WO2009113155A1 - 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 - Google Patents
新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 Download PDFInfo
- Publication number
- WO2009113155A1 WO2009113155A1 PCT/JP2008/054342 JP2008054342W WO2009113155A1 WO 2009113155 A1 WO2009113155 A1 WO 2009113155A1 JP 2008054342 W JP2008054342 W JP 2008054342W WO 2009113155 A1 WO2009113155 A1 WO 2009113155A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- diamantane
- compound
- general formula
- carbon atoms
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/32—Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
Definitions
- the present invention relates to a novel diamantane compound, a liquid crystal compound comprising the same, and a liquid crystal composition containing the liquid crystal compound.
- Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, as well as watches and calculators.
- the liquid crystal display element utilizes the optical anisotropy and dielectric anisotropy of the liquid crystal substance.
- Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, DS (dynamic light scattering) type, GH (guest / host) type, FLC (ferroelectric liquid crystal).
- a multiplex drive is generally used instead of a conventional static drive, and a simple matrix system and recently an active matrix system are put into practical use.
- Various characteristics are required as a liquid crystal material in accordance with these display methods and driving methods, and so many liquid crystalline compounds have been synthesized so far.
- liquid crystal compounds vary slightly depending on the display method, but the wide liquid crystal temperature range and the stability to moisture, air, light, heat, electric field, etc. Are also commonly required. At present, there is no substance satisfying such a condition with a single liquid crystal compound, and several kinds of liquid crystal compounds are mixed, or non-liquid crystal compounds are further mixed for practical use. When a plurality of compounds are mixed, the melting point thereof inevitably decreases. Therefore, a liquid crystalline compound having a high phase transition temperature alone is required so that a practical phase transition temperature can be maintained even when the phase transition temperature is lowered by mixing.
- thermotropic liquid crystals There are two main types of liquid crystals: thermotropic liquid crystals and lyotropic liquid crystals.
- thermotropic liquid crystals calamitic liquid crystals composed of rod-like molecules have been actively researched in fusion with electronics technology.
- the calamitic liquid crystal phase includes a nematic liquid crystal phase, a smectic liquid crystal phase, and a cholesteric liquid crystal phase.
- the cholesteric liquid crystal phase is a phase that appears when the nematic liquid crystal has an asymmetric element or when an asymmetric additive (referred to as a chiral dopant) is added to the nematic liquid crystal.
- a substance exhibiting liquid crystallinity undergoes a phase change from a crystal or solid to a smectic phase and a nematic phase as the temperature rises, and becomes an isotropic liquid as the temperature rises further.
- the molecules In the nematic liquid crystal phase, the molecules have a uniform alignment to some extent, but there is no regularity with respect to the positions of the molecules.
- Each molecule of the nematic liquid crystal has the advantage of low viscosity because it can move freely in the major axis direction.
- the orientation of the molecules can be changed to a certain direction by an electric field, orientation treatment, etc., so it is widely applied to liquid crystal displays and the like. .
- the lower limit of the temperature range in which the liquid crystal has this nematic phase that is, the temperature at which the crystal, solid, or smectic phase transitions to the nematic phase is low, and the temperature at which the nematic phase changes to an isotropic liquid.
- T NI Nematic isotropic transition temperature
- NI transition temperature a temperature at which the nematic phase changes to an isotropic liquid.
- Patent Document 2 discloses a tricyclic azine such as 1- (4-methylbenzylidene) -2- [4- (trans-4-propyl) cyclohexylbenzylidene] hydrazine, which is NI at 227 ° C. to 265 ° C. It has been shown to have a transition temperature and has been reported to increase the NI transition temperature from 144 ° C. to 157 ° C. by mixing them with a host liquid crystal having an NI transition temperature of 116.7 ° C. . Furthermore, Non-Patent Document 1 discloses 1- (4-cyanophenyl) -4-alkyl-substituted bicyclo [2.2.2. It has been reported that octane exhibits a NI transition temperature of 90-100 ° C.
- the present inventors have been diligently researching diamond compounds so far.
- the diamond compound is a cage-like hydrocarbon having a diamond skeleton.
- Diamond compounds are known to exist in crude oil. The smallest diamond compound is adamantane, from which adamantane fusion dimer diamantane, fusion trimer triamantane and fusion tetramer tetramantane are synthesized. .
- Diamond compounds have many useful properties, such as excellent stiffness, durability and thermal stability; diverse three-dimensional geometric structures; chirality; negative affinity for electrons; Chemical inertness; and the like. Diamond compounds and derivatives thereof have been studied in a wide range of fields such as nanoscale electromechanical systems, chemical design, and application to field emitters.
- an object of the present invention is to provide a liquid crystal compound having excellent liquid crystallinity, particularly a high phase transition temperature.
- the present inventors pay attention to the symmetrical structure of diamantane, and by introducing a functional group into this, there is a possibility of exhibiting liquid crystallinity, and a liquid crystal phase having excellent thermal stability due to its rigid skeleton. As a result of energetic progress in the synthesis and evaluation based on the idea that there is a possibility of being formed, it was found that liquid crystallinity far superior to that expected was exhibited. It came to be completed.
- a diamantane compound represented by the general formula (I) is provided.
- ring A and ring B are each a 6-membered saturated or unsaturated carbocyclic or heterocyclic ring. These rings have a substituent as a substituent.
- R 1 and R 2 may form a ring with each other, respectively , A linear, branched, aromatic or alicyclic hydrocarbon group having 1 to 18 carbon atoms, wherein the hydrocarbon group represented by R 1 and R 2 includes a hetero atom or a hetero (It may be substituted with a group having an atom, and a part of the hydrogen atom may be substituted with a group having a halogen atom or a hetero atom.)
- the diamantane compound of the present invention is preferably represented by the general formula (II).
- R 1 and R 2 are the same as those in General Formula (I).
- L 1 and L 2 are a hydrogen atom and a hydrocarbon optionally having a substituent, respectively.
- a group having a group, a halogen atom or a hetero atom, and m and n are each an integer of 1 to 4.
- the diamantane compound represented by the general formula (II) is preferably a diamantane compound represented by the general formula (III).
- R 3 and R 4 are each an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkynyl group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms.
- An alkoxycarbonyl group or an alkylyloxy group having 1 to 12 carbon atoms, and a part of hydrogen atoms of these groups may be substituted with a group having a halogen atom or a hetero atom.
- the diamantane compound represented by general formula (IV) is preferable among the diamantane compounds represented by general formula (III).
- R 5 and R 6 are each an alkyl group having 1 to 10 carbon atoms which does not have a substituent.
- the diamantane compounds represented by the general formula (III) are also preferable.
- R 7 and R 8 are each an n-pentyl group having no substituent, and X 1 and X 2 are —CH 2 CH 2 —, —C ⁇ C—, respectively. Or -COO-.
- the liquid crystalline compound which consists of a diamantane compound represented by the said general formula (I) is provided.
- the liquid crystalline composition formed by containing the said liquid crystalline compound is provided.
- the liquid crystal display element formed by containing the said liquid crystalline composition is provided.
- the diamantane compound of the present invention is a novel compound that can be easily synthesized, has excellent thermal stability, and exhibits liquid crystallinity at a much higher temperature than conventional liquid crystal materials. Therefore, it can be expected to be used as a liquid crystal material that can be used alone or as a liquid crystal composition composed of another liquid crystal compound, such as an in-vehicle display, even at high temperatures.
- the diamantane compound of the present invention is represented by the general formula (I).
- ring A and ring B are each a 6-membered saturated or unsaturated carbocyclic or heterocyclic ring. These rings may have, as a substituent, a hydrocarbon group, a halogen atom or a group having a hetero atom which may have a substituent, and these substituents are bonded to each other to form a ring. It may be formed.
