
    を備える、時分割多重方式の通信装置における歪み補償回路。
  12.  受信時に前記受信信号を、送信時に前記帰還信号を、時分割で前記共用回路に送信する切替手段をさらに備える、請求項11に記載の歪み補償回路。
  13.  前記切替手段は、アンテナの接続先を切り替えるスイッチである、請求項12に記載の歪み補償回路。
  14.  前記共用回路は、受信時に前記受信信号の帯域を制限して前記信号処理部へ送信する帯域制限フィルタと、送信時に前記帯域制限フィルタをバイパスして前記帰還信号を帯域制限せずに前記信号処理部へ送信するバイパス手段とを備える、請求項11から13のいずれか1項に記載の歪み補償回路。
  15.  前記共用回路は、受信時に前記受信信号を増幅して前記信号処理部へ送信する増幅器と、送信時に前記増幅器をバイパスして前記帰還信号を増幅せずに前記信号処理部へ送信するバイパス手段とを備える、請求項11から13のいずれか1項に記載の歪み補償回路。
  16.  前記共用回路は、前記送信信号を無線で送信するための送信用増幅器と、前記送信用増幅器から出力された前記送信信号の一部を帰還させる帰還手段とを備える、請求項11から15のいずれか1項に記載の歪み補償回路。
  17.  前記帰還手段は、前記送信信号をモニターする波形モニターである、請求項16に記載の歪み補償回路。
  18.  前記共用回路は、受信時に前記受信信号を増幅し、送信時に前記帰還信号を増幅する共用増幅器を備える、請求項11から17に記載の歪み補償回路。
  19.  時分割多重方式の通信装置において受信信号および送信信号を処理する信号処理部に対して、共用回路により、受信時には前記受信信号を入力し、送信時には、前記信号処理部から出力された前記送信信号の一部を帰還信号として入力し、
     前記信号処理部で前記帰還信号から歪み量を検出し、
     前記信号処理部で前記歪み量に基づいて前記送信信号の歪みを補償する、歪み補償方法。
  20.  前記歪み量は、前記帰還信号を前記送信信号と比較することにより検出される、請求項19に記載の歪み補償方法。
  21.  前記信号処理部は、時分割で前記受信信号と前記送信信号を処理する、請求項19または20に記載の歪み補償方法。
  22.  受信時には前記受信信号の帯域を制限して、一方、送信時には前記帰還信号を帯域制限せずに前記信号処理部へ送る、請求項19から21に記載の歪み補償方法。
  23.  受信時には前記受信信号を増幅して、一方、送信時には前記帰還信号を増幅せずに前記信号処理部へ送信する、請求項19から22に記載の歪み補償方法。
     
PCT/JP2009/050949 2008-03-11 2009-01-22 通信装置、歪み補償回路、および歪み補償方法 WO2009113329A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980107604.3A CN102089987B (zh) 2008-03-11 2009-01-22 通信设备、失真补偿电路和失真补偿方法
US12/920,762 US20110019658A1 (en) 2008-03-11 2009-01-22 Communication apparatus, distortion-compensating circuit, and distortion compensation method
EP09721054A EP2264909A1 (en) 2008-03-11 2009-01-22 Communication device, distortion compensation circuit, and distortion compensation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008061428A JP4479931B2 (ja) 2008-03-11 2008-03-11 通信装置、歪み補償回路、および歪み補償方法
JP2008-061428 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113329A1 true WO2009113329A1 (ja) 2009-09-17

Family

ID=41065001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050949 WO2009113329A1 (ja) 2008-03-11 2009-01-22 通信装置、歪み補償回路、および歪み補償方法

Country Status (6)

Country Link
US (1) US20110019658A1 (ja)
EP (1) EP2264909A1 (ja)
JP (1) JP4479931B2 (ja)
CN (1) CN102089987B (ja)
TW (1) TWI425785B (ja)
WO (1) WO2009113329A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873404B2 (en) * 2017-07-13 2020-12-22 Benjamin J. Egg System and method for digital direction finding
US10571366B2 (en) 2017-07-25 2020-02-25 Ford Global Technologies, Llc Systems and methods for diagnostics of a variable displacement engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503408A (ja) * 1990-10-24 1993-06-03 モトローラ・インコーポレイテッド トランシーバの送信機内で信号を可変する装置と方法
JPH09199959A (ja) * 1996-01-11 1997-07-31 Hitachi Denshi Ltd 無線機
JP2002118483A (ja) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd 無線回路装置及び無線回路装置の制御方法
JP2002208979A (ja) 2001-01-11 2002-07-26 Hitachi Kokusai Electric Inc 制御方法及びそれを使った無線機
JP2006261998A (ja) * 2005-03-16 2006-09-28 Toshiba Corp 移動通信端末

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311190A (en) * 1992-12-22 1994-05-10 Hughes Aircraft Company Transmit and receive antenna element with feedback
US5590412A (en) * 1993-11-19 1996-12-31 Sanyo Electric Co., Ltd. Communication apparatus using common amplifier for transmission and reception
JP3100111B2 (ja) * 1995-06-26 2000-10-16 株式会社エヌ・ティ・ティ・ドコモ 移動無線機のマルチバンド高周波回路
US6006112A (en) * 1997-11-26 1999-12-21 Lucent Technologies, Inc. Transceiver with RF loopback and downlink frequency scanning
EP1248407A4 (en) * 2000-12-04 2003-04-16 Mitsubishi Electric Corp COMMUNICATION CONTROL AND CONTROL METHOD THEREFOR
US6714760B2 (en) * 2001-05-10 2004-03-30 Qualcomm Incorporated Multi-mode satellite and terrestrial communication device
US7783263B2 (en) * 2006-12-14 2010-08-24 Texas Instruments Incorporated Simplified digital predistortion in a time-domain duplexed transceiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503408A (ja) * 1990-10-24 1993-06-03 モトローラ・インコーポレイテッド トランシーバの送信機内で信号を可変する装置と方法
JPH09199959A (ja) * 1996-01-11 1997-07-31 Hitachi Denshi Ltd 無線機
JP2002118483A (ja) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd 無線回路装置及び無線回路装置の制御方法
JP2002208979A (ja) 2001-01-11 2002-07-26 Hitachi Kokusai Electric Inc 制御方法及びそれを使った無線機
JP2006261998A (ja) * 2005-03-16 2006-09-28 Toshiba Corp 移動通信端末

Also Published As

Publication number Publication date
EP2264909A1 (en) 2010-12-22
US20110019658A1 (en) 2011-01-27
CN102089987A (zh) 2011-06-08
TW201006167A (en) 2010-02-01
JP4479931B2 (ja) 2010-06-09
TWI425785B (zh) 2014-02-01
JP2009218930A (ja) 2009-09-24
CN102089987B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
US7190932B2 (en) Circuit arrangement for a predistorted feedback coupling from a transmitter to a receiver in a multi-mode mobile telephone
US9125183B2 (en) Compact transceiver architecture for achieving device to device (D2D) communication using uplink and downlink carrier frequencies
JPWO2006118055A1 (ja) 無線送信装置、ポーラ変調送信装置及び無線通信装置
US8489033B1 (en) Enhanced wideband transceiver
CN110740465A (zh) 多个无线通信装置共存的方法和系统
KR101868965B1 (ko) 분산 안테나 시스템의 리모트 장치
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
JP6705918B2 (ja) 無線機及び無線通信方法
US20110045787A1 (en) Calibration-Less Transmit Beamforming
JP5696622B2 (ja) 無線送信装置
US20210175858A1 (en) Radio transceiver arrangement and method
WO2009113329A1 (ja) 通信装置、歪み補償回路、および歪み補償方法
CN104682994A (zh) 局域无线网络与广播融合传输射频芯片及系统
EP2733976A1 (en) System, device, and method for transmitting multi-input-multi-output signals
KR20100008290A (ko) 시분할 다중접속 방식을 이용한 안테나 분리형 무선 시스템
KR100948427B1 (ko) 신호 송수신 장치 및 그 제어 방법
EP2756645B1 (en) Efficient transmitter protection of all outdoor radios
KR101911356B1 (ko) 시분할 복신 및 주파수 분할 복신 방식을 사용하는 rf 중계장치
KR101182035B1 (ko) 복수안테나를 구비한 원격 기지국 유닛 및 양방향 광 무선네트워크
KR20110023541A (ko) 알에프아이디(rfid)의 리더
JP2004320541A (ja) 送受信機及びその構成方法
JP2007116340A (ja) 通信中継装置
KR20060057431A (ko) 기지국에서의 신호처리장치 및 그 방법
KR100960661B1 (ko) 무선 주파수 신호의 경로 감시 방법 및 장치
JP2004336599A (ja) 無線基地局装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107604.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5452/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12920762

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009721054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE