WO2009110130A1 - 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置 - Google Patents

還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置 Download PDF

Info

Publication number
WO2009110130A1
WO2009110130A1 PCT/JP2008/068527 JP2008068527W WO2009110130A1 WO 2009110130 A1 WO2009110130 A1 WO 2009110130A1 JP 2008068527 W JP2008068527 W JP 2008068527W WO 2009110130 A1 WO2009110130 A1 WO 2009110130A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
injection valve
reducer
exhaust
combustion engine
Prior art date
Application number
PCT/JP2008/068527
Other languages
English (en)
French (fr)
Inventor
弘之 笠原
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to US12/921,276 priority Critical patent/US8590291B2/en
Priority to CN2008801235492A priority patent/CN101910573B/zh
Publication of WO2009110130A1 publication Critical patent/WO2009110130A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for a reducing agent supply device, a reducing agent recovery method, and an exhaust purification device.
  • the present invention relates to a control device for a reducing agent supply device provided with a means for recovering a reducing agent in a reducing agent supply path, a method for recovering the reducing agent, and an exhaust purification device provided with such a control device.
  • the exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (hereinafter referred to as “NO x ”) that may affect the environment.
  • NO x nitrogen oxides
  • an SCR Selective Catalytic Reduction
  • a reducing agent such as an aqueous urea solution
  • the urea aqueous solution used as a reducing agent used in this SCR system has a characteristic that the solvent evaporates and crystallizes when left in a predetermined temperature range or left for a long time. Further, the urea aqueous solution may be frozen when cold.
  • the reducing agent is solidified in the reducing agent supply path, the supply of the reducing agent into the exhaust passage becomes insufficient, and NO X reduction purification by the reduction catalyst does not proceed sufficiently, and the NO X that has not been purified. May be released into the atmosphere.
  • an exhaust emission control device in which clogging in the reducing agent supply path is less likely to occur.
  • the operation determining means for determining the operating state of the engine
  • at least the upper space of the reducing agent container (storage tank) 324 is increased.
  • an exhaust emission control device that includes pressure reducing means (pressure regulator 338) for reducing the pressure to atmospheric pressure, and that reliably recovers the reducing agent present in the reducing agent supply path into the reducing agent container 324 when the engine is stopped.
  • JP 2006-132384 A (claim 4, paragraph [0021], FIG. 2)
  • an object of the present invention is to provide a control device for a reducing agent supply device and a reducing agent recovery method that can prevent leakage of the reducing agent into the exhaust passage accompanying the control of collecting the reducing agent in the reducing agent supply path.
  • An exhaust emission control device is also provided.
  • the reduction in the exhaust gas purification apparatus that adds the reducing agent to the exhaust upstream side of the reduction catalyst disposed in the exhaust passage of the internal combustion engine and reduces and purifies nitrogen oxides in the exhaust gas with the reduction catalyst.
  • a stop detector for detecting a stop of an internal combustion engine which is a control device for a reducing agent supply device for controlling a reducing agent supply device having a reducing agent recovery means for recovering a reducing agent in an agent supply path.
  • a reducing agent recovery means control unit for starting recovery of the reducing agent in the reducing agent supply path when the internal combustion engine is stopped, and the reducing agent injection valve is closed at the start of the operation of the reducing agent recovery means for a predetermined time.
  • a control device for a reducing agent supply device comprising an injection valve control unit that opens a reducing agent injection valve after elapse of time, and the above-described problems can be solved.
  • the injection valve control unit preferably opens the reducing agent injection valve when the pressure in the reducing agent supply path becomes equal to or lower than a predetermined reference value.
  • the injection valve control unit when the elapsed time after starting the recovery of the reducing agent has passed a preset reference time, It is preferable to open the injection valve.
  • the control device of the reducing agent supply device of the present invention it is preferable to open the reducing agent injection valve intermittently when the reducing agent injection valve is opened after a predetermined time has elapsed.
  • Another aspect of the present invention is an exhaust purification device that adds a reducing agent to an exhaust upstream side of a reduction catalyst disposed in an exhaust passage of an internal combustion engine, and reduces and purifies nitrogen oxides in exhaust gas with the reduction catalyst.
  • the reducing agent recovery method for recovering the reducing agent in the reducing agent supply path to the storage tank when the internal combustion engine is stopped the operation of the reducing agent recovery means is started with the reducing agent injection valve closed when the internal combustion engine is stopped.
  • a reducing agent recovery method wherein the reducing agent injection valve is opened after a lapse of a predetermined time.
  • Still another aspect of the present invention provides an exhaust purification system in which a reducing agent is added to an exhaust upstream side of a reduction catalyst disposed in an exhaust passage of an internal combustion engine, and nitrogen oxides in exhaust gas are reduced and purified by the reduction catalyst.
  • a storage tank in which a reducing agent is stored, a pressure feeding means for pumping the reducing agent in the storage tank, a reducing agent injection valve for controlling injection of the reducing agent to be pumped, and an internal combustion engine.
  • the reducing agent recovery means for recovering the reducing agent remaining in the path from the tank to the reducing agent injection valve in the storage tank, and the operation of the reducing agent recovery means with the reducing agent injection valve closed, start a predetermined time
  • An exhaust emission control device comprising: a reducing agent injection valve control unit that opens a reducing agent injection valve.
  • the reducing agent injection valve is closed at the start of the operation of the reducing agent recovery means, and the reducing agent injection valve is opened after a predetermined time has elapsed.
  • the reducing agent injection valve is opened while the pressure in the path is sufficiently reduced. Accordingly, leakage of the reducing agent from the reducing agent injection valve into the exhaust passage is reduced, and the reducing agent is prevented from being deposited in the exhaust passage and the reduction catalyst being wetted by the reducing agent. Can be saved.
  • the injection valve control unit may reduce the reducing agent injection valve when the pressure in the reducing agent supply path becomes equal to or less than a reference value. By opening the injection valve, it is confirmed that the pressure in the reducing agent supply path has decreased, and then the reducing agent injection valve is opened.
  • the injection valve control is triggered by the fact that the elapsed time since the operation of the reducing agent recovery means has exceeded the reference time in delaying the opening time of the reducing agent injection valve. Even when the pressure sensor is not used, the reducing agent injection valve is opened in a state where the pressure in the reducing agent supply path is sufficiently reduced by opening the reducing agent injection valve.
  • the reducing agent injection valve is closed at the start of the operation of the reducing agent recovery means, and the reducing agent injection valve is opened after a predetermined time has passed.
  • the reducing agent injection valve is opened while the pressure in the path is sufficiently reduced. Accordingly, leakage of the reducing agent from the reducing agent injection valve into the exhaust passage is reduced, and the reducing agent is prevented from being deposited in the exhaust passage and the reduction catalyst being wetted by the reducing agent. Can be saved.
  • the exhaust emission control device of the present invention when the internal combustion engine is stopped, the reducing agent in the reducing agent supply path is recovered in the storage tank without leakage of the reducing agent into the exhaust passage. Precipitation in the passage and the reduction catalyst being prevented from getting wet with the reducing agent are prevented, the exhaust purification efficiency is prevented from being lowered, and waste of the reducing agent is suppressed.
  • FIG. 1 is a diagram showing a configuration example of an exhaust emission control device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of a control unit (DCU) of the reducing agent supply device provided in the exhaust emission control device of the first embodiment.
  • FIG. 3 is a flowchart showing an example of the reducing agent recovery control performed by the exhaust purification system of the first embodiment.
  • FIG. 4 is a timing chart showing an example of reducing agent recovery control performed by the exhaust emission control device of the first embodiment.
  • FIG. 5 is a block diagram showing a configuration example of a control unit (DCU) of the reducing agent supply device provided in the exhaust gas purification device of the second embodiment.
  • FIG. DCU control unit
  • FIG. 6 is a flowchart showing an example of reducing agent recovery control performed by the exhaust purification system of the second embodiment.
  • FIG. 7 is a timing chart showing an example of reducing agent recovery control performed by the exhaust emission control device of the second embodiment.
  • FIG. 8 is a diagram showing a configuration example of a conventional exhaust purification device.
  • the exhaust gas purification apparatus compares the pressure value in the reducing agent supply path with a predetermined reference value after the start of the operation of the reducing agent recovery means, and the pressure value is a predetermined reference value. It is an exhaust emission control device that performs control to open the reducing agent injection valve when the value becomes lower than the value.
  • the exhaust purification device 10 is disposed in the middle of an exhaust passage through which exhaust gas discharged from the internal combustion engine 5 passes, and includes a reduction catalyst 13 for selectively reducing NO x contained in the exhaust gas, A reducing agent supply device 20 for adding a reducing agent into the exhaust passage on the upstream side of the catalyst 13 is provided.
  • temperature sensors 15 and 16 are disposed on the upstream side and the downstream side of the reduction catalyst 13 in the exhaust passage, respectively, and a NO x sensor 17 is disposed on the downstream side of the reduction catalyst 13.
  • the reduction catalyst 13 and the temperature sensors 15 and 16, construction of the NO X sensor 17 is not particularly limited, any known is used.
