WO2009107681A1 - マイクロ波を用いた不純物ドープ金属酸化物の製造方法 - Google Patents

マイクロ波を用いた不純物ドープ金属酸化物の製造方法 Download PDF

Info

Publication number
WO2009107681A1
WO2009107681A1 PCT/JP2009/053454 JP2009053454W WO2009107681A1 WO 2009107681 A1 WO2009107681 A1 WO 2009107681A1 JP 2009053454 W JP2009053454 W JP 2009053454W WO 2009107681 A1 WO2009107681 A1 WO 2009107681A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
microwave
impurity
titanium dioxide
doped
Prior art date
Application number
PCT/JP2009/053454
Other languages
English (en)
French (fr)
Inventor
暹 吉川
太郎 園部
真毅 篠原
友彦 三谷
寛 蜂谷
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2010500724A priority Critical patent/JPWO2009107681A1/ja
Publication of WO2009107681A1 publication Critical patent/WO2009107681A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a method for doping a metal oxide with a dopant element, and particularly to an advantageous method for producing carbon-doped titanium dioxide having photocatalytic activity in the visible light region.
  • the wavelength band where the photocatalytic activity is expressed can be expanded, the energy that can be taken in will be dramatically improved, and not only the decomposition of organic compounds like conventional photocatalysts, but also hydrogen synthesis in one step by decomposition of water, or dyes
  • the possibility of application to sensitized solar cells is also conceivable.
  • it can be expected to be applied to removal of organic gases that cause sick house syndrome and deodorization in the room, antifouling treatment of tiles, glass, tents, etc., and purification of sewage such as rivers and ponds.
  • the present invention has been made in view of the above problems, and provides a method for doping a metal oxide with a dopant element in a short time and with a low output by using a microwave.
  • An object is to provide a simple method for producing titanium.
  • the metal oxide is irradiated with microwaves in the presence of the dopant element, and the dopant element is doped into the metal oxide.
  • the dopant element can be effectively doped into the metal oxide by irradiating the paste in which the organic solvent containing the dopant element and the metal oxide are mixed with microwaves.
  • Various metal oxides can be used as the metal oxide, but titanium dioxide is preferably used.
  • Various elements can be used as the dopant element, but carbon is preferable.
  • the dopant element Surrounding the metal oxide and the dopant element with a ceramic heat insulating wall coated with a microwave absorber, and irradiating the ceramic heat insulating wall, the metal oxide and the dopant element with microwaves, the dopant element is more effectively converted into the metal oxide.
  • the functional group derived from a dopant exists in the surface of the impurity dope metal oxide obtained by the manufacturing method of the impurity dope metal oxide of this invention.
  • the dopant element can be doped into the metal oxide in a short time with energy saving. Further, by controlling the microwave output and the like, the doping amount of the dopant element to the metal oxide can be freely controlled, and the material can be designed according to the doping amount.
  • FIG. 2 is a photograph of untreated titanium dioxide used in Example 1.
  • 2 is a photograph of titanium dioxide obtained in Example 1 after microwave irradiation.
  • 2 is an X-ray diffraction result in Example 1.
  • FIG. 3 is a measurement result of ultraviolet-visible light absorption in Example 1.
  • FIG. 6 is a diagram showing the generation behavior of I 3 ⁇ during irradiation with visible light. 3 shows the measurement results of ATR-FT-IR in Example 1.
  • It is a schematic diagram of a single mode microwave irradiation apparatus. It is an X-ray-diffraction result in Example 2. It is an X-ray-diffraction result in Example 3. 4 shows the measurement results of ultraviolet-visible light absorption in Example 3. 4 shows the measurement result of ultraviolet-visible light absorption in Example 4.
  • FIG. 1 is a schematic view of a method for producing an impurity-doped metal oxide according to the present invention.
  • the metal oxide 10 and the organic solvent 12 containing the dopant element are mixed to form a paste, and the ceramic heat insulating wall 14 is arranged so as to surround the paste. It is preferable to apply a microwave absorbent 16 to the inner wall of the ceramic heat insulating wall 14. By irradiating the metal oxide 10 and the organic solvent 12 surrounded by the ceramic heat insulating wall 14 with the microwave 20, the metal oxide 10 and the organic solvent 12 are dielectrically heated, and the dopant element is doped into the metal oxide 10.
  • the microwave absorbent 16 By irradiating the metal oxide 10 and the organic solvent 12 surrounded by the ceramic heat insulating wall 14 with the microwave 20, the metal oxide 10 and the organic solvent 12 are dielectrically heated, and the dopant element is doped into the metal oxide 10.
  • titanium dioxide is preferably used. Titanium dioxide has three crystal forms known as rutile, anatase, and brookite, but the two most commonly used for industrial use are rutile and anatase (brookite is unstable). The photocatalytic activity of anatase is greater than that of rutile, and it is preferable to use anatase for the titanium dioxide used in the present invention.
  • the shape of the metal oxide 10 is not particularly limited, but is preferably a powder that can be easily mixed with the organic solvent 12 and has a large surface area.
  • the dopant element contained in the organic solvent 12 is doped into the metal oxide 10.
  • the dopant element include C, N, S, Cr, V, Ni, and Fe, and it is particularly preferable to use C.
  • the organic solvent 12 alcohols, higher alcohols (ethylene glycol, glycerin), ketones such as acetone, and the like can be used.
  • the ceramic heat insulating wall 14 is used to effectively achieve dielectric heating by irradiation with the microwave 20.
  • the absorption efficiency of the microwave 20 can be increased by applying the microwave absorbent 16 to the ceramic heat insulating wall 14.
  • the amount of the dopant element doped into the metal oxide 10 can be controlled by the type and amount of the microwave absorber 16.
  • the microwave absorbent 16 it is preferable to use a mixture of graphite and ethanol.
  • a general microwave heating device including a microwave generator, a waveguide unit, a heater, and the like, a commercially available microwave oven, and the like can be used.
  • the heater has a single mode and a multimode, but both modes can be used in the method for producing an impurity-doped metal oxide of the present invention (a commercially available microwave oven is a multimode).
  • the microwave 20 may be anything that can dielectrically heat the metal oxide 10 and the organic solvent 12, and electromagnetic waves having a wavelength of 1 mm (300 GHz) to 1 m (0.3 GHz) are used.
  • a household microwave oven (2.45 GHz) can be used.
  • Example 1 The effect of the present invention was examined using anatase type photocatalyst titanium dioxide (ST-01: manufactured by Ishihara Sangyo). A paste prepared by mixing titanium dioxide for photocatalyst and ethanol was surrounded by a ceramic fiber wall, and was irradiated with a macro wave using a commercially available microwave oven (500 W). The irradiation time is 1 minute. Note that a mixture of graphite and ethanol was applied to the inner surface of the ceramic fiber wall as a microwave absorber.
  • ST-01 manufactured by Ishihara Sangyo
  • FIG. 2 shows untreated titanium dioxide
  • FIG. 3 shows titanium dioxide after microwave irradiation.
  • Untreated titanium dioxide is a white powder, but the titanium dioxide after microwave irradiation has turned brown and it was confirmed that it absorbs wavelengths in the visible light region.
  • FIG. 4 shows X-ray diffraction results of untreated titanium dioxide and titanium dioxide after microwave irradiation. Both samples were anatase-type titanium dioxide, and no titanium carbide peak was observed.
  • FIG. 5 shows the measurement results of ultraviolet-visible light absorption (UV-Vis Spectra) of untreated titanium dioxide and titanium dioxide after microwave irradiation.
  • UV-Vis Spectra ultraviolet-visible light absorption
  • the photocatalytic activity was evaluated based on the formation of triiodide ions (I 3 ⁇ ) in the KI solution.
  • the photocatalytic reaction is represented by the following reaction formula. 2I ⁇ ⁇ 2I + 2e ⁇ I 2 + I ⁇ ⁇ I 3 ⁇
  • a universal lamp house (HX500-Q, Wacom Denso) and a xenon lamp (KXL-300F) were used as the light source.
  • Corning Colorfilter CS3-73 (cut below 420 nm) was used to examine the photocatalytic properties in the visible light region.
  • the concentration of I 3 ⁇ was calculated from the absorbance at the maximum absorption wavelength (288 nm) using a UV-Vis spectrum analyzer.
  • the maximum molar extinction coefficient of I 3 ⁇ is ⁇ max 4.0 ⁇ 10 4 (cm / mol / l) ⁇ 1 .
  • FIG. 6 shows the I 3 ⁇ formation behavior of untreated titanium dioxide during irradiation with visible light and titanium dioxide after microwave irradiation.
  • Untreated titanium dioxide shows almost no photocatalytic activity under visible light irradiation (0 to 60 minutes) (2.22 ⁇ 10 ⁇ 5).
