WO2009109668A1 - Máquina herramienta para la soldadura de batido por fricción - Google Patents

Máquina herramienta para la soldadura de batido por fricción Download PDF

Info

Publication number
WO2009109668A1
WO2009109668A1 PCT/ES2008/000119 ES2008000119W WO2009109668A1 WO 2009109668 A1 WO2009109668 A1 WO 2009109668A1 ES 2008000119 W ES2008000119 W ES 2008000119W WO 2009109668 A1 WO2009109668 A1 WO 2009109668A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
pin
penetration
control system
friction
Prior art date
Application number
PCT/ES2008/000119
Other languages
English (en)
French (fr)
Inventor
Josu LARRAÑAGA LETURIA
Mari Luz Penalva Oscoz
María Asunción RIVERO RASTRERO
Original Assignee
Fundacion Fatronik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Fatronik filed Critical Fundacion Fatronik
Priority to PCT/ES2008/000119 priority Critical patent/WO2009109668A1/es
Priority to EP08736721A priority patent/EP2255918A1/en
Publication of WO2009109668A1 publication Critical patent/WO2009109668A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process

Definitions

  • the present invention belongs to the field of machine tools. More specifically, it refers to a machine tool for friction beating welding.
  • Friction stir welding has been invented, patented and developed for its industrial purpose by TWI
  • Friction welding is a solid state joining technique, with no material input where the initial characteristics of the material remain.
  • the basic concept is a non-consumable rotating tool with a stud and a shoulder, a pin and a shoulder in the English terminology, designed specifically for this process, that is to say, said stud and shoulder are not valid for any other similar process, the stud It is inserted between the adjacent ends of the plates to be welded and crosses the entire line of union guided by the shoulder.
  • Two types of tools are known; The first and most basic, is the rigid tool, where the stud does not have a relative movement with respect to the shoulder. On the other hand, There are tools where the pin has a relative movement with respect to the shoulder, this tool being called "FSW tool with retractable pin".
  • the FSW process is controlled by four control inputs: the pressure applied to the shoulder, the forward speed, the rotation of the tool and the position of the stud.
  • the objective of the control is to keep the process in conditions within a predetermined window delimited by the parameters of force exerted by the shoulder, forward speed, rotation speed and penetration distance of the pin, where the microstructure and desired properties are obtained.
  • the actual inputs of the process are the heat generation and the deformation speed provided to the pieces to be joined. These inputs are directly related to the inputs to be controlled, with a complex relationship due to the coefficient of friction. Any variation of the coefficient of friction would change the deformation and heat input.
  • the penetration of the shoulder and the penetration of the bolt along the line of union between the plates to be welded have independent control loops, which can be controlled by the reading of the position or the of strength
  • the control of shoulder penetration is usually controlled by a closed force control loop by hydraulic actuator.
  • the depth of insertion of the pin is controlled by an optical ruler placed on the head.
  • the invention relates to a machine tool for friction beating welding.
  • the tool for friction welding comprises a shoulder with a flat end configured to make a pressure on the metal parts to be welded and communicate a heat by the friction produced and a rotating retractable pin on said flat end configured to move a material from the pieces Metals to be welded from the front part of the pin to the back of the pin in its turn, thus carrying out the welding.
  • the retractable brass may protrude or retract at the flat end of the shoulder as necessary and depending on the thickness of the metal parts to be welded or the possible imperfections or irregularities of said pieces.
  • the position of the pin is controlled by a first control system and the position of the shoulder by a second control system.
  • the first control system is configured to generate a forced oscillation of the pin between a first penetration threshold and a second penetration threshold.
  • This forced oscillation improves the beating of the material of the metal parts since it increases the temperature and the beating of said material, and can solve the problem of lack of penetration.
  • the forced oscillation of the pin allows the first control system to be able to correct possible disturbances, thickness changes or anomalies in the parts to be welded in each oscillation cycle, thus being a faster control than those disclosed in the state of the technique, which have a marked delay in their response. In this way, the problem of penetration failures is also solved.
  • first penetration threshold and the second penetration threshold can surround, wrap or confine a theoretical penetration calculated for the realization of the welding.
  • the fact that the pin is continuously oscillating between the first penetration threshold and the second penetration threshold and that the theoretical penetration is between both values causes that in macroscopic terms the result obtained equals a weld made to this theoretical penetration, but with the advantages discussed above, as the solution of the problem of the LOP.
  • the first control system may have an input signal, which will be the desired setpoint or penetration value to perform the welding.
  • the control will be a closed loop control with a control module that produces a control signal, a plant that acts on the pin and additionally a relay with a gain that is integrated into the plant.
  • the gain of said relay will be such that it may cause the first control system to be unstable.
  • the gain of the relay corresponds to the value of its output and has a direct relationship with the amplitude of the oscillation of the stud.
  • the gain of the relay may change sign when the control signal of said relay, which corresponds to the input signal of the relay, changes sign. That is, if the gain, for example, of the relay is set at 4, for a positive control signal, the gain or output of the relay will be 4, while if the control signal is negative, the gain or output of the relay will be -4.
  • a white or dither noise may be added that will be added to the control signal, the sum of both signals being the input signal of the relay. Without this white noise, small oscillations around zero could change rapid changes of the unjustified relay gain.
  • the white noise is designed in such a way that it acts as hysteresis, that is, that the gain changes of the relay are made when a certain threshold has been exceeded so that there is a certain certainty that the change of sign produced must be manifested in a change of sign of the gain of the relay.
  • the first control system may additionally comprise a gain changer with an input signal and an output signal.
  • the input signal of the gain changer can be related to the input signal of the control module, for example by filtering said input signal of the control module and applying said filtered signal to the changer of profit
  • the output signal of the gain changer may affect the value of the gain of the relay, in such a way that by modifying the gain of the relay, it keeps the oscillations of the stud within the thresholds that are defined. According to a second aspect of the invention, this refers to the process carried out by the machine tool described above. Said procedure is based on producing a forced oscillation of the pin between a first penetration threshold and a second penetration threshold.
  • the oscillations between the first penetration threshold and the second penetration threshold may be such that a calculated theoretical penetration is found between said thresholds. This means that in each cycle of oscillation at least twice the pin will occupy the calculated theoretical penetration.
  • the procedure may include a stage in which a gain is produced that acts as an input signal from a plant of a feedback control system that controls the position of the stud.
  • this will consist of an input signal, or setpoint, which is the signal that is desired to be obtained at the output, in this case the objective is the penetration of the stud.
  • the error that is observed in said signal, said error obtained as the difference between the input signal, the desired setpoint or the target penetration for the stud, and the output signal, the measured penetration of the stud, will be the input signal of a control module itself.
  • the output signal of the control module is the one that, traditionally, acts as the input signal of the plant. In the present invention this is not so since there is a stage that causes the signal input of the plant corresponds to the established profit.
  • the module of said gain will not be affected by the output signal of the control module, only the sign of the gain will change if the sign of the output signal of the control module is modified.
  • the sign of the gain is based on a stable situation in what refers to the sign in at least a set period of time. That is, the white noise will be such that oscillations in volume at the sign change value do not cause sign changes in the gain until said oscillations have been overcome.
  • This change in the gain will ensure that the oscillation of the pin remains between the first penetration threshold and the second penetration threshold.
  • the input of the control module can be observed and, depending on this measure, decide the new value of the gain, so that the permanence of the pin within the established thresholds is ensured.
  • Figure 1. Shows a view of a machine tool for conventional friction milkshake welding.
  • Figure 2. Shows a mode of operation of the machine tool for the friction beating welding of a machine according to The present invention.
  • FIG. 3 Shows the control system in which essential elements have been added to carry out the control of the invention.
  • Figure 4.- Shows a second embodiment of the control system of the invention.
  • Figure 5. Shows the response of a conventional machine to a disturbance in the characteristics of the material of the pieces to be welded.
  • Figure 6. Shows the response of a machine according to the present invention to a disturbance in the material characteristics of the pieces to be welded.
  • Figure 1 shows the conventional configuration of a machine tool for friction beating welding. In it you can see a shoulder (1) and a stud (2) attached to said shoulder (1).
  • the pin (2) penetrates completely into the material of the metal parts to be welded and runs along the line of union of the metal parts.
  • the pin (2) is shaped similar to a thread or propeller, thus facilitating the transport of the material around it.
  • the movement of the pin (2) is controlled by a first control system.
  • the shoulder (1) ensures a correct placement of the tool, provides frictional heat through its rotation and the pressure exerted on the surface of the metal parts to be welded, and prevents the plasticized material due to the heat generated from leaving the surface. of the metal parts to be welded during the welding process.
  • a second control system collaborates.
  • the control systems for the trajectory of the pin (2) used in configurations such as the previous one tend to soften the movement profile of the pin (2).
  • the distance of the pin (2) at the edge of the piece changes, so it is necessary to make a correction of this distance.
  • the response may be executed with a delay that makes it possible to stop making sense when it is carried out.
  • Figure 2 shows the pattern that follows the penetration of the pin (2) in the metal parts to be welded with a machine tool according to the present invention. As can be seen, it corresponds to a forced oscillation. Said oscillation oscillates between a first penetration threshold (3) and a second penetration threshold (4). These penetration thresholds will be located around a calculated theoretical penetration (5). The oscillatory movement is caused by the interaction of two aspects of the invention. First, the gain of the relay (7) of the first control system will be such that it causes instability of the first control system. Second, this unstable movement of the pin (2) will be confined between a first penetration threshold (3) and a second penetration threshold (4).
  • the first penetration threshold (3) and the second penetration threshold (4) will be defined such that their separation does not exceed, for example, 0.1 millimeters. It is also recommended as an approximate value of the second penetration threshold (4) of 0.05 millimeters, for example, from the face of the metal part not penetrated (6) by the stud
  • the first penetration threshold (3) may be located at a distance of 0.15 millimeters from the face of the metal part not penetrated (6) by the pin (2). With these values, the additional loads suffered by the machine tool do not differ substantially from the design of a conventional machine tool.
  • the first control system consists of a closed loop control.
  • the Input signal is produced by a modeling of the weld that is desired to be performed that determines the evolution that the bolt (2) has to undergo, represented in the figures by the model (8).
  • the deviation suffered with respect to said calculated evolution acts as an input signal (e) of a control module (9) whose output signal corresponds to the input signal of the plant (10), that is, of the system used to drive the busty (2).
  • the present invention proposes to add a relay (7) with a gain that acts on the plant (10) and a white or dither noise that is superimposed on the control signal with the function set forth below.
  • Said control system is represented in Figure 3.
  • the plant (10) will always see as input a signal with a module equal to the gain of the relay (7).
  • Said gain will have a positive or negative value depending on the sign of the control signal (9).
  • a positive control signal will correspond to a positive gain, to a negative signal a negative gain.
  • the module of the gain of the relay (7) will be constant.
  • the white noise when added to the output signal of the control module (9) eliminates the noise and numerical errors of said input signal of the control module (9), improving the dynamic behavior of the relay (7). With this white noise it is achieved that alterations on a value close to zero do not imply sudden changes of the gain and therefore of the entrance to the plant (10).
  • the above-mentioned control can be modified by adding as an input signal to the relay (7) a signal from a gain changer (11), previously filtered by a filter (12) as in the case shown, or not.
  • the input signal of the gain changer (11) is related to the input signal of the control module (9).
  • the signal of the gain changer (11) modifies the gain of the relay (7).
  • Modifying the gain of the relay (7) modifies the amplitude of the oscillations. Therefore, the gain changer (11) must observe the input signal of the control module (9), to be able to evaluate the gain of the appropriate relay (7) to achieve an oscillation of the stud (2) in the thresholds penetration (3, 4) desired.
  • the conventional machine after a transitory period, beats the metal parts to be welded with a constant depth of the pin (2), according to the established program.
  • the irregularity of the material, different viscosity, hardness or any other parameter of the material of the metal parts to be welded occurs.
  • the conventional machine responds to the irregularity reaching a new steady state with an error in the high adaptation and kept too long, not being able to modify the penetration before the discontinuity found.
  • the evolution of the penetration of the conventional machine is represented by the dashed signal (14) of the figure.
  • Figure 6 represents the same situation as the one discussed above in which the machine is a machine according to the present invention.
  • the pin (2) oscillates, with an oscillation around an average value that corresponds to the programmed penetration.
  • Said oscillation (15) is represented in the figure by a dashed line.
  • the pin adapts to the irregularity found.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

La máquina herramienta para la soldadura de batido por fricción de dos piezas metálicas de la invención comprende un hombro (1) con un extremo plano configurado para realizar una presión sobre las piezas metálicas a soldar y un tetón (2) escamoteable en dicho extremo plano configurado para calentar y desplazar un material de las piezas metálicas a soldar, estando controlada la posición del tetón (2) por un primer sistema de control y la posición del hombro (1) por un segundo sistema de control. Dicho primer sistema de control está configurado para generar una oscilación forzada del tetón (2) entre un primer umbral de penetración (3) y un segundo umbral de penetración (4), provocando un control más ágil y rápido capaz de actuar más rápidamente ante perturbaciones en las piezas metálicas a soldar.

Description

MÁQUINA HERRAMIENTA PARA LA SOLDADURA DE BATIDO POR
FRICCIÓN
D E S C R I P C I Ó N
CAMPO DE LA INVENCIÓN
La presente invención pertenece al campo de las máquinas herramientas. Más concretamente, se refiere a una máquina herramienta para Ia soldadura de batido por fricción.
ANTECEDENTES DE LA INVENCIÓN
La soldadura de batido por fricción (FSW, friction stir welding) ha sido inventada, patentada y desarrollada para su propósito industrial por TWI
(The Welding Institute), en Cambridge, Reino Unido. La patente US 5460317 describe dicho proceso de soldadura de batido por fricción y constituye el texto más descriptivo de esta nueva técnica de soldadura.
La soldadura por fricción es una técnica de unión en estado sólido, sin aporte de material donde las características iniciales del material perduran.
Utilizando Ia soldadura por fricción es posible soldar materiales diferentes de gran espesor obteniendo excelentes propiedades mecánicas, y produciendo una muy pequeña distorsión en las piezas soldadas.
El concepto básico es una herramienta giratoria no consumible con un tetón y un hombro, un pin y un shoulder en Ia terminología inglesa, diseñados específicamente para este proceso, es decir, no son válidos dichos tetón y hombro para cualquier otro proceso similar, el tetón es insertado entre los extremos colindantes de las placas a soldar y atraviesa toda Ia línea de unión guiado por el hombro. Se conocen dos tipos de herramientas; Ia primera y más básica, es Ia herramienta rígida, donde el tetón no tiene un movimiento relativo con respecto al hombro. Por otra parte, existen herramientas donde el tetón tiene un movimiento relativo con respecto al hombro, llamándose a esta herramienta "herramienta de FSW con tetón retráctil".
Hoy en día, el proceso FSW está controlado por cuatro inputs de control: Ia presión aplicada en el hombro, Ia velocidad de avance, Ia rotación de Ia herramienta y Ia posición del tetón. El objetivo del control es mantener el proceso en condiciones dentro de una ventana predeterminada delimitada por los parámetros de fuerza ejercida por el hombro, velocidad de avance, velocidad de rotación y distancia de penetración del tetón, donde se obtiene Ia microestructura y propiedades deseadas.
Los inputs reales del proceso son Ia generación de calor y Ia velocidad de deformación proporcionadas a las piezas a unir. Estos inputs están directamente relacionados con los inputs a controlar, con una relación compleja por el coeficiente de fricción. Cualquier variación del coeficiente de fricción cambiaría el input de deformación y calor.
En el caso de Ia herramienta con tetón retráctil, Ia penetración del hombro y Ia penetración del tetón a Io largo de Ia línea de unión entre las placas a soldar tienen lazos de control independientes, que pueden ser controlados por Ia lectura de Ia posición o Ia de fuerza. El control de Ia penetración del hombro se suele controlar mediante un lazo de control cerrado de fuerza por actuador hidráulico. Por otra parte, Ia profundidad de inserción del tetón se controla mediante una regla óptica colocada sobre el cabezal. Con este método, se consigue una medida indirecta de Ia posición del tetón, ya que no se conoce Ia profundidad de penetración del hombro, se conoce sólo Ia presión realizada sobre Ia pieza. Aunque se pudiera calcular
Ia penetración del hombro, no se podría saber cual es Ia posición exacta del tetón por las deformaciones de Ia maquina y Ia resolución de Ia regla.
El problema técnico que tiene este método, es que es difícil posicionar correctamente el tetón durante toda Ia trayectoria. En Ia soldadura por batido de fricción, Ia penetración de Ia herramienta dentro de Ia pieza a soldar es crítica. Si es demasiado grande crea irregularidades en el material y puede causar fisuras en Ia misma. Por otro lado, si es demasiado pequeña, se crean defectos conocidos como faltas de penetración (LOP, lack of penetration) Io que hace que aparezcan fisuras en Ia superficie soldada. Dichas fisuras aparecen en Ia cara posterior de Ia soldadura. La calidad de Ia soldadura es por Io tanto muy dependiente de Ia profundidad del pin, siendo éste ultimo un parámetro difícil de controlar en posición por las fuerzas ejercidas en el proceso y las irregularidades del material a soldar.
Con el control previamente mencionado para las trayectorias del tetón, se ha podido constatar que las estrategias utilizadas hoy en día, son trayectorias que tienden a suavizar perfil de movimiento del tetón. En el momento que aparece una discontinuidad Ia distancia del tetón al borde de Ia pieza cambia, por Io que es necesario hacer una corrección de esta distancia. En el caso de los controles actuales, se intenta conseguir que el tetón esté siempre colocado sobre una curva anteriormente programada.