  • the reducing agent supply device 20 reduces the reducing agent in the storage tank 50, the reducing agent injection valve 31 fixed to the exhaust pipe 11 on the upstream side of the reducing catalyst 13, the storage tank 50 storing the reducing agent.
  • a control device that controls the reducing agent injection valve 31 and the pump 41 ( Hereinafter, “DCU: DosingDCControl Unit”) is provided.
  • the storage tank 50 and the pump module 40 are connected by a first supply path 57
  • the pump module 40 and the reducing agent injection valve 31 are connected by a second supply path 58
  • the pump module 40 and the storage tank. 50 is connected by a reflux path 59.
  • the DCU 60 is connected to the CAN 65.
  • the CAN 65 is also connected to a control unit 70 (hereinafter referred to as “ECU: Electronic Control Unit”) for controlling the operating state of the internal combustion engine.
  • the CAN 65 is connected to the fuel injection amount, the injection timing, and the rotational speed.
  • the DCU 60 connected to the CAN 65 can read information on the CAN 65 and output information on the CAN 65.
  • the ECU 70 and the DCU 60 are composed of separate control units and can exchange information via the CAN 65.
  • the ECU 70 and the DCU 60 are configured as one control unit. It doesn't matter.
  • the reducing agent injection valve 31 for example, an ON-OFF valve in which ON / OFF of the valve opening is controlled is used.
  • the reducing agent pumped from the pump module 40 to the reducing agent injection valve 31 is maintained at a predetermined pressure, and the reducing agent injection is performed by energization control by a reducing agent injection valve operating device (shown as “Udv operating device” in FIG. 1) 67. While the valve 31 is open, the reducing agent is injected into the exhaust passage.
  • the pump module 40 is provided with a pump 41.
  • the pump 41 pumps the reducing agent in the storage tank 50 via the first supply path 57 and pumps it to the reducing agent injection valve 31 via the second supply path 58.
  • the pump 41 is composed of, for example, an electric diaphragm pump, and energization control is performed by a signal output from the DCU 60.
  • the second supply path 58 connecting the pump 41 and the reducing agent injection valve 31 is provided with a pressure sensor 43, and the sensor value of the pressure sensor 43 is output as a signal to the DCU 60. Based on the sensor value of the pressure sensor 43, the drive duty of the pump 41 is controlled so that the pressure value in the second supply path 58 is maintained at a predetermined value.
  • the pump 41 in a state where the pressure in the second supply path 58 is below a predetermined value, the pump 41 is controlled so that the drive duty is increased. Conversely, in a state where the pressure in the second supply path 58 exceeds a predetermined value, the pump 41 is controlled so that the driving duty is reduced.
  • the “pump drive duty” means the ratio of the pump drive time in one cycle in PWM (pulse width modulation) control.
  • the second supply path 58 is provided with a main filter 47, and foreign substances in the reducing agent pumped to the reducing agent injection valve 31 are collected by the main filter 47.
  • a reflux path 59 is branched from the second supply path 58 between the main filter 47 and the pump 41, and the reflux path 59 is connected to the storage tank 50.
  • An orifice 45 is provided in the middle of the reflux path 59, and a pressure control valve 49 is provided closer to the storage tank 50 than the orifice 45. Since the reducing agent supply device 20 includes such a reflux path 59, the second supply path 58 is in a state where the reducing agent is pumped by the pump 41 that is feedback-controlled based on the sensor value of the pressure sensor 43. When the internal pressure value exceeds a predetermined value, the pressure control valve 49 is opened, and a part of the reducing agent is returned to the storage tank 50.
  • the pressure control valve 49 for example, a known check valve or the like is used.
  • the pump module 40 is provided with a reverting valve 71.
  • the pump module 40, the reducing agent injection valve 31, the first supply path 57, and the second supply path 57 are driven.
  • the reducing agent in the reducing agent supply path including the supply path 58 is collected in the storage tank 50. Therefore, after the freezing of the reducing agent in the reducing agent supply path under a temperature condition in which the reducing agent is likely to freeze, such as during cold weather, or after the internal combustion engine 5 is stopped, the reducing agent supply device 20 Crystallization of the reducing agent in the reducing agent supply path when the control is not performed for a long time is prevented. As a result, when the operation of the internal combustion engine is resumed, occurrence of injection failure due to clogging of the reducing agent supply path is suppressed.
  • the reverting valve 71 is, for example, a switching valve having a function of switching the flow path of the reducing agent from the forward direction from the storage tank 50 to the pump module 40 to the reverse direction from the pump module 40 to the storage tank 50. .
  • the reversing valve 71 switches the flow path in the reverse direction, whereby the reducing agent remaining in the reducing agent supply path is recovered in the storage tank 50.
  • Control Device of Reducing Agent Supply Device The DCU 60 provided in the exhaust gas purification device 10 shown in FIG. 1 basically exists on the CAN 65 so that an appropriate amount of reducing agent is supplied into the exhaust passage 11. Control signals for the pump 41 and the reducing agent injection valve 31 are transmitted based on various information. Further, the DCU 60 has a function as a control device for performing recovery control of the reducing agent.
  • FIG. 2 is a diagram for explaining an example of the configuration of the DCU 60 provided in the exhaust emission control device of the present embodiment, and a functional block is provided for portions related to the reducing agent injection control and the reducing agent recovery control.
  • the DCU 60 is mainly configured by a microcomputer having a known configuration, and includes a CAN information acquisition / generation unit (indicated as “CAN information extraction / generation” in FIG. 2), and an internal combustion engine stop detection unit (in FIG. 2).
  • Engine stop detection reverting valve controller (indicated as “rtv control” in FIG. 2), pump controller (indicated as “pump control” in FIG. 2), reducing agent injection A valve control unit (indicated as “udv control” in FIG. 2) and the like are provided as main elements.
  • Each of these units is specifically realized by executing a program by a microcomputer (not shown).
  • the CAN information extraction and generation unit is information existing on the CAN 65, including information on the on / off state of the key switch for starting the internal combustion engine, the sensor value of the pressure sensor provided in the second supply path, and the operating state of the internal combustion engine. Is read and output to the other parts.
  • the stop detection unit detects a state in which the key switch for starting the internal combustion engine is turned off from on, and is used as a trigger for starting the recovery control of the reducing agent.
  • the reverting valve control unit outputs a signal Sr to the reverting valve 71, and the flow path of the reducing agent flows in the forward direction from the pump to the reducing agent injection valve or in the reverse direction from the reducing agent injection valve to the pump. Switch to one of the following.
  • reducing agent injection control When reducing agent injection control is performed, the flow path of the reducing agent is set in the forward direction, while when a signal Es is transmitted from the stop detection unit to notify that the key switch has been turned off from on, The flow path of the reducing agent is switched in the reverse direction.
  • the pump control unit when performing the injection control of the reducing agent, the pump control unit continuously reads information on the sensor value P of the pressure sensor output from the CAN information extraction and generation unit, and the sensor value P of the pressure sensor is set in advance.
  • the control signal Sp is output so as to be maintained at the set value, and the feedback control of the pump 41 is performed.
  • the pump control unit when the pump is an electric pump and the sensor value P of the pressure sensor is lower than a set value, the pump control unit is configured to increase the drive duty ratio so as to increase the pressure. Control the pump.
  • the pump control unit controls the electric pump so that the ratio of the drive duty becomes small in order to reduce the pressure.
  • the pump control unit temporarily drives the pump 41 when the signal Es notifying that the key switch has been turned off is transmitted from the stop detection unit. After stopping, this time, the pump 41 is continuously driven regardless of the pressure value in the second supply path.
  • the reducing agent injection valve control unit when performing the reducing agent injection control, outputs the exhaust gas temperature tg, the reduction catalyst temperature tc, and the NO x concentration N downstream of the reduction catalyst, which is output from the CAN information extraction and generation unit. information, further reads the information concerning the operating state of the internal combustion engine, generates a control signal Sd for ejecting amount of reducing agent necessary for reducing NO X in the exhaust gas from the reducing agent injection valve. This control signal Sd is output to the reducing agent injection valve operating device 67 for operating the reducing agent injection valve.
  • the reducing agent injection control by the exhaust gas purification apparatus of the present embodiment is performed as follows.
  • the reducing agent in the storage tank is pumped up by a pump and pumped toward the reducing agent injection valve.
  • the pressure of the reducing agent to be pumped (the sensor value P of the pressure sensor) is maintained at a constant value by the feedback control of the pump and the pressure control valve, and when the reducing agent injection valve is opened, In this state, the reducing agent is injected.
  • the reducing agent injection valve control unit of the DCU 60 determines the amount of reducing agent to be injected as described above, generates a control signal Sd corresponding thereto, and outputs it to the reducing agent injection valve operating device 67.
  • the reducing agent injection valve operating device 67 performs energization control of the reducing agent injection valve based on the transmitted control signal Sd, and an appropriate amount of reducing agent is injected into the exhaust passage.
  • the reducing agent injected into the exhaust passage flows into the reduction catalyst while being mixed in the exhaust gas, and is used for the reduction reaction of NO x contained in the exhaust gas.
  • the reducing agent injection valve control unit of the present embodiment when performing the reducing agent recovery control, when a signal Es indicating that the key switch has been turned from on to off is transmitted from the stop detection unit. Then, a signal is output to the reducing agent injection valve operating device 67 so that the reducing agent injection valve is fully closed.