  • mol / l irradiation for 60 minutes).
  • I 3 ⁇ was generated (2.43 ⁇ 10 ⁇ 4 mol / l: 60 minutes irradiation), indicating that it has photocatalytic activity in the visible light region.
  • FIG. 7 shows the ATR-FT-IR results of untreated titanium dioxide and titanium dioxide after microwave irradiation. Titanium dioxide after microwave irradiation has a methylene group —CH 2 — (1475-1445) on the surface. cm ⁇ 1 ), carboxylite-COO— (1440-1350 cm ⁇ 1 ) and other functional groups derived from dopants were confirmed.
  • Example 2 The effect of the present invention was examined using anatase type photocatalyst titanium dioxide (ST-01: manufactured by Ishihara Sangyo). A paste obtained by mixing titanium dioxide for photocatalyst and ethanol was surrounded by a ceramic fiber wall and heated using a single mode (2.45 GHz, TE10) microwave irradiation device (500 W). A schematic diagram of the single mode microwave irradiation apparatus is shown in FIG.
  • the single mode microwave irradiation apparatus includes a magnetron 30, a power meter 32, a circulator 34, a dummy load 36, a stub tuner 38, a short-circuit plate 40, and the like.
  • the ceramic fiber wall was installed at a position 1 / 4 ⁇ away from the short-circuit end, and the microwave irradiation time was 1 minute. Note that a mixture of graphite and ethanol was applied to the inner surface of the ceramic fiber wall as a microwave absorber.
  • FIG. 9 shows X-ray diffraction results of untreated titanium dioxide and titanium dioxide after microwave irradiation.
  • the results of titanium dioxide (Example 1) that was treated for 1 minute in a commercial microwave oven are also shown in the figure.
  • ST01-MWA is a result of a commercial microwave oven
  • ST01-MWR is a result of a single mode microwave irradiation apparatus. From the figure, ST01-MWA has an anatase structure even after microwave treatment, but ST01-MWR has changed to a rutile type. In addition, the peak of titanium carbide was not confirmed in all the samples.
  • Example 3 The effect of the present invention was examined using anatase-type titanium dioxide (manufactured by Wako Reagent) different from the anatase-type titanium dioxide for photocatalyst used in Examples 1 and 2 (ST-01: manufactured by Ishihara Sangyo).
  • a paste in which titanium dioxide and ethanol were mixed was surrounded by a ceramic fiber wall and heated using a single mode (2.45 GHz, TE10) microwave irradiation device (800 W).
  • the ceramic fiber wall was installed at a position 1 / 4 ⁇ away from the short-circuit end, and the microwave irradiation time was 10 minutes. Note that a mixture of graphite and ethanol was applied to the inner surface of the ceramic fiber wall as a microwave absorber.
  • FIG. 11 shows the measurement results of ultraviolet-visible light absorption (UV-Vis Spectra) of untreated titanium dioxide and titanium dioxide after microwave irradiation.
  • UV-Vis Spectra ultraviolet-visible light absorption
  • the dotted line in a figure is the result about the sample after the heat processing in air (processing temperature 600 degreeC) by external heating.
  • the sample after the heat treatment in air has a smaller slope of the absorption peak near 400 nm than before the treatment, but does not absorb wavelengths of 400 nm or more.
  • the sample heat-treated using microwaves shows visible light absorption characteristics even at 400 nm or more.
  • Example 4 The effect of the present invention was examined using zirconium dioxide as the metal oxide.
  • a paste in which zirconium dioxide and ethanol were mixed was surrounded by a ceramic fiber wall and heated using a single mode (2.45 GHz, TE10) microwave irradiation device (500 W).
  • the ceramic fiber wall was installed at a position 1 / 4 ⁇ away from the short-circuit end, and the microwave irradiation time was 1 minute. Note that a mixture of graphite and ethanol was applied to the inner surface of the ceramic fiber wall as a microwave absorber.
  • FIG. 12 shows the measurement results of ultraviolet-visible light absorption (UV-Vis Spectra) of untreated zirconium dioxide and zirconium dioxide after microwave irradiation. It can be seen that light is strongly absorbed even at 300 nm or more by performing microwave heat treatment.
  • UV-Vis Spectra ultraviolet-visible light absorption
  • the dopant element can be doped into the metal oxide in a short time with energy saving. Further, by controlling the microwave output and the like, the doping amount of the dopant element to the metal oxide can be freely controlled, and the material can be designed according to the doping amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