- R 1 and R 2 are each a linear, branched, aromatic or alicyclic hydrocarbon group having 1 to 18 carbon atoms.
- a part of the carbon atom may be substituted with a hetero atom or a group having a hetero atom, and a part of the hydrogen atom has a halogen atom or a hetero atom. It may be substituted with a group.
- a hetero atom is the concept also including the atom which belongs to periodic table 14 group other than the atom which belongs to periodic table 15 group and 16 group. Specific examples of the hetero atom include nitrogen atom, phosphorus atom and arsenic atom belonging to Group 15 of the periodic table, oxygen atom, sulfur atom and selenium atom belonging to Group 16, and silicon atom and germanium atom belonging to Group 14. it can.
- the group having a hetero atom include a group having an oxygen atom such as a hydroxy group, a carbonyl group, a formyl group, an acyl group, a carbonyloxy group, a carboxyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group; A group having a nitrogen atom such as a group, a nitrile group, an amide group, an imide group or a heterocyclic group containing a nitrogen atom (such as a pyridyl group); a group having a sulfur atom such as a thiol group, a sulfonyl group or a sulfonic acid group; A group having a silicon atom such as a group, a silanol group, or a siloxy group; Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
- the diamantane compound represented by the general formula (I) of the present invention is preferably one represented by the general formula (II).
- R 1 and R 2 are the same as those in the general formula (I).
- L 1 and L 2 are each a hydrogen atom, a hydrocarbon group which may have a substituent, a halogen atom or a group having a hetero atom.
- the substituent that it may have is a group having a halogen atom or a hetero atom.
- Specific examples of the group having a halogen atom and a hetero atom are as described above.
- m and n are each an integer of 1 to 4.
- the diamantane compound represented by the general formula (II) of the present invention is preferably one represented by the general formula (III).
- R 3 and R 4 are each an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkynyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
- a carbonyl group or an alkyloyloxy group having 1 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aryloxy group having 6 to 18 carbon atoms, and a part of hydrogen atoms of these groups is a halogen atom or a hetero atom. It may be substituted with a group.
- the alkyl group having 1 to 12 carbon atoms may be linear, branched or alicyclic.
- the alkoxy group having 1 to 12 carbon atoms is an alkoxy group having the above alkyl group.
- the alkynyl group having 1 to 12 carbon atoms is not particularly limited.
- the position of the carbon-carbon triple bond is not particularly limited, but those in which an alkynyl group is directly bonded to the benzene ring are easy to synthesize and are preferable from the viewpoint of molecular rigidity.
- the alkoxycarbonyl group having 1 to 12 carbon atoms is not particularly limited. Also, the alkylyl group having 1 to 12 carbon atoms is not particularly limited. Further, the aryl group having 6 to 18 carbon atoms and the aryloxy group having 6 to 18 carbon atoms are not particularly limited. In addition, when R 3 or R 4 has a branch and the branch point is asymmetric carbon, the compound may be a cholesteric liquid crystal or a ferroelectric liquid crystal.
- R 5 and R 6 are each an alkyl group having 1 to 10 carbon atoms that has no substituent.
- Specific examples of the alkyl group represented by R 5 and R 6 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group.
- R 5 and R 6 may be the same or different.
- the diamantane compound represented by the general formula (IV): 4,9-bis (4-alkoxyphenyl) diamantane has the formula (S1a) (when R 5 and R 6 are both a methyl group or an ethyl group), Or the formula (S1b) (when R 5 and R 6 are all n-propyl, n-butyl, n-pentyl, n-hexyl, n-octyl or n-decyl) It can be obtained by a synthetic route.
- R is an alkyl group.
- DMF methanol-benzene-dimethylformamide
- R 7 and R 8 are each an n-pentyl group having no substituent, and X 1 and X 2 are each —CH 2 CH 2 —, —C ⁇ C— or -COO-.
- R 7 and R 8 and X 1 and X 2 may be the same or different.
- Such a diamantane compound include 4,9-bis ⁇ 4- (1-heptynyl) phenyl ⁇ diamantane: in the general formula (V), X 1 and X 2 are —C ⁇ C—, and R 7 And diamantane compound (Va) in which R 8 is an unsubstituted n-pentyl group, 4,9-bis (4-heptylphenyl) diamantane:
- X 1 and X 2 are —CH 2 Diamantane compound (Vb), which is CH 2 — and R 7 and R 8 are n-pentyl groups having no substituent, 4,9-bis (4-pentyloxycarbonylphenyl) diamantane: in the general formula (V) , X 1 and X 2 are —COO— (wherein the carbonyl group is bonded to a phenyl group), and R 7 and R 8 are n-pentyl groups having no substituent.
- the diamantane compound of the present invention can be used as a raw material for synthesizing ordinary organic compounds, but is excellent as a liquid crystalline compound.
- the liquid crystal compound diamantane compounds represented by general formulas (IV) and (V) are particularly useful.
- the liquid crystalline compound comprising the diamantane compound of the present invention can be mixed with other liquid crystalline compounds to form a liquid crystalline composition.
- the ratio of the liquid crystal compound comprising the diamantane compound of the present invention in the liquid crystal composition is not particularly limited, taking into consideration the characteristics of other liquid crystal compounds used in combination, the viscosity of the composition, the operating temperature, the use, etc. It can select suitably.
- the liquid crystalline composition of the present invention includes an additive for changing properties of the liquid crystal phase such as dielectric anisotropy and viscosity, a dichroic dye, or an additive (chiral dopant) for inducing a cholesteric phase. Etc. may be included.
- a liquid crystal display element can be obtained by enclosing the liquid crystalline composition of the present invention between transparent substrates having electrodes of a desired shape.
- the liquid crystal display element may have various undercoats, alignment control overcoats, polarizing plates, filters, reflective layers, and the like as necessary.
- a multilayer cell, a combination with other display elements, a semiconductor substrate, or a light source can be used.
- Liquid crystal display device driving methods include twisted nematic (TN), super twisted nematic (STN), guest-host (GH), dynamic scattering (DS), electric field controlled birefringence (ECB), and vertical.
- TN twisted nematic
- STN super twisted nematic
- GH guest-host
- DS dynamic scattering
- EOB electric field controlled birefringence
- vertical A method known in the industry of liquid crystal display elements such as an alignment (VA) method and an in-plane switching (IPS) method can be employed.
- VA alignment
- IPS in-plane switching
- the structure of the compound was confirmed by proton nuclear magnetic resonance spectrum ( 1 H NMR), mass spectrum (MS) and infrared absorption spectrum (IR).
- the measurement conditions of the proton nuclear magnetic resonance spectrum were measured by using “DRX300” manufactured by Bruker at 300 MHz in CDCl 3 or CD 3 C ( ⁇ O) CD 3 with TMS as a standard. The position of the signal is indicated by ⁇ / ppm.
- the infrared absorption spectrum was measured by a total reflection measurement method for a neat sample using “FT / IR-4100” manufactured by JASCO, using a diamond prism. The position of absorption is indicated by wave number (cm ⁇ 1 ).
- the low resolution mass spectrum was measured by “EI ionization method” using “JMS-AX-600” manufactured by JEOL Ltd. Intensity is indicated by relative intensity.
- phase transition temperature was measured by a polarizing microscope (OLYMPUS, “PXP50”) equipped with a temperature control stage (METTLER, “FP82HT”) and a differential scanning calorimeter (DSC) (Seiko Instruments, “DSC6100”). ). Differential calorimetry was performed in a nitrogen atmosphere using 1 to 4 mg of sample. The temperature scanning speed was set to 10 to 15 ° C./min for both the temperature raising and lowering processes. The melting point was measured using a trace melting point measuring device “BY-2” manufactured by Yazawa Kagaku. Polarization microscope observation was performed using a liquid crystal sample sandwiched between rubbed alignment substrates and a well-cleaned glass substrate.