Hoy en día se realiza el control del tetón por lectura indirecta de Ia posición, pero el problema es que cuando aparece una discontinuidad, el control tarda en responder, y puede suceder que para cuando Ia máquina responda, Ia discontinuidad se haya terminado y no se necesite en ese momento Ia corrección de Ia posición del tetón. Por ello, este tipo de controles suele tener problemas de respuesta con problemas localizados en Ia máquina o en las propiedades del material.
Los problemas que se acaban de comentar se pueden observar también en las patentes US 5697544, US 5713507, US 5813592, US 6421578, US 6595403, US 2002/0179673 y WO 0128732.
DESCRIPCIÓN DE LA INVENCIÓN
La invención se refiere a una máquina herramienta para Ia soldadura de batido por fricción. Con dicha máquina herramienta se realiza Ia soldadura de dos piezas metálicas sin que sea necesario el aporte de material adicional. La herramienta para Ia soldadura por fricción comprende un hombro con un extremo plano configurado para realizar una presión sobre las piezas metálicas a soldar y comunicar un calor por Ia fricción producida y un tetón escamoteable giratorio en dicho extremo plano configurado para desplazar un material de las piezas metálicas a soldar desde Ia parte frontal del tetón a Ia parte posterior del mismo en su giro realizándose así Ia soldadura. El tetón escamoteable podrá sobresalir o retraerse en el extremo plano del hombro según sea necesario y en función del grosor de las piezas metálicas a soldar o de las posibles imperfecciones o irregularidades de dichas piezas.
En este sentido, Ia posición del tetón está controlada por un primer sistema de control y Ia posición del hombro por un segundo sistema de control.
De acuerdo con un primer aspecto de Ia invención, el primer sistema de control está configurado para generar una oscilación forzada del tetón entre un primer umbral de penetración y un segundo umbral de penetración. Esta oscilación forzada, mejora el batido del material de las piezas metálicas ya que aumenta Ia temperatura y el batido de dicho material, y puede solucionar el problema de Ia falta de penetración. La oscilación forzada del tetón posibilita que el primer sistema de control pueda, en cada ciclo de oscilación, corregir posibles perturbaciones, cambios de grosor o anomalías en las piezas a soldar, siendo, por tanto, un control más rápido que aquellos divulgados en el estado de Ia técnica, los cuales presentan un retraso acusado en su respuesta. De este modo se consigue también solventar el problema de las faltas de penetración.
Adicionalmente, el primer umbral de penetración y el segundo umbral de penetración pueden rodear, envolver o confinar una penetración teórica calculada para Ia realización de Ia soldadura. El hecho de que el tetón esté continuamente oscilando entre el primer umbral de penetración y el segundo umbral de penetración y que Ia penetración teórica se encuentre entre ambos valores, provoca que en términos macroscópicos el resultado obtenido equivalga a una soldadura realizada a esta penetración teórica, pero con las ventajas comentadas anteriormente, como Ia solución del problema del LOP.
El primer sistema de control podrá tener una señal de entrada, Ia cual será Ia consigna o valor de penetración deseado para realizar Ia soldadura.
El control será un control en lazo cerrado con un módulo de control que produce una señal de control, una planta que actúa sobre el tetón y adicionalmente un relé con una ganancia que se integra en Ia planta. La ganancia de dicho relé será tal que podrá provocar que el primer sistema de control sea inestable. La ganancia del relé corresponde al valor de su salida y tiene una relación directa con Ia amplitud de Ia oscilación del tetón.
La ganancia del relé podrá cambiar de signo cuando Ia señal de control de dicho relé, que corresponde con Ia señal de entrada del relé, cambia de signo. Es decir, si Ia ganancia, por ejemplo, del relé se fija en 4, para una señal de control positiva, Ia ganancia o salida del relé será 4, mientras que si Ia señal de control es negativa, Ia ganancia o salida del relé será -4.
Al primer sistema de control descrito se Ie podrá añadir un ruido blanco o dither que se sumará a Ia señal de control, siendo Ia suma de ambas señales Ia señal de entrada del relé. Sin este ruido blanco, pequeñas oscilaciones alrededor del cero podrían cambiar cambios rápidos de Ia ganancia del relé no justificados. El ruido blanco está diseñado de tal modo que actúe como histéresis, es decir, que los cambios de ganancia del relé se efectúen cuando se haya superado un cierto umbral de tal modo que exista una cierta certeza de que el cambio de signo producido debe manifestarse en un cambio de signo de Ia ganancia del relé.
El primer sistema de control puede comprender adicionalmente un cambiador de ganancia con una señal de entrada y una señal de salida. La señal de entrada del cambiador de ganancia puede estar relacionada a Ia señal de entrada del módulo de control, por ejemplo filtrando dicha señal de entrada del módulo de control y aplicando dicha señal filtrada al cambiador de ganancia. La señal de salida del cambiador de ganancia podrá afectar al valor de Ia ganancia del relé, de tal modo que modificando Ia ganancia del relé mantenga las oscilaciones del tetón dentro de los umbrales que se definan. De acuerdo con un segundo aspecto de Ia invención, ésta se refiere al procedimiento que lleva a cabo Ia máquina herramienta anteriormente descrita. Dicho procedimiento se basa en producir una oscilación forzada del tetón entre un primer umbral de penetración y un segundo umbral de penetración. Creando esta oscilación forzada se provoca que Ia respuesta de Ia máquina herramienta sea más rápida ante posibles perturbaciones, pudiendo ser estas las ligadas a irregularidades en Ia superficie de las piezas a unir, como una discontinuidad en Ia superficie o un escalón, o a irregularidades en las propiedades mecánicas de las piezas a unir, como por ejemplo Ia dureza del material. Las oscilaciones entre el primer umbral de penetración y el segundo umbral de penetración podrán ser tales que entre dichos umbrales se encuentre una penetración teórica calculada. Quiere esto decir que en cada ciclo de oscilación al menos dos veces el tetón ocupará Ia penetración teórica calculada. El procedimiento podrá incluir una etapa en Ia cual se produce una ganancia que actúa como señal de entrada de una planta de un sistema de control realimentado que controla Ia posición del tetón. Como todo sistema de control realimentado, éste constará de una señal de entrada, o setpoint, que es Ia señal que se desea obtener a Ia salida, en este caso el objetivo es Ia penetración del tetón. El error que se observa en dicha señal, obtenido dicho error como al diferencia entre Ia señal de entrada, Ia consigna deseada o Ia penetración objetivo para el tetón, y Ia señal de salida, Ia penetración medida del tetón, será Ia señal de entrada de un módulo de control propiamente dicho. La señal de salida del módulo de control es Ia que, tradicionalmente, actúa como señal de entrada de Ia planta. En Ia presente invención esto no es así dado que existe una etapa que provoca que Ia señal de entrada de Ia planta corresponda con Ia ganancia establecida. El módulo de dicha ganancia no se verá afectado por Ia señal de salida del módulo de control, únicamente cambiará el signo de Ia ganancia si se modifica el signo de Ia señal de salida del módulo de control. Con el fin de que estos cambios no sean erráticos, podrá existir una etapa adicional que añada a Ia señal de salida del módulo de control un ruido blanco de tal modo que este ruido blanco cree una histéresis, de forma que los cambios que se produzcan en el signo de Ia ganancia estén basados en una situación estable en Io que se refiere al signo en al menos un periodo de tiempo establecido. Es decir, el ruido blanco será tal que oscilaciones en tomo al valor de cambio de signo no causen cambios de signo en Ia ganancia hasta que dichas oscilaciones hayan sido superadas.
Podrá existir una etapa adicional que provoque el cambio del módulo de Ia ganancia. Este cambio de Ia ganancia buscará que Ia oscilación del tetón se mantenga entre el primer umbral de penetración y el segundo umbral de penetración. Para llevar a cabo este cambio de Ia ganancia, se podrá observar Ia entrada del módulo de control y en función de esta medida decidir el nuevo valor de Ia ganancia, de tal modo que se asegure Ia permanencia del tetón dentro de los umbrales establecidos.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
Figura 1.- Muestra una vista de una máquina herramienta para Ia soldadura de batido por fricción convencional. Figura 2.- Muestra un modo de funcionamiento de Ia máquina herramienta para Ia soldadura de batido por fricción de una máquina según Ia presente invención.
Figura 3.- Muestra el sistema de control en el cual se han añadido elementos esenciales para llevar a cabo el control de Ia invención.
Figura 4.- Muestra una segunda realización del sistema de control de Ia invención.
Figura 5.- Muestra Ia respuesta de una máquina convencional ante una perturbación en las características del material de las piezas a soldar.
Figura 6.- Muestra Ia respuesta de una máquina según Ia presente invención ante un perturbación en las características del material de las piezas a soldar.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A continuación, con referencia a las figuras, se describe un modo de realización preferente de Ia máquina herramienta para Ia soldadura de batido por fricción que constituye el objeto de esta invención.
La figura 1 muestra Ia configuración convencional de una máquina herramienta para Ia soldadura de batido por fricción. En ella se puede observar un hombro (1 ) y un tetón (2) unido a dicho hombro (1 ).
El tetón (2) penetra completamente en el material de las piezas metálicas a soldar y discurre a Io largo de Ia línea de unión de las piezas metálicas. El tetón (2) está perfilado en forma de similar a una rosca o hélice, facilitando así el transporte del material a su alrededor. El movimiento del tetón (2) está controlado por un primer sistema de control.
El hombro (1 ) asegura una correcta colocación de Ia herramienta, proporciona calor friccional a través de su rotación y Ia presión que ejerce sobre Ia superficie de las piezas metálicas a soldar, y evita que el material plastificado debido al calor generado salga a Ia superficie de las piezas metálicas a soldar durante el proceso de soldadura. En todas estas funciones colabora un segundo sistema de control. Los sistemas de control para Ia trayectoria del tetón (2) empleados en configuraciones como Ia anterior tienden a suavizar perfil de movimiento del tetón (2). En el momento que aparece una discontinuidad, Ia distancia del tetón (2) al borde de Ia pieza cambia, por Io que es necesario hacer una corrección de esta distancia. En el caso de los controles actuales, Ia respuesta puede ser que sea ejecutada con un retraso tal que haga posible que ésta deje de tener sentido cuando se lleve a cabo.
La figura 2 muestra el patrón que sigue Ia penetración del tetón (2) en las piezas metálicas a soldar con una máquina herramienta según Ia presente invención. Como se puede observar, corresponde con una oscilación forzada. Dicha oscilación oscila entre un primer umbral de penetración (3) y un segundo umbral de penetración (4). Dichos umbrales de penetración estarán situados alrededor de una penetración teórica calculada (5). El movimiento oscilatorio está provocado por Ia interacción de dos aspectos de Ia invención. En primer lugar, Ia ganancia del relé (7) del primer sistema de control será tal que provoque Ia inestabilidad del primer sistema de control. En segundo lugar, este movimiento inestable del tetón (2) estará confinado entre un primer umbral de penetración (3) y un segundo umbral de penetración (4).