【課題】本発明は、金属酸化物にドーパント元素をドープし、不純物ドープ金属酸化物を製造する方法を提供する。特に、可視光域での光触媒活性を有する炭素ドープ二酸化チタンの有利な製造方法を提供する。 【解決手段】本発明の不純物ドープ金属酸化物の製造方法は、ドーパント元素の存在下で金属酸化物にマイクロ波を照射して、ドーパント元素を金属酸化物にドープするものである。ドーパント元素を含む有機溶剤と金属酸化物とを混合したペーストにマイクロ波を照射することで、効果的にドーパント元素を金属酸化物にドープすることができる。  

Description

マイクロ波を用いた不純物ドープ金属酸化物の製造方法
 本発明は金属酸化物へのドーパント元素のドープ方法に関し、特に、可視光域での光触媒活性を有する炭素ドープ二酸化チタンの有利な製造方法に関する。
 大部分の有機化合物は光触媒によって分解することができ、光触媒活性が高く安全性や安定性に優れた二酸化チタンが環境浄化の光触媒として注目されている。しかしながら、光触媒活性が特に高いアナターゼでは387nmより短波長の光を照射しなければ光触媒活性が発現しない。つまり、屋外で使用する場合には紫外光しか利用されず、これでは太陽光の全エネルギーの数パーセントを活用しているに過ぎない。また、室内等で使用する場合には光源としてブラックライト等を用いる必要があり、用途が大きく制限される。
 光触媒活性が発現する波長帯を広げることができれば、取り入れられるエネルギーが飛躍的に向上し、従来の光触媒のような有機化合物の分解だけではなく、水の分解による一段階での水素合成、あるいは色素増感型太陽電池への応用の可能性も考えられる。また、室内においてシックハウス症候群の原因となる有機物ガスの除去や消臭効果、屋外におけるタイル、ガラス、テント等の防汚処理、河川や池沼などの汚水浄化への応用が期待できる。
 近年、二酸化チタンに種々の元素をドープすると二酸化チタンの吸収スペクトルが紫外から可視光領域へシフトすることが明らかになってきており、不純物ドープ二酸化チタンの製造方法が盛んに研究されている。例えば、炭化チタンを空気もしくは酸素雰囲気中で焼成することにより高活性光触媒炭素ドープ二酸化チタンを製造する方法(特許文献1および非特許文献1参照)、二酸化チタンを炭化熱還元して炭素ドープ二酸化チタンを製造する方法(非特許文献2参照)、プラズマを利用して遷移金属を二酸化チタンにドープする方法(特許文献2参照)等が提案されている。
特開2004-167370号公報 特開2004-275964号公報 MingShen et al., Carbon-doped anatase TiO2 obtained from TiC forphotocatalysis under visible light irradiation, Materials Letters, 60(2006) 693-697. Young-ChulWoo et al., Formation of TiC particle during carbothermal reduction of TiO2,Journal of the European Ceramic Society, 27 (2007) 719-722.
 従来の技術では、不純物ドープ二酸化チタンを製造するために数時間程度の長時間を要する。また、一般的には二酸化チタンを抵抗加熱等で加熱する必要があるため、エネルギー消費量が大きい。上述の通りプラズマを利用する方法も提案されているが、高価で複雑な特殊装置が必要である。
 本発明は上記課題に鑑みなされたものであり、マイクロ波を利用して、短時間かつ低出力で金属酸化物にドーパント元素をドープする方法を提供するものであり、可視光応答型不純物ドープ二酸化チタンの簡便な製造方法を提供することを目的とする。
 本発明の不純物ドープ金属酸化物の製造方法は、ドーパント元素の存在下で金属酸化物にマイクロ波を照射して、ドーパント元素を金属酸化物にドープするものである。ドーパント元素を含む有機溶剤と金属酸化物とを混合したペーストにマイクロ波を照射することで効果的にドーパント元素を金属酸化物にドープすることができる。金属酸化物には種々の金属酸化物を用いることができるが、二酸化チタンを用いることが好ましい。また、ドーパント元素にも種々の元素を用いることができるが、炭素であることが好ましい。
 マイクロ波吸収剤を塗布したセラミックス断熱壁で金属酸化物とドーパント元素とを囲み、セラミックス断熱壁と金属酸化物とドーパント元素とにマイクロ波を照射することでより効果的にドーパント元素を金属酸化物にドープすることができる。マイクロ波吸収剤にはグラファイトを用いることが好ましく、グラファイトとアルコールとの混合物を用いることがより好ましい。マイクロ波吸収剤にアルコールを添加することでマイクロ波の吸収が良くなり、効果的に対象物を加熱することができる。アルコールは種々のアルコールを用いることができるが、エタノールを用いることが好ましい。また、本発明の不純物ドープ金属酸化物の製造方法によって得られた不純物ドープ金属酸化物の表面には、ドーパント由来の官能基が存在する。
 本発明の不純物ドープ金属酸化物の製造方法は、マイクロ波の照射による誘電加熱を利用しているため、短時間、省エネルギーで金属酸化物にドーパント元素をドープすることができる。また、マイクロ波出力等を制御することにより、金属酸化物へのドーパント元素のドープ量を自在に制御することができ、ドープ量に応じた材料の設計を可能とする。
本発明の不純物ドープ金属酸化物の製造方法の概略図である。 実施例1で用いた未処理の二酸化チタンの写真である。 実施例1で得られたマイクロ波照射後の二酸化チタンの写真である。 実施例1におけるX線回折結果である。 実施例1における紫外-可視光吸収の測定結果である。 可視光照射時におけるI の生成挙動を示した図である。 実施例1におけるATR-FT-IRの測定結果である。 シングルモードマイクロ波照射装置の模式図である。 実施例2におけるX線回折結果である。 実施例3におけるX線回折結果である。 実施例3における紫外-可視光吸収の測定結果である。 実施例4における紫外-可視光吸収の測定結果である。
符号の説明
10…金属酸化物
12…有機溶剤
14…セラミックス断熱壁
16…マイクロ波吸収剤
20…マイクロ波
30…マグネトロン
32…パワーメーター
34…サーキュレーター
36…ダミーロード
38…スタブチューナー
40…短絡板
 図1は本発明の不純物ドープ金属酸化物の製造方法の概略図である。金属酸化物10とドーパント元素を含んだ有機溶剤12とを混合してペースト化し、該ペーストを囲む態様でセラミックス断熱壁14を配置する。セラミックス断熱壁14の内壁にはマイクロ波吸収剤16を塗布しておくことが好ましい。セラミックス断熱壁14に囲まれた金属酸化物10と有機溶剤12とにマイクロ波20を照射することで金属酸化物10と有機溶剤12とが誘電加熱され、ドーパント元素が金属酸化物10にドープされる。
 金属酸化物10には種々の金属酸化物を用いることができるが、二酸化チタンを用いることが好ましい。二酸化チタンにはルチル、アナターゼおよびブルッカイトの3つの結晶形が知られているが、工業用として主に利用されているのはルチルとアナターゼの2つである(ブルッカイトは不安定である)。光触媒活性はルチルよりアナターゼが大きく、本発明に用いる二酸化チタンにはアナターゼを使用することが好ましい。金属酸化物10の形状には特に制限はないが、有機溶剤12と容易に混合でき、表面積の大きな粉末状のものが好ましい。
 有機溶剤12に含まれるドーパント元素が金属酸化物10にドープされる。ドーパント元素としては、例えばC、N、S、Cr、V、Ni、Fe等が挙げられるが、特にCを用いることが好ましい。有機溶剤12にはアルコール、高級アルコール(エチレングリコール、グリセリン)、アセトン等のケトン類等を用いることができる。
 セラミックス断熱壁14はマイクロ波20の照射による誘電加熱を効果的に達成するために用いられる。特に、セラミックス断熱壁14にマイクロ波吸収剤16を塗布することでマイクロ波20の吸収効率を上げることができる。また、マイクロ波吸収剤16の種類や量によって金属酸化物10にドープされるドーパント元素の量を制御することができる。マイクロ波吸収剤16としてはグラファイトとエタノールとの混合体等を用いることが好ましい。
 マイクロ波20を照射する装置としては、マイクロ波発生器、導波部、加熱器等から構成される一般的なマイクロ波加熱装置や市販の電子レンジ等を用いることができる。加熱器には単一モードと多重モードが存在するが、本発明の不純物ドープ金属酸化物の製造方法においては両モード共に利用可能である(市販の電子レンジは多重モード)。
 マイクロ波20は金属酸化物10および有機溶剤12を誘電加熱し得るものであればよく、波長が1mm(300GHz)から1m(0.3GHz)領域の電磁波が用いられる。例えば、家庭用の電子レンジ(2.45GHz)を使用することができる。
 以下に本発明の実施例及び比較例を図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
 アナターゼ型の光触媒用二酸化チタン(ST-01:石原産業製)を用い、本発明の効果を検討した。光触媒用二酸化チタンとエタノールとを混合したペーストをセラミックスファイバー壁で囲み、市販の電子レンジ(500W)を用いてマクロ波を照射した。照射時間は1分である。なお、セラミックスファイバー壁の内面にはマイクロ波吸収剤として、グラファイトとエタノールとの混合物を塗布した。
 図2に未処理の二酸化チタン、図3にマイクロ波照射後の二酸化チタンをそれぞれ示す。未処理の二酸化チタンは白色の粉末であるが、マイクロ波照射後の二酸化チタンは茶色く変色しており、可視光領域の波長を吸収していることが確認された。
 図4に未処理の二酸化チタンおよびマイクロ波照射後の二酸化チタンのX線回折結果を示す。両サンプルとも、アナターゼ型二酸化チタンであり、炭化チタンのピークは観測されなかった。
 図5に未処理の二酸化チタンおよびマイクロ波照射後の二酸化チタンの紫外-可視光吸収(UV-Vis Spectra)の測定結果を示す。未処理の二酸化チタンでは387nm以上では吸収が見られないが、マイクロ波照射後の試料は300-800nmまで、ほぼ全可視光領域での吸収が観測された。
 光触媒活性はKI溶液中の三ヨウ化物イオン(I -)生成を元に評価した。光触媒反応は下記の反応式により表わされる。
2I→2I+2e
+I→I