- the substrate is well-rubbed to allow the liquid crystal to become familiar with the glass, and then cooled again.
- the transition to an isotropic liquid cooling was started and the temperature lowering process was observed.
- the state of the liquid crystal phase optical structure was observed while keeping the temperature constant as required.
- Step 1 Synthesis of 4,9-diphenyldiamantane (Compound 2)
- a 300 ml three-necked eggplant flask was charged with diamantane (compound 1) (3.10 g, 16.48 mmol, 1.0 eq.), Aluminum chloride (207.1 mg, 1.55 mmol, 0.1 eq.), And a spinner.
- a balloon, a saturated sodium bicarbonate aqueous solution trap were attached, and the system was purged with nitrogen.
- the system was cooled to 0 ° C., benzene (35.5 ml) was added with a syringe and stirred.
- Step 2 Synthesis of 4,9-bis (4-iodophenyl) diamantane (Compound 3)
- 4,9-diphenyldiamantane compound 2.14 g, 6.29 mmol, 1.0 eq.
- Iodine 1.15 g, 7.15 mmol
- bis (trifluoroacetoxy) Iodobenzene 5.808 g, 13.0 mmol, 2.1 eq.
- a spinner was added, and chloroform (42 ml) was added. The mixture was stirred at room temperature for 30 minutes.
- Step 3 Synthesis of 4,9-bis (4-methoxyphenyl) diamantane (compound (4-1))
- a 100 ml two-necked eggplant flask was charged with 4,9-bis (4-iodophenyl) diamantane (compound 3) (198.9 mg, 0.336 mmol) and a spinner, and the system was purged with nitrogen.
- DMF (2 ml) were added and refluxed.
- LRMS 457 ((M + 1) + , 60), 456 ((M + , 100), 414 ((M-C 3 H 6 ) + , 12), 372 ((M-C 6 H 12 ) + , 25) , 186 ((M-C 12 H 22 O 2 ) + , 18).
- Example 4 [Synthesis of 4,9-bis (4-butyloxyphenyl) diamantane to 4,9-bis (4-decyloxyphenyl) diamantane (compounds (4-4) to (4-8))]
- Example 4 [Synthesis of 4,9-bis (4-butyloxyphenyl) diamantane (compound (4-4))] Except for using 1-butanol, needle-like crystals of 4,9-bis (4-butyloxyphenyl) diamantane (compound (4-4)) were obtained in the same manner as in Example 3.
- LRMS 513 ((M + 1) + , 62), 512 ((M + , 100), 442 ((M ⁇ C 5 H 10 ) + , 14), 372 ((M ⁇ C 10 H 20 ) + , 36) , 186 ((M—C 22 H 30 O 2 ) + , 13).
- LRMS 542 ((M + 1) + , 62), 541 ((M + , 100), 456 ((M ⁇ C 6 H 12 ) + , 14), 372 ((M ⁇ C 12 H 24 ) + , 36) , 186 ((M-C 24 H 34 O 2 ) + , 10).
- Example 7 [Synthesis of 4,9-bis (4-octyloxyphenyl) diamantane (compound (4-7))]
- White needle crystals of 4,9-bis (4-octyloxyphenyl) diamantane (compound (4-7)) were obtained in the same manner as in Example 3 except that 1-octanol was used. Yield: 104.4 mg (0.175 mmol) Yield: 50.8% (based on compound 3)
- LRMS 598 ((M + 1) + , 73), 597 ((M + , 100), 484 ((M ⁇ C 8 H 8 ) + , 14), 372 ((M ⁇ C 16 H 16 ) + , 33) , 186 ((M-C 28 H 42 O 2 ) + , 7.5).
- LRMS 655 ((M + 2) + , 46), 654 ((M + 1) + , 62), 653 ((M + , 100), 513 ((M ⁇ C 10 H 20 ) + , 19), 372 ((M -C 10 H 20) +, 40 ).
- Example 9 [Synthesis of 4,9-bis ⁇ 4- (1-heptynyl) phenyl ⁇ diamantane (Compound 5)]
- 4,9-bis (4-iodophenyl) diamantane (compound 3) (399.9 mg, 0.675 mmol, 1.0 eq.)
- a spinner was added, a Y-tube, a reflux tube, and a balloon were attached, and the system was purged with nitrogen.
- the solution was cooled to room temperature, 0.5 M aqueous ammonium chloride solution and chloroform were added, the aqueous layer was extracted three times with chloroform, and the collected organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate.
- the desiccant was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by flash column chromatography (developing solvent: 15% benzene / hexane) to obtain a white powder (251.2 mg).
- LRMS 536 (M + , 100), 450 ((M ⁇ C 6 H 6 ) + , 37), 361 ((M ⁇ C 13 H 19 ) + , 12), 183 ((M ⁇ C 26 H 41 ) + , 15).
- ruthenium dioxide monohydrate (0.6 mg, 0.0045 mmol, 0.04 eq.) was added and stirred for 45 minutes.
- the suspension after the reaction was transferred to a 100 ml separatory funnel, and the aqueous phase was extracted twice with dichloromethane.
- the precipitate contained in the collected organic layer was filtered off, and the filtrate was washed with water and saturated brine, and dried over anhydrous sodium sulfate.
- the desiccant was filtered off and the solvent was distilled off under reduced pressure to obtain a pale yellow powder of Compound 7.
- LRMS 568 ((M + , 8.1), 498 ((M ⁇ C 5 H 10 ) + , 25), 481 ((M ⁇ C 5 H 11 O) + , 19), 427 ((M ⁇ C 10 H 21 ) + , 100), 411 ((M-C 10 H 21 O) + , 9).
- the reaction suspension was stirred for 3 hours while gradually returning from 0 ° C. to room temperature, and then 8.0 ml of THF and 3.5 ml of pyridine were added by a syringe and gently refluxed for 5 hours. After leaving the system to room temperature, water was added to quench the reaction, and the solvent was distilled off under reduced pressure. Chloroform was added thereto, washed with a saturated aqueous sodium carbonate solution, water and saturated brine in that order, and dried over anhydrous sodium sulfate.
- Table 1 shows the phase transition temperatures of the compounds obtained in Examples 1 to 12.
- Cry represents a crystalline phase
- Sm represents a smectic phase
- Nm represents a nematic phase
- Is represents an isotropic phase. * Indicates that each compound has its phase.
- the arrow “ ⁇ ” indicates the transition from the left phase of the arrow to the right phase
- the arrow “ ⁇ ” indicates the transition from the right phase of the arrow to the left phase
- the numerical value indicates the transition temperature ( ° C).
- the smectic phase there are those having a plurality of smectic phases, but for the temperature rising process, the transition temperature from the crystal phase to the smectic phase, and the transition temperature from the smectic phase to the nematic phase or isotropic phase, In the temperature lowering process, the transition temperature from the isotropic phase or nematic phase to the smectic phase, and the transition temperature from the smectic phase to the crystal phase are shown. Some of them also show a glass phase.
- the alkyl group has 2 or more carbon atoms (compound (4-2) to compound (4-8))
- a smectic phase appears and the smectic property increases with increasing carbon number. I understand. This is presumably because the van der Waals force of the alkyl chain increased with the increase in the number of carbon atoms, and the interaction between molecules was strengthened.
- the compound represented by the general formula (Vb) shows only a smectic phase
- the compound represented by the general formula (Vc) shows only a nematic phase
- the compounds 5 and 11 represented by the general formulas (Va) and (Vd) are It can be seen that each exhibits both a smectic phase and a nematic phase.
