WO2009113155A1 - 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 - Google Patents

新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 Download PDF

Info

Publication number
WO2009113155A1
WO2009113155A1 PCT/JP2008/054342 JP2008054342W WO2009113155A1 WO 2009113155 A1 WO2009113155 A1 WO 2009113155A1 JP 2008054342 W JP2008054342 W JP 2008054342W WO 2009113155 A1 WO2009113155 A1 WO 2009113155A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
diamantane
compound
general formula
carbon atoms
Prior art date
Application number
PCT/JP2008/054342
Other languages
English (en)
French (fr)
Inventor
泰 横山
剛史 具志堅
俊 生方
Original Assignee
国立大学法人 横浜国立大学
新日本石油株式会社
シェブロン ユー.エス.エー. インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 横浜国立大学, 新日本石油株式会社, シェブロン ユー.エス.エー. インコーポレイテッド filed Critical 国立大学法人 横浜国立大学
Priority to PCT/JP2008/054342 priority Critical patent/WO2009113155A1/ja
Priority to JP2010502659A priority patent/JP5439647B2/ja
Priority to US12/922,285 priority patent/US8614348B2/en
Publication of WO2009113155A1 publication Critical patent/WO2009113155A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems

Definitions

  • the present invention relates to a novel diamantane compound, a liquid crystal compound comprising the same, and a liquid crystal composition containing the liquid crystal compound.
  • Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, as well as watches and calculators.
  • the liquid crystal display element utilizes the optical anisotropy and dielectric anisotropy of the liquid crystal substance.
  • Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, DS (dynamic light scattering) type, GH (guest / host) type, FLC (ferroelectric liquid crystal).
  • a multiplex drive is generally used instead of a conventional static drive, and a simple matrix system and recently an active matrix system are put into practical use.
  • Various characteristics are required as a liquid crystal material in accordance with these display methods and driving methods, and so many liquid crystalline compounds have been synthesized so far.
  • liquid crystal compounds vary slightly depending on the display method, but the wide liquid crystal temperature range and the stability to moisture, air, light, heat, electric field, etc. Are also commonly required. At present, there is no substance satisfying such a condition with a single liquid crystal compound, and several kinds of liquid crystal compounds are mixed, or non-liquid crystal compounds are further mixed for practical use. When a plurality of compounds are mixed, the melting point thereof inevitably decreases. Therefore, a liquid crystalline compound having a high phase transition temperature alone is required so that a practical phase transition temperature can be maintained even when the phase transition temperature is lowered by mixing.
  • thermotropic liquid crystals There are two main types of liquid crystals: thermotropic liquid crystals and lyotropic liquid crystals.
  • thermotropic liquid crystals calamitic liquid crystals composed of rod-like molecules have been actively researched in fusion with electronics technology.
  • the calamitic liquid crystal phase includes a nematic liquid crystal phase, a smectic liquid crystal phase, and a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal phase is a phase that appears when the nematic liquid crystal has an asymmetric element or when an asymmetric additive (referred to as a chiral dopant) is added to the nematic liquid crystal.
  • a substance exhibiting liquid crystallinity undergoes a phase change from a crystal or solid to a smectic phase and a nematic phase as the temperature rises, and becomes an isotropic liquid as the temperature rises further.
  • the molecules In the nematic liquid crystal phase, the molecules have a uniform alignment to some extent, but there is no regularity with respect to the positions of the molecules.
  • Each molecule of the nematic liquid crystal has the advantage of low viscosity because it can move freely in the major axis direction.
  • the orientation of the molecules can be changed to a certain direction by an electric field, orientation treatment, etc., so it is widely applied to liquid crystal displays and the like. .
  • the lower limit of the temperature range in which the liquid crystal has this nematic phase that is, the temperature at which the crystal, solid, or smectic phase transitions to the nematic phase is low, and the temperature at which the nematic phase changes to an isotropic liquid.
  • T NI Nematic isotropic transition temperature
  • NI transition temperature a temperature at which the nematic phase changes to an isotropic liquid.
  • Patent Document 2 discloses a tricyclic azine such as 1- (4-methylbenzylidene) -2- [4- (trans-4-propyl) cyclohexylbenzylidene] hydrazine, which is NI at 227 ° C. to 265 ° C. It has been shown to have a transition temperature and has been reported to increase the NI transition temperature from 144 ° C. to 157 ° C. by mixing them with a host liquid crystal having an NI transition temperature of 116.7 ° C. . Furthermore, Non-Patent Document 1 discloses 1- (4-cyanophenyl) -4-alkyl-substituted bicyclo [2.2.2. It has been reported that octane exhibits a NI transition temperature of 90-100 ° C.
  • the present inventors have been diligently researching diamond compounds so far.
  • the diamond compound is a cage-like hydrocarbon having a diamond skeleton.
  • Diamond compounds are known to exist in crude oil. The smallest diamond compound is adamantane, from which adamantane fusion dimer diamantane, fusion trimer triamantane and fusion tetramer tetramantane are synthesized. .
  • Diamond compounds have many useful properties, such as excellent stiffness, durability and thermal stability; diverse three-dimensional geometric structures; chirality; negative affinity for electrons; Chemical inertness; and the like. Diamond compounds and derivatives thereof have been studied in a wide range of fields such as nanoscale electromechanical systems, chemical design, and application to field emitters.
  • an object of the present invention is to provide a liquid crystal compound having excellent liquid crystallinity, particularly a high phase transition temperature.
  • the present inventors pay attention to the symmetrical structure of diamantane, and by introducing a functional group into this, there is a possibility of exhibiting liquid crystallinity, and a liquid crystal phase having excellent thermal stability due to its rigid skeleton. As a result of energetic progress in the synthesis and evaluation based on the idea that there is a possibility of being formed, it was found that liquid crystallinity far superior to that expected was exhibited. It came to be completed.
  • a diamantane compound represented by the general formula (I) is provided.
  • ring A and ring B are each a 6-membered saturated or unsaturated carbocyclic or heterocyclic ring. These rings have a substituent as a substituent.
  • R 1 and R 2 may form a ring with each other, respectively , A linear, branched, aromatic or alicyclic hydrocarbon group having 1 to 18 carbon atoms, wherein the hydrocarbon group represented by R 1 and R 2 includes a hetero atom or a hetero (It may be substituted with a group having an atom, and a part of the hydrogen atom may be substituted with a group having a halogen atom or a hetero atom.)
  • the diamantane compound of the present invention is preferably represented by the general formula (II).
  • R 1 and R 2 are the same as those in General Formula (I).
  • L 1 and L 2 are a hydrogen atom and a hydrocarbon optionally having a substituent, respectively.
  • a group having a group, a halogen atom or a hetero atom, and m and n are each an integer of 1 to 4.
  • the diamantane compound represented by the general formula (II) is preferably a diamantane compound represented by the general formula (III).
  • R 3 and R 4 are each an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkynyl group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms.
  • An alkoxycarbonyl group or an alkylyloxy group having 1 to 12 carbon atoms, and a part of hydrogen atoms of these groups may be substituted with a group having a halogen atom or a hetero atom.
  • the diamantane compound represented by general formula (IV) is preferable among the diamantane compounds represented by general formula (III).
  • R 5 and R 6 are each an alkyl group having 1 to 10 carbon atoms which does not have a substituent.
  • the diamantane compounds represented by the general formula (III) are also preferable.
  • R 7 and R 8 are each an n-pentyl group having no substituent, and X 1 and X 2 are —CH 2 CH 2 —, —C ⁇ C—, respectively. Or -COO-.
  • the liquid crystalline compound which consists of a diamantane compound represented by the said general formula (I) is provided.
  • the liquid crystalline composition formed by containing the said liquid crystalline compound is provided.
  • the liquid crystal display element formed by containing the said liquid crystalline composition is provided.
  • the diamantane compound of the present invention is a novel compound that can be easily synthesized, has excellent thermal stability, and exhibits liquid crystallinity at a much higher temperature than conventional liquid crystal materials. Therefore, it can be expected to be used as a liquid crystal material that can be used alone or as a liquid crystal composition composed of another liquid crystal compound, such as an in-vehicle display, even at high temperatures.
  • the diamantane compound of the present invention is represented by the general formula (I).
  • ring A and ring B are each a 6-membered saturated or unsaturated carbocyclic or heterocyclic ring. These rings may have, as a substituent, a hydrocarbon group, a halogen atom or a group having a hetero atom which may have a substituent, and these substituents are bonded to each other to form a ring. It may be formed.
  • R 1 and R 2 are each a linear, branched, aromatic or alicyclic hydrocarbon group having 1 to 18 carbon atoms.
  • a part of the carbon atom may be substituted with a hetero atom or a group having a hetero atom, and a part of the hydrogen atom has a halogen atom or a hetero atom. It may be substituted with a group.
  • a hetero atom is the concept also including the atom which belongs to periodic table 14 group other than the atom which belongs to periodic table 15 group and 16 group. Specific examples of the hetero atom include nitrogen atom, phosphorus atom and arsenic atom belonging to Group 15 of the periodic table, oxygen atom, sulfur atom and selenium atom belonging to Group 16, and silicon atom and germanium atom belonging to Group 14. it can.
  • the group having a hetero atom include a group having an oxygen atom such as a hydroxy group, a carbonyl group, a formyl group, an acyl group, a carbonyloxy group, a carboxyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group; A group having a nitrogen atom such as a group, a nitrile group, an amide group, an imide group or a heterocyclic group containing a nitrogen atom (such as a pyridyl group); a group having a sulfur atom such as a thiol group, a sulfonyl group or a sulfonic acid group; A group having a silicon atom such as a group, a silanol group, or a siloxy group; Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • the diamantane compound represented by the general formula (I) of the present invention is preferably one represented by the general formula (II).
  • R 1 and R 2 are the same as those in the general formula (I).
  • L 1 and L 2 are each a hydrogen atom, a hydrocarbon group which may have a substituent, a halogen atom or a group having a hetero atom.
  • the substituent that it may have is a group having a halogen atom or a hetero atom.
  • Specific examples of the group having a halogen atom and a hetero atom are as described above.
  • m and n are each an integer of 1 to 4.
  • the diamantane compound represented by the general formula (II) of the present invention is preferably one represented by the general formula (III).
  • R 3 and R 4 are each an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkynyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • a carbonyl group or an alkyloyloxy group having 1 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aryloxy group having 6 to 18 carbon atoms, and a part of hydrogen atoms of these groups is a halogen atom or a hetero atom. It may be substituted with a group.
  • the alkyl group having 1 to 12 carbon atoms may be linear, branched or alicyclic.
  • the alkoxy group having 1 to 12 carbon atoms is an alkoxy group having the above alkyl group.
  • the alkynyl group having 1 to 12 carbon atoms is not particularly limited.
  • the position of the carbon-carbon triple bond is not particularly limited, but those in which an alkynyl group is directly bonded to the benzene ring are easy to synthesize and are preferable from the viewpoint of molecular rigidity.
  • the alkoxycarbonyl group having 1 to 12 carbon atoms is not particularly limited. Also, the alkylyl group having 1 to 12 carbon atoms is not particularly limited. Further, the aryl group having 6 to 18 carbon atoms and the aryloxy group having 6 to 18 carbon atoms are not particularly limited. In addition, when R 3 or R 4 has a branch and the branch point is asymmetric carbon, the compound may be a cholesteric liquid crystal or a ferroelectric liquid crystal.