光源は万能型ランプハウス(HX500-Q、ワコム電創)、キセノンランプ(KXL-300F)を用いた。また、Corning Colorfilter CS3-73(420nm以下カット)を用い、可視光域での光触媒特性を調べた。I の濃度はUV-Visスペクトルアナライザーを用いて、極大吸収波長(288nm)での吸光度より算出した。なお、I の極大モル吸光係数はεmax4.0×10(cm/mol/l)-1を用い、ランプ非照射時では未処理の二酸化チタン、マイクロ波照射後の二酸化チタン共にI は生成しなかった。
 図6に可視光照射時における未処理の二酸化チタンおよびマイクロ波照射後の二酸化チタンのI 生成挙動を示す。未処理の二酸化チタンは可視光照射(0~60分)では光触媒活性をほとんど示さない(2.22×10-5
mol/l:60分照射)。一方、マイクロ波照射後の二酸化チタンではI が生成しており(2.43×10-4
mol/l:60分照射)、可視光領域において光触媒活性を有することを示している。
 図7に未処理の二酸化チタンおよびマイクロ波照射後の二酸化チタンのATR-FT-IR結果を示す。マイクロ波照射後の二酸化チタンには、表面にメチレン基-CH-(1475-1445
cm-1)、カルボキシライト-COO-(1440-1350 cm-1)等のドーパント由来の官能基が確認された。
実施例2
 アナターゼ型の光触媒用二酸化チタン(ST-01:石原産業製)を用い、本発明の効果を検討した。光触媒用二酸化チタンとエタノールとを混合したペーストをセラミックスファイバー壁で囲み、シングルモード(2.45GHz、TE10)マイクロ波照射装置(500W)を用いて加熱した。シングルモードマイクロ波照射装置の模式図を図8に示す。シングルモードマイクロ波照射装置はマグネトロン30、パワーメーター32、サーキュレーター34、ダミーロード36、スタブチューナー38、短絡板40等から構成されている。セラミックスファイバー壁は短絡端から1/4λ離れた位置に設置し、マイクロ波照射時間は1分とした。なお、セラミックスファイバー壁の内面にはマイクロ波吸収剤として、グラファイトとエタノールとの混合物を塗布した。
 図9に未処理の二酸化チタンおよびマイクロ波照射後の二酸化チタンのX線回折結果を示す。参考として、市販電子レンジで1分間の処理を施した二酸化チタン(実施例1)の結果も図中に示す。図中のST01-MWAは市販電子レンジ、ST01-MWRはシングルモードマイクロ波照射装置による結果である。図より、ST01-MWAはマイクロ波処理後もアナターゼ型の構造を有しているが、ST01-MWRはルチル型へ相変化している。なお、全ての試料に炭化チタンのピークは確認されなかった。
実施例3
 実施例1および2で用いたアナターゼ型の光触媒用二酸化チタン(ST-01:石原産業製)とは異なるアナターゼ型の二酸化チタン(和光試薬製)を用い、本発明の効果を検討した。二酸化チタンとエタノールとを混合したペーストをセラミックスファイバー壁で囲み、シングルモード(2.45GHz、TE10)マイクロ波照射装置(800W)を用いて加熱した。セラミックスファイバー壁は短絡端から1/4λ離れた位置に設置し、マイクロ波照射時間は10分とした。なお、セラミックスファイバー壁の内面にはマイクロ波吸収剤として、グラファイトとエタノールとの混合物を塗布した。
 図10未処理の二酸化チタンおよびマイクロ波照射後の二酸化チタンのX線回折結果を示す。マイクロ波処理することにより、ルチル相(2
theta 27.4)が成長しており、アナターゼとルチルの2相が混在していることが分かる。なお、マイクロ波照射後の試料に炭化チタンのピークは確認されなかった。
 図11に未処理の二酸化チタンおよびマイクロ波照射後の二酸化チタンの紫外-可視光吸収(UV-Vis Spectra)の測定結果を示す。なお、図中の点線は外部加熱による空気中熱処理(処理温度600℃)後の試料についての結果である。空気中熱処理後の試料は処理前に比べて400nm付近の吸収ピークの傾きが小さくなっているが、400nm以上の波長は吸収していない。一方、マイクロ波を用いて熱処理した試料は400nm以上でも可視光吸収特性を示している。
実施例4
 金属酸化物として二酸化ジルコニウムを用い、本発明の効果を検討した。二酸化ジルコニウムとエタノールとを混合したペーストをセラミックスファイバー壁で囲み、シングルモード(2.45GHz、TE10)マイクロ波照射装置(500W)を用いて加熱した。セラミックスファイバー壁は短絡端から1/4λ離れた位置に設置し、マイクロ波照射時間は1分とした。なお、セラミックスファイバー壁の内面にはマイクロ波吸収剤として、グラファイトとエタノールとの混合物を塗布した。
 図12に未処理の二酸化ジルコニウムおよびマイクロ波照射後の二酸化ジルコニウムの紫外-可視光吸収(UV-Vis Spectra)の測定結果を示す。マイクロ波熱処理をすることにより、300nm以上でも強く光を吸収していることが分かる。
産業上の利用性
 本発明の不純物ドープ金属酸化物の製造方法は、マイクロ波の照射による誘電加熱を利用しているため、短時間、省エネルギーで金属酸化物にドーパント元素をドープすることができる。また、マイクロ波出力等を制御することにより、金属酸化物へのドーパント元素のドープ量を自在に制御することができ、ドープ量に応じた材料の設計を可能とする。

Claims (10)

  1.  ドーパント元素の存在下で金属酸化物にマイクロ波を照射して前記ドーパント元素を前記金属酸化物にドープすることを特徴とする不純物ドープ金属酸化物の製造方法。
  2. 前記ドーパント元素を含む有機溶剤と前記金属酸化物とを混合したペーストに前記マイクロ波を照射することを特徴とする請求項1に記載の不純物ドープ金属酸化物の製造方法。
  3.  前記金属酸化物が二酸化チタンであることを特徴とする請求項1~2いずれか1項に記載の不純物ドープ金属酸化物の製造方法。
  4. 前記ドーパント元素が炭素であることを特徴とする請求項1~3いずれか1項に記載の不純物ドープ金属酸化物の製造方法。
  5.  マイクロ波吸収剤を塗布したセラミックス断熱壁で前記金属酸化物と前記ドーパント元素とを囲み、
     前記セラミックス断熱壁と前記金属酸化物と前記ドーパント元素とに前記マイクロ波を照射することを特徴とする請求項1~4いずれか1項に記載の不純物ドープ金属酸化物の製造方法。
  6.  前記マイクロ波吸収剤がグラファイトであることを特徴とする請求項5に記載の不純物ドープ金属酸化物の製造方法。
  7.  前記マイクロ波吸収剤がグラファイトとアルコールとの混合物であることを特徴とする請求項5に記載の不純物ドープ金属酸化物の製造方法。
  8.  前記アルコールがエタノールであることを特徴とする請求項7に記載の不純物ドープ金属酸化物の製造方法。
  9.  請求項1~8いずれか1項に記載の製造方法によって得られる不純物ドープ金属酸化物であって、
    前記不純物ドープ金属酸化物の表面に前記ドーパント元素由来の官能基を有することを特徴とする不純物ドープ金属酸化物。
  10.  前記金属酸化物が二酸化チタンであることを特徴とする請求項9に記載の不純物ドープ金属酸化物。
PCT/JP2009/053454 2008-02-25 2009-02-25 マイクロ波を用いた不純物ドープ金属酸化物の製造方法 WO2009107681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500724A JPWO2009107681A1 (ja) 2008-02-25 2009-02-25 マイクロ波を用いた不純物ドープ金属酸化物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-042652 2008-02-25
JP2008042652 2008-02-25

Publications (1)

Publication Number Publication Date
WO2009107681A1 true WO2009107681A1 (ja) 2009-09-03

Family

ID=41016069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053454 WO2009107681A1 (ja) 2008-02-25 2009-02-25 マイクロ波を用いた不純物ドープ金属酸化物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2009107681A1 (ja)
WO (1) WO2009107681A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094495A (ja) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 酸化チタン粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに、構造体
JP2018094494A (ja) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 酸化チタン粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに、構造体
WO2022210696A1 (ja) * 2021-03-31 2022-10-06 住友電気工業株式会社 ダイヤモンド光磁気センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167370A (ja) * 2002-11-20 2004-06-17 Japan Atom Energy Res Inst 高活性光触媒炭素ドープ二酸化チタンとその作製方法
JP2004275964A (ja) * 2003-03-18 2004-10-07 Furukawa Co Ltd 可視光応答型の二酸化チタン系光触媒の製造装置及び製造方法
WO2006082844A1 (ja) * 2005-02-02 2006-08-10 National Institute For Materials Science ナノサイズ粉体の製造方法
WO2006130355A1 (en) * 2005-05-31 2006-12-07 Cabot Corporation Process for heat treating metal powder and products made from the same
JP2007091574A (ja) * 2005-09-27 2007-04-12 Guangdong Inst Of Eco-Environment & Soil Sciences メタチタン酸を前駆体とする高活性アナターゼ型二酸化チタンゾルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167370A (ja) * 2002-11-20 2004-06-17 Japan Atom Energy Res Inst 高活性光触媒炭素ドープ二酸化チタンとその作製方法
JP2004275964A (ja) * 2003-03-18 2004-10-07 Furukawa Co Ltd 可視光応答型の二酸化チタン系光触媒の製造装置及び製造方法
WO2006082844A1 (ja) * 2005-02-02 2006-08-10 National Institute For Materials Science ナノサイズ粉体の製造方法
WO2006130355A1 (en) * 2005-05-31 2006-12-07 Cabot Corporation Process for heat treating metal powder and products made from the same
JP2007091574A (ja) * 2005-09-27 2007-04-12 Guangdong Inst Of Eco-Environment & Soil Sciences メタチタン酸を前駆体とする高活性アナターゼ型二酸化チタンゾルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN M. ET AL.: "Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation", MATERIALS LETTERS, vol. 60, March 2006 (2006-03-01), pages 693 - 697 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094495A (ja) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 酸化チタン粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに、構造体
JP2018094494A (ja) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 酸化チタン粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに、構造体
WO2022210696A1 (ja) * 2021-03-31 2022-10-06 住友電気工業株式会社 ダイヤモンド光磁気センサ

Also Published As

Publication number Publication date
JPWO2009107681A1 (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
Liu et al. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping
Kang et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst
KR101141725B1 (ko) 자외선 및 가시광 영역에서 광활성이 우수한 불순물이 도핑된 이산화티탄 광촉매의 대량 제조방법
CN104607230A (zh) 一种复合光催化剂Bi2O3/g-C3N4及其制备方法和应用
Li et al. Enhanced visible‐light photocatalytic degradation of humic acid by palladium‐modified nitrogen‐doped titanium oxide
CN107486192A (zh) 一种石墨烯‑‑二氧化钛复合光催化材料的制备方法
CN103614759B (zh) 氮掺杂二氧化钛纳米复合结构制备方法及应用
CN111111434A (zh) 一种红外加热催化降解VOCs气体的设备
Bharti et al. Efficient Zr-doped FS–TiO 2/SiO 2 photocatalyst and its performance in acrylonitrile removal under simulated sunlight
Yan et al. Sol-solvothermal preparation and characterization of (Yb, N)-codoped anatase–TiO2 nano-photocatalyst with high visible light activity
Cheng et al. Enhanced visible light photocatalytic activity of mesoporous anatase TiO2 codoped with nitrogen and chlorine
Feng et al. Improved photocatalytic activity of Bi4TaO8Cl by Gd3+ doping
Moslah et al. Synthesis of W‐doped TiO2 by low‐temperature hydrolysis: Effects of annealing temperature and doping content on the surface microstructure and photocatalytic activity
WO2009107681A1 (ja) マイクロ波を用いた不純物ドープ金属酸化物の製造方法
Liu et al. Efficient Photocatalytic Degradation of Pharmaceutical Pollutants Using Plasma‐Treated g‐C3N4/TiO2
George et al. Influence of cation doping (Li+, Na+, K+) on photocatalytic activity of MIL-53 (Fe)
CN103551138A (zh) 一种氧化铋敏化二氧化钛纳米管光催化剂的制备方法及其在降解有机污染物中的应用
CN107469822A (zh) 高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法
Qu et al. Heterojunction Ag–TiO2 Nanopillars for Visible‐Light‐Driven Photocatalytic H2 Production
JP2007054705A (ja) 可視光応答型光触媒の製造方法
CN103007950A (zh) 一种镍离子掺杂三氧化钨催化剂及其制备方法及其应用
Wu et al. TiO 2/gC 3 N 4 heterojunctions: In situ fabrication mechanism and enhanced photocatalytic activity
Tobaldi et al. Mineralogical and Optical Characterization of SiO2‐, N‐, and SiO2/N‐Co‐Doped Titania Nanopowders
JP4150213B2 (ja) 可視光応答型酸化チタンの作製方法
CN108943235B (zh) 一种在木材表面制备Fe3+掺杂TiO2/SiO2复合膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010500724

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09714096

Country of ref document: EP

Kind code of ref document: A1