- FIG. 1 shows an optical structure of the compound 5: 4,9-bis ⁇ 4- (1-heptynyl) phenyl ⁇ diamantane obtained in Example 9 in the temperature rising and cooling process observed with a polarizing microscope.
- FIGS. 1B, 1 C, and 1 D As the temperature is increased from the crystal phase (FIG. 1A), 185 ° C. Melting started in the vicinity, and a complicated optical structure as shown in FIG. 1B was observed.
- the fluidity increased at around 210 ° C., and a fan-like structure characterizing the smectic phase as shown in FIG. 1C partially appeared. It changed to homeotropic alignment as shown in FIG.
- the temperature at this time was defined as a nematic phase / isotropic phase transition temperature.
- (4) Temperature drop process (244.2 ° C.-100.5 ° C.) See FIGS. 1 (g), (i) and (j)
- a short rod-like structure begins to appear at 244.2 ° C.
- the fan-like structure as shown in FIG. 1 (g) was changed, and the fan-like structure shown in FIG. 1 (g) was changed to a mosaic structure as shown in FIG.
- a fan-like structure with unclear boundaries as shown in FIG. 1 (i) was observed. It seems that the unstable fan-like structure is in the middle of changing to a mosaic.
- a polygonal structure as shown in FIG. 1 (j) was observed at around 135 ° C., and this structure was transformed into a crystalline phase (FIG. 1 (k)).
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Liquid Crystal Substances (AREA)
Abstract
Description
液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型、FLC(強誘電性液晶)等があり、また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、更に単純マトリックス方式、最近ではアクティブマトリックス方式が実用化されている。
これらの表示方式や駆動方式に応じて、液晶材料としても種々の特性が要求されており、このためこれまでにも非常に多くの液晶性化合物が合成されている。
現在のところ単一の液晶性化合物でそのような条件を満たす物質はなく、数種の液晶性化合物を混合し、又は非液晶性化合物を更に混合して実用に供している。複数の化合物を混合すると、必然的にその融点等が低下する。従って、混合によって相転移温度が低下しても、実用的な相転移温度を維持することができるように、単独で高い相転移温度を有する液晶性化合物が求められている。
カラミティック液晶相にはネマチック液晶相、スメクチック液晶相及びコレステリック液晶相がある。コレステリック液晶相は、ネマチック液晶が不斉要素をもった場合、又はネマチック液晶に不斉な添加剤(カイラルドーパントという)を加えた場合に出現する相である。一般に液晶性を示す物質は、温度が上昇するにつれて、結晶又は固体からスメクチック相、そしてネマチック相へと相変化をし、更に温度が上昇すると等方性液体となる。ネマチック液晶相では、分子はある程度揃った配向を有しているが、分子の位置に関しては規則性がない。ネマチック液晶の各々の分子は、その長軸方向に自由に動くことができるので、粘性が小さいという利点を有している。また、ネマチック液晶相の自由エネルギーは、分子の配向方向に拘らず同じであるので、電界や配向処理等により分子の向きを一定方向に変えることができるため、液晶ディスプレー等に広く応用されている。
また、特許文献2には、1-(4-メチルベンジリデン)-2-[4-(トランス-4-プロピル)シクロヘキシルベンジリデン]ヒドラジン等の3環性アジンが、227℃~265℃のN-I転移温度を有することが示され、これらをN-I転移温度116.7℃のホスト液晶に混合することにより、N-I転移温度を144℃~157℃に上昇させたことが報告されている。
更に、非特許文献1には、1-(4-シアノフェニル)-4-アルキル置換ビシクロ[2.2.2.]オクタンが90~100℃のN-I転移温度を示すことが報告されている。
ダイヤモンド化合物は、多くの有用な特性を有しており、その代表的なものとして、優れた剛直性、耐久性、熱安定性;多様な三次元幾何構造;キラリティ;電子に対する負の親和性;化学的不活性;等を挙げることができる。
ダイヤモンド化合物やその誘導体は、上記の特性から、ナノスケールの電子機械システム、薬品設計、電界放射体等への応用等、広範な分野で研究が進められている。アダマンタンやその誘導体は、既に薬品、ゼオライト触媒、高耐熱性ポリマーの合成等に利用されている。
このような状況下で、ジアマンタン以上の高次ダイヤモンド化合物についても、その特性を活用できる用途を見出すことは有意義である。
上述のように、高温で液晶性を示す化合物を得るために、分子に様々な構造を導入することが試みられている。しかしながら、十分な成果が挙げられているとはいい難い。
従って、本発明の課題は、優れた液晶性、特に高い相転移温度を有する液晶性化合物を提供することにある。
また、本発明によれば、上記液晶性化合物を含有してなる液晶性組成物が提供される。
更に本発明によれば、上記液晶性組成物を含有してなる液晶表示素子が提供される。
R1及びR2は、それぞれ、直鎖状、分岐状、芳香環状又は脂環状の炭素数1~18の炭化水素基である。R1及びR2で表わされる炭化水素基は、その炭素原子の一部がヘテロ原子又はヘテロ原子を有する基で置換されていてもよく、その水素原子の一部がハロゲン原子又はヘテロ原子を有する基で置換されていてもよい。
なお、本発明において、ヘテロ原子は、周期表15族及び16族に属する原子のほか、周期表14族に属する原子をも包含する概念である。
ヘテロ原子の具体例としては、周期表15族に属する窒素原子、燐原子及び砒素原子、16族に属する酸素原子、硫黄原子及びセレン原子、並びに14族に属する珪素原子及びゲルマニウム原子を挙げることができる。
ヘテロ原子を有する基の具体例としては、ヒドロキシ基、カルボニル基、ホルミル基、アシル基、カルボニルオキシ基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、アシロキシ基等の酸素原子を有する基;アミノ基、ニトリル基、アミド基、イミド基、窒素原子を含有する複素環基(ピリジル基等)等の窒素原子を有する基;チオール基、スルホニル基、スルホン酸基等の硫黄原子を有する基;シリル基、シラノール基、シロキシ基等の珪素原子を有する基;等を挙げることができる。
ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及び沃素原子を挙げることができる。
L1及びL2は、それぞれ、水素原子、置換基を有していてもよい炭化水素基、ハロゲン原子又はヘテロ原子を有する基である。L1又はL2が炭化水素基である場合、それが有していてもよい置換基は、ハロゲン原子又はヘテロ原子を有する基である。
ハロゲン原子及びヘテロ原子を有する基の具体例は、上述のとおりである。
m及びnは、それぞれ、1~4の整数である。
炭素数1~12のアルコキシ基は、上記アルキル基を有するアルコキシ基である。
炭素数1~12のアルキニル基は、特に限定されない。炭素-炭素三重結合の位置は、特に限定されないが、ベンゼン環にアルキニル基が直接結合しているものは、合成が容易であり、分子の剛直性の観点から、好ましい。
炭素数1~12のアルコキシカルボニル基は、特に限定されない。