  • the reducing agent injection valve control unit is a part that compares the pressure after the reducing agent injection valve is fully closed once, and uses the sensor value P of the pressure sensor output from the CAN information extraction generation unit as a predetermined reference. Compared with the value P0, when the sensor value P of the pressure sensor becomes equal to or less than the reference value P0, a signal is output to the reducing agent injection valve operating device 67 so that the reducing agent injection valve is fully opened.
  • the reducing agent injection valve is closed when the flow path of the reducing agent is switched in the reverse direction from the reducing agent injection valve to the pump by the reverting valve.
  • the reducing agent injection valve is controlled so as to be in a state.
  • the sensor value P of the pressure sensor provided in the second supply path becomes equal to or less than the reference value P0
  • the reducing agent injection valve is controlled so that the reducing agent injection valve is opened. Is called.
  • the timing at which the reducing agent injection valve is opened is delayed from the start timing of the recovery operation, so that the pressure in the second supply path is sufficiently reduced. Since the reducing agent injection valve is opened, leakage of the reducing agent into the exhaust passage is prevented.
  • the reference value of the pressure when the time when the reducing agent injection valve is opened by the reducing agent injection valve control unit is preferably set to a value in the range of 100 hPa to atmospheric pressure, for example. This is because if the pressure reference value is less than 100 hPa, it takes time until the pressure value becomes equal to or less than the reference value, and the end time of the reducing agent recovery control may be delayed. On the other hand, when the pressure reference value exceeds atmospheric pressure, the reducing agent may leak into the exhaust passage due to the pressure in the exhaust passage and the flow rate of the exhaust gas.
  • the reference value of the pressure when the opening time of the reducing agent injection valve is determined from 200 hPa to a value within the range of atmospheric pressure minus 100 hPa, and from 300 hPa to the range of atmospheric pressure minus 200 hPa. More preferably, it is a value.
  • step S1 after the start, when it is detected that the key switch of the internal combustion engine has been turned from on to off, the process proceeds to step S2 to determine whether or not the reducing agent injection valve udv is fully closed. (T0 in FIG. 4). If the reducing agent injection valve udv is fully closed, the process proceeds to step S4. If the reducing agent injection valve udv is opened, the reducing agent injection valve udv is fully closed in step S3. The process proceeds to step S4.
  • step S4 which proceeds with the reducing agent injection valve udv fully closed, the reductant valve rtv switches the flow path of the reducing agent in the reverse direction from the reducing agent injection valve udv to the storage tank (FIG. 4). t1).
  • step S5 the pump pump is driven with a predetermined output (t2 in FIG. 4). In this state, the reducing agent remaining in the second supply passage is sucked by the driving force of the pump pump, and the pressure in the second supply passage starts to be reduced.
  • the order of performing step S4 for switching the flow path of the reducing agent in the reverse direction by the reverting valve rtv and step S5 for driving the pump pump may be reversed.
  • step S6 the process proceeds to step S6, where the sensor value P of the pressure sensor provided in the second supply passage is compared with the reference value P0, and it is determined whether or not the sensor value P of the pressure sensor is equal to or less than the reference value P0. .
  • Step S6 is repeated until the sensor value P of the pressure sensor becomes equal to or less than the reference value P0.
  • the process proceeds to step S7, and the reducing agent injection valve udv is opened (t3 in FIG. 4). ).
  • the reducing agent injection valve udv may be held in an open state, but preferably, the reducing agent injection valve udv is opened intermittently.
  • the reducing agent injection valve udv When the reducing agent injection valve udv is opened intermittently, the reducing agent injection valve udv is intermittently closed to reduce the pressure in the second supply passage and the reducing agent when the reducing agent injection valve udv is opened. Since the recovery is alternately repeated, the reducing agent is efficiently recovered when the reducing agent injection valve udv is opened. Therefore, leakage of the reducing agent into the exhaust passage is more reliably prevented.
  • the pressure in the second supply passage is reduced, and even if the reducing agent injection valve udv is opened, the reducing agent in the second supply passage may leak into the exhaust passage. Absent. Since the gas phase is introduced from the reducing agent injection valve udv side, the reducing agent in the second supply passage is smoothly returned to the storage tank while being replaced with the gas phase, and the reducing agent recovery control is completed. (T4 in FIG. 4). As the reducing agent is recovered in the storage tank in this way, leakage of the reducing agent into the exhaust passage is prevented. As a result, ammonia is precipitated on the inner surface of the exhaust passage, and the reduction catalyst is wetted by the reducing agent. Is prevented, and consumption of the reducing agent is reduced.
  • the change of the sensor value of the pressure sensor when the reducing agent injection valve udv is opened simultaneously with the start of driving of the pump pump for collecting the reducing agent is indicated by a dotted line.
  • the sensor value P of the pressure sensor at that time (t2) remains high, so that the reducing agent is exhausted by the residual pressure. It becomes easy to leak into the passage. Therefore, as described above, in order to prevent leakage of the reducing agent, it is effective to open the reducing agent injection valve udv after a predetermined time from the start of driving the pump.
  • the exhaust gas purification apparatus of the first embodiment uses the pressure value in the second supply passage as a material for determining when to open the reducing agent injection valve, whereas the second embodiment of the present invention.
  • the exhaust purification apparatus according to this embodiment is different from the exhaust purification apparatus according to the first embodiment in that the timing for opening the reducing agent injection valve is determined based on the time from the start of the recovery control.
  • description of points that are common to the first embodiment will be omitted, and points that are different from the first embodiment will be mainly described.
  • FIG. 5 is a diagram showing a configuration of the DCU 160 provided in the exhaust purification apparatus of the present embodiment, and the DCU 160 is configured such that an elapsed time from the start of the reducing agent recovery control is measured by a timer. Has been.
  • a timer is provided in the reducing agent injection valve control unit, but a timer may be provided in a portion other than the reducing agent injection valve.
  • the reducing agent injection valve control unit of the DCU 160 In the case of performing the reducing agent recovery control, the reducing agent injection valve control unit of the DCU 160 according to the present embodiment generates a signal Es indicating that the key switch has been turned off from the on state, as in the first embodiment.
  • a signal Sd is output to the reducing agent injection valve operating device so that the reducing agent injection valve is fully closed.
  • the timer cant is started at the same time, and thereafter, when the timer value T has passed the predetermined reference time T0, the reducing agent injection valve control unit operates the reducing agent injection valve so as to fully open the reducing agent injection valve.
  • a signal Sd is output to the device 67.
  • the timing of opening the reducing agent injection valve is delayed from the start timing of the recovery operation until the pressure in the second supply path is sufficiently lowered, so that the reducing agent injection When the valve is opened, the reducing agent is prevented from leaking into the exhaust passage.
  • the timer value used to determine when to open the reducing agent injection valve varies depending on the length and diameter of the second supply passage and the pumping amount of the pump, but for example, the length of the second supply passage is 1 to 10 m.
  • the timer value is preferably set to a value within the range of 5 to 45 seconds. If the timer value is less than 5 seconds, the pressure in the second supply passage cannot be sufficiently reduced, and the reducing agent leaks into the exhaust passage due to the pressure in the exhaust passage and the flow rate of the exhaust gas. This is because there are cases.
  • the timer value is more preferably set to a value in the range of 10 to 40 seconds, and a value in the range of 15 to 35 seconds. More preferably.
  • step S11 when it is detected in step S11 that the key switch of the internal combustion engine has been turned off in the same manner as in the step of the reducing agent recovery method described in the first embodiment, the reducing agent is detected in step S12. It is determined whether or not the injection valve udv is fully closed (t10 in FIG. 7). If the reducing agent injection valve udv is fully closed, the process proceeds to step S14. On the other hand, if the reducing agent injection valve udv is opened, the reducing agent injection valve udv is fully closed in step S13. The process proceeds to step S14.
  • step S14 the driving of the pump pump is started in step S15 (t12 in FIG. 7).
  • the process proceeds to step S16, and the timer count is started.
  • step S17 where it is determined whether or not the timer value T has passed a predetermined reference time T0.
  • Step S17 is repeated until the timer value T passes the timer value T0.
  • the process proceeds to step S18, and the reducing agent injection valve udv is opened (t13 in FIG. 7). At this time, the pressure in the second supply passage is sufficiently reduced (P0 or less), and even if the reducing agent injection valve udv is opened, the reducing agent in the second supply passage enters the exhaust passage. There is no leakage.
  • the reducing agent in the second supply passage is smoothly returned to the storage tank while being replaced with the gas phase, and the reducing agent recovery control ends. (T14 in FIG. 7).
  • the reducing agent is recovered in the storage tank in this way, leakage of the reducing agent into the exhaust passage is prevented, and as a result, ammonia is precipitated on the inner surface of the exhaust passage, or the reduction catalyst is wetted by the reducing agent. Is prevented, and consumption of the reducing agent is reduced.
  • the pressure in the second supply passage is used in the first embodiment, and the recovery control of the reducing agent is started in the second embodiment.
  • the elapsed time from is used, but these elements can be combined and employed. Specifically, both the sensor value and the timer value of the pressure sensor are monitored, and when either value reaches the pressure reference value P0 or the reference time T0 earlier, the reducing agent injection valve is opened. It may be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

還元剤供給経路内の還元剤の回収制御を実施することに伴って、排気通路内に還元剤が漏洩することを防ぐことができる還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置を提供する。 内燃機関の排気通路中に配設された還元触媒の排気上流側に還元剤を添加し、還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置における、還元剤の供給経路内の還元剤を回収する還元剤回収手段を備えた還元剤供給装置を制御するための還元剤供給装置の制御装置であって、内燃機関が停止したことを検知する停止検知部と、内燃機関が停止したときに、還元剤供給経路内の還元剤の回収を開始させる還元剤回収手段制御部と、還元剤回収手段の作動開始時には還元剤噴射弁を閉じておき、所定時間経過後に還元剤噴射弁を開く噴射弁制御部と、を備えることを特徴とする。

Description

還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置
 本発明は、還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置に関する。特に、還元剤供給経路内の還元剤を回収する手段を備えた還元剤供給装置の制御装置及び還元剤の回収方法並びにそのような制御装置を備えた排気浄化装置に関する。
 ディーゼルエンジン等の内燃機関から排出される排気ガス中には、環境に影響を与えるおそれのある窒素酸化物(以下、「NOX」と称する。)が含まれている。従来、このNOXを浄化するために用いられる排気浄化装置として、排気ガス中に尿素水溶液等の還元剤を添加し、還元触媒中でNOXを選択的に還元浄化するSCR(Selective Catalytic Reduction)システムが知られている。
 このSCRシステムに用いられる還元剤として用いられる尿素水溶液は、所定の温度域に置かれたり長時間放置されたりすると、溶媒が蒸発して結晶化する特性を持っている。また、尿素水溶液は冷寒時に凍結するおそれもある。還元剤が還元剤供給経路内で固化すると、排気通路内への還元剤の供給が不十分となって、還元触媒でのNOXの還元浄化が十分に進行せず、浄化されなかったNOXが大気中に放出されてしまうことが懸念される。
 そこで、還元剤供給経路での目詰まりを起こりにくくした排気浄化装置が提案されている。具体的には、図8に示すように、エンジンの稼動状態を判定する稼動判定手段によりエンジンが停止していると判定されたときに、還元剤容器(貯蔵タンク)324の上部空間を少なくとも大気圧にまで減圧させる減圧手段(圧力調整器338)を備え、エンジン停止中には、還元剤供給経路に存在する還元剤を確実に還元剤容器324へと回収するように構成した排気浄化装置が開示されている(特許文献1)。
特開2006-132384号公報 (請求項4、段落[0021]、図2)
 ところで、特許文献1に記載されたように、還元剤供給経路内の圧力を低下させて、還元剤が貯蔵タンクに回収される場合、還元剤供給経路内の還元剤が確実に回収されるためには、還元剤噴射弁を開けておく必要がある。しかしながら、還元剤供給経路内の減圧開始と同時に、あるいは、それ以前に還元剤噴射弁が開かれると、排気通路内に還元剤が漏洩してしまうおそれがある。すなわち、還元剤供給経路内の減圧が開始された直後は還元剤供給経路内の圧力が高い状態であり、還元剤噴射弁が開けられた場合には還元剤供給経路内の圧力によって排気通路内に還元剤が漏洩してしまうことになる。排気通路内に漏洩した還元剤は、排気通路内面に付着して固体化したり、還元触媒を濡らしたりして、SCRシステムの機能を低下させる原因となるおそれがあるばかりか、還元剤の浪費にもつながる。
 そこで、本発明の発明者は鋭意努力し、還元剤回収手段の作動開始時には還元剤噴射弁を閉じておき、作動開始から所定時間経過後に還元剤噴射弁を開くように還元剤噴射弁を制御することにより、このような問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明の目的は、還元剤供給経路内の還元剤の回収制御を実施することに伴う排気通路内への還元剤の漏洩が防止できる還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置を提供することである。
 本発明によれば、内燃機関の排気通路中に配設された還元触媒の排気上流側に還元剤を添加し、還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置における、還元剤の供給経路内の還元剤を回収する還元剤回収手段を備えた還元剤供給装置を制御するための還元剤供給装置の制御装置であって、内燃機関が停止したことを検知する停止検知部と、内燃機関が停止したときに、還元剤供給経路内の還元剤の回収を開始させる還元剤回収手段制御部と、還元剤回収手段の作動開始時には還元剤噴射弁を閉じておき、所定時間経過後に還元剤噴射弁を開く噴射弁制御部と、を備えることを特徴とする還元剤供給装置の制御装置が提供され、上述した問題を解決することができる。
 また、本発明の還元剤供給装置の制御装置を構成するにあたり、噴射弁制御部は、還元剤供給経路内の圧力が所定の基準値以下になったときに還元剤噴射弁を開くことが好ましい。
 また、本発明の還元剤供給装置の制御装置を構成するにあたり、噴射弁制御部は、還元剤の回収を開始してからの経過時間があらかじめ設定された基準時間を経過したときに、還元剤噴射弁を開くことが好ましい。
 また、本発明の還元剤供給装置の制御装置を構成するにあたり、所定時間経過後に還元剤噴射弁の開弁動作を行うときには、還元剤噴射弁を断続的に開くことが好ましい。
 また、本発明の別の態様は、内燃機関の排気通路に配設された還元触媒の排気上流側に還元剤を添加し、還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置における、内燃機関の停止時に還元剤供給経路内の還元剤を貯蔵タンクに回収する還元剤の回収方法において、内燃機関の停止時に還元剤噴射弁を閉じた状態で還元剤回収手段の動作を開始するとともに、所定時間経過後に還元剤噴射弁を開くことを特徴とする還元剤の回収方法である。
 また、本発明のさらに別の態様は、内燃機関の排気通路に配設された還元触媒の排気上流側に還元剤を添加し、還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置であって、還元剤が貯蔵された貯蔵タンクと、貯蔵タンク内の還元剤を圧送する圧送手段と、圧送される還元剤の噴射制御を行う還元剤噴射弁と、内燃機関の停止時に貯蔵タンクから還元剤噴射弁までの経路内に残留する還元剤を貯蔵タンクに回収する還元剤回収手段と、還元剤噴射弁を閉じた状態で還元剤回収手段の動作を開始し、所定時間経過後に還元剤噴射弁を開く還元剤噴射弁制御部と、を備えることを特徴とする排気浄化装置である。
 本発明の還元剤供給装置の制御装置によれば、還元剤回収手段の作動開始時には還元剤噴射弁が閉じられ、所定時間経過後に還元剤噴射弁が開かれる制御が行われるため、還元剤供給経路内の圧力が十分に減圧された状態で還元剤噴射弁が開かれる。したがって、還元剤噴射弁から排気通路内への還元剤の漏洩が低減され、還元剤が排気通路内で析出したり、還元触媒が還元剤で濡らされたりすることが防止されるとともに、還元剤の浪費が抑えられる。
 また、本発明の還元剤供給装置の制御装置において、還元剤噴射弁を開く時期を遅らせるにあたり、還元剤供給経路内の圧力が基準値以下になったことをきっかけとして噴射弁制御部が還元剤噴射弁を開放することにより、還元剤供給経路内の圧力の低下が確認された上で還元剤噴射弁が開かれる。
 また、本発明の還元剤供給装置の制御装置において、還元剤噴射弁を開く時期を遅らせるにあたり、還元剤回収手段を作動させてからの経過時間が基準時間を越えたことをきっかけとして噴射弁制御部が還元剤噴射弁を開放することにより、圧力センサを用いない場合であっても、還元剤供給経路内の圧力が十分に減圧された状態で還元剤噴射弁が開かれる。
 また、本発明の還元剤の回収方法によれば、還元剤回収手段の作動開始時には還元剤噴射弁が閉じられ、所定時間経過後に還元剤噴射弁が開かれる制御が行われるため、還元剤供給経路内の圧力が十分に減圧された状態で還元剤噴射弁が開かれる。したがって、還元剤噴射弁から排気通路内への還元剤の漏洩が低減され、還元剤が排気通路内で析出したり、還元触媒が還元剤で濡らされたりすることが防止されるとともに、還元剤の浪費が抑えられる。
 また、本発明の排気浄化装置によれば、内燃機関の停止時に、排気通路内に還元剤が漏洩することなく還元剤供給経路内の還元剤が貯蔵タンクに回収されるため、還元剤が排気通路内で析出したり、還元触媒が還元剤で濡らされたりすることが防止され、排気浄化効率の低下が防止されるとともに、還元剤の浪費が抑えられる。
図1は本発明の第1の実施の形態にかかる排気浄化装置の構成例を示す図である。 図2は第1の実施の形態の排気浄化装置に備えられた還元剤供給装置の制御装置(DCU)の構成例を示すブロック図である。 図3は第1の実施の形態の排気浄化装置によって行われる還元剤の回収制御の一例を示すフローチャートである。 図4は第1の実施の形態の排気浄化装置によって行われる還元剤の回収制御の一例を示すタイミングチャートである。 図5は第2の実施の形態の排気浄化装置に備えられた還元剤供給装置の制御装置(DCU)の構成例を示すブロック図である。 図6は第2の実施の形態の排気浄化装置によって行われる還元剤の回収制御の一例を示すフローチャートである。 図7は第2の実施の形態の排気浄化装置によって行われる還元剤の回収制御の一例を示すタイミングチャートである。 図8は従来の排気浄化装置の構成例を示す図である。
 以下、図面を参照して、本発明の還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置に関する実施の形態について具体的に説明する。ただし、かかる実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。
 なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。
[第1の実施の形態]
 本発明の第1の実施の形態にかかる排気浄化装置は、還元剤回収手段の作動開始後、還元剤供給経路内の圧力値を所定の基準値と比較して、当該圧力値が所定の基準値以下になったときに還元剤噴射弁を開く制御が行われる排気浄化装置である。
1.排気浄化装置の全体構成