El primer umbral de penetración (3) y el segundo umbral de penetración (4) estarán definidos de tal modo que su separación no sea superior, por ejemplo, a 0,1 milímetros. Asimismo se recomienda como un valor aproximado del segundo umbral de penetración (4) de 0,05 milímetros, por ejemplo, desde Ia cara de Ia pieza metálica no penetrada (6) por el tetón
(2). Por Io tanto, el primer umbral de penetración (3) podrá situarse a una distancia de 0,15 milímetros de Ia cara de Ia pieza metálica no penetrada (6) por el tetón (2). Con estos valores, las cargas adicionales sufridas por Ia máquina herramienta no difieren sustancialmente del diseño de una máquina herramienta convencional.
El primer sistema de control consiste en un control en lazo cerrado. La señal de entrada es producida mediante un modelado de Ia soldadura que se desea realizar que determina Ia evolución que ha de sufrir el tetón (2), representado en las figuras por el modelo (8). La desviación sufrida respecto a dicha evolución calculada actúa como señal de entrada (e) de un módulo de control (9) cuya señal de salida corresponde con Ia señal de entrada de Ia planta (10), es decir, del sistema empleado para accionar el tetón (2). Adicionalmente, Ia presente invención propone añadir un relé (7) con una ganancia que actúe sobre Ia planta (10) y un ruido blanco o dither que se superponga a Ia señal de control con Ia función que se expondrá a continuación. Dicho sistema de control está representado en Ia figura 3. De este modo, Ia planta (10) verá como entrada siempre una señal con un módulo igual a Ia ganancia del relé (7). Dicha ganancia tendrá un valor positivo o negativo en función del signo de Ia señal de control (9). A una señal de control positiva Ie corresponderá una ganancia positiva, a una señal negativa, una ganancia negativa. En el sistema de control de Ia figura 3, el módulo de Ia ganancia del relé (7) será constante. El ruido blanco, al añadirse a Ia señal de salida del módulo de control (9) elimina el ruido y los errores numéricos de dicha señal de entrada del módulo de control (9), mejorando el comportamiento dinámico del relé (7). Con este ruido blanco se logra que alteraciones sobre un valor próximo a cero no impliquen cambios súbitos de Ia ganancia y por Io tanto de Ia entrada a Ia planta (10).
El control antes mencionado puede ser modificado añadiendo como señal de entrada al relé (7) una señal de un cambiador de ganancia (11 ), previamente filtrada por un filtro (12) como en el caso representado, o no. La señal de entrada del cambiador de ganancia (11 ) está relacionada con Ia señal de entrada del módulo de control (9). La señal del cambiador de ganancia (11) modifica Ia ganancia del relé (7). Modificando Ia ganancia del relé (7) se modifica Ia amplitud de las oscilaciones. Por Io tanto, el cambiador de ganancia (11 ) debe observar Ia señal de entrada del módulo de control (9), para ser capaz de evaluar Ia ganancia del relé (7) apropiada para lograr una oscilación del tetón (2) en los umbrales de penetración (3, 4) deseados. A continuación se comentan las figuras 5 y 6 en las que se muestran el comportamiento de dos máquinas ante Ia misma situación, Ia necesidad de soldar dos piezas con una profundidad de penetración fijada en 1 , representándose en las figuras por un escalón (13), encontrándose en el instante t=6 segundos una anomalía en las características mecánicas de las piezas a soldar. Los ejes de abscisas y ordenadas son, respectivamente, el tiempo y Ia profundidad.
Como se observa en Ia figura 5, Ia máquina convencional, tras un periodo transitorio, bate las piezas metálicas a soldar con una profundidad del tetón (2) constante, según el programa establecido. En el instante t=6 se produce Ia irregularidad del material, distinta viscosidad, dureza o cualquier otro parámetro del material de las piezas metálicas a soldar. La máquina convencional responde a Ia irregularidad llegando a un nuevo estado estacionario con un error en Ia adaptación elevado y mantenido demasiado tiempo, no siendo capaz de modificar Ia penetración ante Ia discontinuidad encontrada. La evolución de Ia penetración de Ia máquina convencional se representa por Ia señal de trazos (14) de Ia figura.
La figura 6 representa Ia misma situación que Ia comentada anteriormente en Ia que Ia máquina es una máquina según Ia presente invención. Tal y como se ha comentado anteriormente, el tetón (2) oscila, con una oscilación alrededor de un valor medio que se corresponde con Ia penetración programada. Dicha oscilación (15) está representada en Ia figura por una línea a trazos. Sin embargo, gracias a las oscilaciones y a Ia mayor rapidez de reacción que éstas provocan, en el instante t=6 el tetón se adapta a Ia irregularidad encontrada.
Por Io tanto, como se puede ver en las figuras 5 y 6, Ia oscilación de Ia invención es Ia causa de Ia rápida adaptación de Ia máquina herramienta debido a posibles irregularidades del material a soldar, mejorando por Io tanto Ia calidad de Ia soldadura. De Ia misma manera se podría razonar si en lugar de ser una discontinuidad en los parámetros del material, fuera una discontinuidad geométrica de dicho materiales. A Ia vista de esta descripción y juego de figuras, el experto en Ia materia podrá entender que Ia invención ha sido descrita según una realización preferente de Ia misma, pero que múltiples variaciones pueden ser introducidas en dicha realización preferente, sin salir del objeto de Ia invención tal y como ha sido reivindicada.