また、炭素数1~12のアルキロイルオキシ基も、特に限定されない。
また、炭素数6~18のアリール基及び炭素数6~18のアリーロキシ基も、特に限定されない。
また、R3又はR4が分岐を有し、分岐個所が不斉炭素であると、その化合物は、コレステリック液晶又は強誘電性液晶になる可能性がある。
R5及びR6で示されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、イソプロピル基、イソブチル基、イソアミル基、イソデシル基、2-エチルヘキシル基等を挙げることができる。
R5及びR6は、同一であっても異なっていてもよい。
ジアマンタン1とベンゼンとの反応により、化合物2を得る。ビス(トリフルオロアセトキシ)ヨードベンゼンを用いて化合物2をヨウ素化し、化合物3を得る。この反応では、嵩高いジアマンタンの立体障害により、ベンゼン環4位で選択的にヨウ素化が進行する。この化合物3の合成ステップの詳細は、米国特許第5347063号明細書に開示されている。
次いで、メタノール-ベンゼン-ジメチルフォルムアミド(以下、「DMF」)の混合溶媒中、ヨウ化銅(I)を触媒として、化合物3をメタノリシスすることによって、R=メチル基である化合物4:4,9-ビス(4-メトキシフェニル)ジアマンタンを得る。
同様に、メタノールに代えてエタノールを用いることにより、R=エチル基である化合物4:4,9-ビス(4-エトキシフェニル)ジアマンタンを得る。
化合物3とn-プロパノールとの、ヨウ化銅(I)、1,10-フェナントロリン及び炭酸セシウムを用いたカップリング反応により、R=n-プロピル基である化合物4:4,9-ビス(4-プロピルオキシフェニル)ジアマンタンを得る。
n-プロパノールに代えて、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-オクタノール又はn-デカノールを用いて、それぞれ対応する化合物4を得る。
ここで、R7及びR8並びにX1及びX2は、それぞれ、同一であっても異なっていてもよい。
これらのジアマンタン化合物は、それぞれ、式(S2)~(S5)に示す合成ルートによって得ることができる。
液晶性化合物としては、特に、一般式(IV)及び(V)で表わされるジアマンタン化合物が有用である。
液晶性組成物における本発明のジアマンタン化合物からなる液晶性化合物の比率は、特に限定されず、併用される他の液晶性化合物の特性、組成物の粘度、動作温度、用途等を考慮して、適宜、選定することができる。
また、本発明の液晶性組成物は、誘電異方性や粘度等の液晶相の性質を変化させるための添加剤、二色性色素、或いはコレステリック相を誘起するための添加剤(カイラルドーパント)等を含んでいてもよい。
プロトン核磁気共鳴スペクトルの測定条件は、Bruker社製、「DRX300」を用いて、300MHzで、CDCl3又はCD3C(=O)CD3中、TMSを標準として測定した。シグナルの位置は、δ/ppmで示す。
赤外吸収スペクトルは、JASCO社製、「FT/IR-4100」を用い、ダイヤモンドプリズムを用いて、ニート試料について、全反射測定法で測定した。吸収の位置は、波数(cm-1)で示す。
低分解能質量スペクトルは、日本電子社製、「JMS-AX-600」を用いて、EIイオン化法で測定した。強度を相対強度で示す。
示差熱量測定は1~4mgの試料を用い、窒素雰囲気下で行った。温度走査速度は、昇温、降温過程ともに10~15℃/minとした。
融点は、矢沢科学社製、微量融点測定装置「BY-2」を用いて測定した。
偏光顕微鏡観察は、液晶試料をラビング配向処理された基板で挟んだものと、よく洗浄したガラス基板で挟んだもので行った。結晶状の試料をいったん等方相(分解するものに関しては流動性のある液晶相)温度まで昇温し、基板をよくすり合わせて液晶をガラスになじませてから再び冷却し、結晶相(一部はガラス相)から昇温過程の観察を行い、等方性液体に転移したところから、冷却を開始し、降温過程の観察を行った。また必要に応じて、温度を一定に保ち、液晶相光学組織の変化の様子も観察した。
〔4,9-ビス(4-メトキシフェニル)ジアマンタン(化合物(4-1))の合成〕
収量:4.30g(12.6mmol)
収率:76.6%(ジアマンタンに対して)
1H NMR:1.98(18H,s),7.19(2H,tt,J/Hz=7.2,1.6),7.34(4H,t,J/Hz=7.6),7.42(4H,dt,J/Hz=8.4,1.2)
IR:3079(w),3052(w),3014(w),2914(s),2888(s),2849(s),1600(w),1492(m),1461(w),1441(w),1378(w),1350(w),1316(w),1271(w),1248(w),1157(w),1067(w),1049(w),1031(w),1001(w),987(w),966(w),906(w),761(s),699(s),682(w),530(m).
LRMS:342((M+2)+,4.1),341((M+1)+,28.6),340(M+,100),263((M-C6H5)+,3.6).
融点:264.5~265.0℃
収量:2.92g(4.93mmol)
収率:74.2%(化合物2に対して)
1H NMR:1.92(12H,bs),1.96(4H,bs),1.97(4H,bs),7.15(4H,d(AA’BB’),J/Hz=8.7),7.64(4H,d(AA’BB’),J/Hz=8.7)
IR:2911(s),2874(s),2849(s),1488(m),1461(w),1437(w),1391(m),1243(w),1108(w),1073(m),1048(m),1003(m),984(m),893(w),821(s),796(m),760(w),716(w),699(w),526(s).
LRMS:593((M+1)+,59.1),592(M+,100),466((M-I)+,54.2),389((M-C6H5I)+,7.4).
融点:>360℃(融点測定装置の限界を超えるため測定不可)
収量:42.9mg(0.107mmol)
収率:31.9%(化合物3に対して)
1H NMR:1.93(18H,br.s),3.80(6H,s),6.88(4H,d(AA’BB’),J/Hz=8.9),7.33(4H,d(AA’BB’),J/Hz=8.2)
IR:3031(w),3004(w),2953(w),2911(s),2875(s),2851(m),1606(m),1509(s),1463(m),1437(m),1301(m),1250(s),1181(s),1115(w),1076(w),1047(w),1033(m),984(s),825(s),795(m),671(w),653(w),582(m),540(s).
LRMS:401((M+1)+,53),400(M+,100).
〔4,9-ビス(4-エトキシフェニル)ジアマンタン(化合物(4-2))の合成〕
収量:15.3mg(0.0357mmol)
収率:10.4%(化合物3に対して)
1H NMR:1.41(6H,t,J/Hz=7.0),4.03(4H,q,J/Hz=7.1),1.93(18H,br.s),4.03(4H,q,J/Hz=7.1),6.87(4H,d(AA’BB’),J/Hz=9.0),7.32(4H,d(AA’BB’),J/Hz=9.0)
IR:3081(w),3031(w),2952(m),2914(m),2882(m),2848(m),1509(m),1458(m),1439(m),1404(w),1349(w),1302(w),1286(w),1269(w),1253(w),1114(w),1075(m),1049(m),1017(w),985(m),965(w),830(s),798(m),727(w),551(s).
LRMS:429((M+1)+,57),428(M+,100),400((M-C2H2)+,6),186((M-C8H9O)+,9).
〔4,9-ビス(4-プロピルオキシフェニル)ジアマンタン(化合物(4-3))の合成〕
収量:67.9mg(0.149mmol)
収率:44.1%(化合物3に対して)
1H NMR:1.03(6H,t,J/Hz=7.4),1.80(4H,sextet,J/Hz=7.1),1.93(18H,br.s),3.91(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=9.0),7.32(4H,d(AA’BB’),J/Hz=9.0)
IR:3033(w),2910(s),2870(s),1607(m),1510(s),1465(m),1439(w),1378(w),1299(m),1252(s),1179(s),1119(w),1074(w),1039(m),1012(w),974(w),826(m),795(m),753(w),618(m),540(m).
LRMS:457((M+1)+,60),456((M+,100),414((M-C3H6)+,12),372((M-C6H12)+,25),186((M-C12H22O2)+,18).