 まず、本実施形態の排気浄化装置の全体構成の一例について図1を参照しつつ説明する。
 図1に示す排気浄化装置10は、還元剤として尿素水溶液が用いられ、還元剤を混合分散させた排気ガスが還元触媒13を通過することにより、排気ガス中のNOXが選択的に還元される排気浄化装置である。この排気浄化装置10は、内燃機関5から排出される排気ガスが通過する排気通路の途中に配設され、排気ガス中に含まれるNOXを選択的に還元するための還元触媒13と、還元触媒13の上流側で排気通路中に還元剤を添加するための還元剤供給装置20とを備えている。また、排気通路の還元触媒13の上流側及び下流側にはそれぞれ温度センサ15、16が配置されるとともに、還元触媒13の下流側にはNOXセンサ17が配置されている。このうち、還元触媒13や温度センサ15、16、NOXセンサ17の構成は特に制限されるものではなく、公知のものが用いられる。
 このうち還元剤供給装置20は、還元触媒13の上流側で排気管11に固定された還元剤噴射弁31と、還元剤が貯蔵された貯蔵タンク50と、貯蔵タンク50内の還元剤を還元剤噴射弁31に向けて圧送するポンプ41を含むポンプモジュール40と、排気通路内に添加する還元剤の噴射量を制御するために、還元剤噴射弁31やポンプ41の制御を行う制御装置(以下、「DCU:Dosing Control Unit」と称する。)60とを備えている。また、貯蔵タンク50とポンプモジュール40とは第1の供給経路57によって接続され、ポンプモジュール40と還元剤噴射弁31とは第2の供給経路58によって接続され、さらに、ポンプモジュール40と貯蔵タンク50とは還流経路59によって接続されている。
 また、図1に示す排気浄化装置10の例では、DCU60は、CAN65に接続されている。このCAN65は、内燃機関の運転状態を制御するためのコントロールユニット(以下、「ECU:Electronic Control Unit」と称する。)70も接続されており、CAN65には、燃料噴射量や噴射時期、回転数等をはじめとする内燃機関の運転状態に関する情報が書き込まれるだけでなく、排気浄化装置10に備えられたあらゆるセンサ等の情報も書き込まれる。また、CAN65に接続されたDCU60は、CAN65上の情報を読み込み、また、CAN65上に情報を出力できるようになっている。
 なお、本実施形態では、ECU70とDCU60とが別のコントロールユニットからなり、CAN65を介して情報のやり取りができるようにされているが、これらのECU70とDCU60とが一つのコントロールユニットとして構成されていても構わない。
 還元剤噴射弁31としては、例えば、開弁のON-OFFが制御されるON-OFF弁が用いられる。ポンプモジュール40から還元剤噴射弁31に圧送される還元剤は所定の圧力で維持され、還元剤噴射弁操作装置(図1では「Udv操作装置」と表記。)67による通電制御によって還元剤噴射弁31が開かれている間、還元剤が排気通路中に噴射される。
 また、ポンプモジュール40にはポンプ41が備えられている。ポンプ41は、第1の供給経路57を介して貯蔵タンク50内の還元剤を汲み上げるとともに、第2の供給経路58を介して還元剤噴射弁31に圧送する。このポンプ41は、例えば電動式のダイヤフラムポンプからなり、DCU60から出力されてくる信号によって通電制御が行われる。また、ポンプ41と還元剤噴射弁31とをつなぐ第2の供給経路58には圧力センサ43が備えられており、圧力センサ43のセンサ値は信号としてDCU60に出力される。この圧力センサ43のセンサ値に基づいて、第2の供給経路58内の圧力値が所定値に維持されるように、ポンプ41の駆動デューティが制御される。すなわち、第2の供給経路58内の圧力が所定値を下回っている状態においては、ポンプ41は駆動デューティが大きくなるように制御される。逆に、第2の供給経路58内の圧力が所定値を上回っている状態においては、ポンプ41は駆動デューティが小さくなるように制御される。
 なお、「ポンプの駆動デューティ」とは、PWM(pulse width modulation)制御において、1周期当たりに占めるポンプの駆動時間の割合を意味している。
 また、第2の供給経路58にはメインフィルタ47が備えられ、還元剤噴射弁31に圧送される還元剤中の異物がメインフィルタ47に捕集される。このメインフィルタ47とポンプ41との間の第2の供給経路58からは還流経路59が分岐して設けられ、この還流経路59は貯蔵タンク50に接続されている。この還流経路59の途中にはオリフィス45が備えられるとともに、オリフィス45よりも貯蔵タンク50側に圧力制御弁49が備えられている。還元剤供給装置20がこのような還流経路59を備えることにより、圧力センサ43のセンサ値をもとにフィードバック制御されるポンプ41によって還元剤が圧送されている状態で、第2の供給経路58内の圧力値が所定値を超えた場合に圧力制御弁49が開かれ、還元剤の一部が貯蔵タンク50内に還流される。圧力制御弁49は、例えば、公知のチェック弁等が用いられる。
 また、ポンプモジュール40にはリバーティングバルブ71が備えられており、内燃機関の停止時にポンプ41が駆動することによって、ポンプモジュール40や還元剤噴射弁31、第1の供給経路57、第2の供給経路58を含む還元剤供給経路内の還元剤が貯蔵タンク50に回収される。したがって、冷寒時等のように還元剤が凍結しやすい温度条件下での還元剤供給経路内での還元剤の凍結や、あるいは、内燃機関5を停止させた後、還元剤供給装置20の制御を長時間行わないような場合での還元剤供給経路内での還元剤の結晶化が防止される。その結果、内燃機関の運転が再開されたときに、還元剤供給経路の詰まりによる噴射不良の発生が抑えられる。
 このリバーティングバルブ71は、例えば、還元剤の流路を、貯蔵タンク50からポンプモジュール40へ向かう順方向から、ポンプモジュール40から貯蔵タンク50へ向かう逆方向に切り換える機能を持った切換弁である。内燃機関のイグニッションスイッチがオフにされたときに、このリバーティングバルブ71によって流路が逆方向に切り換えられることにより、還元剤供給経路内に残留する還元剤が貯蔵タンク50内に回収される。
2.還元剤供給装置の制御装置
 図1に示す排気浄化装置10に備えられたDCU60は、基本的には、適切な量の還元剤が排気通路11中に供給されるように、CAN65上に存在する様々な情報をもとにしてポンプ41及び還元剤噴射弁31の制御信号を送信する。また、このDCU60は、還元剤の回収制御を行うための制御装置としての機能を備えている。
 図2は、本実施形態の排気浄化装置に備えられたDCU60の構成の一例を説明するための図であって、還元剤の噴射制御及び還元剤の回収制御に関する部分について、機能的なブロックに表された構成例が示されている。
 このDCU60は、公知の構成からなるマイクロコンピュータを中心に構成されており、CAN情報取生成部(図2では「CAN情報取出生成」と表記。)と、内燃機関の停止検知部(図2では「Engine停止検知」と表記。)と、リバーティングバルブ制御部(図2では「rtv制御」と表記。)と、ポンプ制御部(図2では「pump制御」と表記。)と、還元剤噴射弁制御部(図2では「udv制御」と表記。)等を主要な要素として備えている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプログラムの実行によって実現される。
 CAN情報取出生成部は、内燃機関を始動するキースイッチのオンオフや第2の供給経路に備えられた圧力センサのセンサ値、内燃機関の運転状態に関する情報をはじめとする、CAN65上に存在する情報を読み込み、他の各部に対して出力する。
 また、停止検知部は、内燃機関を始動するキースイッチがオンからオフにされた状態を検知するようになっており、還元剤の回収制御を開始するきっかけとして利用される。
 また、リバーティングバルブ制御部は、リバーティングバルブ71に対して信号Srを出力し、還元剤の流路を、ポンプから還元剤噴射弁に向かう正方向又は還元剤噴射弁からポンプに向かう逆方向のいずれかに切り換える。還元剤の噴射制御を行う場合には還元剤の流路が正方向にされる一方、キースイッチがオンからオフにされたことを知らせる信号Esが停止検知部から送信されてきた場合には、還元剤の流路が逆方向に切り換えられる。
 また、ポンプ制御部は、還元剤の噴射制御を行う場合においては、CAN情報取出生成部から出力される圧力センサのセンサ値Pに関する情報を継続的に読み込み、圧力センサのセンサ値Pがあらかじめ設定された値に維持されるように制御信号Spを出力して、ポンプ41のフィードバック制御を行う。例えば、ポンプが電動式ポンプである場合に、圧力センサのセンサ値Pが設定値よりも低い場合には、ポンプ制御部は、圧力を上昇させるべく、駆動デューティの比が大きくなるように電動式ポンプの制御を行う。逆に、圧力センサのセンサ値Pが設定値を超える場合には、ポンプ制御部は、圧力を低下させるべく、駆動デューティの比が小さくなるように電動式ポンプの制御を行う。
 一方、ポンプ制御部は、還元剤の回収制御を行う場合においては、キースイッチがオンからオフにされたことを知らせる信号Esが停止検知部から送信されてきた場合に、一旦ポンプ41の駆動を停止した後、今度は、第2の供給経路内の圧力値とは関係なく、ポンプ41を継続的に駆動する。
 また、還元剤噴射弁制御部は、還元剤の噴射制御を行う場合においては、CAN情報取出生成部から出力される、排気温度tgや還元触媒温度tc、還元触媒下流側でのNOX濃度Nに関する情報、さらには内燃機関の運転状態に関する情報等を読み込み、排気ガス中のNOXを還元するために必要な量の還元剤を還元剤噴射弁から噴射させるための制御信号Sdを生成する。この制御信号Sdは、還元剤噴射弁を操作するための還元剤噴射弁操作装置67に対して出力される。
 すなわち、本実施形態の排気浄化装置による還元剤の噴射制御は以下のように行われる。
 内燃機関の運転時において、貯蔵タンク内の還元剤はポンプによって汲み上げられ、還元剤噴射弁に向けて圧送される。このとき、ポンプのフィードバック制御と圧力制御弁とによって、圧送される還元剤の圧力(圧力センサのセンサ値P)が一定の値に維持され、還元剤噴射弁が開いたときに排気通路内に還元剤が噴射される状態である。
 ここで、DCU60の還元剤噴射弁制御部は、上述のとおり噴射すべき還元剤量を決定し、それに応じた制御信号Sdを生成して還元剤噴射弁操作装置67に対して出力する。還元剤噴射弁操作装置67は、送信された制御信号Sdに基づき還元剤噴射弁の通電制御を行い、適切な量の還元剤が排気通路中に噴射される。排気通路中に噴射された還元剤は、排気ガス中に混合された状態で還元触媒に流入し、排気ガス中に含まれるNOXの還元反応に用いられる。
 一方、本実施形態の還元剤噴射弁制御部は、還元剤の回収制御を行う場合においては、キースイッチがオンからオフにされたことを示す信号Esが停止検知部から送信されてきた場合に、還元剤噴射弁を全閉にするように還元剤噴射弁操作装置67に対して信号を出力する。また、還元剤噴射弁制御部は、還元剤噴射弁が一旦全閉にされた後には、圧力を比較する部分で、CAN情報取出生成部から出力される圧力センサのセンサ値Pを所定の基準値P0と比較し、圧力センサのセンサ値Pが基準値P0以下になったときに還元剤噴射弁を全開にするように還元剤噴射弁操作装置67に対して信号を出力する。
 すなわち、内燃機関が停止し、ポンプが駆動している状態で、リバーティングバルブによって還元剤の流路が還元剤噴射弁からポンプに向かう逆方向に切り換えられるときには、還元剤噴射弁が閉じられた状態となるように還元剤噴射弁の制御が行われる。その後、時間の経過に伴い、第2の供給経路に備えられた圧力センサのセンサ値Pが基準値P0以下になったときには、還元剤噴射弁が開かれるように還元剤噴射弁の制御が行われる。このように、還元剤の回収制御が行われる際に、還元剤噴射弁が開かれる時期が回収動作の開始時期よりも遅れることで、第2の供給経路内の圧力が十分に低下した状態で還元剤噴射弁が開かれるため、排気通路内への還元剤の漏洩が防止される。
 還元剤噴射弁制御部によって還元剤噴射弁が開かれる時期が決定される際の圧力の基準値は、例えば、100hPa~大気圧の範囲内の値とすることが好ましい。圧力の基準値が100hPa未満であると、圧力値が基準値以下となるまでに時間を要し、還元剤の回収制御の終了時期が遅れる場合があるためである。一方、圧力の基準値が大気圧を超えると、排気通路内の圧力や排気ガスの流速との関係で、還元剤が排気通路内に漏洩する場合があるためである。
 したがって、還元剤噴射弁を開く時期が決定される際の圧力の基準値を200hPaから、大気圧マイナス100hPaの範囲内の値とすることがより好ましく、300hPaから、大気圧マイナス200hPaの範囲内の値とすることがさらに好ましい。
3.還元剤の回収方法
 次に、本実施形態の排気浄化装置に備えられた還元剤供給装置の制御装置(DCU)60による還元剤の回収方法の具体例について、図3のフロー及び図4のタイミングチャートを参照しつつ説明する。
 まず、スタート後のステップS1において、内燃機関のキースイッチがオンからオフにされたことが検知されると、ステップS2に進み、還元剤噴射弁udvが全閉にされているか否かが判別される(図4のt0)。還元剤噴射弁udvが全閉になっている場合にはそのままステップS4に進む一方、還元剤噴射弁udvが開かれている場合にはステップS3で還元剤噴射弁udvが全閉にされた後、ステップS4に進む。
 還元剤噴射弁udvが全閉にされた状態で進んだステップS4では、リバーティングバルブrtvによって、還元剤の流路が還元剤噴射弁udvから貯蔵タンクに向かう逆方向に切り換えられる(図4のt1)。次いで、ステップS5において、ポンプpumpが所定の出力で駆動される(図4のt2)。この状態で、ポンプpumpの駆動力によって第2の供給通路内に残留する還元剤が吸引され、第2の供給通路内が減圧され始める。
 ただし、リバーティングバルブrtvによって還元剤の流路を逆方向に切り換えるステップS4と、ポンプpumpを駆動させるステップS5とを実施する順序は逆であっても構わない。
 次いで、ステップS6に進み、第2の供給通路に備えられた圧力センサのセンサ値Pが基準値P0と比較され、圧力センサのセンサ値Pが基準値P0以下となったか否かが判別される。圧力センサのセンサ値Pが基準値P0以下になるまでステップS6が繰り返され、センサ値Pが基準値P0以下となったときにはステップS7に進み、還元剤噴射弁udvが開かれる(図4のt3)。
 このとき、還元剤噴射弁udvが開放状態で保持されるようにしてもよいが、好ましくは、還元剤噴射弁udvが断続的に開けられるようにする。還元剤噴射弁udvが断続的に開けられるようにした場合には、還元剤噴射弁udvが断続的に閉じられ、第2の供給通路内の圧力低下と還元剤噴射弁udv開放時の還元剤の回収とが交互に繰り返されるため、還元剤噴射弁udv開放時に効率的に還元剤が回収される。したがって、排気通路内への還元剤の漏洩がより確実に防止される。
 また、この時点で、第2の供給通路内の圧力は低下しており、還元剤噴射弁udvが開かれたとしても、第2の供給通路内の還元剤が排気通路内に漏洩することがない。そして、還元剤噴射弁udv側から気相が導入されるため、第2の供給通路内の還元剤が気相に置き換えられながらスムーズに貯蔵タンク内に戻され、還元剤の回収制御が終了する(図4のt4)。
 このようにして還元剤が貯蔵タンクに回収されることにより、排気通路内への還元剤の漏洩が防止される結果、排気通路内面でのアンモニアの析出や、還元剤によって濡らされることによる還元触媒の破損が防止されるとともに、還元剤の消費量の低減が図られる。
 図4中には、還元剤を回収するためのポンプpumpの駆動開始と同時に還元剤噴射弁udvを開いた場合の圧力センサのセンサ値の変化が点線で示されている。還元剤噴射弁udvがpumpの駆動開始と同時に開かれると、その時点(t2)での圧力センサのセンサ値Pは高いままで維持された状態となっているため、残留圧力によって還元剤が排気通路内に漏洩しやすくなる。したがって、上述したように、還元剤の漏洩を防止するためには、pumpの駆動開始から所定時間遅らせて還元剤噴射弁udvを開くことが有効である。
[第2の実施の形態]
 第1の実施の形態の排気浄化装置が、還元剤噴射弁を開く時期を判別する材料として第2の供給通路内の圧力値を利用しているのに対して、本発明の第2の実施の形態にかかる排気浄化装置は、回収制御を開始してからの時間によって還元剤噴射弁を開く時期を判別する点で、第1の実施の形態の排気浄化装置と異なっている。以下、第1の実施の形態と共通する点については説明を省略し、第1の実施の形態と異なる点を中心に説明する。
1.還元剤噴射弁の制御装置(DCU)
 図5は、本実施形態の排気浄化装置に備えられるDCU160の構成を示す図であり、このDCU160は、還元剤の回収制御を開始した時点からの経過時間が、タイマによって計時されるように構成されている。図5の例では、還元剤噴射弁制御部にタイマが備えられているが、還元剤噴射弁以外の部分にタイマがあってもよい。
 本実施形態のDCU160の還元剤噴射弁制御部は、還元剤の回収制御を行う場合においては、第1の実施の形態と同様に、キースイッチがオンからオフにされたことを示す信号Esが停止検知部から送信されてきた場合に、還元剤噴射弁を全閉にするように還元剤噴射弁操作装置に対して信号Sdを出力する。このとき、同時にタイマカントが開始され、その後、タイマ値Tが所定の基準時間T0を経過したときに、還元剤噴射弁制御部は、還元剤噴射弁を全開にするように、還元剤噴射弁操作装置67に対して信号Sdを出力する。還元剤の回収制御を行う際に、第2の供給経路内の圧力が十分に低下した状態になるまで、還元剤噴射弁を開く時期が回収動作の開始時期よりも遅れることで、還元剤噴射弁が開かれたときに、排気通路内に還元剤が漏洩することが防止される。
 この還元剤噴射弁を開く時期の決定に用いられるタイマ値は、第2の供給通路の長さや直径、ポンプの圧送量によっても異なるが、例えば、第2の供給通路の長さが1~10m、直径が6mmであり、ポンプの圧送量が7ミリリットル/秒である場合、タイマ値を5~45秒の範囲内の値とすることが好ましい。タイマ値が5秒未満であると、第2の供給通路内の圧力が十分に低下させられず、排気通路内の圧力や排気ガスの流速との関係で、還元剤が排気通路内に漏洩する場合があるためである。一方、タイマ値が45秒を超えると、還元剤噴射弁を開くタイミングが大幅に遅れ、還元剤の回収完了までに過度に時間を要する場合があるためである。したがって、第2の供給通路及びポンプの圧送量が上記のような条件の場合、タイマ値を10~40秒の範囲内の値とすることがより好ましく、15~35秒の範囲内の値とすることがさらに好ましい。
2.還元剤の回収方法
 次に、本実施形態の排気浄化装置に備えられたDCU160による還元剤の回収方法の具体例について、図6のフロー及び図7のタイミングチャートを参照しつつ説明する。
 スタート後、第1の実施の形態で説明した還元剤の回収方法のステップと同様に、ステップS11で内燃機関のキースイッチがオンからオフにされたことが検知されると、ステップS12で還元剤噴射弁udvが全閉になっているか否かが判別される(図7のt10)。還元剤噴射弁udvが全閉になっている場合にはそのままステップS14に進む一方、還元剤噴射弁udvが開かれている場合にはステップS13で還元剤噴射弁udvが全閉にされた上でステップS14に進む。
 次いで、ステップS14で、リバーティングバルブrtvによって還元剤の流路が逆方向に切り換えられた後(図7のt11)、ステップS15で、ポンプpumpの駆動が開始する(図7のt12)。本実施形態では、このときステップS16に進み、タイマカウントが開始する。
 その後、ステップS17に進み、タイマ値Tが所定の基準時間T0を経過したか否かが判別される。タイマ値Tがタイマ値T0を経過するまでステップS17が繰り返され、基準時間が経過したときにはステップS18に進み、還元剤噴射弁udvが開かれる(図7のt13)。この時点で、第2の供給通路内の圧力は十分に低下しており(P0以下)、還元剤噴射弁udvが開かれたとしても、第2の供給通路内の還元剤が排気通路内に漏洩することがない。そして、還元剤噴射弁udv側から気相が導入されるため、第2の供給通路内の還元剤が気相に置き換えられながらスムーズに貯蔵タンク内に戻され、還元剤の回収制御が終了する(図7のt14)。
 このようにして還元剤が貯蔵タンクに回収されることにより、排気通路内への還元剤の漏洩が防止される結果、排気通路内面でのアンモニアの析出や、還元剤によって濡らされることによる還元触媒の破損が防止されるとともに、還元剤の消費量の低減が図られる。
 なお、還元剤噴射弁を開く時期を判別する材料として、第1の実施の形態では第2の供給通路内の圧力が用いられ、第2の実施の形態では還元剤の回収制御が開始されてからの経過時間が用いられているが、これらの要素を組み合わせて採用することもできる。具体的には、圧力センサのセンサ値及びタイマ値の両方を監視し、いずれかの値が圧力の基準値P0又は基準時間T0に早く到達した時点で、還元剤噴射弁を開くようにするようにしてもよい。

Claims (6)

  1.  内燃機関の排気通路中に配設された還元触媒の排気上流側に還元剤を添加し、前記還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置における、前記還元剤の供給経路内の前記還元剤を回収する還元剤回収手段を備えた還元剤供給装置を制御するための還元剤供給装置の制御装置において、
     前記内燃機関が停止したことを検知する停止検知部と、
     前記内燃機関が停止したときに、前記還元剤供給経路内の前記還元剤の回収を開始させる還元剤回収手段制御部と、
     前記還元剤回収手段の作動開始時には前記還元剤噴射弁を閉じておき、所定時間経過後に前記還元剤噴射弁を開く噴射弁制御部と、
     を備えることを特徴とする還元剤供給装置の制御装置。
  2.  前記噴射弁制御部は、前記還元剤供給経路内の圧力が所定の基準値以下になったときに前記還元剤噴射弁を開くことを特徴とする請求の範囲第1項に記載の還元剤供給装置の制御装置。
  3.  前記噴射弁制御部は、前記還元剤の回収を開始してからの経過時間があらかじめ設定された基準時間を経過したときに、前記還元剤噴射弁を開くことを特徴とする請求の範囲第1項に記載の還元剤供給装置の制御装置。
  4.  前記所定時間経過後に前記還元剤噴射弁の開弁動作を行うにあたり、前記還元剤噴射弁を断続的に開くことを特徴とする請求の範囲第1項~第3項のいずれか一項に記載の還元剤供給装置の制御装置。
  5.  内燃機関の排気通路に配設された還元触媒の排気上流側に還元剤を添加し、前記還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置における、前記内燃機関の停止時に還元剤供給経路内の前記還元剤を貯蔵タンクに回収する還元剤の回収方法において、
     前記内燃機関の停止時に前記還元剤噴射弁を閉じた状態で前記還元剤回収手段の動作を開始するとともに、所定時間経過後に前記還元剤噴射弁を開くことを特徴とする還元剤の回収方法。
  6.  内燃機関の排気通路に配設された還元触媒の排気上流側に還元剤を添加し、前記還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置において、
     前記還元剤が貯蔵された貯蔵タンクと、
     前記貯蔵タンク内の前記還元剤を圧送する圧送手段と、
     圧送される前記還元剤の噴射制御を行う還元剤噴射弁と、
     前記内燃機関の停止時に前記貯蔵タンクから前記還元剤噴射弁までの経路内に残留する前記還元剤を前記貯蔵タンクに回収する還元剤回収手段と、
     前記還元剤噴射弁を閉じた状態で前記還元剤回収手段の動作を開始し、所定時間経過後に前記還元剤噴射弁を開く還元剤噴射弁制御部と、
     を備えることを特徴とする排気浄化装置。
PCT/JP2008/068527 2008-03-07 2008-10-14 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置 WO2009110130A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/921,276 US8590291B2 (en) 2008-03-07 2008-10-14 Control device of reducing agent supply apparatus, reducing agent collection method, and exhaust gas purification apparatus
CN2008801235492A CN101910573B (zh) 2008-03-07 2008-10-14 还原剂供给装置的控制装置和还原剂的回收方法以及排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008057323A JP5475243B2 (ja) 2008-03-07 2008-03-07 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置
JP2008-057323 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110130A1 true WO2009110130A1 (ja) 2009-09-11

Family

ID=41055702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068527 WO2009110130A1 (ja) 2008-03-07 2008-10-14 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置

Country Status (4)

Country Link
US (1) US8590291B2 (ja)
JP (1) JP5475243B2 (ja)
CN (1) CN101910573B (ja)
WO (1) WO2009110130A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975101A (zh) * 2010-10-20 2011-02-16 中国第一汽车集团公司 气动式单尿素箱非放气清空管路scr尿素系统
CN102451617A (zh) * 2010-10-20 2012-05-16 中国第一汽车集团公司 气动式双尿素箱电控尿素加注泵内置滤清器scr尿素系统
CN103189610A (zh) * 2010-11-08 2013-07-03 博世株式会社 还原剂喷射阀的异常判定装置及还原剂供给装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022115A1 (de) * 2004-05-05 2005-11-24 Robert Bosch Gmbh Verfahren zum Einbringen eines Reagenzmittels in einen Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
FR2911643B1 (fr) * 2007-01-19 2009-03-13 Inergy Automotive Systems Res Methode et systeme de controle du fonctionnement d'une pompe
JP4906525B2 (ja) * 2007-01-26 2012-03-28 ボッシュ株式会社 還元剤噴射弁の詰まり判定装置及び還元剤噴射弁の詰まり判定方法
US8424777B2 (en) * 2008-02-19 2013-04-23 Caterpillar Inc. Reducing agent heating system
KR101198784B1 (ko) 2010-07-02 2012-11-07 현대자동차주식회사 배기가스 정화 시스템 및 이의 제어방법
JP5698525B2 (ja) * 2010-12-27 2015-04-08 ボッシュ株式会社 排気浄化システム及び排気浄化システムの制御方法
WO2012090801A1 (ja) 2010-12-27 2012-07-05 ボッシュ株式会社 排気浄化システム及び排気浄化システムの制御方法
WO2012090800A1 (ja) 2010-12-27 2012-07-05 ボッシュ株式会社 排気浄化システム及び排気浄化システムの制御方法
JP5062780B2 (ja) * 2010-12-27 2012-10-31 ボッシュ株式会社 排気浄化システム及び排気浄化システムの制御方法
DE102011002425A1 (de) * 2011-01-04 2012-07-05 Robert Bosch Gmbh Fördervorrichtung zur Versorgung eines Abgasnachbehandlungssytems einer Brennkraftmaschine mit einem Reduktionsmittel sowie Verfahren
DE102011077953A1 (de) * 2011-06-22 2012-12-27 Robert Bosch Gmbh Einspritzvorrichtung
DE102011081628A1 (de) * 2011-08-26 2013-02-28 Robert Bosch Gmbh Dosiersystem für ein flüssiges Reduktionsmittel
US9677493B2 (en) * 2011-09-19 2017-06-13 Honeywell Spol, S.R.O. Coordinated engine and emissions control system
DE102011118626A1 (de) * 2011-11-16 2013-05-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betriebsstopp einer Dosiervorrichtung
JP2014012992A (ja) * 2012-07-03 2014-01-23 Toyota Motor Corp 内燃機関の排気浄化装置
DE102013105712A1 (de) * 2013-06-04 2014-12-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Vorrichtung zur Förderung einer Flüssigkeit
EP3008302A1 (en) * 2013-06-13 2016-04-20 Continental Automotive GmbH Method for operating a device for providing a liquid additive
US9217350B2 (en) * 2013-11-13 2015-12-22 Ford Global Technologies, Llc Method and system for reductant injector degradation
WO2015188329A1 (en) * 2014-06-11 2015-12-17 Tenneco Automotive Operating Company Inc. Fluid delivery system with line pressure control valve
US20150023843A1 (en) * 2014-10-09 2015-01-22 Caterpillar Inc. Reductant supply system
US10202883B2 (en) 2014-11-21 2019-02-12 Tenneco (Suzhou) Emission System Co., Ltd. Common rail assembly, urea injection system and application thereof
CN105673154B (zh) 2014-11-21 2019-11-08 天纳克(苏州)排放系统有限公司 共轨、该共轨的应用、尿素喷射系统及其控制方法
US10309282B2 (en) 2014-12-11 2019-06-04 Komatsu Ltd. Reducing agent supply device and method for controlling reducing agent supply device
JP6206448B2 (ja) * 2015-05-29 2017-10-04 トヨタ自動車株式会社 還元剤供給装置
JP6406276B2 (ja) * 2016-02-17 2018-10-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6369484B2 (ja) 2016-02-17 2018-08-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6880888B2 (ja) * 2017-03-23 2021-06-02 いすゞ自動車株式会社 サプライモジュール固定構造
US10724414B2 (en) * 2018-05-17 2020-07-28 Robert Bosch Gmbh Delay based feed forward strategy to control pressure in a diesel exhaust fluid delivery system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122878A (ja) * 2004-11-01 2006-05-18 Babcock Hitachi Kk 排ガス脱硝装置と方法
JP2006132384A (ja) * 2004-11-04 2006-05-25 Nissan Diesel Motor Co Ltd 排気浄化装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839264B1 (de) 1994-09-13 1999-12-01 Siemens Aktiengesellschaft Verfahren und einrichtung zum einbringen von flüssigkeit in eine abgasreinigungsvorrichtung
US7703276B2 (en) * 2003-10-02 2010-04-27 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
JP4326976B2 (ja) * 2003-10-22 2009-09-09 日産ディーゼル工業株式会社 エンジンの排気浄化装置
JP2006051017A (ja) 2004-06-11 2006-02-23 Naberu:Kk 鶏卵の選別包装装置並びに該選別包装装置により選別包装された容器詰め鶏卵
DE102004054238A1 (de) * 2004-11-10 2006-05-11 Robert Bosch Gmbh Dosiersystem sowie Verfahren zum Betreiben eines Dosiersystems
JP2007056741A (ja) * 2005-08-24 2007-03-08 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
US7726118B2 (en) * 2006-09-18 2010-06-01 Ford Global Technologies, Llc Engine-off ammonia vapor management system and method
JP4730278B2 (ja) * 2006-10-20 2011-07-20 株式会社デンソー エンジンの排気浄化装置
JP4165896B2 (ja) * 2007-02-19 2008-10-15 ボッシュ株式会社 還元剤経路の詰まり判定装置及び還元剤経路の詰まり判定方法
JP4325725B2 (ja) * 2008-02-14 2009-09-02 トヨタ自動車株式会社 内燃機関の尿素水供給装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122878A (ja) * 2004-11-01 2006-05-18 Babcock Hitachi Kk 排ガス脱硝装置と方法
JP2006132384A (ja) * 2004-11-04 2006-05-25 Nissan Diesel Motor Co Ltd 排気浄化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975101A (zh) * 2010-10-20 2011-02-16 中国第一汽车集团公司 气动式单尿素箱非放气清空管路scr尿素系统
CN102451617A (zh) * 2010-10-20 2012-05-16 中国第一汽车集团公司 气动式双尿素箱电控尿素加注泵内置滤清器scr尿素系统
CN103189610A (zh) * 2010-11-08 2013-07-03 博世株式会社 还原剂喷射阀的异常判定装置及还原剂供给装置
US9145817B2 (en) 2010-11-08 2015-09-29 Bosch Corporation Reducing agent injection valve abnormality detection unit and reducing agent supply apparatus

Also Published As

Publication number Publication date
JP5475243B2 (ja) 2014-04-16
JP2009215891A (ja) 2009-09-24
CN101910573A (zh) 2010-12-08
CN101910573B (zh) 2013-07-24
US20110000196A1 (en) 2011-01-06
US8590291B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
WO2009110130A1 (ja) 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置
JP5139765B2 (ja) 還元剤供給システムの制御装置及び制御方法
JP4789242B2 (ja) 排気浄化装置
JP5326461B2 (ja) エンジンの排気浄化装置
US9145817B2 (en) Reducing agent injection valve abnormality detection unit and reducing agent supply apparatus
US8387366B2 (en) Reducing agent injection valve abnormality detection device and abnormality detection method, and internal combustion engine exhaust gas purification system
JP5258319B2 (ja) 酸化触媒の故障診断装置及び酸化触媒の故障診断方法、並びに内燃機関の排気浄化装置
JP4215808B2 (ja) 排気浄化装置の制御装置及び制御方法並びに内燃機関の排気浄化装置
JP4290037B2 (ja) エンジンの排気浄化装置
JP5258085B2 (ja) Noxセンサの合理性診断装置及び合理性診断方法、並びに内燃機関の排気浄化装置
US8813475B2 (en) Method for preventing choking of urea injection nozzle on SCR system
WO2012090801A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
WO2014061377A1 (ja) 還元剤回収制御方法及び還元剤供給装置並びに電子制御装置
JP2006342735A (ja) 排気浄化装置
JP2012127214A (ja) 還元剤供給装置及び内燃機関の排気浄化装置
JP2009097438A (ja) 排気浄化装置
JP2009270449A (ja) 排気浄化装置
JP6012086B2 (ja) 還元剤供給装置の制御方法及び還元剤供給装置
JP7403274B2 (ja) 還元剤供給制御装置
JP6905910B2 (ja) 診断装置及び診断方法
JP5914151B2 (ja) 還元剤噴射弁の異常検出装置及び還元剤供給装置
JP7108714B2 (ja) 還元剤供給装置の制御装置
JP2014015856A (ja) 還元剤供給装置及び液体還元剤の回収制御方法並びに排気浄化装置
JP2012097749A (ja) 排気浄化装置
JP2022110637A (ja) 制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123549.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08873189

Country of ref document: EP

Kind code of ref document: A1