  • R 5 and R 6 are each an alkyl group having 1 to 10 carbon atoms that has no substituent.
  • Specific examples of the alkyl group represented by R 5 and R 6 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group.
  • R 5 and R 6 may be the same or different.
  • the diamantane compound represented by the general formula (IV): 4,9-bis (4-alkoxyphenyl) diamantane has the formula (S1a) (when R 5 and R 6 are both a methyl group or an ethyl group), Or the formula (S1b) (when R 5 and R 6 are all n-propyl, n-butyl, n-pentyl, n-hexyl, n-octyl or n-decyl) It can be obtained by a synthetic route.
  • R is an alkyl group.
  • DMF methanol-benzene-dimethylformamide
  • R 7 and R 8 are each an n-pentyl group having no substituent, and X 1 and X 2 are each —CH 2 CH 2 —, —C ⁇ C— or -COO-.
  • R 7 and R 8 and X 1 and X 2 may be the same or different.
  • Such a diamantane compound include 4,9-bis ⁇ 4- (1-heptynyl) phenyl ⁇ diamantane: in the general formula (V), X 1 and X 2 are —C ⁇ C—, and R 7 And diamantane compound (Va) in which R 8 is an unsubstituted n-pentyl group, 4,9-bis (4-heptylphenyl) diamantane:
  • X 1 and X 2 are —CH 2 Diamantane compound (Vb), which is CH 2 — and R 7 and R 8 are n-pentyl groups having no substituent, 4,9-bis (4-pentyloxycarbonylphenyl) diamantane: in the general formula (V) , X 1 and X 2 are —COO— (wherein the carbonyl group is bonded to a phenyl group), and R 7 and R 8 are n-pentyl groups having no substituent.
  • the diamantane compound of the present invention can be used as a raw material for synthesizing ordinary organic compounds, but is excellent as a liquid crystalline compound.
  • the liquid crystal compound diamantane compounds represented by general formulas (IV) and (V) are particularly useful.
  • the liquid crystalline compound comprising the diamantane compound of the present invention can be mixed with other liquid crystalline compounds to form a liquid crystalline composition.
  • the ratio of the liquid crystal compound comprising the diamantane compound of the present invention in the liquid crystal composition is not particularly limited, taking into consideration the characteristics of other liquid crystal compounds used in combination, the viscosity of the composition, the operating temperature, the use, etc. It can select suitably.
  • the liquid crystalline composition of the present invention includes an additive for changing properties of the liquid crystal phase such as dielectric anisotropy and viscosity, a dichroic dye, or an additive (chiral dopant) for inducing a cholesteric phase. Etc. may be included.
  • a liquid crystal display element can be obtained by enclosing the liquid crystalline composition of the present invention between transparent substrates having electrodes of a desired shape.
  • the liquid crystal display element may have various undercoats, alignment control overcoats, polarizing plates, filters, reflective layers, and the like as necessary.
  • a multilayer cell, a combination with other display elements, a semiconductor substrate, or a light source can be used.
  • Liquid crystal display device driving methods include twisted nematic (TN), super twisted nematic (STN), guest-host (GH), dynamic scattering (DS), electric field controlled birefringence (ECB), and vertical.
  • TN twisted nematic
  • STN super twisted nematic
  • GH guest-host
  • DS dynamic scattering
  • EOB electric field controlled birefringence
  • vertical A method known in the industry of liquid crystal display elements such as an alignment (VA) method and an in-plane switching (IPS) method can be employed.
  • VA alignment
  • IPS in-plane switching
  • the structure of the compound was confirmed by proton nuclear magnetic resonance spectrum ( 1 H NMR), mass spectrum (MS) and infrared absorption spectrum (IR).
  • the measurement conditions of the proton nuclear magnetic resonance spectrum were measured by using “DRX300” manufactured by Bruker at 300 MHz in CDCl 3 or CD 3 C ( ⁇ O) CD 3 with TMS as a standard. The position of the signal is indicated by ⁇ / ppm.
  • the infrared absorption spectrum was measured by a total reflection measurement method for a neat sample using “FT / IR-4100” manufactured by JASCO, using a diamond prism. The position of absorption is indicated by wave number (cm ⁇ 1 ).
  • the low resolution mass spectrum was measured by “EI ionization method” using “JMS-AX-600” manufactured by JEOL Ltd. Intensity is indicated by relative intensity.
  • phase transition temperature was measured by a polarizing microscope (OLYMPUS, “PXP50”) equipped with a temperature control stage (METTLER, “FP82HT”) and a differential scanning calorimeter (DSC) (Seiko Instruments, “DSC6100”). ). Differential calorimetry was performed in a nitrogen atmosphere using 1 to 4 mg of sample. The temperature scanning speed was set to 10 to 15 ° C./min for both the temperature raising and lowering processes. The melting point was measured using a trace melting point measuring device “BY-2” manufactured by Yazawa Kagaku. Polarization microscope observation was performed using a liquid crystal sample sandwiched between rubbed alignment substrates and a well-cleaned glass substrate.
  • the substrate is well-rubbed to allow the liquid crystal to become familiar with the glass, and then cooled again.
  • the transition to an isotropic liquid cooling was started and the temperature lowering process was observed.
  • the state of the liquid crystal phase optical structure was observed while keeping the temperature constant as required.
  • Step 1 Synthesis of 4,9-diphenyldiamantane (Compound 2)
  • a 300 ml three-necked eggplant flask was charged with diamantane (compound 1) (3.10 g, 16.48 mmol, 1.0 eq.), Aluminum chloride (207.1 mg, 1.55 mmol, 0.1 eq.), And a spinner.
  • a balloon, a saturated sodium bicarbonate aqueous solution trap were attached, and the system was purged with nitrogen.
  • the system was cooled to 0 ° C., benzene (35.5 ml) was added with a syringe and stirred.
  • Step 2 Synthesis of 4,9-bis (4-iodophenyl) diamantane (Compound 3)
  • 4,9-diphenyldiamantane compound 2.14 g, 6.29 mmol, 1.0 eq.
  • Iodine 1.15 g, 7.15 mmol
  • bis (trifluoroacetoxy) Iodobenzene 5.808 g, 13.0 mmol, 2.1 eq.
  • a spinner was added, and chloroform (42 ml) was added. The mixture was stirred at room temperature for 30 minutes.
  • Step 3 Synthesis of 4,9-bis (4-methoxyphenyl) diamantane (compound (4-1))
  • a 100 ml two-necked eggplant flask was charged with 4,9-bis (4-iodophenyl) diamantane (compound 3) (198.9 mg, 0.336 mmol) and a spinner, and the system was purged with nitrogen.
  • DMF (2 ml) were added and refluxed.
  • LRMS 457 ((M + 1) + , 60), 456 ((M + , 100), 414 ((M-C 3 H 6 ) + , 12), 372 ((M-C 6 H 12 ) + , 25) , 186 ((M-C 12 H 22 O 2 ) + , 18).
  • Example 4 [Synthesis of 4,9-bis (4-butyloxyphenyl) diamantane to 4,9-bis (4-decyloxyphenyl) diamantane (compounds (4-4) to (4-8))]
  • Example 4 [Synthesis of 4,9-bis (4-butyloxyphenyl) diamantane (compound (4-4))] Except for using 1-butanol, needle-like crystals of 4,9-bis (4-butyloxyphenyl) diamantane (compound (4-4)) were obtained in the same manner as in Example 3.
  • LRMS 513 ((M + 1) + , 62), 512 ((M + , 100), 442 ((M ⁇ C 5 H 10 ) + , 14), 372 ((M ⁇ C 10 H 20 ) + , 36) , 186 ((M—C 22 H 30 O 2 ) + , 13).
  • LRMS 542 ((M + 1) + , 62), 541 ((M + , 100), 456 ((M ⁇ C 6 H 12 ) + , 14), 372 ((M ⁇ C 12 H 24 ) + , 36) , 186 ((M-C 24 H 34 O 2 ) + , 10).
  • Example 7 [Synthesis of 4,9-bis (4-octyloxyphenyl) diamantane (compound (4-7))]
  • White needle crystals of 4,9-bis (4-octyloxyphenyl) diamantane (compound (4-7)) were obtained in the same manner as in Example 3 except that 1-octanol was used. Yield: 104.4 mg (0.175 mmol) Yield: 50.8% (based on compound 3)
  • LRMS 598 ((M + 1) + , 73), 597 ((M + , 100), 484 ((M ⁇ C 8 H 8 ) + , 14), 372 ((M ⁇ C 16 H 16 ) + , 33) , 186 ((M-C 28 H 42 O 2 ) + , 7.5).
  • LRMS 655 ((M + 2) + , 46), 654 ((M + 1) + , 62), 653 ((M + , 100), 513 ((M ⁇ C 10 H 20 ) + , 19), 372 ((M -C 10 H 20) +, 40 ).
  • Example 9 [Synthesis of 4,9-bis ⁇ 4- (1-heptynyl) phenyl ⁇ diamantane (Compound 5)]
  • 4,9-bis (4-iodophenyl) diamantane (compound 3) (399.9 mg, 0.675 mmol, 1.0 eq.)
  • a spinner was added, a Y-tube, a reflux tube, and a balloon were attached, and the system was purged with nitrogen.
  • the solution was cooled to room temperature, 0.5 M aqueous ammonium chloride solution and chloroform were added, the aqueous layer was extracted three times with chloroform, and the collected organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the desiccant was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by flash column chromatography (developing solvent: 15% benzene / hexane) to obtain a white powder (251.2 mg).
  • LRMS 536 (M + , 100), 450 ((M ⁇ C 6 H 6 ) + , 37), 361 ((M ⁇ C 13 H 19 ) + , 12), 183 ((M ⁇ C 26 H 41 ) + , 15).
  • ruthenium dioxide monohydrate (0.6 mg, 0.0045 mmol, 0.04 eq.) was added and stirred for 45 minutes.
  • the suspension after the reaction was transferred to a 100 ml separatory funnel, and the aqueous phase was extracted twice with dichloromethane.
  • the precipitate contained in the collected organic layer was filtered off, and the filtrate was washed with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the desiccant was filtered off and the solvent was distilled off under reduced pressure to obtain a pale yellow powder of Compound 7.
  • LRMS 568 ((M + , 8.1), 498 ((M ⁇ C 5 H 10 ) + , 25), 481 ((M ⁇ C 5 H 11 O) + , 19), 427 ((M ⁇ C 10 H 21 ) + , 100), 411 ((M-C 10 H 21 O) + , 9).
  • the reaction suspension was stirred for 3 hours while gradually returning from 0 ° C. to room temperature, and then 8.0 ml of THF and 3.5 ml of pyridine were added by a syringe and gently refluxed for 5 hours. After leaving the system to room temperature, water was added to quench the reaction, and the solvent was distilled off under reduced pressure. Chloroform was added thereto, washed with a saturated aqueous sodium carbonate solution, water and saturated brine in that order, and dried over anhydrous sodium sulfate.
  • Table 1 shows the phase transition temperatures of the compounds obtained in Examples 1 to 12.
  • Cry represents a crystalline phase
  • Sm represents a smectic phase
  • Nm represents a nematic phase
  • Is represents an isotropic phase. * Indicates that each compound has its phase.
  • the arrow “ ⁇ ” indicates the transition from the left phase of the arrow to the right phase
  • the arrow “ ⁇ ” indicates the transition from the right phase of the arrow to the left phase
  • the numerical value indicates the transition temperature ( ° C).
  • the smectic phase there are those having a plurality of smectic phases, but for the temperature rising process, the transition temperature from the crystal phase to the smectic phase, and the transition temperature from the smectic phase to the nematic phase or isotropic phase, In the temperature lowering process, the transition temperature from the isotropic phase or nematic phase to the smectic phase, and the transition temperature from the smectic phase to the crystal phase are shown. Some of them also show a glass phase.
  • the alkyl group has 2 or more carbon atoms (compound (4-2) to compound (4-8))
  • a smectic phase appears and the smectic property increases with increasing carbon number. I understand. This is presumably because the van der Waals force of the alkyl chain increased with the increase in the number of carbon atoms, and the interaction between molecules was strengthened.
  • the compound represented by the general formula (Vb) shows only a smectic phase
  • the compound represented by the general formula (Vc) shows only a nematic phase
  • the compounds 5 and 11 represented by the general formulas (Va) and (Vd) are It can be seen that each exhibits both a smectic phase and a nematic phase.
  • FIG. 1 shows an optical structure of the compound 5: 4,9-bis ⁇ 4- (1-heptynyl) phenyl ⁇ diamantane obtained in Example 9 in the temperature rising and cooling process observed with a polarizing microscope.
  • FIGS. 1B, 1 C, and 1 D As the temperature is increased from the crystal phase (FIG. 1A), 185 ° C. Melting started in the vicinity, and a complicated optical structure as shown in FIG. 1B was observed.
  • the fluidity increased at around 210 ° C., and a fan-like structure characterizing the smectic phase as shown in FIG. 1C partially appeared. It changed to homeotropic alignment as shown in FIG.
  • the temperature at this time was defined as a nematic phase / isotropic phase transition temperature.
  • (4) Temperature drop process (244.2 ° C.-100.5 ° C.) See FIGS. 1 (g), (i) and (j)
  • a short rod-like structure begins to appear at 244.2 ° C.
  • the fan-like structure as shown in FIG. 1 (g) was changed, and the fan-like structure shown in FIG. 1 (g) was changed to a mosaic structure as shown in FIG.
  • a fan-like structure with unclear boundaries as shown in FIG. 1 (i) was observed. It seems that the unstable fan-like structure is in the middle of changing to a mosaic.
  • a polygonal structure as shown in FIG. 1 (j) was observed at around 135 ° C., and this structure was transformed into a crystalline phase (FIG. 1 (k)).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

【課題】優れた液晶性、特に高い相転移温度、を有する液晶性化合物を提供する。 【解決手段】一般式(I)で表わされるジアマンタン化合物。   (一般式(I)において、環A及び環Bは、それぞれ、6員環の飽和又は不飽和の、炭素環又はヘテロ環である。これらの環は、置換基を有していてもよく、これらの置換基は、互いに結合して環を形成していてもよい。R及びRは、それぞれ、炭素数1~18の炭化水素基である。R及びRで表わされる炭化水素基は、その炭素原子の一部がヘテロ原子又はヘテロ原子を有する基で置換されていてもよく、その水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。)

Description

新規なジアマンタン化合物、液晶性化合物及び液晶性組成物
 本発明は、新規なジアマンタン化合物及びこれからなる液晶性化合物並びにこの液晶性化合物を含有してなる液晶性組成物に関する。
 液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ等に用いられている。液晶表示素子は、液晶物質が持つ光学異方性及び誘電異方性を利用したものである。
 液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型、FLC(強誘電性液晶)等があり、また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、更に単純マトリックス方式、最近ではアクティブマトリックス方式が実用化されている。
 これらの表示方式や駆動方式に応じて、液晶材料としても種々の特性が要求されており、このためこれまでにも非常に多くの液晶性化合物が合成されている。
 液晶性化合物に要求される性質は、その表示方式によって若干異なるが、液晶温度範囲が広いこと、水分、空気、光、熱、電界等に対して安定であること等は、いずれの表示方式においても共通して要求される。
 現在のところ単一の液晶性化合物でそのような条件を満たす物質はなく、数種の液晶性化合物を混合し、又は非液晶性化合物を更に混合して実用に供している。複数の化合物を混合すると、必然的にその融点等が低下する。従って、混合によって相転移温度が低下しても、実用的な相転移温度を維持することができるように、単独で高い相転移温度を有する液晶性化合物が求められている。
 液晶には、2大別して、サーモトロピック液晶とリオトロピック液晶とがあるが、サーモトロピック液晶のうち、棒状分子からなるカラミティック液晶がエレクトロニクス技術と融合して盛んに研究が進められている。
 カラミティック液晶相にはネマチック液晶相、スメクチック液晶相及びコレステリック液晶相がある。コレステリック液晶相は、ネマチック液晶が不斉要素をもった場合、又はネマチック液晶に不斉な添加剤(カイラルドーパントという)を加えた場合に出現する相である。一般に液晶性を示す物質は、温度が上昇するにつれて、結晶又は固体からスメクチック相、そしてネマチック相へと相変化をし、更に温度が上昇すると等方性液体となる。ネマチック液晶相では、分子はある程度揃った配向を有しているが、分子の位置に関しては規則性がない。ネマチック液晶の各々の分子は、その長軸方向に自由に動くことができるので、粘性が小さいという利点を有している。また、ネマチック液晶相の自由エネルギーは、分子の配向方向に拘らず同じであるので、電界や配向処理等により分子の向きを一定方向に変えることができるため、液晶ディスプレー等に広く応用されている。
 このことから、液晶がこのネマチック相を有する温度範囲の下限、即ち、結晶や固体、或いはスメクチック相からネマチック相へ転移する温度が低いことが好ましく、また、ネマチック相から等方性液体に変わる温度(ネマチックアイソトロピック転移温度:TNI。一般に、「透明点」といわれる。)(以下、N-I転移温度)が高く、ネマチック相を示す温度範囲が広いことが好ましい。
 これまで、高い透明点を有する液晶性化合物がいくつか報告されている。特許文献1には、トランス-1-シラ-1,4-シクロへキシレン基又はトランス-4-シラ-1,4-シクロへキシレン基と、トランス-1,4-シクロへキシレン基とが連結し、これがカルボニルオキシ基を介してベンゼン環と結合した骨格を有する化合物が記載されており、50℃~171℃のN-I転移温度が報告されている。
 また、特許文献2には、1-(4-メチルベンジリデン)-2-[4-(トランス-4-プロピル)シクロヘキシルベンジリデン]ヒドラジン等の3環性アジンが、227℃~265℃のN-I転移温度を有することが示され、これらをN-I転移温度116.7℃のホスト液晶に混合することにより、N-I転移温度を144℃~157℃に上昇させたことが報告されている。
 更に、非特許文献1には、1-(4-シアノフェニル)-4-アルキル置換ビシクロ[2.2.2.]オクタンが90~100℃のN-I転移温度を示すことが報告されている。
特開平8-119975号公報 特開平11-71338号公報 G.W.Grayら、J.Chem.Soc.Perkin II、4765(1981)
 本発明者らは、これまで、ダイヤモンド化合物について鋭意研究を進めてきた。ダイヤモンド化合物は、ダイヤモンド骨格を有するかご状の炭化水素である。ダイヤモンド化合物は、原油中に存在することが知られている。ダイヤモンド化合物の最も小さいものはアダマンタンであり、アダマンタンからアダマンタンの融着2量体であるジアマンタン、融着3量体であるトリアマンタン及び融着4量体であるテトラマンタンの1つが合成されている。
 ダイヤモンド化合物は、多くの有用な特性を有しており、その代表的なものとして、優れた剛直性、耐久性、熱安定性;多様な三次元幾何構造;キラリティ;電子に対する負の親和性;化学的不活性;等を挙げることができる。
 ダイヤモンド化合物やその誘導体は、上記の特性から、ナノスケールの電子機械システム、薬品設計、電界放射体等への応用等、広範な分野で研究が進められている。アダマンタンやその誘導体は、既に薬品、ゼオライト触媒、高耐熱性ポリマーの合成等に利用されている。
 このような状況下で、ジアマンタン以上の高次ダイヤモンド化合物についても、その特性を活用できる用途を見出すことは有意義である。
 上述のように、高温で液晶性を示す化合物を得るために、分子に様々な構造を導入することが試みられている。しかしながら、十分な成果が挙げられているとはいい難い。
 従って、本発明の課題は、優れた液晶性、特に高い相転移温度を有する液晶性化合物を提供することにある。
 本発明者らは、ジアマンタンの対称構造に着目し、これに官能基を導入することにより、液晶性を示す可能性があること、そして、その剛直な骨格により熱安定性に優れた液晶相が形成される可能性があることを着想し、その合成及び評価を精力的に進めた結果、予想よりも遥かに優れた液晶性が発揮されることを見出し、この知見に基づいて、本発明を完成するに至った。
 かくして本発明によれば一般式(I)で表わされるジアマンタン化合物が提供される。
Figure JPOXMLDOC01-appb-C000006
(一般式(I)において、環A及び環Bは、それぞれ、6員環の飽和又は不飽和の、炭素環又はヘテロ環である。これらの環は、置換基として、置換基を有していてもよい炭化水素基、ハロゲン原子又はヘテロ原子を有する基を有していてもよく、これらの置換基は、互いに結合して環を形成していてもよい。R及びRは、それぞれ、直鎖状、分岐状、芳香環状又は脂環状の炭素数1~18の炭化水素基である。R及びRで表わされる炭化水素基は、その炭素原子の一部がヘテロ原子又はヘテロ原子を有する基で置換されていてもよく、その水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。)
 本発明のジアマンタン化合物は、一般式(II)で表わされるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000007
(一般式(II)において、R及びRは、一般式(I)におけるそれらと同じである。L及びLは、それぞれ、水素原子、置換基を有していてもよい炭化水素基、ハロゲン原子又はヘテロ原子を有する基である。m及びnは、それぞれ、1~4の整数である。)
 一般式(II)で表されるジアマンタン化合物は、一般式(III)で表わされるジアマンタン化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(一般式(III)において、R及びRは、それぞれ、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数1~12のアルキニル基、炭素数1~12のアルコキシカルボニル基又は炭素数1~12のアルキロイルオキシ基であり、これらの基の水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。)
 本発明において、一般式(III)で表わされるジアマンタン化合物のうち、一般式(IV)で表わされるジアマンタン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
(一般式(IV)において、R及びRは、それぞれ、置換基を有しない炭素数1~10のアルキル基である。)
 また、本発明において、一般式(III)で表わされるジアマンタン化合物のうち、一般式(V)で表わされるジアマンタン化合物も、また、好ましい。
Figure JPOXMLDOC01-appb-C000010
(一般式(V)において、R及びRは、それぞれ、置換基を有しないn-ペンチル基であり、X及びXは、それぞれ、-CHCH-、-C≡C-又は-COO-である。)
 また、本発明によれば、上記一般式(I)で表わされるジアマンタン化合物からなる液晶性化合物が提供される。
 また、本発明によれば、上記液晶性化合物を含有してなる液晶性組成物が提供される。
 更に本発明によれば、上記液晶性組成物を含有してなる液晶表示素子が提供される。
 本発明のジアマンタン化合物は、容易に合成できる新規な化合物であって、熱安定性に優れ、従来の液晶材料に比べて、遥かに高温で液晶性を示す。従って、単独で、また、他の液晶性化合物とからなる液晶性組成物として、車載用ディスプレー等、高温度でも使用可能な液晶材料としての用途が期待できる。
偏光顕微鏡によって昇温及び降温過程において観察された4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタンの光学組織である。  (a)  83.9℃ (昇温過程) (ラビング基板)  (b) 186.3℃ (昇温過程) (ラビング基板)  (c) 218.9℃ (昇温過程) (ラビング基板)  (d) 238.0℃ (昇温過程) (ラビング基板)  (e) 292.4℃ (昇温過程) (ラビング基板)  (f) 255.6℃ (降温過程) (ラビング基板)  (g) 233.8℃ (降温過程) (ラビング基板)  (h) 195.9℃ (降温過程) (ラビング基板)  (i) 195.9℃ (降温過程) (ラビング基板)  (j) 134.3℃ (降温過程) (ラビング基板)  (k)  24.2℃ (降温過程) (ラビング基板)
 本発明のジアマンタン化合物は、一般式(I)で表わされる。
Figure JPOXMLDOC01-appb-C000011
 一般式(I)において、環A及び環Bは、それぞれ、6員環の飽和又は不飽和の、炭素環又はヘテロ環である。これらの環は、置換基として、置換基を有していてもよい炭化水素基、ハロゲン原子又はヘテロ原子を有する基を有していてもよく、これらの置換基は、互いに結合して環を形成していてもよい。
 R及びRは、それぞれ、直鎖状、分岐状、芳香環状又は脂環状の炭素数1~18の炭化水素基である。R及びRで表わされる炭化水素基は、その炭素原子の一部がヘテロ原子又はヘテロ原子を有する基で置換されていてもよく、その水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。
 なお、本発明において、ヘテロ原子は、周期表15族及び16族に属する原子のほか、周期表14族に属する原子をも包含する概念である。
 ヘテロ原子の具体例としては、周期表15族に属する窒素原子、燐原子及び砒素原子、16族に属する酸素原子、硫黄原子及びセレン原子、並びに14族に属する珪素原子及びゲルマニウム原子を挙げることができる。
 ヘテロ原子を有する基の具体例としては、ヒドロキシ基、カルボニル基、ホルミル基、アシル基、カルボニルオキシ基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、アシロキシ基等の酸素原子を有する基;アミノ基、ニトリル基、アミド基、イミド基、窒素原子を含有する複素環基(ピリジル基等)等の窒素原子を有する基;チオール基、スルホニル基、スルホン酸基等の硫黄原子を有する基;シリル基、シラノール基、シロキシ基等の珪素原子を有する基;等を挙げることができる。
 ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及び沃素原子を挙げることができる。
 本発明の一般式(I)で表わされるジアマンタン化合物は、一般式(II)で表わされるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(II)において、R及びRは、一般式(I)におけるそれらと同じである。
 L及びLは、それぞれ、水素原子、置換基を有していてもよい炭化水素基、ハロゲン原子又はヘテロ原子を有する基である。L又はLが炭化水素基である場合、それが有していてもよい置換基は、ハロゲン原子又はヘテロ原子を有する基である。
 ハロゲン原子及びヘテロ原子を有する基の具体例は、上述のとおりである。
 m及びnは、それぞれ、1~4の整数である。
 本発明の一般式(II)で表わされるジアマンタン化合物は、一般式(III)で表わされるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(III)において、R及びRは、それぞれ、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数1~12のアルキニル基、炭素数1~12のアルコキシカルボニル基又は炭素数1~12のアルキロイルオキシ基、炭素数6~18のアリール基又は炭素数6~18のアリーロキシ基であり、これらの基の水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。
 炭素数1~12のアルキル基は、直鎖状、分岐状及び脂環状のいずれであってもよい。特に、直鎖状のアルキル基の場合は、分子が真直ぐに伸びた剛直構造をとると、隣接分子との相互作用が増すため、優れた液晶性を示す。
 炭素数1~12のアルコキシ基は、上記アルキル基を有するアルコキシ基である。
 炭素数1~12のアルキニル基は、特に限定されない。炭素-炭素三重結合の位置は、特に限定されないが、ベンゼン環にアルキニル基が直接結合しているものは、合成が容易であり、分子の剛直性の観点から、好ましい。
 炭素数1~12のアルコキシカルボニル基は、特に限定されない。
 また、炭素数1~12のアルキロイルオキシ基も、特に限定されない。
 また、炭素数6~18のアリール基及び炭素数6~18のアリーロキシ基も、特に限定されない。
 また、R又はRが分岐を有し、分岐個所が不斉炭素であると、その化合物は、コレステリック液晶又は強誘電性液晶になる可能性がある。
 上記一般式(III)で表わされるジアマンタン化合物のうち、特に好ましいものの1つとして、一般式(IV)で表わされるジアマンタン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 一般式(IV)において、R及びRは、それぞれ、置換基を有しない炭素数1~10のアルキル基である。
 R及びRで示されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、イソプロピル基、イソブチル基、イソアミル基、イソデシル基、2-エチルヘキシル基等を挙げることができる。
 R及びRは、同一であっても異なっていてもよい。
 一般式(IV)で表わされるジアマンタン化合物:4,9-ビス(4-アルコキシフェニル)ジアマンタンは、式(S1a)(R及びRが、いずれも、メチル基又はエチル基の場合。)、又は式(S1b)(R及びRが、いずれも、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基又はn-デシル基の場合)に示す合成ルートによって得ることができる。式中、Rは、アルキル基である。
〔4,9-ビス(4-アルコキシフェニル)ジアマンタン〕の合成(その1)
 ジアマンタン1とベンゼンとの反応により、化合物2を得る。ビス(トリフルオロアセトキシ)ヨードベンゼンを用いて化合物2をヨウ素化し、化合物3を得る。この反応では、嵩高いジアマンタンの立体障害により、ベンゼン環4位で選択的にヨウ素化が進行する。この化合物3の合成ステップの詳細は、米国特許第5347063号明細書に開示されている。
 次いで、メタノール-ベンゼン-ジメチルフォルムアミド(以下、「DMF」)の混合溶媒中、ヨウ化銅(I)を触媒として、化合物3をメタノリシスすることによって、R=メチル基である化合物4:4,9-ビス(4-メトキシフェニル)ジアマンタンを得る。
 同様に、メタノールに代えてエタノールを用いることにより、R=エチル基である化合物4:4,9-ビス(4-エトキシフェニル)ジアマンタンを得る。
Figure JPOXMLDOC01-appb-C000015
〔4,9-ビス(4-アルコキシフェニル)ジアマンタン〕の合成(その2)
 化合物3とn-プロパノールとの、ヨウ化銅(I)、1,10-フェナントロリン及び炭酸セシウムを用いたカップリング反応により、R=n-プロピル基である化合物4:4,9-ビス(4-プロピルオキシフェニル)ジアマンタンを得る。
 n-プロパノールに代えて、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-オクタノール又はn-デカノールを用いて、それぞれ対応する化合物4を得る。
Figure JPOXMLDOC01-appb-C000016
 一般式(III)で表わされるジアマンタン化合物のうち、特に好ましいものの他の例として、一般式(V)で表わされるジアマンタン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 一般式(V)において、R及びRは、それぞれ、置換基を有しないn-ペンチル基であり、X及びXは、それぞれ、-CHCH-、-C≡C-又は-COO-である。)
 ここで、R及びR並びにX及びXは、それぞれ、同一であっても異なっていてもよい。
 このようなジアマンタン化合物の具体例として、4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタン:一般式(V)において、X及びXが-C≡C-であり、R及びRが置換基を有しないn-ペンチル基であるジアマンタン化合物(Va)、4,9-ビス(4-ヘプチルフェニル)ジアマンタン:一般式(V)において、X及びXが-CHCH-であり、R及びRが置換基を有しないn-ペンチル基であるジアマンタン化合物(Vb)、4,9-ビス(4-ペンチルオキシカルボニルフェニル)ジアマンタン:一般式(V)において、X及びXが-COO-であり(但し、カルボニル基はフェニル基に結合している。)、R及びRが置換基を有しないn-ペンチル基であるジアマンタン化合物(Vc)、及び4,9-ビス(4-ヘキサノイルオキシフェニル)ジアマンタン:一般式(V)において、X及びXが-COO-であり(但し、カルボニル基はn-ペンチル基に結合している。)、R及びRが置換基を有しないn-ペンチル基であるジアマンタン化合物(Vd)を挙げることができる。
 これらのジアマンタン化合物は、それぞれ、式(S2)~(S5)に示す合成ルートによって得ることができる。
〔化合物(Va):4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタンの合成〕
Figure JPOXMLDOC01-appb-C000018
〔化合物(Vb):4,9-ビス(4-ヘプチルフェニル)ジアマンタンの合成〕
Figure JPOXMLDOC01-appb-C000019
〔化合物(Vc):4,9-ビス(4-ペンチルオキシカルボニルフェニル)ジアマンタンの合成〕
Figure JPOXMLDOC01-appb-C000020
〔化合物(Vd):4,9-ビス(4-ヘキサノイルオキシフェニル)ジアマンタンの合成〕
Figure JPOXMLDOC01-appb-C000021
 本発明のジアマンタン化合物は、通常の有機化合物の合成原料としても勿論使用できるが、液晶性化合物として優れている。
 液晶性化合物としては、特に、一般式(IV)及び(V)で表わされるジアマンタン化合物が有用である。
 本発明のジアマンタン化合物からなる液晶性化合物は、他の液晶性化合物と混合して、液晶性組成物とすることができる。
 液晶性組成物における本発明のジアマンタン化合物からなる液晶性化合物の比率は、特に限定されず、併用される他の液晶性化合物の特性、組成物の粘度、動作温度、用途等を考慮して、適宜、選定することができる。
 また、本発明の液晶性組成物は、誘電異方性や粘度等の液晶相の性質を変化させるための添加剤、二色性色素、或いはコレステリック相を誘起するための添加剤(カイラルドーパント)等を含んでいてもよい。
 本発明の液晶性組成物を所望形状の電極を有する透明基板間に封入して液晶表示素子を得ることができる。液晶表示素子は、必要に応じて、各種アンダーコート、配向制御用オーバーコート、偏光板、フィルター、反射層等を有してもよい。また、多層セルとしたり、他の表示素子と組み合わせたり、半導体基板を用いたり、或いは光源を用いたりすることもできる。
 液晶表示素子の駆動方法としては、ツイステッドネマチック(TN)方式、スーパーツイステッドネマチック(STN)方式、ゲスト-ホスト(GH)方式、ダイナミックスキャタリング(DS)方式、電界制御複屈折(ECB)方式、バーティカルアラインメント(VA)方式、インプレーンスイッチング(IPS)方式等、液晶表示素子の業界で公知の方式を採用することができる。
 以下に合成例及び実施例を挙げて本発明を更に具体的に説明する。
 化合物の構造は、プロトン核磁気共鳴スペクトル(H NMR)、質量スペクトル(MS)及び赤外吸収スペクトル(IR)により確認した。
 プロトン核磁気共鳴スペクトルの測定条件は、Bruker社製、「DRX300」を用いて、300MHzで、CDCl又はCDC(=O)CD中、TMSを標準として測定した。シグナルの位置は、δ/ppmで示す。
 赤外吸収スペクトルは、JASCO社製、「FT/IR-4100」を用い、ダイヤモンドプリズムを用いて、ニート試料について、全反射測定法で測定した。吸収の位置は、波数(cm-1)で示す。
 低分解能質量スペクトルは、日本電子社製、「JMS-AX-600」を用いて、EIイオン化法で測定した。強度を相対強度で示す。
 相転移温度の測定は、温度調節ステージ(METTLER社製、「FP82HT」)を備えた偏光顕微鏡(OLYMPUS社製、「PXP50」)と示差走査熱量計(DSC)(セイコーインスツルメンツ社製、「DSC6100」)を併用して行った。
 示差熱量測定は1~4mgの試料を用い、窒素雰囲気下で行った。温度走査速度は、昇温、降温過程ともに10~15℃/minとした。
 融点は、矢沢科学社製、微量融点測定装置「BY-2」を用いて測定した。
 偏光顕微鏡観察は、液晶試料をラビング配向処理された基板で挟んだものと、よく洗浄したガラス基板で挟んだもので行った。結晶状の試料をいったん等方相(分解するものに関しては流動性のある液晶相)温度まで昇温し、基板をよくすり合わせて液晶をガラスになじませてから再び冷却し、結晶相(一部はガラス相)から昇温過程の観察を行い、等方性液体に転移したところから、冷却を開始し、降温過程の観察を行った。また必要に応じて、温度を一定に保ち、液晶相光学組織の変化の様子も観察した。
(実施例1)
〔4,9-ビス(4-メトキシフェニル)ジアマンタン(化合物(4-1))の合成〕
 〔工程1:4,9-ジフェニルジアマンタン(化合物2)の合成〕
Figure JPOXMLDOC01-appb-C000022
 300ml三つ口ナスフラスコにジアマンタン(化合物1)(3.10g,16.48mmol,1.0eq.)、塩化アルミニウム(207.1mg,1.55mmol,0.1eq.)、スピナーを入れ、還流管、風船、飽和炭酸水素ナトリウム水溶液のトラップを取り付け、系を窒素置換した。系内を0℃に冷却し、ベンゼン(35.5ml)をシリンジで加え攪拌した。これに臭化t-ブチル(5.4ml,48.1mmol,2.9eq.)を加えた後、室温に戻しながら1時間攪拌した。0.5mol/l塩酸水溶液で反応をクエンチした後、生成した白色粉末を濾別し、4,9-ジフェニルジアマンタン(化合物2)の粉末結晶(4.01g)を得た。一方、濾液は水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、ヘキサンを加え、沈殿してきた白色固体を濾別し、これをフラッシュカラムクロマトグラフィー(展開溶媒:20%クロロホルム/ヘキサン→40%クロロホルム/ヘキサン)で精製し、4,9-ジフェニルジアマンタン(化合物2)の粉末結晶(0.29g)を得た。
 収量:4.30g(12.6mmol)
 収率:76.6%(ジアマンタンに対して)
 H NMR:1.98(18H,s),7.19(2H,tt,J/Hz=7.2,1.6),7.34(4H,t,J/Hz=7.6),7.42(4H,dt,J/Hz=8.4,1.2)
 IR:3079(w),3052(w),3014(w),2914(s),2888(s),2849(s),1600(w),1492(m),1461(w),1441(w),1378(w),1350(w),1316(w),1271(w),1248(w),1157(w),1067(w),1049(w),1031(w),1001(w),987(w),966(w),906(w),761(s),699(s),682(w),530(m).
 LRMS:342((M+2),4.1),341((M+1),28.6),340(M,100),263((M-C,3.6).
 融点:264.5~265.0℃
 〔工程2:4,9-ビス(4-ヨードフェニル)ジアマンタン(化合物3)の合成〕
Figure JPOXMLDOC01-appb-C000023
 100ml二つ口ナスフラスコに4,9-ジフェニルジアマンタン(化合物2)(2.14g,6.29mmol,1.0eq.)、ヨウ素(1.815g,7.15mmol)、ビス(トリフルオロアセトキシ)ヨードベンゼン(5.808g,13.0mmol,2.1eq.)、スピナーを入れ、クロロホルム(42ml)を加えた。この混合物を室温で30分攪拌した。混合物を蒸留水200mlの入った500mlビーカーに移し攪拌した。混合物の紫色が消失するまで亜ジチオン酸を加えた後、水層をクロロホルムで3回抽出し、集めた有機層を水、飽和食塩水で洗い、溶媒を減圧留去した後、ヘキサンを加えた。このとき生じる白色粉末を濾別し、4,9-ビス(4-ヨードフェニル)ジアマンタン(化合物3)を得た。
 収量:2.92g(4.93mmol)
 収率:74.2%(化合物2に対して)
 H NMR:1.92(12H,bs),1.96(4H,bs),1.97(4H,bs),7.15(4H,d(AA’BB’),J/Hz=8.7),7.64(4H,d(AA’BB’),J/Hz=8.7)
 IR:2911(s),2874(s),2849(s),1488(m),1461(w),1437(w),1391(m),1243(w),1108(w),1073(m),1048(m),1003(m),984(m),893(w),821(s),796(m),760(w),716(w),699(w),526(s).
 LRMS:593((M+1),59.1),592(M,100),466((M-I),54.2),389((M-CI),7.4).
 融点:>360℃(融点測定装置の限界を超えるため測定不可)
 〔工程3:4,9-ビス(4-メトキシフェニル)ジアマンタン(化合物(4-1))の合成〕
Figure JPOXMLDOC01-appb-C000024
 100ml二つ口ナスフラスコに4,9-ビス(4-ヨードフェニル)ジアマンタン(化合物3)(198.9mg,0.336mmol)、スピナーを入れ、系内を窒素置換した。ベンゼン(8.0ml)、4.9mol/lナトリウムメトキシド・メタノール溶液(12.0ml,58.8mmol,175eq.)、DMF(2ml)を加え、還流した。系内が還流し始めたところで、ヨウ化銅(I)(31.2mg,0.164mmol,0.43eq.)を加え、8.5時間還流した。系内が室温になるまで放置し、水、酢酸エチルを加え、これを酢酸エチル/ベンゼン=9:1の混合溶媒で3回抽出し、集めた有機層を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:100%クロロホルム→50%クロロホルム/酢酸エチル)で精製し、得られた白色粉末(53.1mg)を、クロロホルム中から再結晶して4,9-ビス(4-メトキシフェニル)ジアマンタン(化合物(4-1))の白色針状結晶を得た。
 収量:42.9mg(0.107mmol)
 収率:31.9%(化合物3に対して)
 H NMR:1.93(18H,br.s),3.80(6H,s),6.88(4H,d(AA’BB’),J/Hz=8.9),7.33(4H,d(AA’BB’),J/Hz=8.2)
 IR:3031(w),3004(w),2953(w),2911(s),2875(s),2851(m),1606(m),1509(s),1463(m),1437(m),1301(m),1250(s),1181(s),1115(w),1076(w),1047(w),1033(m),984(s),825(s),795(m),671(w),653(w),582(m),540(s).
 LRMS:401((M+1),53),400(M,100).
(実施例2)
〔4,9-ビス(4-エトキシフェニル)ジアマンタン(化合物(4-2))の合成〕
Figure JPOXMLDOC01-appb-C000025
 50ml二つ口ナスフラスコに4,9-ビス(4-ヨードフェニル)ジアマンタン(化合物3)(200.9mg,0.339mmol,1.0eq.)、水素化ナトリウム(2.30g,57.5mmol,168eq.)、スピナーを入れ、系内を窒素置換した。これにエタノール(17ml)を加え激しく攪拌した後、ベンゼン(5.0ml)、DMF(2.0ml)を加え、還流した。系内が還流し始めたところで、ヨウ化銅(I)(31.7mg,0.166mmol,0.49eq.)を加え、20.5時間還流した。系内が室温になるまで放置し、3mol/l塩酸水溶液を加え、これをクロロホルムで3回抽出し、集めた有機層を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:80%クロロホルム/ヘキサン)で精製し、白色粉末21.9mgを得た。この粉末をクロロホルムから再結晶し、4,9-ビス(4-エトキシフェニル)ジアマンタン(化合物(4-2))の白色針状結晶を得た。
 収量:15.3mg(0.0357mmol)
 収率:10.4%(化合物3に対して)
 H NMR:1.41(6H,t,J/Hz=7.0),4.03(4H,q,J/Hz=7.1),1.93(18H,br.s),4.03(4H,q,J/Hz=7.1),6.87(4H,d(AA’BB’),J/Hz=9.0),7.32(4H,d(AA’BB’),J/Hz=9.0)
 IR:3081(w),3031(w),2952(m),2914(m),2882(m),2848(m),1509(m),1458(m),1439(m),1404(w),1349(w),1302(w),1286(w),1269(w),1253(w),1114(w),1075(m),1049(m),1017(w),985(m),965(w),830(s),798(m),727(w),551(s).
 LRMS:429((M+1),57),428(M,100),400((M-C,6),186((M-CO),9).
(実施例3)
〔4,9-ビス(4-プロピルオキシフェニル)ジアマンタン(化合物(4-3))の合成〕
Figure JPOXMLDOC01-appb-C000026
 30ml二つ口ナスフラスコに、4,9-ビス(4-ヨードフェニル)ジアマンタン(化合物3)(199.8mg,0.337mmol,1.0eq.)、ヨウ化銅(I)(29.1mg,0.153mmol,0.45eq.)、1,10フェナントロリン(無水)(24.3mg,0.135mmol),0.4eq.)、炭酸セシウム(449.1mg,1.38mmol,4.1eq.)、スピナーを入れた。これに、1-プロパノール(0.5ml,6.72mmol,19.9eq.)、トルエン(2.0ml)をシリンジで加え、混合物を激しく攪拌しながら38時間還流を行った。反応後の懸濁液を室温まで冷却し、クロロホルムを加え、クロロホルムに不溶の成分を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:30%クロロホルム/ヘキサン)で精製して白色粉末(98.5mg)を得た。この白色粉末をクロロホルム/ヘキサンの混合溶媒中から再結晶し4,9-ビス(4-プロピルオキシキシフェニル)ジアマンタン(化合物(4-3))の白色薄板状結晶を得た。
 収量:67.9mg(0.149mmol)
 収率:44.1%(化合物3に対して)
 H NMR:1.03(6H,t,J/Hz=7.4),1.80(4H,sextet,J/Hz=7.1),1.93(18H,br.s),3.91(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=9.0),7.32(4H,d(AA’BB’),J/Hz=9.0)
 IR:3033(w),2910(s),2870(s),1607(m),1510(s),1465(m),1439(w),1378(w),1299(m),1252(s),1179(s),1119(w),1074(w),1039(m),1012(w),974(w),826(m),795(m),753(w),618(m),540(m).
 LRMS:457((M+1),60),456((M,100),414((M-C,12),372((M-C12,25),186((M-C1222,18).
(実施例4~8)
〔4,9-ビス(4-ブチルオキシフェニル)ジアマンタン~4,9-ビス(4-デシルオキシフェニル)ジアマンタン(化合物(4-4)~(4-8))の合成〕
(実施例4)
〔4,9-ビス(4-ブチルオキシフェニル)ジアマンタン(化合物(4-4))の合成〕
 1-ブタノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-ブチルオキシフェニル)ジアマンタン(化合物(4-4))の針状結晶を得た。
 収量:105.8mg(0.218mmol)
 収率:64.0%(化合物3に対して)
 H NMR:0.97(6H,t,J/Hz=7.4),1.42-1.54(4H,m),1.71-1.81(4H,m),1.93(18H,br.s),3.95(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=8.9),7.32(4H,d(AA’BB’),J/Hz=8.9)
 IR:3033(w),2910(s),2871(s),1607(m),1465(s),1378(m),1299(w),1252(s),1179(m),1119(w),1074(m),1039(w),1012(m),974(m),826(m),795(m),757(w),618(w),540(m)
 LRMS:485((M+1),59),484((M,100),428((M-C,12),372((M-C,25),186((M-C2026,18).
(実施例5)
〔4,9-ビス(4-ペンチルオキシフェニル)ジアマンタン(化合物(4-5))の合成〕
 1-ペンタノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-ペンチルオキシフェニル)ジアマンタン(化合物(4-5))の針状結晶を得た。
 収量:129.1mg(0.199mmol)
 収率:61.2%(化合物3に対して)
 H NMR:0.93(6H,t,J/Hz=7.1),1.31-1.49(8H,m),1.77(4H,quintet,J/Hz=6.6),1.93(18H,br.s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=8.9),7.32(4H,d(AA’BB’),J/Hz=8.9)
 IR:3046(w),3030(w),2952(m),2931(s),2907(s),2885(s),2867(s),1607(m),1577(w),1510(s),1474(m),1440(w),1394(w),1377(w),1351(w),1299(w),1252(s),1239(s),1184(s),1119(w),1051(m),1028(m),984(w),835(m),798(w),729(w),620(m),542(m).
 LRMS:513((M+1),62),512((M,100),442((M-C10,14),372((M-C1020,36),186((M-C2230,13).
(実施例6)
〔4,9-ビス(4-ヘキシルオキシフェニル)ジアマンタン(化合物(4-6))の合成〕
 1-ヘキサノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-ヘキシルオキシフェニル)ジアマンタン(化合物(4-6))の白色針状結晶を得た。
 収量:99.3mg(0.184mmol)
 収率:65.5%(化合物3に対して)
 H NMR:0.90(6H,t,J/Hz=6.9),1.30-1.35(8H,m),1.41-1.47(4H,m),1.77(4H,quintet,J/Hz=6.8),1.93(18H,br.s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=8.9),7.32(4H,d(AA’BB’),J/Hz=8.9)
 IR:3033(w),2916(s),2879(s),2850(s),1607(m),1577(w),1509(s),1467(m),1393(w),1297(w),1250(s),1180(s),1118(w),1048(w),983(w),825(s),795(m),727(w),619(w),540(m).
 LRMS:542((M+1),62),541((M,100),456((M-C12,14),372((M-C1224,36),186((M-C2434,10).
(実施例7)
〔4,9-ビス(4-オクチルオキシフェニル)ジアマンタン(化合物(4-7))の合成〕
 1-オクタノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-オクチルオキシフェニル)ジアマンタン(化合物(4-7))の白色針状結晶を得た。
 収量:104.4mg(0.175mmol)
 収率:50.8%(化合物3に対して)
 H NMR:0.89(6H,t,J/Hz=7.4),1.29-1.48(20H,m),1.77(4H,quintet,J/Hz=6.4),1.93(18H,br. s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=9.0),7.31(4H,d(AA’BB’),J/Hz=9.0)
 IR:3041(w),2952(m),2918(s),2887(s),2848(s),1608(m),1577(w),1475(m),1439(w),1392(w),1306(m),1294(m),1251(s),1240(s),1181(s),1117(m),1047(s),1025(s),1014(m),1003(w),984(w),828(s),796(m),757(w),725(m),541(s).
 LRMS:598((M+1),73),597((M,100),484((M-C,14),372((M-C1616,33),186((M-C2842,7.5).
(実施例8)
〔4,9-ビス(4-デシルオキシフェニル)ジアマンタン(化合物(4-8))の合成〕
 1-デカノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-デシルオキシフェニル)ジアマンタン(化合物(4-8))の白色針状結晶を得た。
 収量:119.5mg(0.183mmol)
 収率:51.4%(化合物3に対して)
 H NMR:0.88(6H,t,J/Hz=6.0),1.27-1.48(28H,m),1.77(4H,quintet,J/Hz=6.8),1.93(18H,br.s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=9.0),7.31(4H,d(AA’BB’),J/Hz=9.0)
 IR:3057(w),2953(m),2919(s),2885(s),2870(s),2850(s),1611(m),1578(w),1510(s),1469(m),1439(w),1390(w),1301(m),1254(s),1236(s),1180(s),1114(w),1031(m),985(w),835(m),796(m),723(w),621(w),542(m).
 LRMS:655((M+2),46),654((M+1),62),653((M,100),513((M-C1020,19),372((M-C1020,40).
(比較例1)
〔1,3-ビス(4-ヘキシルオキシフェニル)アダマンタン(化合物4C)の合成〕
Figure JPOXMLDOC01-appb-C000027
 10mlナシフラスコに1,3-ビス(4-ヒドロキシフェニル)アダマンタン(化合物10C)(88.4mg,0.275mmol,1.0eq.)とスピナーを入れ、系内を窒素置換した。これにDMF(1.0ml)を加え氷浴で系内を0℃に冷却した。(*1)
 10ml二つ口ナスフラスコに水素化ナトリウム(29.6mg,0.721mmol,2.6eq.)、スピナーを入れ、系内を窒素置換した。これにDMF(2.5ml)を加え、氷浴にて系内を0℃にし、カヌーラで(*1)を滴下した(4drops/sec)。系内を0℃に保ったまま30分攪拌し、1-ブロモヘキサン(0.11ml,0.786mmol,2.8eq.)を加え室温に戻しながら12時間攪拌した後、油浴にて系内を50℃にし、3時間攪拌した。その後70℃で更に2時間攪拌した。系内が室温になるまで放置し、水を加え、これをクロロホルムで3回抽出し、集めた有機層を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:5%酢酸エチル/ヘキサン)で精製し、1,3-ビス(4-ヘキシルオキシフェニル)アダマンタン(化合物4C)の白色粉末を得た。
 収量:98.3mg(0.201mmol)
 収率:73.1%(化合物10Cに対して)
 H NMR:0.89(6H,t,J/Hz=7.0),1.33(8H,m),1.44(4H,m),1.76(6H,m,J/Hz=6.8,methylene),1.76(2H,br.s,adamantane),1.91(8H,br.s),1.98(2H,br.s),2.28(2H,br.s),3.93(4H,t,J/Hz=6.6),6.85(4H,d(AA’BB’),J/Hz=8.9),7.29(4H,d(AA’BB’),J/Hz=8.9)
 IR:3051(w),3038(w),2934(s),2925(s),2917(s),2850(s),1607(m),1577(w),1510(s),1473(m),1451(w),1392(w),1292(w),1245(s),1182(s),1127(w),1111(w),1058(w),1026(m),1007(w),995(w),825(m),802(m),730(w),612(w),551(m). 
 LRMS:489((M+1),54),488((M,100),404((M-C12,14),320((M-C1224,3.3).
(実施例9)
〔4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタン(化合物5)の合成〕
Figure JPOXMLDOC01-appb-C000028
 300ml丸底シュレンクフラスコに、4,9-ビス(4-ヨードフェニル)ジアマンタン(化合物3)(399.9mg,0.675mmol,1.0eq.)、ヨウ化銅(I)(17.6mg,0.09mmol,0.13eq.)、スピナーを入れ、Y字管、還流管、風船を取り付け、系内を窒素置換した。系内に窒素を流しながら、ビス(トリフェニルホスフィン)パラジウム(II)(40.3mg,0.056mmol,0.08eq.)をY字管の上から加え、ピペリジン(60ml)を加え、加熱した。還流が始まり、4,9-ビス(4-ヨードフェニル)ジアマンタン(化合物3)が溶解したところで1-ヘプチン(0.2ml,1.53mmol,2.2eq.)をシリンジで加え、11時間還流した。溶液を室温まで冷却し、0.5M塩化アンモニウム水溶液、クロロホルムを加え、水層をクロロホルムで3回抽出し、集めた有機層を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:15%ベンゼン/ヘキサン)で精製し、白色粉末(251.2mg)を得た。これをクロロホルム/ヘキサンの混合溶媒中から再結晶し、4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタン(化合物5)の白色針状結晶を得た。
 収量:237.0mg(0.448mmol)
 収率:66.4%(化合物3に対して)
 H NMR:0.92(6H,t,J/Hz=7.0),1.31-1.45(8H,m),1.59(4H,m),1.94(18H,br.s),2.39(4H,t,J/Hz=7.2),7.31(4H,d(AA’BB’),J/Hz=8.7Hz),7.36(4H,d(AA’BB’),J/Hz=8.7Hz)
 IR:3081(w),3031(w),2952(m),2914(m),2883(m),2848(m),1509(m),1458(m),1439(m),1404(w),1349(w),1301(w),1286(w),1268(m),1114(w),1075(m),1049(m),1017(w),985(m),831(s),798(m),727(w),551(s).
 LRMS:530((M+1),73),529((M,72),357((M-C1314,100),185((M-C2628,18).
(実施例10)
〔4,9-ビス(4-ヘプチルフェニル)ジアマンタン(化合物6)の合成〕
Figure JPOXMLDOC01-appb-C000029
 30ml二つ口ナスフラスコに、4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタン(化合物5)(41.8mg,0.0790mmol,1.0eq.),10%パラジウム-活性炭(9.6mg,0.166mmol,0.45eq.),テトラヒドロフラン(以下、「THF」)2ml,スピナーを入れ、系内を水素置換した。室温で9時間撹拌した後、10%パラジウム-活性炭を濾別した。溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒5%クロロホルム/ヘキサン)で精製し、得られた白色粉末(42.1mg)をクロロホルム/メタノールの混合溶媒中から再結晶し4,9-ビス(4-ヘプチルフェニル)ジアマンタン(化合物6)の白色薄片状結晶を得た。
 収量:37.5mg(0.0689mmol)
 収率:88.4%(化合物5に対して)
 H NMR:0.87(6H,t,J/Hz=6.8),1.25-1.33(16H,m),1.55-1.63(4H,m),1.95(18H,br.s),2.57(4H,t,J/Hz=7.9),7.15(4H,d(AA’BB’),J/Hz=8.3Hz),7.32(4H,d(AA’BB’),J/Hz=8.3Hz)
 IR:3085(w),3045(w),3015(w),2999(w),2915(s),2884(s),2849(s),1513(m),1464(m),1439(w),1412(w),1378(w),1271(w),1249(w),1123(w),1075(w),1049(w),1017(w),985(w),834(m),814(w),794(m),723(w),650(w),616(w),542(m).
 LRMS:536(M,100),450((M-C,37),361((M-C1319,12),183((M-C2641,15).
(実施例11)
〔4,9-ビス(4-ペンチルオキシカルボニルフェニル)ジアマンタン(化合物9)の合成〕
 〔4,9-ビス{4-(1,2-ジオキソヘプチル)フェニル}ジアマンタン(化合物7)の合成〕
Figure JPOXMLDOC01-appb-C000030
 30ml二つ口ナスフラスコに4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタン(化合物5)(57.7mg,0.109mmol,1.0eq.)、過ヨウ素酸ナトリウム(99.7mg,0.466mmol,4.3eq.)、スピナー,四塩化炭素(4.5ml)、アセトニトリル(4.5ml)水(6ml)を加え固体が全て溶解するまで攪拌した。これに二酸化ルテニウム一水和物(0.6mg,0.0045mmol,0.04eq.)を加え45分攪拌した。反応後の懸濁液を100ml分液漏斗に移し、水相をジクロロメタンで2回抽出した。集めた有機層に含まれる沈殿物を濾別し、濾液を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去して化合物7の淡黄色粉末を得た。
 収量:50.6mg(0.0845mmol)
 収率:78.4%(化合物5に対して)
 H NMR(300MHz,CDCl,TMS)〕:δ/ppm,0.91(6H,t,J/Hz=7.1),1.33-1.40(8H,m),1.65-1.75(4H,m),1.99(18H,br.s),2.87(4H,t,J/Hz=7.3),7.53(4H,d(AA’BB’),J/Hz=8.9Hz),7.95(4H,d(AA’BB’),J/Hz=8.7Hz)
 IR:2957(m),2914(m),2885(m),2850(m),1776,(m),1667(s),1604(m),1567(w),1512(w),1459(m),1439(m),1409(m),1283(m),1188(m),1122(m),1075(m),1049(m),986(m),954(m),938(m),850(m),841(m),827(m),813(m),798(m),774(m),706(m),542(m),530(m).
 LRMS:592(M,8.9).
 融点:>360℃(融点測定装置の限界を超えたため測定不可)
 〔4,9-ビス(4-カルボキシフェニル)ジアマンタン(化合物8)の合成〕
Figure JPOXMLDOC01-appb-C000031
 50ml二つ口ナスフラスコに化合物7(50.6mg,0.0854mmol,1.0eq.)、炭酸ナトリウム(77.5mg,0.735mmol,8.5eq.)、スピナー,アセトン(15ml)、クロロホルム(2ml)、水(10ml)を加え、固体が全て溶解するまで攪拌した後、30%過酸化水素水(0.1ml,0.882mmol,10eq.)を加え三時間攪拌した。これにクロロホルムを加え、有機相を50%水酸化カリウム水溶液で抽出した。集めた水相に3mol/l塩酸水溶液をpHが1~2になるまで加え、これを酢酸エチルで3回抽出した。集めた有機相を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去し、化合物8の白色粉末を42.2mg得た。
 収量:42.2mg(0.100mmol)
 収率:定量的(化合物7に対して)
 IR:2915(s),2888(s),2664(m),1677(s),1607(m),1569(w),1457(w),1419(m),1283(m),1189(m),931(w),852(w),773(w),706(w),547(w),526(w).
 〔4,9-ビス(4-ペンチルオキシカルボニルフェニル)ジアマンタン(化合物9)の合成〕
Figure JPOXMLDOC01-appb-C000032
 30ml二つ口フラスコに、粗化合物8(34.9mg,0.0815mmol,1.0eq.)、塩化ベンジルトリエチルアンモニウム(0.5mg,0.002mmol,0.03eq.)、スピナーを入れ、系内を窒素置換した。ベンゼン(1.5ml)を加え、加熱を開始した。緩やかな還流が開始したところで、塩化チオニル(1.3ml,excess)を加え、7時間緩やかに還流した。反応後、溶液を室温まで冷却し、フラスコに常圧蒸留装置(ト字管、リービッヒ冷却管、三つ又、30mlナスフラスコx2)を取り付け。常圧蒸留によって塩化チオニル、ベンゼンを留去した(少量のベンゼン、塩化チオニルは残った)。得られた赤茶色の残渣は、これ以上の精製を行わず、次の反応に用いた。
 50mlナシフラスコにセプタムを取り付け系内を窒素置換した。これにベンゼン(1ml)、1-ペンタノール(0.5ml,excess)、ピリジン(0.1ml)を加え攪拌した。(*2)
上記の粗酸塩化物の入った30mlフラスコに還流管、風船を取り付け、これに(*2)の溶液をカヌーラを用いて滴下した[2-3drops/sec,滴下後ベンゼン1mlで洗浄]。滴下終了後、1.5時間緩やかに還流を行った。反応後、溶液を室温まで冷却し、水を加え、水相を酢酸エチルで3回抽出し、集めた有機層を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:2%酢酸エチル/ヘキサン)で精製し白色粉末(22.9.mg)を得た。これをメタノール/ヘキサンの混合溶媒中から再結晶し、4,9-ビス(4-ペンチルオキシカルボニルフェニル)ジアマンタン(化合物9)の白色薄板状結晶を得た。
 収量:16.6mg(0.0292mmol)
 収率:35.8%(化合物8に対して)
 H NMR:0.93(6H,t,J/Hz=7.0),1.37-1.47(8H,m),1.76(4H,quintet,J/Hz=7.2),1.94(18H,br.s),4.31(4H,t,J/Hz=6.6),7.48(4H,d(AA’BB’),J/Hz=8.7Hz),8.01(4H,d(AA’BB’),J/Hz=8.7Hz)
 IR:3053(w),2954(m),2915(m),2852(m),1712(s),1607(m),1459(w),1408(w),1274(s),1187(m),1105(s),1050(w),1016(m),962(m),850(m),706(m),531(w).
 LRMS:568((M,8.1),498((M-C10,25),481((M-C11O),19),427((M-C1021,100),411((M-C1021O),9).
(実施例12)
〔4,9-ビス(4-ヘキサノイルオキシフェニル)ジアマンタン(化合物11)の合成〕
 〔4,9-ビス(4-ヒドロキシフェニル)ジアマンタン(化合物10)の合成〕
Figure JPOXMLDOC01-appb-C000033
 20ml二つ口ナスフラスコに4,9-ビス(4-ペンチルオキシフェニル)ジアマンタン(化合物(4-5))(60.2mg,0.117mmol,1.0eq.)とスピナーを入れ、系内を窒素置換し、ジクロロメタン5mlをシリンジで加えた。そのフラスコを0℃に冷却し、1.0mol/l三臭化ホウ素・ジクロロメタン溶液(0.25ml,0.25mmol,2.1eq.)をシリンジで加え、0℃から徐々に室温に戻しながら13.5時間撹拌した。反応系に水を加え、酢酸エチルを加えて分液し、水層を酢酸エチルで3回抽出した。集めた有機層を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去し、フラッシュカラムクロマトグラフィー(展開溶媒20%酢酸エチル/ヘキサン→40%酢酸エチル/ヘキサン)で精製し、得られた白色粉末(40.7mg)を、酢酸エチルを良溶媒、ヘキサンを貧溶媒として用いて再沈殿し、4,9-ビス(4-ヒドロキシフェニル)ジアマンタン(化合物10)の白色粉末を得た。
 収量:36.4mg(0.0977mmol)
 収率:83.5%(化合物(4-5)に対して)
 H NMR(300MHz,CDC(=O)CD,TMS)〕:δ/ppm,1.93(12H,br.s),1.93(6H,br.s),6.78(4H,d(AA’BB’),J/Hz=8.9Hz),7.25(4H,d(AA’BB’),J/Hz=8.9Hz),8.10(1H,s)
 IR:3595(s),3380(br.s),3251(br.s),3023(m),2910(s),2883(s),2847(m),1613(m),1596(m),1513(s),1452(m),1378(m),1247(s),1181(m),1048(w),1013(w),986(w),826(m),797(m),581(m),537(m).
 LRMS:373((M+1),31),372(M,100),186((M-C1210,8).
 融点:355.0~356.0℃
 〔4,9-ビス(4-ヘキサノイルオキシフェニル)ジアマンタン(化合物11)の合成〕
Figure JPOXMLDOC01-appb-C000034
 30ml二つ口ナスフラスコに4,9-ビス(4-ヒドロキシフェニル)ジアマンタン(化合物10)(27.8mg,0.746mmol,1.0eq.)とスピナーを入れ、系内を窒素置換し、THF3.0ml,ピリジン0.5mlをシリンジで加えた。そのフラスコを0℃に冷却し、ヘキサノイルクロリド(0.05ml,0.36mmol,5.0eq.)をシリンジで加えた。この反応懸濁液を0℃から徐々に室温に戻しながら3時間撹拌した後、THF8.0ml,ピリジン3.5mlをシリンジで加え,5時間緩やかに還流した。系内が室温になるまで放置した後、水を加えて反応をクエンチし、溶媒を減圧留去した。これにクロロホルムを加え、飽和炭酸ナトリウム水溶液、水、飽和食塩水の順で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去し、フラッシュカラムクロマトグラフィー(展開溶媒5%酢酸エチル/ヘキサン)で精製し、得られた白色粉末(26.2mg)を、クロロホルム/メタノールの混合溶媒中から再結晶し4,9-ビス(4-ヘキサノイルオキシフェニル)ジアマンタン(化合物11)の白色針状結晶を得た。
 収量:17.7mg(0.0311mmol)
 収率:41.7%(化合物10に対して)
 H NMR:0.93(6H,t,J/Hz=7.0),1.37-1.42(8H,m),1.73-1.81(4H,m),1.95(18H,br.s),2.55(4H,t,J/Hz=7.3),7.03(4H,d(AA’BB’),J/Hz=8.9Hz),7.40(4H,d(AA’BB’),J/Hz=8.7Hz)
 IR:3036(w),2954(m),2910(s),2880(s),2870(s),2849(s),1753(s),1505(m),1460(w),1439(w),1415(w),1376(w),1317(w),1247(w),1205(m),1169(m),1141(m),1109(m),1074(w),1014(w),984(w),837(m),796(w),540(w).
 LRMS:568(M,3),470((M-C10O),18),372((M-C1220,100).
 実施例1~12で得た各化合物の相転移温度を、表1に示す。
 表1において、Cryは結晶相を、Smはスメクチック相を、Nmはネマチック相を、Isは等方相を、それぞれ、示す。
  *は、各化合物について、その相が存在することを示す。また、矢印「→」は、矢印の左側の相から右側の相への転移を、矢印「←」は、矢印の右側の相から左側の相への転移を示し、数値は、その転移温度(℃)を示す。
 なお、スメクチック相については、複数のスメクチック相を有するものがあるが、昇温過程については、結晶相からスメクチック相への転移温度、及びスメクチック相からネマチック相又は等方相への転移温度を、また、降温過程においては、等方相又はネマチック相からスメクチック相への転移温度、及びスメクチック相から結晶相への転移温度を示している。また、一部にガラス相を示すものも存在している。
 表1の結果から、一般式(IV)で表わされる化合物:4,9-ビス(4-アルコキシフェニル)ジアマンタンにおいて、アルキル基がメチル基であるもの(化合物(4-1))は、ネマチック相のみを示したが、アルキル基の炭素数が2以上のもの(化合物(4-2)~化合物(4-8))ではスメクチック相が現れ、炭素数の増加とともにスメクチック性が強くなっていくことが分かる。これは、炭素数の増加に伴ってアルキル鎖のvan der Waals力が増加し、分子間の相互作用を強めたためと考えられる。
 一般式(IV)で表わされる化合物:4,9-ビス(4-アルコキシフェニル)ジアマンタンは、スメクチック相及びネマチック相を有し、非常に高いネマチック相上限温度を示すことが明らかである。なお、アルキル基の炭素数が8又は10のものは、ネマチック相を有しないが、スメクチック相の上限温度が200℃を超えている。
 ジアマンタン部分をアダマンタンに置き換えた1,3-ビス(4-ヘキシルオキシフェニル)アダマンタン(化合物4C)は液晶性を示さないことを、相転移温度の測定及び偏光顕微鏡観察のいずれからも、確認した。これは、この化合物の折れ曲がり構造が液晶相の発現を妨げていると考えられる。
 一般式(Vb)で表わされる化合物はスメクチック相のみを示し、一般式(Vc)で表わされる化合物はネマチック相のみを示し、一般式(Va)及び(Vd)で表わされる化合物5及び化合物11は、それぞれ、スメクチック相及びネマチック相の両方を示すことが分かる。
Figure JPOXMLDOC01-appb-T000035
 また、図1に、実施例9で得た化合物5:4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタンの偏光顕微鏡によって観察された昇温及び降温過程における光学組織を示す。
(1)昇温過程(185.5℃-288.1℃)図1(b)、(c)及び(d)参照
 結晶相(図1(a))から温度を上げていくと、185℃付近で融解が始まり、図1(b)のような複雑な光学組織が観察された。更に温度を上げていくと210℃付近で流動性が増し、図1(c)のようなスメクチック相を特徴づける扇状組織が部分的に現れた。230℃付近で図1(d)のようなホメオトロピック配向へと変化した。
(2)昇温過程(288.1℃-309.2℃)図1(e)参照
 更に昇温していくと、図1(e)のようなネマチック相を特徴づける、シュリーレン組織が観察された。309.2℃以上に昇温すると、暗視野になったため、等方相となったと考えられる。
(3)降温過程(284.9℃-244.2℃)図1(f)参照
 等方性液体から降温させていくと、図1(f)のような小球状の組織が観察された。スメクチック相よりも高温側の液晶相であることから、ネマチック相と同定した。また、このときの温度をネマチック相/等方相相転移温度とした。
(4)降温過程(244.2℃-100.5℃)図1(g)、(i)及び(j)参照
 ネマチック相から冷却を続けると、244.2℃から、短棒状組織が現れ始め、直ちに図1(g)のような扇状組織に変化し、200℃近傍で、図1(g)の扇状組織が、図1(h)に示すようなモザイク組織へと変化した。また同じ測定試料の別位置では、図1(i)に示すような境界のはっきりしない扇状の組織が観察された。不安定な扇状組織がモザイクへ変化する途中の組織であると思われる。この状態から更に冷却を続けると135℃付近で図1(j)のような多角形組織が観察され、この組織のまま結晶相へと転移した(図1(k))。

Claims (8)

  1.  一般式(I)で表わされるジアマンタン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)において、環A及び環Bは、それぞれ、6員環の飽和又は不飽和の、炭素環又はヘテロ環である。これらの環は、置換基として、置換基を有していてもよい炭化水素基、ハロゲン原子又はヘテロ原子を有する基を有していてもよく、これらの置換基は、互いに結合して環を形成していてもよい。R及びRは、それぞれ、直鎖状、分岐状、芳香環状又は脂環状の炭素数1~18の炭化水素基である。R及びRで表わされる炭化水素基は、その炭素原子の一部がヘテロ原子又はヘテロ原子を有する基で置換されていてもよく、その水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。)
  2.  一般式(II)で表わされる請求の範囲第1項に記載のジアマンタン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(II)において、R及びRは、一般式(I)におけるそれらと同じである。L及びLは、それぞれ、水素原子、置換基を有していてもよい炭化水素基、ハロゲン原子又はヘテロ原子を有する基である。m及びnは、それぞれ、1~4の整数である。)
  3.  一般式(III)で表わされる請求の範囲第2項に記載のジアマンタン化合物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(III)において、R及びRは、それぞれ、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数1~12のアルキニル基、炭素数1~12のアルコキシカルボニル基又は炭素数1~12のアルキロイルオキシ基であり、これらの基の水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。)
  4.  一般式(IV)で表わされる請求の範囲第3項に記載のジアマンタン化合物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(IV)において、R及びRは、それぞれ、置換基を有しない炭素数1~10のアルキル基である。)
  5.  一般式(V)で表わされる請求の範囲第3項に記載のジアマンタン化合物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(V)において、R及びRは、それぞれ、置換基を有しないn-ペンチル基であり、X及びXは、それぞれ、-CHCH-、-C≡C-又は-COO-である。)
  6.  請求の範囲第1項~第5項のいずれか1項に記載のジアマンタン化合物からなる液晶性化合物。
  7.  請求の範囲第6項に記載の液晶性化合物を含有してなる液晶性組成物。
  8.  請求の範囲第7項記載の液晶性組成物を含有してなる液晶表示素子。
PCT/JP2008/054342 2008-03-11 2008-03-11 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 WO2009113155A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/054342 WO2009113155A1 (ja) 2008-03-11 2008-03-11 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物
JP2010502659A JP5439647B2 (ja) 2008-03-11 2008-03-11 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物
US12/922,285 US8614348B2 (en) 2008-03-11 2008-03-11 Diamantane compounds, liquid crystalline compounds, and liquid crystalline compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/054342 WO2009113155A1 (ja) 2008-03-11 2008-03-11 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物

Publications (1)

Publication Number Publication Date
WO2009113155A1 true WO2009113155A1 (ja) 2009-09-17

Family

ID=41064836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054342 WO2009113155A1 (ja) 2008-03-11 2008-03-11 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物

Country Status (3)

Country Link
US (1) US8614348B2 (ja)
JP (1) JP5439647B2 (ja)
WO (1) WO2009113155A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140472A (ja) * 2010-01-08 2011-07-21 Yokohama National Univ 新規なジアマンタン化合物、液晶性化合物及び液晶組成物
JP2013148883A (ja) * 2011-12-20 2013-08-01 Sumitomo Chemical Co Ltd 偏光膜形成用組成物及び偏光膜
KR20160026780A (ko) * 2014-08-29 2016-03-09 후지필름 가부시키가이샤 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347063A (en) * 1993-03-09 1994-09-13 Mobil Oil Corporation Method for direct arylation of diamondoids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 129, Columbus, Ohio, US; abstract no. 231098 *
CHEMICAL ABSTRACTS, vol. 141, Columbus, Ohio, US; abstract no. 46766 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140472A (ja) * 2010-01-08 2011-07-21 Yokohama National Univ 新規なジアマンタン化合物、液晶性化合物及び液晶組成物
JP2013148883A (ja) * 2011-12-20 2013-08-01 Sumitomo Chemical Co Ltd 偏光膜形成用組成物及び偏光膜
JP2020057020A (ja) * 2011-12-20 2020-04-09 住友化学株式会社 偏光膜形成用組成物及び偏光膜
KR20160026780A (ko) * 2014-08-29 2016-03-09 후지필름 가부시키가이샤 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치
KR102443875B1 (ko) * 2014-08-29 2022-09-16 후지필름 가부시키가이샤 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치

Also Published As

Publication number Publication date
JPWO2009113155A1 (ja) 2011-07-14
US8614348B2 (en) 2013-12-24
US20110015426A1 (en) 2011-01-20
JP5439647B2 (ja) 2014-03-12

Similar Documents

Publication Publication Date Title
TWI670264B (zh) 4,6-二氟二苯并噻吩衍生物
CN109134423B (zh) 一种化合物及其液晶组合物和光电显示器件
TWI663157B (zh) 4,6-二氟二苯并呋喃衍生物
Cristiano et al. Synthesis and characterization of luminescent hockey stick‐shaped liquid crystalline compounds
CN107207965B (zh) 向列液晶组合物和使用其的液晶显示元件
Nakagawa et al. Synthesis and liquid crystalline behavior of azulene-based liquid crystals with 6-hexadecyl substituents on each azulene ring
JPH0334987A (ja) シリル化された安息香酸誘導体、その製法、新規化合物を含有する液晶表示装置
JP4357337B2 (ja) 光学活性化合物及び該化合物を含有した液晶組成物
KR101140037B1 (ko) 광응답성 액정 조성물
JP5439647B2 (ja) 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物
CN102875339B (zh) 液晶化合物及其制备方法和应用
Guan et al. Synthesis and properties of novel liquid crystalline materials with super high birefringence: styrene monomers bearing diacetylenes, naphthyl, and nitrogen-containing groups
US5326495A (en) Tetrasubstituted methanes having liquid-crystalline properties
JPH0568520B2 (ja)
Zhang et al. Design, synthesis, and characterisation of symmetrical bent-core liquid crystalline dimers with diacetylene spacer
JP5545517B2 (ja) 4環性アジン化合物
JP5527522B2 (ja) 新規なジアマンタン化合物、液晶性化合物及び液晶組成物
Al-Jumaili et al. Hydrogen-bonded ionic liquid crystals based on multi-armed structure: synthesis and characterization
JP4521738B2 (ja) ベンゾチアゾール化合物、その製造法、液晶組成物及び液晶素子
JP2005048007A (ja) トリフルオロナフタレン誘導体を含有する液晶組成物と表示素子及び液晶性化合物。
Tang et al. The fluorescent liquid crystal and spiro-silicon bridged compounds based on silafluorene core
JP3651023B2 (ja) ヘキセンジイン誘導体および液晶組成物
JP2019189562A (ja) ジアセチレン誘導体
CN112029514B (zh) 一种聚合物稳定型蓝相液晶组合物及其制备方法
JP2010024157A (ja) ジアマンタン化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502659

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12922285

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08721758

Country of ref document: EP

Kind code of ref document: A1