〔4,9-ビス(4-ブチルオキシフェニル)ジアマンタン~4,9-ビス(4-デシルオキシフェニル)ジアマンタン(化合物(4-4)~(4-8))の合成〕
(実施例4)
〔4,9-ビス(4-ブチルオキシフェニル)ジアマンタン(化合物(4-4))の合成〕
1-ブタノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-ブチルオキシフェニル)ジアマンタン(化合物(4-4))の針状結晶を得た。
収量:105.8mg(0.218mmol)
収率:64.0%(化合物3に対して)
1H NMR:0.97(6H,t,J/Hz=7.4),1.42-1.54(4H,m),1.71-1.81(4H,m),1.93(18H,br.s),3.95(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=8.9),7.32(4H,d(AA’BB’),J/Hz=8.9)
IR:3033(w),2910(s),2871(s),1607(m),1465(s),1378(m),1299(w),1252(s),1179(m),1119(w),1074(m),1039(w),1012(m),974(m),826(m),795(m),757(w),618(w),540(m)
LRMS:485((M+1)+,59),484((M+,100),428((M-C4H4)+,12),372((M-C8H8)+,25),186((M-C20H26O2)+,18).
〔4,9-ビス(4-ペンチルオキシフェニル)ジアマンタン(化合物(4-5))の合成〕
1-ペンタノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-ペンチルオキシフェニル)ジアマンタン(化合物(4-5))の針状結晶を得た。
収量:129.1mg(0.199mmol)
収率:61.2%(化合物3に対して)
1H NMR:0.93(6H,t,J/Hz=7.1),1.31-1.49(8H,m),1.77(4H,quintet,J/Hz=6.6),1.93(18H,br.s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=8.9),7.32(4H,d(AA’BB’),J/Hz=8.9)
IR:3046(w),3030(w),2952(m),2931(s),2907(s),2885(s),2867(s),1607(m),1577(w),1510(s),1474(m),1440(w),1394(w),1377(w),1351(w),1299(w),1252(s),1239(s),1184(s),1119(w),1051(m),1028(m),984(w),835(m),798(w),729(w),620(m),542(m).
LRMS:513((M+1)+,62),512((M+,100),442((M-C5H10)+,14),372((M-C10H20)+,36),186((M-C22H30O2)+,13).
〔4,9-ビス(4-ヘキシルオキシフェニル)ジアマンタン(化合物(4-6))の合成〕
1-ヘキサノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-ヘキシルオキシフェニル)ジアマンタン(化合物(4-6))の白色針状結晶を得た。
収量:99.3mg(0.184mmol)
収率:65.5%(化合物3に対して)
1H NMR:0.90(6H,t,J/Hz=6.9),1.30-1.35(8H,m),1.41-1.47(4H,m),1.77(4H,quintet,J/Hz=6.8),1.93(18H,br.s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=8.9),7.32(4H,d(AA’BB’),J/Hz=8.9)
IR:3033(w),2916(s),2879(s),2850(s),1607(m),1577(w),1509(s),1467(m),1393(w),1297(w),1250(s),1180(s),1118(w),1048(w),983(w),825(s),795(m),727(w),619(w),540(m).
LRMS:542((M+1)+,62),541((M+,100),456((M-C6H12)+,14),372((M-C12H24)+,36),186((M-C24H34O2)+,10).
〔4,9-ビス(4-オクチルオキシフェニル)ジアマンタン(化合物(4-7))の合成〕
1-オクタノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-オクチルオキシフェニル)ジアマンタン(化合物(4-7))の白色針状結晶を得た。
収量:104.4mg(0.175mmol)
収率:50.8%(化合物3に対して)
1H NMR:0.89(6H,t,J/Hz=7.4),1.29-1.48(20H,m),1.77(4H,quintet,J/Hz=6.4),1.93(18H,br. s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=9.0),7.31(4H,d(AA’BB’),J/Hz=9.0)
IR:3041(w),2952(m),2918(s),2887(s),2848(s),1608(m),1577(w),1475(m),1439(w),1392(w),1306(m),1294(m),1251(s),1240(s),1181(s),1117(m),1047(s),1025(s),1014(m),1003(w),984(w),828(s),796(m),757(w),725(m),541(s).
LRMS:598((M+1)+,73),597((M+,100),484((M-C8H8)+,14),372((M-C16H16)+,33),186((M-C28H42O2)+,7.5).
〔4,9-ビス(4-デシルオキシフェニル)ジアマンタン(化合物(4-8))の合成〕
1-デカノールを使用するほかは、実施例3と同様にして、4,9-ビス(4-デシルオキシフェニル)ジアマンタン(化合物(4-8))の白色針状結晶を得た。
収量:119.5mg(0.183mmol)
収率:51.4%(化合物3に対して)
1H NMR:0.88(6H,t,J/Hz=6.0),1.27-1.48(28H,m),1.77(4H,quintet,J/Hz=6.8),1.93(18H,br.s),3.94(4H,t,J/Hz=6.5),6.87(4H,d(AA’BB’),J/Hz=9.0),7.31(4H,d(AA’BB’),J/Hz=9.0)
IR:3057(w),2953(m),2919(s),2885(s),2870(s),2850(s),1611(m),1578(w),1510(s),1469(m),1439(w),1390(w),1301(m),1254(s),1236(s),1180(s),1114(w),1031(m),985(w),835(m),796(m),723(w),621(w),542(m).
LRMS:655((M+2)+,46),654((M+1)+,62),653((M+,100),513((M-C10H20)+,19),372((M-C10H20)+,40).
〔1,3-ビス(4-ヘキシルオキシフェニル)アダマンタン(化合物4C)の合成〕
10ml二つ口ナスフラスコに水素化ナトリウム(29.6mg,0.721mmol,2.6eq.)、スピナーを入れ、系内を窒素置換した。これにDMF(2.5ml)を加え、氷浴にて系内を0℃にし、カヌーラで(*1)を滴下した(4drops/sec)。系内を0℃に保ったまま30分攪拌し、1-ブロモヘキサン(0.11ml,0.786mmol,2.8eq.)を加え室温に戻しながら12時間攪拌した後、油浴にて系内を50℃にし、3時間攪拌した。その後70℃で更に2時間攪拌した。系内が室温になるまで放置し、水を加え、これをクロロホルムで3回抽出し、集めた有機層を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:5%酢酸エチル/ヘキサン)で精製し、1,3-ビス(4-ヘキシルオキシフェニル)アダマンタン(化合物4C)の白色粉末を得た。
収量:98.3mg(0.201mmol)
収率:73.1%(化合物10Cに対して)
1H NMR:0.89(6H,t,J/Hz=7.0),1.33(8H,m),1.44(4H,m),1.76(6H,m,J/Hz=6.8,methylene),1.76(2H,br.s,adamantane),1.91(8H,br.s),1.98(2H,br.s),2.28(2H,br.s),3.93(4H,t,J/Hz=6.6),6.85(4H,d(AA’BB’),J/Hz=8.9),7.29(4H,d(AA’BB’),J/Hz=8.9)
IR:3051(w),3038(w),2934(s),2925(s),2917(s),2850(s),1607(m),1577(w),1510(s),1473(m),1451(w),1392(w),1292(w),1245(s),1182(s),1127(w),1111(w),1058(w),1026(m),1007(w),995(w),825(m),802(m),730(w),612(w),551(m).
LRMS:489((M+1)+,54),488((M+,100),404((M-C6H12)+,14),320((M-C12H24)+,3.3).
〔4,9-ビス{4-(1-ヘプチニル)フェニル}ジアマンタン(化合物5)の合成〕
収量:237.0mg(0.448mmol)
収率:66.4%(化合物3に対して)
1H NMR:0.92(6H,t,J/Hz=7.0),1.31-1.45(8H,m),1.59(4H,m),1.94(18H,br.s),2.39(4H,t,J/Hz=7.2),7.31(4H,d(AA’BB’),J/Hz=8.7Hz),7.36(4H,d(AA’BB’),J/Hz=8.7Hz)
IR:3081(w),3031(w),2952(m),2914(m),2883(m),2848(m),1509(m),1458(m),1439(m),1404(w),1349(w),1301(w),1286(w),1268(m),1114(w),1075(m),1049(m),1017(w),985(m),831(s),798(m),727(w),551(s).
LRMS:530((M+1)+,73),529((M+,72),357((M-C13H14)+,100),185((M-C26H28)+,18).
〔4,9-ビス(4-ヘプチルフェニル)ジアマンタン(化合物6)の合成〕
収量:37.5mg(0.0689mmol)
収率:88.4%(化合物5に対して)
1H NMR:0.87(6H,t,J/Hz=6.8),1.25-1.33(16H,m),1.55-1.63(4H,m),1.95(18H,br.s),2.57(4H,t,J/Hz=7.9),7.15(4H,d(AA’BB’),J/Hz=8.3Hz),7.32(4H,d(AA’BB’),J/Hz=8.3Hz)
IR:3085(w),3045(w),3015(w),2999(w),2915(s),2884(s),2849(s),1513(m),1464(m),1439(w),1412(w),1378(w),1271(w),1249(w),1123(w),1075(w),1049(w),1017(w),985(w),834(m),814(w),794(m),723(w),650(w),616(w),542(m).
LRMS:536(M+,100),450((M-C6H6)+,37),361((M-C13H19)+,12),183((M-C26H41)+,15).
〔4,9-ビス(4-ペンチルオキシカルボニルフェニル)ジアマンタン(化合物9)の合成〕
収量:50.6mg(0.0845mmol)
収率:78.4%(化合物5に対して)
1H NMR(300MHz,CDCl3,TMS)〕:δ/ppm,0.91(6H,t,J/Hz=7.1),1.33-1.40(8H,m),1.65-1.75(4H,m),1.99(18H,br.s),2.87(4H,t,J/Hz=7.3),7.53(4H,d(AA’BB’),J/Hz=8.9Hz),7.95(4H,d(AA’BB’),J/Hz=8.7Hz)
IR:2957(m),2914(m),2885(m),2850(m),1776,(m),1667(s),1604(m),1567(w),1512(w),1459(m),1439(m),1409(m),1283(m),1188(m),1122(m),1075(m),1049(m),986(m),954(m),938(m),850(m),841(m),827(m),813(m),798(m),774(m),706(m),542(m),530(m).
LRMS:592(M+,8.9).
融点:>360℃(融点測定装置の限界を超えたため測定不可)
収量:42.2mg(0.100mmol)
収率:定量的(化合物7に対して)
IR:2915(s),2888(s),2664(m),1677(s),1607(m),1569(w),1457(w),1419(m),1283(m),1189(m),931(w),852(w),773(w),706(w),547(w),526(w).
50mlナシフラスコにセプタムを取り付け系内を窒素置換した。これにベンゼン(1ml)、1-ペンタノール(0.5ml,excess)、ピリジン(0.1ml)を加え攪拌した。(*2)
上記の粗酸塩化物の入った30mlフラスコに還流管、風船を取り付け、これに(*2)の溶液をカヌーラを用いて滴下した[2-3drops/sec,滴下後ベンゼン1mlで洗浄]。滴下終了後、1.5時間緩やかに還流を行った。反応後、溶液を室温まで冷却し、水を加え、水相を酢酸エチルで3回抽出し、集めた有機層を水、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別、溶媒を減圧留去した後、フラッシュカラムクロマトグラフィー(展開溶媒:2%酢酸エチル/ヘキサン)で精製し白色粉末(22.9.mg)を得た。これをメタノール/ヘキサンの混合溶媒中から再結晶し、4,9-ビス(4-ペンチルオキシカルボニルフェニル)ジアマンタン(化合物9)の白色薄板状結晶を得た。
収量:16.6mg(0.0292mmol)
収率:35.8%(化合物8に対して)
1H NMR:0.93(6H,t,J/Hz=7.0),1.37-1.47(8H,m),1.76(4H,quintet,J/Hz=7.2),1.94(18H,br.s),4.31(4H,t,J/Hz=6.6),7.48(4H,d(AA’BB’),J/Hz=8.7Hz),8.01(4H,d(AA’BB’),J/Hz=8.7Hz)
IR:3053(w),2954(m),2915(m),2852(m),1712(s),1607(m),1459(w),1408(w),1274(s),1187(m),1105(s),1050(w),1016(m),962(m),850(m),706(m),531(w).
LRMS:568((M+,8.1),498((M-C5H10)+,25),481((M-C5H11O)+,19),427((M-C10H21)+,100),411((M-C10H21O)+,9).
〔4,9-ビス(4-ヘキサノイルオキシフェニル)ジアマンタン(化合物11)の合成〕
収量:36.4mg(0.0977mmol)
収率:83.5%(化合物(4-5)に対して)
1H NMR(300MHz,CD3C(=O)CD3,TMS)〕:δ/ppm,1.93(12H,br.s),1.93(6H,br.s),6.78(4H,d(AA’BB’),J/Hz=8.9Hz),7.25(4H,d(AA’BB’),J/Hz=8.9Hz),8.10(1H,s)
IR:3595(s),3380(br.s),3251(br.s),3023(m),2910(s),2883(s),2847(m),1613(m),1596(m),1513(s),1452(m),1378(m),1247(s),1181(m),1048(w),1013(w),986(w),826(m),797(m),581(m),537(m).
LRMS:373((M+1)+,31),372(M+,100),186((M-C12H10O2)+,8).
融点:355.0~356.0℃
収量:17.7mg(0.0311mmol)
収率:41.7%(化合物10に対して)
1H NMR:0.93(6H,t,J/Hz=7.0),1.37-1.42(8H,m),1.73-1.81(4H,m),1.95(18H,br.s),2.55(4H,t,J/Hz=7.3),7.03(4H,d(AA’BB’),J/Hz=8.9Hz),7.40(4H,d(AA’BB’),J/Hz=8.7Hz)
IR:3036(w),2954(m),2910(s),2880(s),2870(s),2849(s),1753(s),1505(m),1460(w),1439(w),1415(w),1376(w),1317(w),1247(w),1205(m),1169(m),1141(m),1109(m),1074(w),1014(w),984(w),837(m),796(w),540(w).
LRMS:568(M+,3),470((M-C6H10O)+,18),372((M-C12H20O2)+,100).
表1において、Cryは結晶相を、Smはスメクチック相を、Nmはネマチック相を、Isは等方相を、それぞれ、示す。
*は、各化合物について、その相が存在することを示す。また、矢印「→」は、矢印の左側の相から右側の相への転移を、矢印「←」は、矢印の右側の相から左側の相への転移を示し、数値は、その転移温度(℃)を示す。
なお、スメクチック相については、複数のスメクチック相を有するものがあるが、昇温過程については、結晶相からスメクチック相への転移温度、及びスメクチック相からネマチック相又は等方相への転移温度を、また、降温過程においては、等方相又はネマチック相からスメクチック相への転移温度、及びスメクチック相から結晶相への転移温度を示している。また、一部にガラス相を示すものも存在している。
一般式(IV)で表わされる化合物:4,9-ビス(4-アルコキシフェニル)ジアマンタンは、スメクチック相及びネマチック相を有し、非常に高いネマチック相上限温度を示すことが明らかである。なお、アルキル基の炭素数が8又は10のものは、ネマチック相を有しないが、スメクチック相の上限温度が200℃を超えている。
ジアマンタン部分をアダマンタンに置き換えた1,3-ビス(4-ヘキシルオキシフェニル)アダマンタン(化合物4C)は液晶性を示さないことを、相転移温度の測定及び偏光顕微鏡観察のいずれからも、確認した。これは、この化合物の折れ曲がり構造が液晶相の発現を妨げていると考えられる。
一般式(Vb)で表わされる化合物はスメクチック相のみを示し、一般式(Vc)で表わされる化合物はネマチック相のみを示し、一般式(Va)及び(Vd)で表わされる化合物5及び化合物11は、それぞれ、スメクチック相及びネマチック相の両方を示すことが分かる。
(1)昇温過程(185.5℃-288.1℃)図1(b)、(c)及び(d)参照
結晶相(図1(a))から温度を上げていくと、185℃付近で融解が始まり、図1(b)のような複雑な光学組織が観察された。更に温度を上げていくと210℃付近で流動性が増し、図1(c)のようなスメクチック相を特徴づける扇状組織が部分的に現れた。230℃付近で図1(d)のようなホメオトロピック配向へと変化した。
(2)昇温過程(288.1℃-309.2℃)図1(e)参照
更に昇温していくと、図1(e)のようなネマチック相を特徴づける、シュリーレン組織が観察された。309.2℃以上に昇温すると、暗視野になったため、等方相となったと考えられる。
(3)降温過程(284.9℃-244.2℃)図1(f)参照
等方性液体から降温させていくと、図1(f)のような小球状の組織が観察された。スメクチック相よりも高温側の液晶相であることから、ネマチック相と同定した。また、このときの温度をネマチック相/等方相相転移温度とした。
(4)降温過程(244.2℃-100.5℃)図1(g)、(i)及び(j)参照
ネマチック相から冷却を続けると、244.2℃から、短棒状組織が現れ始め、直ちに図1(g)のような扇状組織に変化し、200℃近傍で、図1(g)の扇状組織が、図1(h)に示すようなモザイク組織へと変化した。また同じ測定試料の別位置では、図1(i)に示すような境界のはっきりしない扇状の組織が観察された。不安定な扇状組織がモザイクへ変化する途中の組織であると思われる。この状態から更に冷却を続けると135℃付近で図1(j)のような多角形組織が観察され、この組織のまま結晶相へと転移した(図1(k))。
Claims (8)
- 一般式(I)で表わされるジアマンタン化合物。
- 請求の範囲第1項~第5項のいずれか1項に記載のジアマンタン化合物からなる液晶性化合物。
- 請求の範囲第6項に記載の液晶性化合物を含有してなる液晶性組成物。
- 請求の範囲第7項記載の液晶性組成物を含有してなる液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/054342 WO2009113155A1 (ja) | 2008-03-11 | 2008-03-11 | 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 |
JP2010502659A JP5439647B2 (ja) | 2008-03-11 | 2008-03-11 | 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 |
US12/922,285 US8614348B2 (en) | 2008-03-11 | 2008-03-11 | Diamantane compounds, liquid crystalline compounds, and liquid crystalline compositions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/054342 WO2009113155A1 (ja) | 2008-03-11 | 2008-03-11 | 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113155A1 true WO2009113155A1 (ja) | 2009-09-17 |
Family
ID=41064836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/054342 WO2009113155A1 (ja) | 2008-03-11 | 2008-03-11 | 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8614348B2 (ja) |
JP (1) | JP5439647B2 (ja) |
WO (1) | WO2009113155A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140472A (ja) * | 2010-01-08 | 2011-07-21 | Yokohama National Univ | 新規なジアマンタン化合物、液晶性化合物及び液晶組成物 |
JP2013148883A (ja) * | 2011-12-20 | 2013-08-01 | Sumitomo Chemical Co Ltd | 偏光膜形成用組成物及び偏光膜 |
KR20160026780A (ko) * | 2014-08-29 | 2016-03-09 | 후지필름 가부시키가이샤 | 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347063A (en) * | 1993-03-09 | 1994-09-13 | Mobil Oil Corporation | Method for direct arylation of diamondoids |
-
2008
- 2008-03-11 JP JP2010502659A patent/JP5439647B2/ja not_active Expired - Fee Related
- 2008-03-11 WO PCT/JP2008/054342 patent/WO2009113155A1/ja active Application Filing
- 2008-03-11 US US12/922,285 patent/US8614348B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
CHEMICAL ABSTRACTS, vol. 129, Columbus, Ohio, US; abstract no. 231098 * |
CHEMICAL ABSTRACTS, vol. 141, Columbus, Ohio, US; abstract no. 46766 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140472A (ja) * | 2010-01-08 | 2011-07-21 | Yokohama National Univ | 新規なジアマンタン化合物、液晶性化合物及び液晶組成物 |
JP2013148883A (ja) * | 2011-12-20 | 2013-08-01 | Sumitomo Chemical Co Ltd | 偏光膜形成用組成物及び偏光膜 |
JP2020057020A (ja) * | 2011-12-20 | 2020-04-09 | 住友化学株式会社 | 偏光膜形成用組成物及び偏光膜 |
KR20160026780A (ko) * | 2014-08-29 | 2016-03-09 | 후지필름 가부시키가이샤 | 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치 |
KR102443875B1 (ko) * | 2014-08-29 | 2022-09-16 | 후지필름 가부시키가이샤 | 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009113155A1 (ja) | 2011-07-14 |
US8614348B2 (en) | 2013-12-24 |
US20110015426A1 (en) | 2011-01-20 |
JP5439647B2 (ja) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI670264B (zh) | 4,6-二氟二苯并噻吩衍生物 | |
CN109134423B (zh) | 一种化合物及其液晶组合物和光电显示器件 | |
TWI663157B (zh) | 4,6-二氟二苯并呋喃衍生物 | |
Cristiano et al. | Synthesis and characterization of luminescent hockey stick‐shaped liquid crystalline compounds | |
CN107207965B (zh) | 向列液晶组合物和使用其的液晶显示元件 | |
Nakagawa et al. | Synthesis and liquid crystalline behavior of azulene-based liquid crystals with 6-hexadecyl substituents on each azulene ring | |
JPH0334987A (ja) | シリル化された安息香酸誘導体、その製法、新規化合物を含有する液晶表示装置 | |
JP4357337B2 (ja) | 光学活性化合物及び該化合物を含有した液晶組成物 | |
KR101140037B1 (ko) | 광응답성 액정 조성물 | |
JP5439647B2 (ja) | 新規なジアマンタン化合物、液晶性化合物及び液晶性組成物 | |
CN102875339B (zh) | 液晶化合物及其制备方法和应用 | |
Guan et al. | Synthesis and properties of novel liquid crystalline materials with super high birefringence: styrene monomers bearing diacetylenes, naphthyl, and nitrogen-containing groups | |
US5326495A (en) | Tetrasubstituted methanes having liquid-crystalline properties | |
JPH0568520B2 (ja) | ||
Zhang et al. | Design, synthesis, and characterisation of symmetrical bent-core liquid crystalline dimers with diacetylene spacer | |
JP5545517B2 (ja) | 4環性アジン化合物 | |
JP5527522B2 (ja) | 新規なジアマンタン化合物、液晶性化合物及び液晶組成物 | |
Al-Jumaili et al. | Hydrogen-bonded ionic liquid crystals based on multi-armed structure: synthesis and characterization | |
JP4521738B2 (ja) | ベンゾチアゾール化合物、その製造法、液晶組成物及び液晶素子 | |
JP2005048007A (ja) | トリフルオロナフタレン誘導体を含有する液晶組成物と表示素子及び液晶性化合物。 | |
Tang et al. | The fluorescent liquid crystal and spiro-silicon bridged compounds based on silafluorene core | |
JP3651023B2 (ja) | ヘキセンジイン誘導体および液晶組成物 | |
JP2019189562A (ja) | ジアセチレン誘導体 | |
CN112029514B (zh) | 一种聚合物稳定型蓝相液晶组合物及其制备方法 | |
JP2010024157A (ja) | ジアマンタン化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08721758 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010502659 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12922285 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08721758 Country of ref document: EP Kind code of ref document: A1 |