Claims

R E I V I N D I C A C I O N E S
1.- Máquina herramienta para Ia soldadura de batido por fricción de dos piezas metálicas que comprende un hombro (1 ) con un extremo plano configurado para realizar una presión sobre las piezas metálicas a soldar y un tetón (2) escamoteable en dicho extremo plano configurado para calentar y desplazar un material de las piezas metálicas a soldar, estando controlada Ia posición del tetón (2) por un primer sistema de control y Ia posición del hombro (1 ) por un segundo sistema de control, caracterizada por que el primer sistema de control está configurado para generar una oscilación forzada del tetón (2) entre un primer umbral de penetración (3) y un segundo umbral de penetración (4).
2.- Máquina herramienta para Ia soldadura de batido por fricción según Ia reivindicación 1 , caracterizado por que una penetración teórica calculada (5) está comprendida entre el primer umbral de penetración (3) y el segundo umbral de penetración (4).
3.- Máquina herramienta para Ia soldadura de batido por fricción según cualquiera de las reivindicaciones 1-2, caracterizada por que el primer sistema de control con una señal de entrada comprende un control en lazo cerrado con un módulo de control (9) que produce una señal de control teniendo como señal de entrada una desviación de Ia señal de entrada del sistema de control, una planta (10) que actúa sobre el tetón (2) y adicionalmente un relé (7) con una ganancia que se integra en Ia planta (10), dicho relé (7) con una ganancia tal que provoca que el primer sistema de control sea inestable.
4.- Máquina herramienta para Ia soldadura de batido por fricción según Ia reivindicación 3, caracterizada por que Ia ganancia del relé (7) cambia de signo cuando Ia señal de control cambia de signo.
5.- Máquina herramienta para Ia soldadura de batido por fricción según Ia reivindicación 4, caracterizada por que el primer sistema de control comprende un ruido blanco que se suma a Ia señal de control para ser Ia señal de entrada del relé (7), configurado dicho ruido blanco para actuar como histéresis para el cambio de signo de Ia ganancia del relé (7).
6.- Máquina herramienta para Ia soldadura de batido por fricción según cualquiera de las reivindicaciones 3-5, caracterizada por que el primer sistema de control comprende adicionalmente un cambiador de ganancia (11) con una señal de entrada y una señal de salida, estando Ia señal de entrada del cambiador de ganancia (11 ) relacionada a Ia señal de entrada del módulo de control (9) y Ia señal de salida afectando al valor de Ia ganancia del relé (7).
7.- Máquina herramienta para Ia soldadura de batido por fricción según cualquiera de las reivindicaciones 1-6, caracterizada por que Ia distancia entre el primer umbral de penetración (3) y Ia superficie no penetrada (6) de las piezas metálicas es menor de 0.15 milímetros.
8.- Máquina herramienta para Ia soldadura de batido por fricción según cualquiera de las reivindicaciones 1-7, caracterizada por que Ia distancia entre el segundo umbral de penetración (4) y Ia superficie no penetrada (6) de las piezas metálicas es superior a 0.05 milímetros.
9.- Procedimiento para Ia soldadura de batido por fricción de dos piezas metálicas mediante una máquina herramienta que comprende un hombro (1 ) con un extremo plano configurado para realizar una presión sobre las piezas metálicas a soldar y un tetón (2) escamoteable en dicho extremo plano configurado para calentar y desplazar un material de las piezas metálicas a soldar, caracterizado por que comprende una etapa de producir una oscilación forzada del tetón (2) entre un primer umbral de penetración (3) y un segundo umbral de penetración (4).
10.- Procedimiento según Ia reivindicación 9, caracterizado por que entre el primer umbral de penetración (3) y el segundo umbral de penetración (4) se sitúa una penetración teórica calculada (5).
11.- Procedimiento según cualquiera de las reivindicaciones
9-10, caracterizado por que comprende una etapa de producir una ganancia que actúa como señal de entrada de una planta de un primer sistema de control realimentado que controla Ia posición del tetón (2), dicha planta actuando sobre el tetón (2), de modo que dicha ganancia provoca Ia inestabilidad del primer sistema de control.
12.- Procedimiento según Ia reivindicación 11 , caracterizado por que comprende una etapa de modificar Ia ganancia de modo que se mantenga Ia oscilación forzada del tetón (2) entre el primer umbral de penetración (3) y el segundo umbral de penetración (4).
PCT/ES2008/000119 2008-03-03 2008-03-03 Máquina herramienta para la soldadura de batido por fricción WO2009109668A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2008/000119 WO2009109668A1 (es) 2008-03-03 2008-03-03 Máquina herramienta para la soldadura de batido por fricción
EP08736721A EP2255918A1 (en) 2008-03-03 2008-03-03 Machine-tool for friction stir welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/000119 WO2009109668A1 (es) 2008-03-03 2008-03-03 Máquina herramienta para la soldadura de batido por fricción

Publications (1)

Publication Number Publication Date
WO2009109668A1 true WO2009109668A1 (es) 2009-09-11

Family

ID=39957665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000119 WO2009109668A1 (es) 2008-03-03 2008-03-03 Máquina herramienta para la soldadura de batido por fricción

Country Status (2)

Country Link
EP (1) EP2255918A1 (es)
WO (1) WO2009109668A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541608B2 (en) 2017-11-13 2023-01-03 Pinweld Limited Welding apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106506A1 (de) 2011-06-15 2012-12-20 Eurocopter Deutschland Gmbh Schweißwerkzeug zum Verbinden von wenigstens zwei Werkstücken, Schweißverfahren und Werkstück
GB2608136B (en) * 2021-06-22 2024-01-03 Pinweld Ltd Polymeric pipe welding apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460317A (en) 1991-12-06 1995-10-24 The Welding Institute Friction welding
US5697544A (en) 1996-03-21 1997-12-16 Boeing North American, Inc. Adjustable pin for friction stir welding tool
US5713507A (en) 1996-03-21 1998-02-03 Rockwell International Corporation Programmable friction stir welding process
US5813592A (en) 1994-03-28 1998-09-29 The Welding Institute Friction stir welding
WO2001028732A1 (en) 1999-10-19 2001-04-26 Norsk Hydro Asa Friction stir spot welding method and apparatus
DE19953260A1 (de) * 1999-11-05 2001-05-10 Vesselin Michailov Impuls-Rührreibschweißen (Impulse Friction Stir Welding)
US6421578B1 (en) 1999-02-12 2002-07-16 Lockheed Martin Corporation Stir-friction hot working control system
US20020179673A1 (en) 1999-11-18 2002-12-05 Strombeck Alexander Von Device for joining workpieces by friction stir welding
US6595403B2 (en) 2000-02-24 2003-07-22 Hitachi, Ltd. Friction stir welding method
EP1510280A1 (en) * 2003-08-29 2005-03-02 General Electric Company Apparatus and method for friction stir welding using a consumable pin tool

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460317A (en) 1991-12-06 1995-10-24 The Welding Institute Friction welding
US5460317B1 (en) 1991-12-06 1997-12-09 Welding Inst Friction welding
US5813592A (en) 1994-03-28 1998-09-29 The Welding Institute Friction stir welding
US5697544A (en) 1996-03-21 1997-12-16 Boeing North American, Inc. Adjustable pin for friction stir welding tool
US5713507A (en) 1996-03-21 1998-02-03 Rockwell International Corporation Programmable friction stir welding process
US6421578B1 (en) 1999-02-12 2002-07-16 Lockheed Martin Corporation Stir-friction hot working control system
WO2001028732A1 (en) 1999-10-19 2001-04-26 Norsk Hydro Asa Friction stir spot welding method and apparatus
DE19953260A1 (de) * 1999-11-05 2001-05-10 Vesselin Michailov Impuls-Rührreibschweißen (Impulse Friction Stir Welding)
US20020179673A1 (en) 1999-11-18 2002-12-05 Strombeck Alexander Von Device for joining workpieces by friction stir welding
US6595403B2 (en) 2000-02-24 2003-07-22 Hitachi, Ltd. Friction stir welding method
EP1510280A1 (en) * 2003-08-29 2005-03-02 General Electric Company Apparatus and method for friction stir welding using a consumable pin tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541608B2 (en) 2017-11-13 2023-01-03 Pinweld Limited Welding apparatus

Also Published As

Publication number Publication date
EP2255918A1 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2009109668A1 (es) Máquina herramienta para la soldadura de batido por fricción
EP3332904A1 (en) Laser welding method
JP5739804B2 (ja) 修正可能な工具制御パラメータを使用して摩擦攪拌溶接中の工具の温度を制御する方法
US8558133B2 (en) System and method of computing the operating parameters of a forge welding machine
CZ287673B6 (en) Welding process of parts by friction under motion
WO2015072107A1 (ja) レーザ溶接条件決定方法およびレーザ溶接装置
CN110625335B (zh) 一种大展弦比骨架蒙皮翼类构件的焊接变形控制方法
JP2003065068A (ja) ガスタービン翼頂部の加工孔閉塞方法
CN104379300A (zh) 用激光器脉冲钻孔工件的方法和装置
EP2851153B1 (en) Electric spindle with axial force control, intended for friction welding and other uses
RU2548548C2 (ru) Конструкционный элемент и способ изготовления
JP6318797B2 (ja) レーザ溶接方法
KR20150103113A (ko) 증기터빈날개 제조방법
ES2449075T3 (es) Herramienta para el soldeo de batido por fricción de dos piezas metálicas con una unión en ángulo que tiene un tetón y un hombro con forma de cuña
CN106794529A (zh) 制备切割工具用原料的方法
JP2022514622A (ja) ターボ機械ブレードのための金属補強材を製造するための方法
JP2013071149A (ja) 2電極左右差溶接方法
JP7318741B2 (ja) 接合方法
BR112016011713B1 (pt) Método para produzir um material primário para uma ferramenta de usinagem, material primário plano para produzir uma ferramenta de usinagem, e, ferramenta de usinagem
CN113799666A (zh) 通过焊接将界面支撑件固定在车辆座椅滑动机构的型材上的方法
JP7005245B2 (ja) 部材の接合方法
Lukkari et al. How much heat can variuos steels and filler metals withstand?
JP6071760B2 (ja) タービン翼およびその製造方法
JP7435834B2 (ja) レーザビーム溶接方法とその溶接機ならびに突合せ溶接継手の製造方法
RU2681067C1 (ru) Способ электронно-лучевой сварки деталей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08736721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008736721

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE