WO2006082844A1 - ナノサイズ粉体の製造方法 - Google Patents

ナノサイズ粉体の製造方法 Download PDF

Info

Publication number
WO2006082844A1
WO2006082844A1 PCT/JP2006/301650 JP2006301650W WO2006082844A1 WO 2006082844 A1 WO2006082844 A1 WO 2006082844A1 JP 2006301650 W JP2006301650 W JP 2006301650W WO 2006082844 A1 WO2006082844 A1 WO 2006082844A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
nano
sized
precursor
explosive
Prior art date
Application number
PCT/JP2006/301650
Other languages
English (en)
French (fr)
Inventor
Oleg Vasylkiv
Yoshio Sakka
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2007501587A priority Critical patent/JP5024796B2/ja
Priority to DE112006000294.5T priority patent/DE112006000294B4/de
Publication of WO2006082844A1 publication Critical patent/WO2006082844A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/363Mixtures of oxides or hydroxides by precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a method for producing a nano-sized powder by nano-explosive synthesis capable of producing a ceramic powder or a metal and ceramic composite powder having a single component or multi-component force. Is.
  • Nano (nm) size powders with single or multi-component forces are mechanical, chemical, thermal, catalytic, electronic, electrical, communication, optical, bio-medical It is required as a material for goods and consumer goods, ie, as a structure.
  • a material for goods and consumer goods ie, as a structure.
  • examples of such a material include ceramic nanopowder, or a composite powder of metal and ceramic obtained by modifying or mixing a metal with the ceramic nanopowder.
  • devices using single- or multi-component nano-sized ceramic nanopowders or metal and ceramic composite powders are even better, more reliable, faster and easier to carry. That is required.
  • nano-sized powders are obtained by using a so-called wet chemical etching method from an aqueous solution and Z or a non-aqueous solution to all or the following steps (1) to (6). It was synthesized after a part (see Non-Patent Documents 1 to 9).
  • Powder that also has intermediate strength obtained by precipitation or the like during washing and drying in (4) above The body is deagglomerated, ie, atomized.
  • FIG. 12 is a schematic diagram of a two-component powder 50 synthesized by a conventional wet-chemical method. Nucleation, growth, and agglomeration of the first component 51, followed by strong agglomeration, takes place within a few seconds under very mild conditions. At the same time, nucleation of the second component 52 usually starts over time at higher temperatures and sometimes requires a different pH. This co-precipitation end product 50 is strongly agglomerated and is a compound with non-uniform nanocrystalline properties. It consists of agglomerated agglomerates.
  • FIG. 12 shows a case where agglomerates 53 and 54 of the first and second components are generated. In order to reach the final solid solution, this strong multi-component agglomerate needs to be treated at a higher firing temperature. To increase the density using this powder, high temperature and long sintering time were required.
  • preparation methods include sol-gel methods, hydrothermal methods, inert gas concentration methods, aerosol decomposition methods via salts, ultrasonic chemistry (sonochemistry) or various precursor aqueous solutions (or non-aqueous solutions) via microwaves. ) Decomposition and combustion synthesis methods.
  • the conventional combustion synthesis method is a method that can be produced in a short time, and has the advantage of saving energy and time.
  • This rapid and simple manufacturing process is relatively homogeneous and can be used to produce high purity and crystalline acid ceramic ceramic powders (see Non-Patent Document 10).
  • Alumina acid-aluminum
  • titanium titanium oxide
  • other nano-sized powders can be used for the synthesis of a wide range of particle sizes (see Non-Patent Document 11)
  • Factors affecting this synthesis reaction include the type of fuel, the ratio of fuel to oxidant, the water content of the precursor mixture, and the mechanism of the combustion reaction is complex.
  • Microscopic small single crystals i.e. crystallite size, specific surface area, agglomerate size and strength of the agglomerate, are primarily caused by enthalpy or combustion. Dominated by flame temperature. This flame temperature is the ratio of fuel properties to fuel Z oxidant. Depends on the rate. If a large amount of gas is generated suddenly during combustion, the heat of the process is wasted, the temperature rise is limited, and the probability of local sintering between primary particles is reduced. In addition, the generation of gas sometimes limited the contact between the particles and helped to produce agglomerates without strong agglomeration.
  • Non-Patent Document 1 Z. Tianshu et al, Solid State Ionics, Vol.148, p.567 (2002)
  • Non-Patent Document 2 T. Zhang et al., Solid State Ionics, Vol.167, p.191 (2004)
  • Non-Patent Document 3 M. Kamruddin et al., Scripta Materialia, Vol.50, p.417 (2004)
  • Non-Patent Document 4 JG Li et al., Solid State Chem, Vol.168, p.52 (2002)
  • Non-Patent Document 5 T. M. Tillotson et al "J. of Non-Crystall Solids, Vol.225, p.358 (1998)
  • Non-Patent Document 6 T. Tillotson et al., J. of Non-Crystall Solids, Vol.285, p.338 (2001)
  • Non-Patent Document 7 S. Dikmen et al., Solid State Ionics, Vol.126, p.89 (1999)
  • Non-Patent Document 8 J.S. Lee et al., Mater. Letters, Vol.58, p.390 (2004)
  • Non-Patent Document 9 0. Vasylkiv and Y. Sakka, J. Am. Ceram. Soc, Vol.84, pp.2489— 2494 (2001)
  • Non-Patent Document 10 R.M.G.A.Kinami and M.R.Morelli et al "Am. Ceram. Soc. Bull., P.67 (2000)
  • Non-Patent Document 11 T. Mimani and K.C. Patil, Mater. Phys. Mech. Vol.4, pp.134-137 (2 001)
  • Non-Patent Document 12 K.C. Patil, S.T.Aruna and T. Mimani, Curr. Op.Solid State Mater.Sci., Vol.6, p.507 (2002)
  • Non-Patent Document 13 DA Fumo et al., Mater. Res. Bull, Vol. 31, p. 1243 (1996)
  • Non-Patent Document 14 S. Bhaduri, SB Bhaduri and E. Zhou, J. Mater. Res. Vol .13, p.156 (
  • the conventional method for producing a powder material such as ceramic by a combustion synthesis method has a problem that only agglomerated powder can be obtained and nano-sized powder cannot be realized.
  • the nano-sized powder of sub-micron or less particularly, the ultra fine ceramic nano powder or the metal obtained by modifying or mixing the metal with the ceramic nano powder. And it is difficult to produce ceramic composite powder.
  • an object of the present invention is to provide a method for producing nano-sized powders by nano-explosive synthesis that can produce metal and ceramic composite powders with high reproducibility.
  • the first method for producing a nano-sized powder of the present invention is to chemistry a single or multi-component precursor agglomerate from a medium in which the raw material of the powder is melted.
  • the precursor agglomerates containing explosive compounds by saturating the precursor agglomerates with explosive compounds or impregnating the explosive compounds at the nano-level during precipitation
  • the raw material power of the powder also includes an explosive compound when the precursor agglomerate is precipitated, and the precursor agglomerate containing the explosive compound is exploded.
  • the impact of high-energy explosion waves causes agglomeration of agglomerates due to a complex explosion, and nano-sized powders can be produced with good reproducibility.
  • the second method for producing a nano-sized powder of the present invention it is possible to determine whether the powder raw material
  • a precursor agglomerate having a single or multi-component strength is precipitously precipitated, and a nano-sized explosive compound prepared in advance is immersed in the precursor agglomerate, so that a precursor containing an explosive compound is contained.
  • a first step of preparing an agglomerate and a second agglomerate containing a nano-sized explosive compound that is washed and dried while maintaining its component and morphological homogeneity A single or multi-component force is created by heating the process and a precursor agglomerate containing dried nano-sized explosive compounds at a heating rate sufficient to explode at the nanoscale.
  • a third step of obtaining a nanosize powder is
  • the precursor agglomerate is first chemically precipitated from the raw material of the powder, and the nano-sized explosive compound prepared beforehand is immersed in the precursor agglomerate.
  • the impact of a high-energy explosion wave causes agglomeration of the agglomeration due to a complex explosion, reproducing nano-sized powder. It can be manufactured with good performance.
  • the nano-sized powder is heat-treated.
  • the explosion product can be further removed from the obtained nano-sized powder, and the homogeneity of the powder composition and the improvement of the powder form can be achieved.
  • the explosive compound is preferably any of cyclotrimethylene tri-tolamine, tri-tolutoluene (TN T), nitroglycerin, and glycerin.
  • the raw material of the powder is preferably a metal or a salt containing a metal.
  • the metal is preferably a rare earth element such as cerium, gadolinium, lanthanum, conolt, nickel, manganese, zinc, norium, titanium, vanadium, niobium, tantalum, tungsten, molybdenum, magnesium, calcium, yttrium, di-
  • a rare earth element such as cerium, gadolinium, lanthanum, conolt, nickel, manganese, zinc, norium, titanium, vanadium, niobium, tantalum, tungsten, molybdenum, magnesium, calcium, yttrium, di-
  • the noble metal elements such as ruthenium, hafnium, aluminum, lead, copper, tin, scandium, indium, silicon, iron, strontium, gold and platinum, or a combination of these metals.
  • the anion forming the salt is preferably any of nitrate ion, hydrochloric acid ion, sulfate ion, oxalate ion, acetate ion, oxyhydroxide ion, and hydroxide ion.
  • the nano-sized powder preferably also has a ceramic force.
  • the nano-sized powder is preferably composed of a metal in which a nano-sized metal is mixed with ceramic and a ceramic composite powder.
  • a metal or multi-component metal oxide powder that is, a nano-sized ceramic powder can be synthesized in a very short time.
  • a nano-sized ceramic powder in which dopant oxide is dissolved in metal oxide powder can also be synthesized.
  • Sarako can also synthesize metal oxides modified with metals, ie, metal and ceramic composite powders. The invention's effect
  • a nano-sized powder having a uniform size, phase and microstructure can be produced with reproducibility in a nano-sized controlled form.
  • This powder can be applied to ceramic powder or metal and ceramic composite powder.
  • Fig. 1 is a flow chart sequentially showing an example of steps in producing a nano-sized powder of the present invention.
  • FIG. 2 is a schematic diagram of an ideal two-component nano-synthesis aggregate.
  • FIG. 3 is a diagram showing thermogravimetric analysis (TG), differential thermal analysis (TDA), and temperature change of the container in a thermal explosion in the case of cyclotrimethylenetri-tolamine alone.
  • FIG. 4 Schematic diagram of thermal detonation of single agglomerates of multi-component precursor agglomerates containing explosive components
  • (A) is a multi-component precursor containing explosive components The state where the agglomerate is heated
  • (B) shows the state immediately before the precursor agglomerate is thermally detonated
  • (C) shows the nano-explosion state of the precursor agglomerate.
  • FIG. 5 Thermogravimetric analysis (TG), differential thermal analysis (TDA) of thermal explosion of cyclotrimethylenetrinitramine and the temperature change of the container in the complex explosion synthesis of ceria-gadolinia solid solution in Example 1.
  • TG Thermogravimetric analysis
  • TDA differential thermal analysis
  • FIG. 6 shows a transmission electron microscope (TEM) image of ceria-gadolinia powder obtained in Example 1.
  • FIG. 7 XRD pattern of ceria-gadolinia nanopowder, where (a) shows the case of the ceria-gadolinia solid solution obtained in Example 1, and (b) shows the critical heating rate of Comparative Example 1 described later. It shows the case of ceria-gadolinia solid solution synthesized under the following conditions, that is, the normal combustion route.
  • FIG. 8 shows a TEM image of cyclotrimethylene tri-tolamine particles synthesized alone in Example 4. It is a photograph.
  • FIG. 9 Thermogravimetric analysis (TG), differential thermal analysis (TDA), and vessel temperature in thermal decomposition of ternary precursor agglomerates under the subcritical velocity conditions causing explosion in Comparative Example 1 It is a diagram showing a change.
  • FIG. 10 is a diagram showing a TEM image of a ceria-gadolinia compound synthesized in Comparative Example 1.
  • FIG. 11 is a transmission electron microscope image of the ceria-gadolinia powder obtained in Example 8.
  • FIG. 12 is a schematic view of a two-component powder synthesized by a conventional wet chemistry method.
  • the first method for producing a nanosize powder of the present invention comprises the first to third steps.
  • the precursor agglomerates are saturated with explosive compounds when the single or multi-component precursor agglomerates are precipitated from a medium in which the raw material of the powder is dissolved. Or impregnating explosive compounds at the nano level to prepare precursor agglomerates containing explosive compounds.
  • the precursor agglomerates containing explosive compounds are washed and dried while maintaining their component and morphological homogeneity.
  • the precursor agglomerates containing explosive compounds that have been dried are A nano-sized powder composed of a single or multi-component is obtained by heating at a temperature rising rate sufficient to cause explosion in order to cause explosion.
  • the explosive compound when the precursor agglomerate is first chemically precipitated from the powder raw material, the explosive compound is included, and the precursor agglomerate containing the explosive compound is added to the precursor agglomerate.
  • nano-sized powder can be produced with good reproducibility by causing agglomeration due to a complex explosion due to the impact of high-energy explosion waves.
  • a single or multi-component precursor agglomerate is chemically synthesized from a medium in which a powder raw material is melted.
  • the precursor agglomerate containing the explosive compound is prepared by impregnating the precursor agglomerate and impregnating the precursor agglomerate with a nano-sized explosive compound prepared in advance.
  • the subsequent second and third steps are the same as those in the first method for producing a nanosize powder of the present invention, and thus description thereof is omitted.
  • a precursor agglomerate is first chemically precipitated from a powder raw material, and a nano-sized explosive compound prepared in advance is immersed in the precursor agglomerate.
  • a precursor agglomerate containing this explosive compound By exploding a precursor agglomerate containing this explosive compound, the impact of a high-energy explosion wave causes agglomeration of the agglomeration due to a complex explosion, and the nano-sized powder is reproduced. It can be manufactured with good performance.
  • nanoscale or nanosize particles are defined as particles having a diameter of about 1 to LOONm.
  • the nano-sized powder can be a ceramic powder or a metal and ceramic composite powder. This ceramic powder can be single-component or multi-component.
  • the nanosized powder may be heat treated. According to this heat treatment step, explosive products can be further removed from the obtained nano-sized powder, and the homogeneity of the powder composition and the improvement of the powder form can be achieved.
  • FIG. 1 is a flow chart showing an example of steps in the case of producing the nano-sized powder of the present invention.
  • step ST1 for example, a powder containing cyclotrimethylentri-tolamine particles as an explosive compound is prepared.
  • This powder is ceramic powder, or
  • Metal and ceramic composite powders can be used.
  • the powder is first agglomerated into a precursor agglomerate.
  • the precursor agglomerates are placed in a reaction vessel.
  • the reactor is preheated.
  • process ST5 Then, put the reaction vessel in the preheated reactor and heat the precursor agglomerates at ultra high speed.
  • thermal detonation thermal explosion
  • multiple nano-explosion at multiple locations spreads inside the precursor agglomerates.
  • the explosive compound is cyclotrimethylene tri-tolamine
  • the temperature of the thermal detonation is about 230 ° C.
  • the thermal detonation initiation reaction begins in the nano-sized region, ie, hot spot. In this hot spot, the energy of the collision Z shock wave can be stored, converted into energy, and the reaction starts.
  • FIG. 2 is a schematic diagram of an ideal two-component nano-synthesis aggregate.
  • additive (dopant) component 2 is evenly distributed in substrate component 3.
  • substrate component 3 In the production and use of nano-sized powders, the uniform distribution of components leads to a significant decrease in process temperature. Multi-component powders often result in heterogeneous multi-phase compounds having a non-uniform morphology that is more difficult to produce nano-sized powders.
  • the explosive compound used in the method for producing a nano-sized powder by nano-explosive synthesis of the present invention is chemically unstable, that is, energetically unstable, and is called "explosion".
  • explosion There is no particular limitation as long as the pressure changes rapidly, that is, a substance that causes expansion (hereinafter referred to as explosive as appropriate)! ,.
  • Examples of such explosives include cyclotrimethylene tri-tolamine (C H N O), trimethyl
  • TNT nitrotoluene
  • nitroglycerin nitroglycerin
  • glycerin nitroglycerin
  • cyclotrimethylenetri-tolamine can be particularly preferably used.
  • Cyclotrimethylenetri-tolamine is a widely used explosive compound, also known as RDX or hexogen. Hexamethylenetetramine (C H N) and concentrated nitric acid (HNO)
  • FIG. 3 shows the thermogravimetric analysis of the thermal explosion with only cyclotrimethylenetri-tolamine (T (G), differential thermal analysis (TDA), and temperature change of the container.
  • T (G) cyclotrimethylenetri-tolamine
  • TDA differential thermal analysis
  • the horizontal axis shows the elapsed time (seconds)
  • the left vertical axis shows the thermogravimetric change (%) of TG
  • the right vertical axis shows the TDA temperature difference ⁇ T (V) and the container temperature (° C). Speak.
  • the heating rate is 10 ° CZ.
  • the nano-sized powder material is saturated with explosive compounds from a medium in which the raw material of the nano-sized powder is melted, or explosive compounds.
  • the process of precipitating single or multi-component precursor agglomerates soaked in the nano-level must be formed simultaneously during the decomposition of the metal nitrate with hexamethylenetetramine. Can do.
  • nano-sized explosive compound prepared in advance used in the first step of the second production method of the present invention for example, a nano-sized cyclotrimethylene tri-toluene synthesized in advance is used. Mining particles can be used.
  • the medium used in the present invention can be selected from those capable of dissolving the powder raw material, but a preferred medium is water.
  • the powder raw material used in the present invention is selected from those that are soluble in the medium.
  • a powder raw material a salt of a metal or a cation (hereinafter referred to as a cation as appropriate) can be used.
  • a preferred medium is water.
  • various lanthanoids such as cerium, gadolinium, and lanthanum, cobalt, nickel, manganese, zinc, norium, titanium, vanadium, niobium, tantalum
  • examples include tungsten, molybdenum, magnesium, calcium, yttrium, zirconium, hafnium, aluminum, lead, copper, tin, scandium, indium, silicon, iron, strontium, and noble metal elements such as gold and platinum.
  • anions that form salts with metals or cations are nitrate ions, hydrochloric acid ions, sulfate ions, oxalate ions, acetate ions, oxyhydroxide ions, hydroxide ions.
  • erons anions that form salts with metals or cations
  • metal nitrate When metal nitrate is used and hexamethylenetetraamine is used as a raw material for explosives (hereinafter referred to as an explosive source), a metal precursor-compound and a highly explosive explosive, cyclotrimethylenetri- Conveniently, tramin is produced at the same time.
  • an explosive source a metal precursor-compound and a highly explosive explosive, cyclotrimethylenetri- Conveniently, tramin is produced at the same time.
  • metal nitrates hydrated or anhydrous nitrate-oxides may be used.
  • the starting cation source is a metal nitrate. It is not limited to. Chloride, oxalate, carbonate and the like are also useful for the preparation of precursor agglomerates. In this case, pre-synthesized nano-sized cyclotrimethylene tri-tolamine or other suitable explosive particles can be immersed in the precursor agglomerates taking advantage of colloidal technology.
  • porous agglomerates Z agglomerates in which each component is homogeneously or relatively homogeneously (preliminary) distributed,
  • Fine primary crystallites are obtained, and they do not cause solid agglomeration during the preliminary synthesis.
  • hexamethylenetetraamine When hexamethylenetetraamine is used as an explosive source, the amount of hexamethylenetetramine and metal nitrate used may be appropriately changed depending on the composition of the nanopowder to be produced. Usually, 1 to 5 mol, preferably 1.5 to 5 mol, of hexamethylenetetramine is used in excess of 1 mol (mol) of metal nitrate (total amount in the case of multiple components). Hexa If methylenetetraamine is less than 1 mol, the metal nitrate will not be completely salted. Therefore, if it is less than 5 mol, the excess will only be removed by washing.
  • hexamethylenetetramine is preferably used as a precipitant.
  • hexamethylenetetraamine which serves as a precipitating agent, is usually used by separately dissolving it in a medium made of water, and the molar concentration at that time is about 0.001 to 5M.
  • the precipitating agent in addition to hexamethylenetetramine, urea or hydroxyammonium can be used.
  • hexamethylenetetraamine or urea is used.
  • a precipitant such as hexamethylenetetraamine is added to coprecipitate a precursor agglomerate intermediate product that may be either crystalline or amorphous.
  • the intermediate product of the precursor agglomerates may be both crystalline or amorphous.
  • the stirring temperature may be any of a low temperature of about 0 to 20 ° C, a room temperature of about 20 to 25 ° C, and a high temperature of about 25 to 100 ° C.
  • hot water treatment at 70 to 170 ° C, hot water precipitation or hot water coprecipitation can also be used.
  • the multi-component suspension in a pre-synthesized aqueous salt solution that has just been dissolved diffuses with a precipitating agent such as hexamethylenetetraamine, Infused or sprayed.
  • the precipitation time varies depending on the material used. 20 when precipitation is complete It may take a long time, for example 2 to 200 hours, at a temperature of ⁇ 85 ° C. However, in the case of ceria (dicerium cerium dioxide), precipitation is completed in a short time at 70 ° C.
  • the second step in the production method of the present invention that is, the precursor mass infiltrated with the explosive compound is washed and dried while maintaining its component and morphological homogeneity.
  • the precursor mass infiltrated with the explosive compound is washed and dried while maintaining its component and morphological homogeneity.
  • the precursor powder When cyclotrimethylenetri-tolamine is used as the explosive, the precursor powder is prevented while cyclotrimethylenetri-tolamine is washed away, and during the washing and drying of precursor agglomerates such as multi-component systems. It is necessary to maintain the component and morphological homogeneity. For this reason, the produced precursor agglomerates may be repeatedly washed several times with an appropriate cleaning solution to remove residual acids such as HNO and other ionic impurities. As this cleaning solution,
  • Ethanol can be used. Subsequently, the supernatant is centrifuged and washed until it becomes clear. Finally, the washing solution such as ethanol remaining at 60 ° C is slowly evaporated and removed by a dryer. At this time, in order to prevent ignition of explosive compounds during drying, there is a limit temperature in the drying process. This temperature is the ignition temperature of the explosive compound used. In the case of cyclotrimethylenetri-tolamine, the force ignition temperature depending on the average particle size is 170-180 ° C. Drying must be performed below this ignition temperature.
  • Complex precursor agglomerates containing explosive compounds i.e. precursor agglomerates with explosive compounds
  • precursor agglomerates with explosive compounds are agglomerated as they are without being agglomerated as well-dried powders or using a uniaxial press machine, etc. Put into a container.
  • the above process is performed at the ignition temperature of the explosive compound.
  • the precursor agglomerate with explosive compound needs to be rapidly raised from the combustion temperature of the explosive compound through its melting point to the temperature of its thermal detonation. Thermal detonation is highly dependent on the heating rate. For example, if the explosive is cyclotrimethylene tri-tolamine (CH -N-NO)
  • a nano-sized single metal or multi-component metal oxide powder that is, a nano-sized ceramic powder having a homogeneous morphology and an accurate stoichiometric ratio, can be obtained in a very short time.
  • a nano-sized single metal or multi-component metal oxide powder that is, a nano-sized ceramic powder having a homogeneous morphology and an accurate stoichiometric ratio, can be obtained in a very short time.
  • ceramic nano-sized ceramic powder in which dopant oxide is dissolved in metal oxide powder can be synthesized.
  • Sarako can also synthesize metal oxides modified with metals, ie, metal and ceramic composite powders.
  • nanopowder containing primary crystallites having an average particle diameter of 2 to 15 nm can be produced.
  • nano-aggregates with a particle size distribution of 20 to 80 nm can be produced from these nano-powders.
  • FIG. 4 is a schematic diagram of thermal detonation of a single agglomerate among precursor agglomerates having a multi-component force containing explosive components.
  • FIG. 4 (A) shows a state where the precursor agglomerate 10 composed of multiple components including explosive components is heated.
  • the precursor agglomerate 10 composed of multiple components including explosive components is composed of the substrate component 3 and additive component 2 (see FIG. 2) of the two-component nanosynthetic aggregate 1 and the explosive fine particles 4. It has become.
  • Fig. 4 (B) shows that a precursor agglomerate 10 composed of multiple components containing explosive components is thermally detonated. -Shows the state just before the moment.
  • Fig. 4 (C) shows that the precursor agglomerate 10 composed of multiple components including explosive components is nano-explosed 12 and the resulting collection is accompanied by the formation of a nanoparticle solid solution 16 consisting of uniform aggregates. It shows the pulverized state due to agglomeration. As shown in the figure, nanoparticle solid solution 16 is generated in a finely divided state by nanoexplosion of two nanoparticle mixture 15.
  • the cyclotrimethylene tri-tolamine nano-explosion begins in the nano-sized region, the so-called hot spot, which causes the accumulation of mechanical energy and conversion to chemical energy of the collision wave, and initiates the explosion reaction.
  • the extremely fast heat Detoneshiyon (10- 8 sec / g) the beginning of each cyclotrimethylene tri - Toramin Number compressed to the same volume as the volume of particles thousand
  • the instantaneous explosive force that is, the expansion of the compressed gas is 500 MW Zg, and the impact of the explosion wave that occurs subsequently shatters the surrounding objects, causing atomization and plastic deformation.
  • a thermal baking or heat treatment step may be performed at a temperature higher than the explosion temperature, for example, 450 ° C. According to this thermal firing process, the obtained ceramic powder force can remove explosive products such as cyclotrimethylenetri-tolamine, improve the homogeneity of the powder composition and maintain the powder form. .
  • Example 1 a nanosized powder of Ce Gdd ⁇ solid solution was produced. Nano powder synthesis
  • cerium nitrate (hexahydrate) (Ce (NO) ⁇ 6 ⁇ 0, purity 99.9%)
  • Linum (hexahydrate) (Gd (NO) ⁇ 6 ⁇ 0, purity: 9 ⁇ 9% and hexamethylenetetraami
  • the total molar ratio of cerium nitrate + gadolinium nitrate is 1.0 mole. These materials are weighed so that the total concentration is 0.1 ImolZlOOOOcm 3 (ie, 0.1 M), and a stock solution that has a total strength of 250 cm 3 of nanopowder synthetic material is obtained by dissolving in distilled water. did.
  • the amount of cerium and gadolinium and the amount of hexamethylenetetramine are Although it may be changed depending on the composition of the powder, the molar ratio is in the range of lZl. 5 to lZ5.
  • hexamethylenetetraamine was separately used as a precipitant. Hexamethylenetetraamine was dissolved in purified water to a concentration of 1M to obtain a 150 cm 3 precipitant aqueous solution. The pH of this solution was 8.45 at 22 ° C o
  • gadolinia precipitation with initial particle agglomeration occurs in less than 100-600 seconds at lower temperatures.
  • gadolinia agglomerates are formed first.
  • ceria nucleation, growth and agglomeration occur on the surface of the gadolinia agglomerates (see Figure 12).
  • ternary precursor agglomerates are washed several times with ethanol (99.5%, reagent grade, manufactured by Kanto Yigaku) to remove residual nitric acid and other ionic impurities. It was. Continue centrifugation at lOOOOrpm for 5-60 minutes until the supernatant is clear Went.
  • the ternary precursor agglomerates were washed, and finally the residual ethanol was slowly evaporated at 60 ° C using a dryer and dried.
  • the washed three-component precursor agglomerates were redispersed in ethanol using an ultrasonic device (Shimadzu, USP-600 type) to form a suspension (slurry).
  • This ultrasonic device is composed of a 20 kHz frequency and 160 W output oscillator and a probe using a titanium chip. The probe was inserted 30-50 mm below the surface of the suspension and treated for 30-600 seconds.
  • the obtained ternary precursor agglomerate is a complex multicomponent precursor agglomerate composed of gadolinia-doped ceria particles containing cyclotrimethylenetri-tolamine.
  • the particle size distribution of this ternary precursor agglomerate was measured using an analyzer (LSPZ-100, manufactured by Otsuka Electronics Co., Ltd.) using a dynamic light scattering method (DLS) using laser light. The measurement was performed by dispersing a small amount of powder (5 mg or less) in distilled water.
  • the measured particle size of the ternary precursor agglomerate was as wide as 37 to 630 nm. Such a wide particle size distribution is due to the fact that gadolinium and cerium oxide precipitate simultaneously.
  • the composite powder agglomerates are taken from the combustion temperature of cyclotrimethylene tri-tolamine ( ⁇ 180 ° C.). Through its melting point ( ⁇ 204 ° C.) and rapidly rising to the temperature of its thermal detonation ( ⁇ 230 ° C.). Then, in a multi-component precursor agglomerate, a complex, multi-point nano explosion occurs, and nano-sized ceria and gadolinia force (hereinafter referred to as ceria-gadolinia powder as appropriate), That is, a ceramic powder in which gadolinia was dissolved in ceria was obtained. After this step, the obtained powder was further fired at a temperature of 450 ° C.
  • FIG. 5 shows the thermogravimetric analysis (TG), differential thermal analysis (TDA), and thermal decomposition of cyclotrimethylenetri-tolamine in the complex explosion synthesis of ceria-gadolinia solid solution in Example 1. It is a figure which shows a temperature change. In the figure, the horizontal axis shows the elapsed time (minutes), and the left vertical The axis shows the thermogravimetric change (%) of TG, and the right vertical axis shows TDA temperature difference ( ⁇ TV) and container temperature (° C). As shown in the figure, the heating rate of the container is the result of 10 ° CZ. As is clear from FIG.
  • FIG. 6 is a transmission electron microscope (TEM) image of the ceria-gadolinia powder obtained in Example 1.
  • the TEM uses JEM-2000-FX manufactured by JEOL, with an acceleration voltage of 200 kV and a magnification of 30,000.
  • ceria-gadolinia powder is a primary crystallite with an average particle size of l lnm, and the aggregate particle size distribution is 30-70nm, which is homogeneous and precise stoichiometric. Having a composition.
  • Table 1 shows the particle sizes of the nano-sized powders obtained in Example 1 and Examples 2 to 7 described later.
  • Example 7 La 2 0 3 27-485 9 to 54 8 to 57
  • the phase of the obtained powder was identified using an X-ray diffractometer (manufactured by Rigaku, RINT2000 type). The measurement was performed at room temperature, and the X-ray diffraction (XRD) pattern was recorded by Ka lines generated by irradiating Cu with an electron beam of 40 kV 300 mA.
  • XRD X-ray diffraction
  • Figure 7 shows the XRD pattern of ceria-gadolinia nanopowder, where (a) is the ceria-gadolinia solid solution obtained in Example 1, and (b) is below the critical heating rate of Comparative Example 1 described below. That is, it shows a ceria-gadolinia solid solution synthesized by a normal combustion route.
  • the horizontal axis represents the angle 20 (°)
  • the vertical axis represents the X-ray diffraction intensity (arbitrary scale).
  • Example 7 the nanopowder with ceria-gadolinia solid solution strength obtained in Example 1 has a composition of Ce Gd 2 O (see black circles ( ⁇ ) in the figure), and is almost equal to the stoichiometric amount.
  • the XRD peak attributed to Ce Gd O is relatively broad, which is the same as in Example 1.
  • Example 1 a powder having nano-sized ceria and gadolinia force, that is, a ceramic powder in which gadolinia is dissolved or doped in ceria.
  • Example 2 As Example 2, a nanosized powder of Ce Gd O ⁇ solid solution was produced. Nano powder synthesis
  • the molar ratio of the amount of cerium nitrate (hexahydrate): gadolinium chloride (hexahydrate): hexamethylenetetraamine 0.8: 0.2: 2.5.
  • the sum of the molar ratios of cerium nitrate and gadolinium chloride is 1.
  • Precipitation of gadolinia in an aqueous solution was carried out by spraying hexamethylentetraamine as a precipitating agent into an aqueous salt-gadolinium solution (hereinafter referred to as spraying as appropriate) before ceria synthesis.
  • the temperature of the aqueous solution at this time was 3 ° C, and stirring was performed at lOOOrpm.
  • the resulting powder consisted of agglomerated primary crystallites with a particle size of 3-4 nm. However, the redispersion of the powder has become effective due to the short ultrasonic treatment. In this step, a gadolinia concentrated suspension was obtained.
  • an aqueous cerium nitrate solution was prepared.
  • the gadolinia concentrated suspension and hexamethylenetetraamine solution in an aqueous cerium nitrate solution were heated at 70-90 ° C. and lOOOO rpm for 6 hours. For this reason, primary crystallites of 3 to 4 nm gadolinia gathered to form agglomerates of 4 to 340 nm, covered with synthesized ceria.
  • the second step is carried out in the same manner as in Example 1, except that residual ammonium chloride ion (NH C1), residual nitric acid and other ionic impurities are removed from the ternary precursor agglomerates. , Dried
  • the particle distribution of the complex multicomponent consisting of gadolinia-doped ceria with cyclotrimethylenetri-tolamine thus obtained, ie ternary precursor agglomerates, is 18-380 nm Met.
  • the third step is carried out in the same manner as in Example 1, and the three-component precursor agglomerate is converted into its thermal detonation.
  • the temperature rapidly increased to a temperature of Yong ( ⁇ 230 ° C), causing a nano explosion.
  • non-isothermal firing was performed at a temperature of 450 ° C.
  • gadolinia was dissolved in nano-sized ceria, that is, a Seria gadolinia powder was obtained.
  • the average particle size of the primary crystallites is l lnm
  • the particle size distribution of the aggregates is 20-70 nm
  • Example 3 a nanosized powder of Ce Gdd ⁇ solid solution was produced. Nano powder used
  • gadolinium precursor a hexahydrate gadolinium compound in aqueous solution
  • stirring 1600 rpm before ceria (CeO) synthesis.
  • a gadolinia suspension was obtained by spraying hexamethylenetetraamine into the aqueous solution.
  • the amount of hexamethylenetetramine 2.5 (molar ratio) was used with respect to the salt gadolinium (hexahydrate) 1 (molar ratio).
  • Salt gadolinium (hexahydrate) was dissolved in deionized water to bring the final cation source total concentration to 0.1M.
  • the total amount of the solution containing hexamethylenetetraamine was 200 cm 3 .
  • the aggregate was washed, and then the aggregate was dispersed in water to obtain a gadolinia dispersion.
  • This gadolinia dispersion was mixed with an aqueous cerium nitrate (hexahydrate) solution at 1 ° C. and kept at 2 ° C. Mixing was performed in a cold bath temperature controlled at 2 ° C.
  • the gadolinia concentrate suspension was added to the aqueous solution of cerium nitrate at 1600 rpm, followed by mixing with hexamethylenetetraamine by spraying and treating at 80-90 ° C for 6 hours to obtain a synthetic powder.
  • the molar composition ratio between gadolinia and ceria was set to 0.2: 0.8 as in Example 1.
  • This composite powder is composed of cerium and gadolinium with cyclotrimethylenetri-tolamine. It is a three-component precursor agglomerate consisting of humic compounds. Its particle size distribution is 13 to 175 nm.
  • the ternary precursor agglomerate is subjected to a third step in the same manner as in Example 1 and rapidly raised to a temperature of thermal detonation ( ⁇ 230 ° C.).
  • a nano-sized powder was synthesized by causing multiple nano explosions at multiple locations.
  • the obtained nano-sized powder is a nano-sized ceria-gadolinia powder in which gadolinia is dissolved in nano-sized ceria.
  • the particle size distribution of the ceria-gadolinia powder was 15 to 40 nm, and among the above Examples 1 to 3, the particle size was the smallest. In addition, there was no evidence of particle aggregation or growth during subsequent firing to 450 ° C (see Table 1).
  • the particle size distribution after firing at 450 ° C slightly expanded from 15 to 40 nm force of the synthetic powder obtained by nano explosion to 12 to 55 nm.
  • Example 4 a CeO nano-sized powder was produced.
  • the starting material for nanopowder synthesis is
  • Salty cerium (7 water salt) (CeCl ⁇ 7 ⁇ ⁇ ⁇ ⁇ ) as a ceria powder raw material, and Wako Pure as a precipitant
  • ceria precipitation with cerium chloride aqueous solution with hexamethylenetetraamine as a precipitant was carried out by stirring at 70 ° C at lOOOrpm.
  • the initial pH of 8.45 was measured with hexamethylenetetraamine solution at 22 ° C.
  • the synthesis of cerium oxide was started at 22.degree. C. and stirred at a temperature of 70.degree. C. for 5 hours to precipitate 100% of ceria to obtain ceria aggregates.
  • the particle size of the obtained ceria aggregate was 18 to 230 nm.
  • the composition of each of the above materials and the solution was in accordance with Example 1.
  • cyclotrimethylene tri-tolamine as an explosive was synthesized independently from concentrated nitric acid (90 to 95%) and hexamethylene tetraamine.
  • 20 cm 3 of an aqueous solution containing 5 g of hexamethylenetetraamine as a solid is poured into 50 cm 3 of concentrated nitric acid stirred at 500 rpm and subjected to a reduction reaction at a temperature of 1 ° C. to form a cyclotrimethylene tri-tolamine suspension. did.
  • FIG. 8 is a photograph showing a TEM image of cyclotrimethylene tri-tolamine particles synthesized alone in Example 4. The magnification is 100,000 times. As is clear from Fig. 8, the particle size is about 20-40nm. It can be seen that these are nano-sized particles having a relatively uniform particle size.
  • cyclotrimethylene tri-tolamine was immersed in the ceria aggregate at a saturated or nano level.
  • the immersion was performed by mixing the synthesized ceria aggregate with the synthesized cyclotrimethylene tri-tolamine suspension.
  • the ceria aggregates were washed and redispersed in the same manner as in Example 1.
  • a well-dried and redispersed ceria-powered two-component precursor agglomerate with cyclotrimethylene tri-tolamine is added to the thermal detonation of cyclotrimethylene tri-tolamine ( ⁇ 230 ° C.).
  • a two-stage single process was applied in which the temperature was increased rapidly and then heated to 450 ° C and fired relatively slowly. This creates a complex and multi-site nano-explosion on the binary agglomerates.
  • Example 4 a CeO nano-sized powder was obtained.
  • the average particle size of this powder is 6 ⁇
  • Example 5 a nano-sized powder of zirconia in which 3 mol% of yttria was dissolved was produced.
  • the body was prepared by hot water precipitation from metal chloride and urea sol, washing and redispersion as follows.
  • zirconium chloride oxide octahydrate
  • ZrOCl ⁇ 8 ⁇ 0 purity 99%
  • urea NH CONH, purity 99%
  • Urea was mixed with the aqueous solution, and 200 cm 3 of a sol having an initial pH of 1.2 or 1.2 or less was homogenized by stirring and mixed, and then this sol was treated with hot water.
  • the sol was filled in a fluororesin tetrahydride fluorocarbon container having a volume of 250 cm 3 to occupy 80% by volume, placed in a pressure vessel made of stainless steel, and the container was sealed.
  • the sol, 1 Place in a dryer controlled to heat up to 50 ° C, perform hydrothermal treatment for 10 hours, wash and redisperse the hydrothermally precipitated agglomerates, and nanosize with 3 mol% yttria in solid solution Tetragonal zircon (hereinafter referred to as yttria-doped anhydrous zircoure as appropriate) powder was obtained.
  • yttria-doped anhydrous zircoure Tetragonal zircon
  • Example 5 nano-sized tetragonal zirconia powder in which 3 mol% of yttria was dissolved was obtained.
  • the average particle size of this powder was about 30 nm (see Table 1).
  • Example 6 a nano-sized powder was produced in which nano-sized platinum was contained in zircoure in which 3 mol% of yttria was dissolved.
  • the preparation of 3 mol% yttria-stabilized zirconium powder and cyclotrimethylene tri-tolamine as an explosive were carried out in the same manner as in Example 5.
  • nano-aggregates of yttria solid solution zircoure containing platinum of 1 to 7 nm were prepared as follows.
  • Pt (II) ions Pt 2+
  • This sonochemical reduction treatment involves a variable frequency Using a sound wave generator (Kaijo Co., Ltd. Model 4021), platinum nanoparticles were deposited in the pores of the agglomerate and on the surface thereof, and nano-aggregate of yttria solid-solution zircoa containing nano-sized platinum Got.
  • Example 5 the nano-aggregated yttria solid solution zirconium nanoaggregate hecyclotrimethylene tri-tolamine containing nano-sized platinum was immersed, washed, redispersed, dried, and cyclohexane.
  • a multi-component agglomerate (particle size: 3 to 265 nm) with yttria-doped anhydrous zircoure force with cyclotrimethylenetri-tolamine and yttria-doped anhydrous zircoure force with trimethylenetri-tolamine was obtained.
  • This multi-component agglomerate was placed in a container as in Example 5 and rapidly raised to a temperature of heat detonation ( ⁇ 230 ° C.).
  • Example 7 a nano-sized powder of lanthanum oxide (La 2 O 3) was produced.
  • starting material La 2 O 3
  • Xamethylenetetraamine was used. These reagents are manufactured by Wako Pure Chemical Industries. Concentrations and procedures were basically the same as in Example 1. The size of the lanthanum oxide nanopowder thus produced was about 9 to 54 nm (see Table 1).
  • FIG. 9 shows thermogravimetric analysis (TG), differential thermal analysis (TDA), and thermal decomposition in the thermal decomposition of a ternary precursor agglomerate under sub-critical speed conditions causing explosion in Comparative Example 1.
  • TG thermogravimetric analysis
  • TDA differential thermal analysis
  • FIG. 9 shows the temperature change of a container.
  • the horizontal axis shows the passage of time (minutes)
  • the left vertical axis shows the thermogravimetric change (%) of TG
  • the right vertical axis shows the TDA temperature difference ⁇ TV) and container temperature (° C).
  • the temperature rising rate of the container is 5 ° CZ.
  • the subcritical temperature condition prevents complex heat detonation to the hot spot, and cyclotrimethylenetri-tolamine simply burns slowly, creating a combustion path, It can be seen that no nano-explosion has occurred.
  • FIG. 10 shows a TEM image of the ceria-gadolinia compound synthesized in Comparative Example 1. As is clear from FIG. 10, it can be seen that high-density agglomerates composed of large, nonuniform, ultrafine primary crystallites, that is, gadolinia particles exist as black particles.
  • Example 8 the same Ce Gd ⁇ solid solution nano-sized powder as in Examples 1-3 was produced.
  • urea manufactured by Wako Pure Chemical Industries
  • Urea was dissolved in deionized water to a concentration of 2% per 1- ⁇ salt and cerium and ⁇ salt and gadolinium.
  • Shioi ⁇ cerium aqueous urea solution 200 cm 3 were prepared two samples with Shioi ⁇ gadolinium aqueous urea solution 100 cm 3. The total amount is 300cm 3 .
  • the urea aqueous solution is sprayed into the salt cerium urea aqueous solution under a stirring condition of 1600 rpm. Formed the nucleus of ceria. The subsequent stirring at a predetermined temperature was 10 hours to prepare a ceria suspension.
  • initial nucleation of the gadolinium complex was performed. The aqueous solution of sodium chloride gadolinium urea was sprayed into the ceria suspension synthesized above while stirring at 160 Orpm.
  • Example 2 ceria and gadolinia were further added to ethanol (manufactured by Kanto Igaku, 99.5%) using an ultrasonic device (manufactured by Shimadzu, USP-600). Powerful agglomerates were redispersed.
  • cyclotrimethylenetri-tolamine as an explosive was synthesized in the same manner as in Example 4 with concentrated nitric acid (manufactured by Wako Pure Chemicals, approximately 93%) and hexamethylenetetramine aqueous solution. Hexamethylenetetramine was dissolved in deionized water to a concentration of 0.1 M, and cyclotrimethylenetri-tolamine was produced and precipitated by adding it to concentrated nitric acid into this hexamethylenetetramine aqueous solution. As a result, an aqueous solution in which the nanoparticles of cyclotrimethylenetri-tolamine were well dispersed was obtained.
  • the cyclotrimethylene tri-tolamine was immersed at a saturated or nano level in an agglomerate having ceria and gadolinia forces.
  • the soaking was performed by mixing the agglomerates having ceria and gadolinia force with the synthesized cyclotrimethylene tri-tolamine suspension.
  • a ternary precursor agglomerate consisting of ceria and gadolinium intermediate complex and cyclotrimethylenetri-tolamine was separated from the supernatant by centrifugation at lOOOOrpm for 15 minutes.
  • T 70 ° C).
  • FIG. 11 is a transmission electron microscope image of the ceria-gadolinia powder obtained in Example 8. The acceleration voltage is 200kV and the magnification is 15,000 times.
  • Ceria is a primary crystallite with an average particle size of 6-14 nm doped with gadolinia, and the aggregate particle size distribution is 18-67 nm, with a homogeneous morphology and precise stoichiometric composition. !!
  • the particle size of the powder after firing at 450 ° C. was 22 to 74 nm.
  • Table 2 shows the particle sizes of the nano-sized powders obtained in Example 8 and Comparative Example 4 described later.
  • Example 8 also in the synthesis method of Example 8, as in Examples 1 to 3, a powder composed of nano-sized ceria and gadolinia, that is, a ceramic powder in which gadolinia is dissolved or doped in ceria is obtained. Turned out to be.
  • Example 4 a ceria-gadolinia compound was produced in the same manner as in Example 8, except that the temperature was raised to 450 ° C by a normal combustion process instead of the nano-explosion process of the third production process. It was. The temperature was raised to 5 ° CZ, and the temperature of the precursor agglomerates containing explosives was lower than the critical temperature rise rate causing explosion.
  • the particle size of the precursor powder of Comparative Example 4 is 30 to 1260 nm, and particles of ceria-gadolinia (Ce Gd O) powder after the normal combustion process and firing at 450 ° C Diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 均一な形態と化学組成を有し、かつ、ナノサイズで集塊していない粉体の製造方法に適用できるナノサイズ粉体の製造方法である。粉体の原料を溶かした媒体から、単一又は多成分からなる前駆体集塊物を化学的に沈殿させる際に、前駆体集塊物を爆発性化合物によって飽和させるか、又は爆発性化合物をナノレベルに浸み込ませ、爆発性化合物を含む前駆体集塊物(10)を調製する第1の工程と、爆発性化合物を含む前駆体集塊物(10)を、その成分的及び形態的均質性を維持しながら洗浄し乾燥する第2の工程と、乾燥させた爆発性化合物を含む前駆体集塊物(10)を、ナノスケールで爆発させるのに十分な昇温速度で加熱して爆発(12)させることにより単一又は多成分からなるナノサイズ粉体(15)を得る第3の工程とを含む。

Description

ナノサイズ粉体の製造方法
技術分野
[0001] 本発明は、単一成分もしくは多成分力もなる、セラミック粉体、又は、金属及びセラミ ック複合粉体などを製造することができるナノ爆発合成による、ナノサイズ粉体の製造 方法に関するものである。
背景技術
[0002] 単一成分又は多成分力もなるナノ (nm)サイズの粉体は、力学的、化学的、熱的、 触媒的、電子的、電気的、通信的、光学的、バイオ ·医用的な商品及び消費的商品 の材料、すなわち、構築物ととして要求されている。このような材料として、特に、セラ ミックナノ粉体、あるいは、このセラミックナノ粉体に金属を修飾または混合した金属 及びセラミックの複合粉体が挙げられる。現在の巿場においては、単一成分又は多 成分力 なるナノサイズのセラミックナノ粉体又は金属及びセラミックの複合粉体を用 いたデバイスは、さらに優れ、信頼でき、早ぐ小さぐ持ち運びのし易さなどが要求さ れている。特にデバイスについては、ナノ粉体力もなる構築物の一層の微小化、すな わち、ナノ粒子の高度利用が求められている。
[0003] 従来、ナノサイズの粉体は、所謂、湿式化学的方法 (wet chemical etching)と呼ば れる方法によって、水溶液及び Z又は非水溶液から下記(1)〜(6)の工程の全部又 は一部を経て合成されて ヽた (非特許文献 1〜9参照)。
( 1)出発溶液となる単一成分もしくは多成分の金属塩溶液 (通常は水溶液)を調製 する。
(2)沈殿剤 (還元剤)の水溶液を調製する。
(3)出発の単一もしくは多成分の金属塩溶液を還元的に分解して、目的の最終生 成物 (A)もしくは中間生成物(B)の沈殿物、コロイド懸濁液又はゲル溶液を得る。
(4)洗浄及び乾燥と遠心分離等を繰り返して、最終生成物又は焼成処理前の中間 体を分離する。
(5)前記 (4)における洗浄及び乾燥の間に、沈殿等で得られた中間体力もなる粉 体を脱集塊化、すなわち、微粒化させる。
(6)上記微粒ィヒした中間体を熱分解または焼成処理して、最終生成物となる粉体 を得る。
[0004] 図 12は従来の方法の湿式ィ匕学的手法で合成された 2成分系粉体 50の模式図で ある。第 1成分 51の核形成、成長、凝集と、それに続く強固な集塊化が非常に温和 な条件で数秒以内に起こる。同時に、通常は、第 2成分 52の核形成がより高い温度 で時間をかけて開始し、時には異なる pHを必要とする。この共沈(co-precipitation) した最終生成物 50は、強固に集塊しており、不均一なナノ結晶の性状を有する合成 物である力 通常はこれらは/ z mサイズの不均一で強固に凝集した集塊物で成って いる。図 12においては、第 1及び第 2の成分の集塊物 53, 54が生成した場合を示し ている。最終目的の固溶体 (solid solution)に到達するには、この強固な多成分集塊 物を更に高温焼成温度で処理することを要する。この粉体を用いて高密度化するに は、高温及び長い焼結時間を要していた。
[0005] セラミック粒子の大きさをナノスケールに小さくするためには、非集塊の均質なナノ 粉体を合成しなければならな 、。ナノ粒子の高 、表面エネルギーと化学的活性とが 原因となって、凝集及びそれに続いて又は同時に起こる強固な集塊化が、このナノ 粉体調製の主たる問題である。この困難にもかかわらず、沈殿手法に基づくいくつか の水溶液法が用いられてきた。例えば、アンモニア、シユウ酸、尿素、炭酸アンモ-ゥ ムを沈殿剤とするものであり、あるいはへキサメチレンテトラアミンを沈殿剤とするもの である。これらの調製法には、ゾルーゲル法、水熱法、不活性ガス濃縮法、塩が介す るエアロゾル分解法、超音波化学 (ソノケミストリー)もしくはマイクロ波が介する種々の 前駆体水溶液 (又は非水溶液)の分解及び燃焼合成手法が含まれて ヽる。
[0006] 単一の無機塩、例えば、塩化物、硝酸塩、シユウ酸塩等の弱!ヽ熱安定性を伴なう熱 分解は、しばしばナノ結晶やナノサイズの粉体の形成を導くことがある。この方法を用 V、て二酸ィ匕セリウム粒子や二酸ィ匕ジルコニウム粒子等を製造する場合には、操作温 度をかなり下げて行って 、た。
しかし、多成分の前駆体を原料とする場合は、単一成分を原料とするのに比べて一 層困難であり、しばしば不均質な多相の化合物の沈殿が起こる。その結果、非常に 温和な条件で最初の成分の核形成、成長、凝集及びそれに続く堅固な集塊化が数 秒以内で起こる。同時に、更に高い温度で通常は、第二成分の核形成が始まる。こ の反応は、初めの反応よりも時間がかかり、また、しばしば違った pHを必要とする。こ の共沈した最終生成物は強固に集塊化した非均質な合成粉体であり、性状はナノ結 晶的であるが、通常は不均質な形態を有する μ mサイズの強固な集塊物力 なる( 後述する図 10参照)。最終の固溶体に到達するには、一般にこの多成分合成粉体 は高い焼成温度を必要とする。したがって、これらの粉体の高密度化には高温度及 び長時間を要していた。
[0007] 従来の燃焼合成法は、短時間に生産できる方法であり、エネルギー及び時間を節 約する利点がある。この迅速で単純な製造プロセスは、比較的均質であり、高純度及 び結晶性の酸ィ匕物セラミック粉体の生産に用いることができ (非特許文献 10参照)、 セリア(酸ィ匕セリウム)、アルミナ(酸ィ匕アルミニウム)、チタ-ァ (酸化チタン)等のナノ サイズの粉体を含む広範囲の粒子サイズの合成に利用できる(非特許文献 11参照)
。興味深いことに、金属硝酸塩 グリシン 硝酸アンモニゥムのレドックス混合物の燃 焼、あるいは金属酢酸塩 アルミニウム硝酸塩 尿素混合物の燃焼は、非炎の線形 燃焼であり、ナノ結晶性酸ィ匕物を生成することができる (非特許文献 12参照)。
[0008] 上記の燃焼合成方法の基礎は火薬や爆薬の分野で用いられてきた熱化学の概念 を応用して 、るものであり、この概念をセラミック酸ィ匕物合成で推定すること及び熱力 学的に説明することが、すでに報告されている (非特許文献 13参照)。これらの方法 が成功したポイントの一つは、例えば、クェン酸、尿素、グリシン等の適切な燃料又は 錯ィ匕合物を用いて、媒体 (通常は水性媒体)における、又は燃料と例えば硝酸塩酸 化物との間の発熱レドックス反応における構成物間の近接な混合を良くしたことであ る (非特許文献 14参照)。通常、媒体としては水性媒体が用いられていた。
この合成反応に影響を及ぼす因子は、燃料の種類、燃料と酸化剤との比率、前駆 体混合物の水含有量等であり、また、燃焼反応の機作は複雑である。顕微鏡的な小 さい単結晶、すなわち結晶子 (crystallite )サイズ、比表面積、集塊物の大きさ及びそ の凝集状態の強弱等の粉体の特徴は、一義的には、ェンタルピー又は燃焼によって 生じる炎温度によって支配される。この炎温度は、燃料の性質と燃料 Z酸化剤の比 率とに依存している。燃焼の間に大量の気体が急に発生すれば、プロセスの熱を浪 費し、温度上昇を制限し、そして、一次粒子間の局所的な焼結 (sintering )の確率を 減らすこととなる。さら〖こは、気体の発生は、粒子間の接触を制限して、強固な凝集の ない集塊物の生成を助ける場合もあった。
[0009] 非特許文献 1 : Z. Tianshu et al, Solid State Ionics, Vol.148, p.567 (2002)
非特許文献 2 : T. Zhang et al., Solid State Ionics, Vol.167, p.191 (2004)
非特許文献 3 : M. Kamruddin et al., Scripta Materialia, Vol.50, p.417 (2004) 非特許文献 4 :J.G. Li et al., Solid State Chem, Vol.168, p.52 (2002)
非特許文献 5 : T. M. Tillotson et al" J. of Non- Crystall Solids, Vol.225, p.358 (1998 )
非特許文献 6 : T. Tillotson et al., J. of Non- Crystall Solids, Vol.285, p.338 (2001) 非特許文献 7 : S. Dikmen et al., Solid State Ionics, Vol.126, p.89 (1999)
非特許文献 8 :J.S. Lee et al., Mater. Letters, Vol.58, p.390 (2004)
非特許文献 9 : 0. Vasylkiv and Y. Sakka, J. Am. Ceram. Soc, Vol.84, pp.2489— 2494 (2001)
非特許文献 10 : R.M.G.A. Kiminami and M.R. Morelli et al" Am. Ceram. Soc. Bull., p.67 (2000)
非特許文献 11 : T. Mimani and K.C. Patil, Mater. Phys. Mech. Vol.4, pp.134- 137 (2 001)
非特許文献 12 : K.C. Patil, S.T. Aruna and T. Mimani, Curr. Op. Solid State Mater. Sci., Vol.6, p.507 (2002)
非特許文献 13 : D. A. Fumo et al., Mater. Res. Bull, Vol.31, p.1243 (1996) 非特許文献 14 : S. Bhaduri, S.B. Bhaduri and E. Zhou, J. Mater. Res. Vol.13, p.156 (
1998)
発明の開示
発明が解決しょうとする課題
[0010] 従来の沈殿法によるセラミックなどの粉体材料の製造方法では、粉体の形成に高 い焼成温度を必要し、これらの粉体の高密度化には高温度及び長時間を要し、しか も、ナノサイズの粉体を精度良く製造できな 、と 、う課題がある。
[0011] また、従来の燃焼合成方法によるセラミックなどの粉体材料の製造方法では、集塊 した粉体しか得られずナノサイズの粉体が実現できな 、と 、う課題がある。
[0012] このように従来の製造方法にぉ 、ては、サブミクロン以下のナノサイズの粉体、とく に、超微細のセラミックナノ粉体又はこのセラミックナノ粉体に金属を修飾または混合 した金属及びセラミックの複合粉体を製造することが困難である。
[0013] 本発明は上記課題に鑑み、均一な形態と化学組成を有し、かつ、ナノサイズで集 塊していない単一成分もしくは多成分力もなる粉体に適用でき、とくに、セラミック粉 体又は、金属及びセラミック複合粉体などを再現性良く製造することができるナノ爆 発合成による、ナノサイズ粉体の製造方法を提供することを目的として!ヽる。
課題を解決するための手段
[0014] 本発明者らは鋭意研究した結果、ナノサイズの粉体の合成に火薬や爆薬の分野で 用いられてきた技術をナノサイズ粉体の製造に適用できるとの知見を得て、本発明に 至ったものである。
[0015] 上記目的を達成するため、本発明の第 1のナノサイズ粉体の製造方法は、粉体の 原料を溶力した媒体から、単一又は多成分からなる前駆体集塊物を化学的に沈殿さ せる際に、前駆体集塊物を爆発性ィ匕合物によって飽和させるか又は爆発性ィ匕合物 をナノレベルに浸み込ませ、爆発性化合物を含む前駆体集塊物を調製するる第 1の 工程と、爆発性化合物を含む前駆体集塊物を、その成分的及び形態的均質性を維 持しながら洗浄し乾燥する第 2の工程と、乾燥させた爆発性化合物を含む前駆体集 塊物を、ナノスケールで爆発させるのに十分な昇温速度で加熱して爆発させることに より単一又は多成分カゝらなるナノサイズ粉体を得る第 3の工程と、を含むことを特徴と する。
上記構成によれば、最初に粉体の原料力も前駆体集塊物をィ匕学的に沈殿させる 際に爆発性化合物を含ませ、この爆発性化合物を含む前駆体集塊物を爆発させる ことで、高エネルギーの爆発波の衝撃によって、複合的爆発による集塊の微粉ィ匕を 引き起こし、ナノサイズの粉体を、再現性良く製造することができる。
[0016] 本発明の第 2のナノサイズ粉体の製造方法によれば、粉体原料を溶力した媒体か ら、単一又は多成分力 なる前駆体集塊物をィ匕学的に沈殿させ、前駆体集塊物に 予め調製したナノサイズの爆発性化合物を浸み込ませ、爆発性化合物を含む前駆 体集塊物を調製する第 1の工程と、ナノサイズの爆発性ィ匕合物を含む前駆体集塊物 を、その成分的及び形態的均質性を維持しながら洗浄し乾燥する第 2の工程と、乾 燥させたナノサイズの爆発性化合物を含む前駆体集塊物を、ナノスケールで爆発さ せるのに十分な昇温速度で加熱して爆発させることにより単一又は多成分力 なるナ ノサイズ粉体を得る第 3の工程と、を含むことを特徴とする。
上記構成によれば、最初に粉体の原料から前駆体集塊物を化学的に沈殿させ、前 駆体集塊物に予め調製したナノサイズの爆発性ィ匕合物を浸み込ませ、この爆発性化 合物を含む前駆体集塊物を爆発させることで、高エネルギーの爆発波の衝撃によつ て複合的爆発による集塊の微粉ィ匕を引き起こし、ナノサイズの粉体を再現性良く製 造することができる。
[0017] 上記構成において、好ましくは、さらに、第 3の工程の後で、ナノサイズ粉体を熱処 理する。これにより、得られたナノサイズ粉体から、さらに、爆発産物を除去するととも に、粉体組成の均質性及び粉体形態の向上を図ることができる。
[0018] 爆発性化合物は、好ましくは、シクロトリメチレントリ-トラミン、トリ-トロトルエン (TN T)、ニトログリセリン、グリセリンの何れかである。粉体の原料は、好ましくは、金属又 は金属を含む塩である。金属は、好ましくは、セリウム、ガドリニウム、ランタンなどの希 土類元素、コノルト、ニッケル、マンガン、亜鉛、ノ リウム、チタニウム、バナジウム、二 ォブ、タンタル、タングステン、モリブデン、マグネシウム、カルシウム、イットリウム、ジ ルコ-ゥム、ハフニウム、アルミニウム、鉛、銅、錫、スカンジウム、インジウム、珪素、 鉄、ストロンチウム、金や白金等の貴金属元素の何れか又はこれらの金属の組み合 わせである。
塩を形成する陰イオンは、好ましくは、硝酸イオン、塩酸イオン、硫酸イオン、シユウ 酸イオン、酢酸イオン、ォキシ水酸化イオン、水酸イオンの何れかである。ナノサイズ 粉体は、好ましくは、セラミック力もなる。また、ナノサイズ粉体は、好ましくは、セラミツ クにナノサイズの金属が混合された金属及びセラミック複合粉体からなる。
上記構成によれば、均質な形態と正確な化学量論比を有するナノサイズの単一の 金属又は多成分からなる金属酸化物粉体、すなわち、ナノサイズのセラミック粉体を 、極く短時間に合成することができる。セラミックとして、金属酸化物粉体にドーパント 酸ィ匕物が固溶したナノサイズのセラミック粉体も合成できる。さら〖こは、金属で修飾さ れた金属酸化物、すなわち、金属及びセラミック複合粉体をも合成することができる。 発明の効果
[0019] 本発明によれば、ナノサイズで制御された形態で、均一の大きさ、相及び微細構造 を有するナノサイズの粉体を再現性よく製造することができる。この粉体としては、セ ラミック粉体又は金属及びセラミック複合体粉体などに適用できる。
図面の簡単な説明
[0020] [図 1]本発明のナノサイズ粉体を製造する場合の工程の一例を順次示すフロー図で ある。
[図 2]理想的な 2成分系ナノ合成凝集物の模式図である。
[図 3]シクロトリメチレントリ-トラミンのみの場合の熱爆発における、熱重量分析 (TG) 、示差熱分析 (TDA)、及び容器の温度変化を示す図である。
[図 4]爆発性成分を含む多成分力 なる前駆体集塊物のうちの単一凝集物の熱デト ネーシヨンの模式図であり、 (A)は爆発性成分を含む多成分からなる前駆体集塊物 が加熱されている状態、(B)は前駆体集塊物が熱デトネーシヨンする寸前の状態、( C)は、前駆体集塊物のナノ爆発の状態を示している。
[図 5]実施例 1における、セリア—ガドリニア固溶体の複合的爆発合成におけるシクロ トリメチレントリニトラミンの熱爆発の熱重量分析 (TG)、示差熱分析 (TDA)、及び容 器の温度変化を示す図である。
[図 6]実施例 1で得たセリアーガドリニア粉体の透過電子顕微鏡 (TEM)像を示す図 である。
[図 7]セリアーガドリニアのナノ粉体の XRDパターンであり、 (a)は実施例 1で得たセリ ァ—ガドリニア固溶体の場合を、 (b)は後述する比較例 1の臨界昇温速度未満の条 件下、すなわち、通常の燃焼ルートで合成したセリア—ガドリニア固溶体の場合を示 している。
[図 8]実施例 4で単独に合成したシクロトリメチレントリ-トラミン粒子の TEM像を示す 写真である。
[図 9]比較例 1の爆発を起こす臨界速度未満の条件下での、 3成分系前駆体集塊物 の熱分解における熱重量分析 (TG)、示差熱分析 (TDA)、及び容器の温度変化を 示す図である。
[図 10]比較例 1で合成したセリア—ガドリニア合成物の TEM像を示す図である。
[図 11]実施例 8で得たセリア—ガドリニア粉体の透過電子顕微鏡像を示す図である。
[図 12]従来の湿式ィ匕学的手法で合成した 2成分系粉体の模式図である。
符号の説明
[0021] 1:理想的な 2成分系ナノ合成凝集物
2 :添加剤(ドーパント)成分
3 :基質成分
4 :爆薬微粒子
10:爆発性成分を含む多成分からなる前駆体集塊物
12 :ナノ爆発
15 : 2つのナノ粒子混合体
16 :ナノ粒子固溶体
発明を実施するための最良の形態
[0022] 以下、図面を参照しながら、本発明をさらに具体的に説明する。
最初に、本発明のナノ爆発合成によるナノサイズ粉体の製造方法について説明す る。
本発明のナノサイズ粉体の第 1の製造方法は、第 1〜3の工程を含み構成されてい る。第 1の工程では、粉体の原料を溶かした媒体から、単一又は多成分からなる前駆 体集塊物をィ匕学的に沈殿させる際に、前駆体集塊物を爆発性化合物によって飽和 させるか又は爆発性ィ匕合物をナノレベルに浸み込ませ、爆発性化合物を含む前駆 体集塊物を調製する。
第 2の工程として、爆発性化合物を含む前駆体集塊物を、その成分的及び形態的 均質性を維持しながら、洗浄し、乾燥する。
第 3の工程として、乾燥させた爆発性化合物を含む前駆体集塊物を、ナノスケール で爆発させるのに十分な昇温速度で加熱し、爆発させることにより単一又は多成分か らなるナノサイズ粉体を得る。
この製造方法によれば、最初に粉体の原料から前駆体集塊物を化学的に沈殿させ る際に爆発性ィ匕合物を含ませ、この爆発性化合物を含む前駆体集塊物を爆発させ ることで、高エネルギーの爆発波の衝撃によって、複合的爆発による集塊の微粉ィ匕 を引き起こし、ナノサイズの粉体を、再現性良く製造することができる。
[0023] さらに、本発明のナノサイズ粉体の第 2の製造方法は、第 1の工程として、粉体原料 を溶力した媒体から、単一又は多成分からなる前駆体集塊物を化学的に沈殿させ、 前駆体集塊物に予め調製したナノサイズの爆発性化合物を浸み込ませ、爆発性ィ匕 合物を含む前駆体集塊物を調製する。これ以降の第 2及び第 3の工程は、本発明の ナノサイズ粉体の第 1の製造方法と同じであるので、説明は省略する。
この製造方法によれば、最初に粉体の原料から前駆体集塊物を化学的に沈殿させ 、この前駆体集塊物に予め調製したナノサイズの爆発性ィ匕合物を浸み込ませ、この 爆発性化合物を含む前駆体集塊物を爆発させることで、高エネルギーの爆発波の衝 撃によって、複合的爆発による集塊の微粉ィ匕を引き起こし、ナノサイズの粉体を、再 現性良く製造することができる。なお、本明細書では、「ナノスケール又はナノサイズ の粒子」とは、直径が約 1〜: LOOnmの粒子と定義する。また、ナノサイズの粉体は、 セラミック粉体、又は、金属及びセラミック複合粉体とすることができる。このセラミック 粉体は、単一成分もしくは多成分力 なる。
[0024] 第 3の工程の後で、さら〖こ、ナノサイズ粉体を熱処理してもよい。この熱処理工程に よれば、得られたナノサイズ粉体から、さらに、爆発産物を除去するとともに、粉体組 成の均質性及び粉体形態の向上を図ることができる。
[0025] 図 1は、本発明のナノサイズ粉体を製造する場合の工程の一例を順時示すフロー 図である。最初に、工程 ST1に示すように、例えば、爆発性ィ匕合物としてシクロトリメ チレントリ-トラミン粒子が入った粉体を準備する。この粉体は、セラミック粉体、又は
、金属及びセラミック複合粉体などを用いることができる。工程 ST2において、上記粉 体を先ず集塊化し、前駆体集塊物にする。工程 ST3において、前駆体集塊物を反 応容器に入れる。工程 ST4に示すように、反応炉を予備加熱しておく。工程 ST5に おいて、予備加熱しておいた反応炉に反応容器を入れ、前駆体集塊物を超高速に 加熱する。
次に、工程 ST6に示すように、前駆体集塊物において、熱デトネーシヨン (熱爆発) と、複合的な多箇所でのナノ爆発が起こる。前駆体集塊物を、熱デトネーシヨンの温 度まで超高速に加熱すると、多箇所でのナノ爆発が前駆体集塊物の内部に広がつ ていく。爆発性ィ匕合物がシクロトリメチレントリ-トラミンの場合には、熱デトネーシヨン の温度は約 230°Cである。熱デトネーシヨンの開始反応はナノサイズ領域、すなわち ホットスポットで始まる。このホットスポットにおいては、衝突 Zショック波のエネルギー を蓄積でき、これをィ匕学エネルギーに転換でき、そして反応が開始する。
[0026] 図 2は、理想的な 2成分系ナノ合成凝集物の模式図である。理想的な 2成分系ナノ 合成凝集物 1において、添加剤(ドーパント)成分 2は、基質成分 3の中に均一に分配 されている。ナノサイズの粉体の作製及び利用では、成分を均一に分配することがプ ロセス温度の大きな低下につながる。多成分の粉体では、ナノサイズの粉体の製造 は一層難しぐ不均一な形態を有する不均一な多相化合物が生じることがしばしばで ある。
[0027] 本発明のナノ爆発合成によるナノサイズ粉体の製造方法において用いる爆発性ィ匕 合物は、化学的に不安定、すなわち、エネルギー的に不安定なもので、「爆発」と呼 ばれるその圧力の急激な変化、すなわち膨張を起こす物質、(以下、適宜、爆薬と呼 ぶ)であれば特に限定しな!、。
このような爆薬としては、例えば、シクロトリメチレントリ-トラミン (C H N O )、トリ
3 6 6 6 ニトロトルエン (TNT)、ニトログリセリン、グリセリン等があり、特に好ましくは、シクロトリ メチレントリ-トラミンを使用することができる。
なお、シクロトリメチレントリ-トラミンは、広く使われている爆発性化合物で、 RDX又 はへキソーゲンの別名もあり、へキサメチレンテトラミン (C H N )と濃硝酸 (HNO )
6 12 4 3 とを反応させると得られる。へキサメチレンテトラァミンと硝酸との反応は、初めに、へ キサメチレンジナイトレートが形成され、引き続くナイトレーシヨンの反応で、ホルムァ ルデヒドと共にシクロトリメチレントリ-トラミンが形成される。
[0028] 図 3はシクロトリメチレントリ-トラミンのみの場合の熱爆発における、熱重量分析 (T G)、示差熱分析 (TDA)、及び容器の温度変化を示す図である。図において、横軸 は時間経過 (秒)を示し、左縦軸は TGの熱重量変化(%)を、右縦軸は TDAの温度 差 Δ T ( V)及び容器温度 (°C)を示して ヽる。昇温速度は 10°CZ分である。
図 3から明らかなように、シクロトリメチレントリ-トラミンの熱分解の 3段階が示されて いる。約 180° の温度でシクロトリメチレントリ-トラミンの発火が始まる。昇温速度が 高いほど、理想の発火温度と実際の発火温度とのギャップは小さくなる。加熱温度に 依存するが、昇温速度を早くするほど理論的な発火温度と実験的に決定した発火温 度とのギャップは大き 、ように見える。 202〜205°Cがシクロトリメチレントリ-トラミン の融点であり、 230°Cはシクロトリメチレントリ-トラミンの熱爆発が起こる温度である。 発火反応の最初に、 TG分析はサンプルの重量力 約 10. 8重量%増加していること を検出している。
このような現象は、周囲の空間から反応によって酸素を捕捉していると考えれば説 明できる。発火は瞬間的に、ナノ秒以内に熱デトネーシヨンへと変わり、シクロトリメチ レントリ-トラミンは爆発する。 TG及び DTAシステムの熱電対温度計で検出される温 度でさえ、瞬間的に約 100°C上昇する。
[0029] 本発明の第 1の製造方法での第 1の工程において、ナノサイズ粉体の原料を溶力し た媒体から、爆発性ィ匕合物によって飽和されるか、若しくは、爆発性化合物がナノレ ベルに浸み込んだ単一もしくは多成分系前駆体集塊物をィ匕学的に沈殿させる工程 は、金属硝酸塩をへキサメチレンテトラミンで分解するあいだに同時発生的に形成さ せることができる。
[0030] また、本発明の第 2の製造方法の第 1の工程に用いる、予め調製したナノサイズの 爆発性ィ匕合物としては、例えば、予め合成したナノサイズのシクロトリメチレントリ-トラ ミン粒子を用いることができる。
[0031] 本発明で用いる媒体は、粉体原料を溶解できるもの力も選ぶことができるが、好まし い媒体は水である。
[0032] 本発明で用いる粉体原料としては、媒体に溶けるものから選ぶ。粉体原料として、 金属又は陽イオン (以下、適宜カチオンと呼ぶ)の塩を用いることができる。好ましい 媒体は水である。 ここで、金属またはカチオンとなる金属を例示すれば、セリウム、ガドリニウム、ランタ ン、などの各種ランタノイド (希土類元素)、コバルト、ニッケル、マンガン、亜鉛、ノ リウ ム、チタニウム、バナジウム、ニオブ、タンタル、タングステン、モリブデン、マグネシゥ ム、カルシウム、イットリウム、ジルコニウム、ハフニウム、アルミニウム、鉛、銅、錫、ス カンジゥム、インジウム、珪素、鉄、ストロンチウム、及び金や白金等の貴金属元素な どが挙げられる。
金属又はカチオンと塩を形成する陰イオン (以下、適宜ァ-オンと呼ぶ)を例示す れば、硝酸イオン、塩酸イオン、硫酸イオン、シユウ酸イオン、酢酸イオン、ォキシ水 酸化イオン、水酸イオン等である。
[0033] 金属硝酸塩を用い、爆薬の原料 (以下、爆薬源と呼ぶ)としてへキサメチレンテトラ アミンを用いた場合には、金属前駆体ィ匕合物と高爆発性の爆薬であるシクロトリメチ レントリ-トラミンが同時に生じて都合がよい。金属硝酸塩の代わりに、水和物又は無 水物の硝酸塩一酸化物(nitrate- oxides)を用いてもよい。
[0034] また、本発明の第 2の製造方法の第 1の工程において、前駆体化合物と爆発性ィ匕 合物を別々に合成する場合には、出発原料となるカチオン源は、金属の硝酸塩に限 定されない。塩化物、シユウ酸塩、炭酸塩等も、前駆体集塊物の調製に有用である。 この場合には、予め合成したナノサイズのシクロトリメチレントリ-トラミン又は他の適 当な爆発物の粒子を、コロイド技術の利点を利用して前駆体集塊物中へ浸漬させる ことができる。
[0035] 最初の原料を選択する基準は、次の 2点である。
(1)最初に各成分が均質又は比較的均質に (予備)分布する多孔性凝集物 Z集塊 物を形成しうること、
(2)微細な一次結晶子 (primary crystallites)が得られ、予備合成の間に堅固な集 塊化を起こさないこと、のたつた二つである。
[0036] なお、爆薬源としてへキサメチレンテトラアミンを用いた場合、へキサメチレンテトラ ァミン及び金属硝酸塩の使用量は、生産するナノ粉体の組成によって適当に変えれ ばよい。通常は、金属硝酸塩 (多成分のときはその合計量) lmol (モル)に対してへ キサメチレンテトラァミンが過剰の l〜5mol、好ましくは 1. 5〜5molを用いる。へキサ メチレンテトラアミンが lmol以下の場合は、金属硝酸塩が完全に塩ィ匕物にならない ので好ましくなぐ 5mol以上の場合には、過剰なものは洗浄除去されるだけなので 好ましくない。
また、金属硝酸塩 (多成分のときはその合計量)を媒体 (通常は水)に溶かすときの モル濃度は限定されないが、通常 0. 001〜2M (ここで、 Mはモル濃度を示し、 1M = Imol/lOOOcm3 )程度である。
[0037] 爆薬としてシクロトリメチレントリ-トラミンを用い、シクロトリメチレントリ-トラミンの生 成とともに前駆体集塊物を形成させる場合には、沈殿剤としてへキサメチレンテトラミ ンが好ましく使われる。この場合、沈殿剤となるへキサメチレンテトラアミンは、通常は 水からなる媒体に別途溶力して用いるが、そのときのモル濃度は 0. 001〜5M程度 である。ここで、沈殿剤としては、へキサメチレンテトラァミンのほかに、尿素や水酸ィ匕 アンモ-ゥムも使用できる力 好ましくは、へキサメチレンテトラアミン又は尿素である
[0038] 各々の金属硝酸塩等の原料液から、へキサメチレンテトラアミン等の沈殿剤を加え て、結晶性又は非晶質の両方の場合がある前駆体集塊物中間生成物を共沈させる とき、通常、 0〜10, OOOrpmで撹拌する。前駆体集塊物の中間生成物は、結晶性 又は非晶質の両方の場合がある。撹拌するときの温度は、 0〜20°C程度の低温、 20 〜25°C程度の室温、 25〜100°C程度の高温の何れでもよい。さらに、 70〜170°C での熱水処理、熱水沈殿あるいは熱水共沈も使用できる。
また、各々のカチオン源となる金属硝酸塩等の出発原料とへキサメチレンテトラアミ ン溶液との混合は、単純な拡散、一方の溶液の他方溶液への注入、一成分の他方 成分へのスプレー等で行うことができる。通常は、へキサメチレンテトラアミン等の沈 殿剤が金属塩溶液に拡散して ヽく。
また、多成分金属前駆体を調製する場合は、ちょうど溶けた予め合成された塩水溶 液の中への多成分の懸濁物が、へキサメチレンテトラアミン等の沈殿剤とともに拡散 していき、注入されあるいはスプレーされる。
これにより、金属の硝酸塩又は他の塩とへキサメチレンテトラアミンとが反応し、沈殿 が生じる。用いる材料によって沈殿時間が変化する。完全に沈殿が終わるのに、 20 〜85°Cの温度で、長時間、例えば 2〜200時間を要することがある。しかし、セリア( 二酸ィ匕セリウム)の場合は、沈殿は、 70°Cで短時間に完了する。
[0039] 本発明の製造方法における第 2の工程、すなわち、爆発性化合物が浸み込んだ前 駆体集塊物を、その成分的及び形態的均質性を維持しながら、洗浄し、乾燥するェ 程について説明する。
爆薬としてシクロトリメチレントリ-トラミンを用いる場合、シクロトリメチレントリ-トラミ ンの流去を防ぎながら、かつ、多成分系などの前駆体集塊物の洗浄及び乾燥の間 に、前駆体粉体の成分的及び形態的均質性を維持する必要がある。このため、生成 した前駆体集塊物を適当な洗浄液を用いて何回かの繰り返し洗浄を行い、残留して いる HNOなどの酸や他のァ-オン性の不純物を除けばよい。この洗浄液としては、
3
エタノールなどを使用できる。引き続いて、上澄みが透明になるまで遠心分離し、洗 浄し、最後に乾燥機により、例えば 60°Cで残ったエタノールなどの洗浄液をゆっくり 蒸発させて、除去する。この際、乾燥間の爆発性化合物の着火を防止するためには 、乾燥処理に制限温度があることである。この温度は、用いた爆発性化合物の着火 温度である。シクロトリメチレントリ-トラミンの場合は、平均粒子径にもよる力 着火温 度は 170〜180°Cである。乾燥は、この着火温度以下で行う必要がある。
[0040] 次に、本発明の製造方法における第 3の工程について説明する。
爆発性化合物を含む複雑な前駆体集塊物、すなわち、爆発性化合物付き前駆体 集塊物を、よく乾燥した粉体として塊化させずにそのまま、あるいは、一軸性プレス機 等を用いて塊化させて容器に入れる。上記工程は、爆発性化合物の着火温度で行う さらに、上記爆発性化合物付き前駆体集塊物の乾燥及びその後の焼成処理の間 における、爆発性ィ匕合物の着火を防止するためには、上記爆発性化合物付き前駆 体集塊物を、爆発性化合物の燃焼温度から、その融点を経て、その熱デトネーシヨン の温度へと急速に上昇させる必要がある。熱デトネーシヨンは、加熱速度に大きく依 存している。例えば、爆薬がシクロトリメチレントリ-トラミン (CH -N-NO )の場合
2 2 には、自発的な複合的 N— NO結合の開裂は加熱速度に大きく依存し、これが 230
2
°Cから 360°Cの範囲で変動する。 N-NO結合の開裂は、孤立した分子又はクラス ターの方が固体状に大量に置かれた分子よりも小さなエネルギーによって起こる。 これにより、爆発性化合物含有多成分複合集塊物を、熱デトネーシヨンの温度まで 超高速に加熱すると、多箇所でのナノ爆発が、多成分前駆体集塊物の内部に広が つていく。この際、開始反応はナノサイズ領域、すなわちホットスポットで始まる。
[0041] 極端に高速の熱デトネーシヨン(10— 8 sec/g)の場合には、温度が数千 °Cもあり、そ して各々の爆発性粒子の最初の容量とほぼ同じ容量に圧縮された気体状生成物を 形成させ、いわゆる、ナノ爆発が生じる。この際、瞬間の爆発力、すなわち、圧縮ガス の膨張は 500MW (メガワット) Zgであり、 ΰ Iき続 、て起こる爆発波の衝撃が周りの物 を粉々にし、脱断片化させ、塑性変形を起こさせる。
これらの工程を経ると、高エネルギーの爆発波の衝撃によって、複合的爆発による 集塊の微粉ィ匕を引き起こすこととなる。そして、複合的爆発の間に高温となるので他 成分への一成分の固体溶解度を増加させることとなる。このため、均質な形態と正確 な化学量論比を有するナノサイズの単一の金属又は多成分力 なる金属酸ィ匕物粉 体、すなわち、ナノサイズのセラミック粉体を、極く短時間に合成することができる。ま た、セラミックとして、金属酸ィ匕物粉体にドーパント酸ィ匕物が固溶した、ナノサイズのセ ラミック粉体も合成できる。さら〖こは、金属で修飾された金属酸化物、すなわち、金属 及びセラミック複合粉体をも合成することができる。
これにより、均質な形態と正確な化学量論比を有する、ナノサイズの単一成分もしく は多成分力もなる、セラミック粉体、又は、金属及びセラミック複合粉体を製造するこ とができる。このため、平均粒径が 2〜15nmの一次結晶子を含むナノ粉体が製造で きる。また、これらのナノ粉体による粒度分布 20〜80nmのナノ凝集物が製造できる
[0042] 図 4は、爆発性成分を含む多成分力 なる前駆体集塊物のうちの単一凝集物の熱 デトネーシヨンの模式図である。図 4 (A)は、爆発性成分を含む多成分からなる前駆 体集塊物 10が加熱されている状態である。ここで、爆発性成分を含む多成分からな る前駆体集塊物 10は、 2成分系ナノ合成凝集物 1の基質成分 3及び添加剤成分 2 ( 図 2参照)と、爆薬微粒子 4とからなっている。
次に、図 4 (B)は、爆発性成分を含む多成分からなる前駆体集塊物 10が、熱デトネ ーシヨンする寸前の状態を示して 、る。
そして、図 4 (C)は、爆発性成分を含む多成分からなる前駆体集塊物 10がナノ爆 発 12し、生じた均一凝集物カゝらなるナノ粒子固溶体 16の形成を伴う脱集塊化による 微粉化状態を示している。図示するように、 2つのナノ粒子混合体 15のナノ爆発によ りナノ粒子固溶体 16が微粉化状態で生成する。
[0043] シクロトリメチレントリ-トラミンのナノ爆発はナノサイズ領域、いわゆる、ホットスポット で始まり、それが衝突波の機械エネルギーの蓄積と化学エネルギーへの転換をもた らし、爆発反応を開始させる。この極端に高速の熱デトネーシヨン(10— 8 sec/g)は、 初めの各々のシクロトリメチレントリ-トラミン粒子の容積と同じ容積に圧縮された数千
°Cの気体状産物を形成する。瞬間の爆発力、すなわち、圧縮ガスの膨張は 500MW Zgであり、引き続いて起こる爆発波の衝撃が周りの物を粉々にし、微粒化、塑性変 形を起こさせる。
[0044] さらに、第 3工程の後に、さら〖こ、爆発温度よりも高い、例えば 450°Cの温度で、熱 焼成又は熱処理工程を行ってもよい。この熱焼成工程によれば、得られたセラミック 粉体力もシクロトリメチレントリ-トラミンなどの爆発産物を除去するとともに、粉体組成 の均質性の向上及び粉体形態の維持などを図ることができる。
実施例 1
[0045] 実施例 1として Ce Gd Ο δ固溶体のナノサイズ粉体を製造した。ナノ粉体合成
0.8 0.2 2- の材料として、硝酸セリウム(6水塩) (Ce (NO ) · 6Η 0、純度 99. 9%)、硝酸ガド
3 3 2
リニゥム(6水塩)(Gd (NO ) · 6Η 0、純度: 99· 9%及びへキサメチレンテトラアミ
3 3 2
ン(C Η Ν 、純度 99. 9%)を用いた。これらの材料の試薬は、いずれも和光純薬
6 12 4
製であり、さらに精製することなくそのまま用いた。各材料の量は、硝酸セリウム(6水 塩):硝酸ガドリニウム(6水塩):へキサメチレンテトラアミン =0. 8 : 0. 2 : 2. 5のモル 比とした。
ここで、硝酸セリウム +硝酸ガドリニウムの合計モル比は 1. 0モルである。そして、こ れらの材料を合計濃度が 0. ImolZlOOOcm3 (すなわち、 0. 1M)となるように秤量 し、蒸留水に溶力し全量が 250cm3のナノ粉体合成材料力もなるストック溶液とした。 なお、セリウム及びガドリニウムの量とへキサメチレンテトラァミンの量は、製造するナ ノ粉体の組成によって変えればよいが、モル比で lZl. 5〜lZ5の範囲とした。
[0046] さらに、複雑な 3成分の集塊物(中間体)を得るために、沈殿剤として別途にへキサ メチレンテトラアミンを用いた。へキサメチレンテトラアミンを精製水に 1Mの濃度にな るように溶かし、 150cm3の沈殿剤水溶液とした。この溶液の pHは 22°Cで 8. 45であ つた o
最初に、ナノ粉体合成材料からなる反応液を 400〜: LOOOrpmの回転速度で撹拌 しながら、へキサメチレンテトラアミンカゝらなる沈殿剤水溶液を加え、 70°Cで加熱して 、反応液力もガドリニア (Gd O )と共にセリア (CeO )を共沈させた。
2 3 2
反応液と沈殿剤水溶液とが混合されると、この混合液の pHは 7. 1に低下した。セリ ゥム酸ィ匕物の合成は 22°Cで始まった。そして、ガドリニウム硝酸塩とへキサメチレンテ トラァミンとの反応は、 46°Cで、 pH6. 4で始まり、ミルク状の白色沈殿を生じた。しか し、セリアを完全に沈殿させるには、 22〜50°Cでは 100〜: L 10時間という長時間を 要したが、 70°C程度の温度で撹拌するとセリアを早く沈殿させることができる。この 70 °Cの温度で、 5時間撹拌するとセリアは 100%沈殿した。
しかし、最初の粒子の集塊化を伴うトータルのガドリニアの沈殿は、もっと低い温度 で、わずか 100〜600秒以内に起こる。その結果、最初にガドリニア集塊物が生成す る。次に、ガドリニア集塊物の表面において、セリアの核形成、成長及び集塊化が起 こる(図 12参照)。
[0047] 上記ストック溶液の硝酸塩水溶液の分解後に、爆薬となるシクロトリメチレントリ-トラ ミンの形成及び沈殿が起こる。それと同時にシクロトリメチレントリニトラミン力 セリア 及びガドリニア力もなる 2成分系前駆体集塊物のマトリックス中に、飽和又はナノレべ ルの浸み込みが進行し、セリア,ガドリニア,シクロトリメチレントリ-トラミン力もなる 3 成分系前駆体集塊物が得られた。
[0048] 上記の 3成分系前駆体集塊物からのシクロトリメチレントリ-トラミンの流去を防ぎ、 かつ、 3成分系前駆体集塊物の成分的及び形態的均質性を維持するために、以下 の手法を用いた。すなわち、 3成分系前駆体集塊物をエタノール (99. 5%、試薬グ レード、関東ィ匕学製)で数回洗って、残留している硝酸と他のァ-オン性の不純物を 除いた。引き続いて、上澄が透明になるまで、 lOOOOrpmで 5〜60分間の遠心分離 を行った。
次に、 3成分系前駆体集塊物の洗浄をし、最後に乾燥機を用い 60°Cで、残エタノ ールをゆっくり蒸発させ、乾燥した。
[0049] その後、洗浄した 3成分系前駆体集塊物を超音波装置(島津製、 USP— 600型)を 用いてエタノールに再分散させ、懸濁液 (スラリ)とした。この超音波装置は、 20kHz の周波数及び 160W出力の発振器とチタンチップを用いたプローブと、カゝらなってい る。プローブを懸濁液の表面からの 30〜50mm下方に差し込み、 30〜600秒間の 処理をした。
[0050] 得られた 3成分系前駆体集塊物は、シクロトリメチレントリ-トラミン含有ガドリ-アド ープセリア(gadolinia-doped ceria )粒子からなる複雑な多成分前駆体集塊物である 。この 3成分系前駆体集塊物の粒子サイズ分布は、レーザ光利用のダイナミック光散 乱法 (DLS)による分析装置(大塚エレクトロニクス製、 LSPZ- 100型)を用いて測 定した。測定は、少量の粉体 (5mg以下)を蒸留水に分散して行った。
測定した 3成分系前駆体集塊物の粒子サイズ、すなわち粒径分布は、 37〜630n mと広かった。このような広範囲の粒径分布は、ガドリニウム及びセリウム酸ィ匕物が同 時には沈殿して ヽな 、ことに起因する。
[0051] 次に、よく乾燥した合成された 3成分系前駆体集塊物を一軸性プレス機を用いて固 化させ、これをアルミナ容器 (純度: 99. 9%)に入れた。
乾燥及びその後の焼成処理の間のシクロトリメチレントリ-トラミンの着火を防止する ために、上記合成物粉体集塊物を、シクロトリメチレントリ-トラミンの燃焼温度 (〜18 0°C)から、その融点(〜204°C)を経て、その熱デトネーシヨン(〜230°C)の温度へと 急速に上昇させた。そして、多成分前駆体集塊物中で、複合的な、多箇所でのナノ 爆発を生起させ、ナノサイズのセリア及びガドリニア力もなる粉体 (以下、適宜、セリア —ガドリニア粉体と呼ぶ)、すなわち、セリアへガドリニアが固溶されたセラミック粉体 を得た。この工程の後で、得られた粉体をさらに温度 450°Cで熱焼成を行った。
[0052] 図 5は、実施例 1における、セリア—ガドリニア固溶体の複合的爆発合成におけるシ クロトリメチレントリ-トラミンの熱爆発の熱重量分析 (TG)、示差熱分析 (TDA)、及 び容器の温度変化を示す図である。図において、横軸は時間経過(分)を示し、左縦 軸は TGの熱重量変化(%)を、右縦軸は TDAの温度差 Δ T V)及び容器温度( °C)を示している。図示するように、容器の昇温速度は、 10°CZ分の結果である。 図 5から明らかなように、熱デトネーシヨン(〜230°C)の温度を越え、約 280°C近傍 のシクロトリメチレントリ-トラミンの熱爆発により、 DTA分析では、図 3に示したシクロ トリメチレントリ-トラミン単体の熱爆発と同様に、強 、発熱ピークが生じることが分力る 。この発熱は、多成分前駆体集塊物の体積へ均一に分布したシクロトリメチレントリ- トラミンが複合的なナノ爆発を起こしたことを示すものである。そして、同時には、 TG 分析にお 、ては、急激な重量変化が生じることが分力る。
これにより、高エネルギーの爆発波の衝撃によるナノ粉体の複合的爆発の脱集塊 を引き起こすこととなり、また、複合的爆発の間に短時間に高温となるので一成分の 他成分への固体溶解度を増強させることとなる。つまり、高温度の衝撃が、ガドリニア を同時にバラバラにして、セリアにガドリニアが固溶した、セリア—ガドリニア固溶体、 すなわち、多成分系の固溶体が形成された。
図 6は、実施例 1で得たセリア—ガドリニア粉体の透過電子顕微鏡 (TEM)像を示 す図である。 TEMは、日本電子製の JEM— 2000— FX型を用い、加速電圧は 200 kVで、倍率は 3万倍である。図 6から明らかなように、セリア—ガドリニア粉体は、平均 粒径が l lnmの一次結晶子であり、凝集物の粒度分布は 30〜70nmで、均質な形 態と精密な化学量論的組成とを有している。表 1は実施例 1及び後述する実施例 2〜 7で得たナノサイズ粉体の粒径を示して 、る。
[表 1]
ナノ爆発前の ナノ爆発後に形 450°Cで焼成 ナノサイズ粉体 前駆体粉体の 成される粉体 した後の粉体 粒径 (nm) の粒径 (nm) の粒径 (nm) 実施例 1 し θΟ.8 d . 95 37-630 30〜フ 0 30〜フ 0 実施例 2 し θΟ.8 d 2^1.95 18-380 20 70 20-85 実施例 3 Ce0.8 ad0 2Ol 95 13~175 15~40 12-55 実施例 4 Ce02 18-230 3~42 6 45
3モル%のイットリア
実施例 5 固溶ジルコニァ 24-190 8-34 7~54
白金及び 3モル%
実施例 6 のイットリア固溶ジ 3~265 15~40 18~52
ルコニァ複合体
実施例 7 La203 27-485 9~54 8~57 得られた粉体の相の同定は、 X線回折装置 (理学製、 RINT2000型)を用いて行 なった。測定は室温で行い、 X線回折 (XRD)パターンは、 40kV 300mAの電子ビ ームを Cuに照射して発生させた K a線により記録した。
図 7は、セリアーガドリニアのナノ粉体の XRDパターンであり、(a)が実施例 1で得た セリア—ガドリニア固溶体、(b)が後述する比較例 1の臨界昇温速度未満の条件下、 すなわち通常の燃焼ルートで合成したセリア—ガドリニア固溶体を示している。図に おいて、横軸は角度 20 (° )を、縦軸は X線回折強度 (任意目盛り)を示している。 図 7から明らかなように、実施例 1で得たセリア—ガドリニア固溶体力もなるナノ粉体 は、 Ce Gd O の組成(図中の黒丸印(參)参照)を有し、ほぼィ匕学量論的組成
0.8 0.2 1.95
であることカ分力、る。つまり、 Ce Gd Ο δの δ力0.05と 常に/ J、さい。そして、
0.8 0.2 2-
Ce Gd O に帰因する XRDピークは、比較的ブロードであり、これは実施例 1で
0.8 0.2 1.95
得た粉体が、非常に微細な一次結晶子で構成されていることを示すものである。また
、実施例 1の粉体においては、比較例 1で観察される Ce O (図中の三角印(△)参
2 3
照)及び Gd O (図中の黒四角印(國)参照)に関連する弱い反射が消えていること
2 3
が分かる。これにより、実施例 1においては、ナノサイズのセリア及びガドリニア力もな る粉体、すなわち、セリアへガドリニアが固溶、あるいはドープされたセラミック粉体が 得られることが分かる。
実施例 2 [0055] 実施例 2として Ce Gd O δ固溶体のナノサイズ粉体を製造した。ナノ粉体合成
0.8 0.2 2- の材料は、実施例 1の硝酸ガドリニウム(6水塩)の代わりに、塩ィ匕ガドリニウム(6水塩 ) (GdCl · 6Η 0、純度は 99. 9%)を用いた以外は、実施例 1と同じである。各材料
3 2
の量のモル比は、硝酸セリウム(6水塩):塩化ガドリニウム(6水塩):へキサメチレンテ トラアミン =0. 8 : 0. 2 : 2. 5である。ここで、硝酸セリウム及び塩化ガドリニウムのモル 比の合計は 1である。
[0056] 水溶液中でのガドリニアの沈殿は、セリアの合成の前に、沈殿剤となるへキサメチレ ンテトラアミンを塩ィ匕ガドリニウム水溶液中へ噴霧(以下、適宜スプレーと呼ぶ)して行 なった。このときの水溶液の温度は、 3°Cで、 lOOOrpmで撹拌しながら行った。生じ た粉体は、集塊した一次結晶子からなり、その粒径は 3〜4nmであった。しかし、短 時間の超音波処理により粉体の再分散化が力なり起った。この工程で、ガドリニア濃 厚懸濁液を得た。
次に、硝酸セリウム水溶液を作製した。硝酸セリウム水溶液中のガドリニア濃厚懸濁 液とへキサメチレンテトラアミン溶液は、 70〜90°C、 lOOOrpmで、 6時間加熱した。こ のため、 3〜4nmのガドリニアの一次結晶子が集まり、 4〜340nmの集塊物となり、 合成されたセリアで覆われて 、た。
[0057] 上記硝酸セリウム水溶液に、セリアで覆われたガドリニアとへキサメチレンテトラアミ ン溶液が混合されてその分解後に、シクロトリメチレントリ-トラミンの形成及び沈殿が 起こった。それと同時に、このシクロトリメチレントリニトラミン力 ガドリニア及びセリア 力 なる 2成分系前駆体集塊物のマトリック中に飽和又はナノレベルの浸み込みが行 われ、セリア,ガドリニア,シクロトリメチレントリ-トラミン力もなる 3成分系前駆体集塊 物が得られた。
[0058] 第 2の工程は、実施例 1と同様に行い、 3成分系前駆体集塊物から、残塩化アンモ -ゥムイオン (NH C1)、残硝酸及び他のァ-オン性の不純物を除き、乾燥を行った
4
。このようして得たシクロトリメチレントリ-トラミン付きのガドリ-アドープセリア(gadolini a-doped ceria )からなる複雑な多成分、すなわち、 3成分系前駆体集塊物の粒子分 布は、 18〜380nmであった。
[0059] 第 3の工程は実施例 1と同様に行い、 3成分系前駆体集塊物を、その熱デトネーシ ヨン (〜230°C)の温度へと急速に上昇させ、ナノ爆発を生起させた。引き続き、温度 450°Cの温度で、非等温の焼成を行った。
これにより、ナノサイズのセリアにガドリニアが固溶した、すなわち、せリアーガドリ二 ァ粉体を得た。この粉体において、一次結晶子の平均粒径が l lnmであり、凝集物 の粒径分布は 20〜70nmで、均質な形態と正確.精密な化学量論とを有している( 表 1参照)。
実施例 3
[0060] 実施例 3として Ce Gd Ο δ固溶体のナノサイズ粉体を製造した。用いたナノ粉
0.8 0.2 2- 体合成の原料は、実施例 2と同じである。
最初に、水溶液中での塩ィ匕ガドリニウム(6水塩)力ものガドリニウム前駆体ィ匕合物 の核形成は、セリア(CeO )合成の前に、 1600rpmで撹拌しながら塩ィ匕ガドリニウム
2
水溶液中にへキサメチレンテトラアミンをスプレーすることで行な 、、ガドリニア懸濁液 とした。ここで、塩ィ匕ガドリニウム(6水塩) 1 (モル比)に対して、へキサメチレンテトラァ ミン 2. 5 (モル比)の量を用いた。塩ィ匕ガドリニウム(6水塩)を脱イオン水に溶力して、 最終のカチオン源の合計濃度を 0. 1Mとした。へキサメチレンテトラアミンを含む溶 液の総量は 200cm3で行なった。
[0061] 上記の工程で得たガドリニア懸濁液 200cm3をフッ素榭脂製容器に入れ、 110°C で 7時間処理した。得られた均質な沈殿は、熱水条件で結晶化された無水のガドリニ ァ(GdO )粉体で、 3〜17nmの凝集物からなっていた。そして、この凝集物は、 3〜
2
4nmの一次結晶子を有して 、た。
[0062] 上記凝集物の洗浄を行い、次に、この凝集物を水中へ分散しガドリニア分散液とし た。このガドリニア分散液と硝酸セリウム(6水塩)水溶液との混合を、 2°Cに保持し、 1 OOOrpmで行なった。混合は、 2°Cに温度制御された冷浴中で行なった。硝酸セリウ ム水溶液中へのガドリニア濃厚懸濁液の投入は 1600rpmで行い、続いて噴霧によ つてへキサメチレンテトラアミンを混合し、そして、 80〜90°Cで 6時間処理し、合成物 粉体を得た。ガドリニアとセリアのモル組成比は、実施例 1と同じ 0. 2 : 0. 8とした。 続いて、上澄みから合成物粉体を分離し、これを再分散させ、実施例 1と同様に乾 燥した。この合成物粉体は、シクロトリメチレントリ-トラミン付きのセリウム及びガドリ- ゥム化合物ならなる 3成分系前駆体集塊物である。その粒径分布は、 13〜175nmで めつに。
次に、上記 3成分系前駆体集塊物を、実施例 1と同様に第 3の工程を行い、熱デト ネーシヨン (〜230°C)の温度へと急速に上昇させ、その表面及び内部で、多箇所で 、かつ、複合的なナノ爆発を生起させ、ナノサイズの粉体を合成した。
[0063] 得られたナノサイズの粉体は、ナノサイズのセリアにガドリニアが固溶した、すなわち 、ナノサイズのセリア—ガドリニア粉体である。このセリア—ガドリニア粉体の粒径分布 は 15〜40nmであり、上記実施例 1乃至 3の中では、最も粒径が小さかった。また、 引き続く温度 450°Cへの焼成において、粒子が凝集し又は成長した証拠は見られな かった (表 1参照)。
しカゝしながら、 450°Cでの焼成後の粒径サイズの分布は、ナノ爆発で得た合成粉体 の 15〜40nm力ら、 12〜55nmへと若干大きく広がった。
実施例 4
[0064] 実施例 4では、 CeO のナノサイズ粉体を製造した。ナノ粉体合成の出発材料は、
2
セリア粉体原料として塩ィ匕セリウム(7水塩)(CeCl · 7Η Ο)と、沈殿剤として和光純
3 2
薬製のへキサメチレンテトラアミン及び硝酸 (純度: 90〜95%)を用いた。
最初に、沈殿剤となるへキサメチレンテトラアミンによる塩ィ匕セリウム水溶液力 のセ リアの沈殿は、 70°Cで、 lOOOrpmで撹拌することにより行なった。初めの pH8. 45 は 22°Cにおいてへキサメチレンテトラアミン溶液で測った。セリウム酸ィ匕物の合成は 2 2°Cで始まり、 70°Cの温度で 5時間撹拌し、セリアを 100%沈殿させ、セリア凝集物を 得た。得られたセリア凝集物の粒径は、 18〜230nmであった。上記各材料及び溶 液の組成は実施例 1に準じたものとした。
[0065] 次に、爆薬となるシクロトリメチレントリ-トラミンを、濃硝酸(90〜95%)とへキサメチ レンテトラアミンカも独立的に合成した。この場合、へキサメチレンテトラアミンを固体 として 5g含む水溶液 20cm3を、 500rpmで撹拌した濃硝酸 50cm3中へ注ぎ込み、 1 °Cの温度で還元反応させ、シクロトリメチレントリ-トラミン懸濁液とした。
図 8は、実施例 4で単独に合成したシクロトリメチレントリ-トラミン粒子の TEM像を 示す写真である。倍率は 10万倍である。図 8から明らかなように、粒径 20〜40nm程 度の比較的粒度の揃ったナノサイズの粒子であることが分かる。
[0066] 引き続いて、セリア凝集物へ、シクロトリメチレントリ-トラミンを飽和又はナノレベル で浸漬させた。浸漬は、合成したセリア凝集物を、合成したシクロトリメチレントリ-トラ ミン懸濁液と混合して行なった。セリア凝集物の洗浄及び再分散は実施例 1と同様に 行なった。
次に、よく乾燥させ、再分散させたシクロトリメチレントリ-トラミン付きのセリア力もな る 2成分系前駆体集塊物を、シクロトリメチレントリ-トラミンの熱デトネーシヨン(〜23 0°C)の温度へと急速に上昇させ、引き続いて比較的緩やかに 450°Cへ加熱し、焼 成する 2段単一プロセスを適用した。これにより、複合的で、かつ、多箇所でのナノ爆 発がその 2成分系集塊物の上で起こる。
実施例 4においては、 CeO のナノサイズ粉体を得た。この粉体の平均粒径は、 6〜
2
45nmであった(表 1参照)。
実施例 5
[0067] 実施例 5として、 3mol%のイットリアを固溶したジルコユアのナノサイズ粉体を製造 した。
最初に、 3mol%のイットリア (Y O )を固溶したナノサイズの正方晶ジルコ-ァ粉
2 3
体を、次のようにして金属塩化物と尿素ゾルから熱水沈殿させ、洗浄し、再分散させ ることで製造した。
具体的には、ナノ粉体合成の出発材料として、ジルコニウム塩化物酸化物(8水塩) (ZrOCl · 8Η 0、純度は 99%)と、尿素(NH CONH 、純度は 99%)と、塩化イツ
2 2 2 2
トリウム(6水塩)(YC1 · 6Η 0、純度は 99. 99%)と、を用いた。試薬はすべて高純
2 2
度化成品製である。ジルコニウム塩ィ匕物酸ィ匕物(8水塩)と、塩化イットリウム (6水塩) とで、 3mol%の Υ3+を含む Zr4+の 0. 1M水溶液を粉体調製のために用意し、 24時間 撹拌混合により均質ィ匕し、保存した。
上記水溶液に、尿素を混合し、初期 pHが 1. 2又は 1. 2以下のゾル 200cm3を、撹 拌混合により均質ィ匕させた後、このゾルを熱水処理した。熱水処理は、ゾルを、容積 が 250cm3のフッ素榭脂製テトラハイド口フロン容器にその 80容量%を占めるように 満たし、ステンレス鋼でできた耐圧容器に入れ、容器を密封した。その後、ゾルを、 1 50°Cまでに加熱するように制御した乾燥機中に置き、 10時間の熱水処理を行い、熱 水沈殿した凝集物を洗浄し、再分散させ、 3mol%のイットリアを固溶したナノサイズ の正方晶ジルコ-ァ(以下、適宜、イットリアドープ無水ジルコユアと呼ぶ)粉体を得た 。一方、シクロトリメチレントリ-トラミンの合成は、別途、実施例 4と同様にして行なつ た。
次に、超音波処理によって再分散させ、少し集塊化したイットリアドープ無水ジルコ ユアは、実施例 4と同様にしてシクロトリメチレントリ-トラミンで浸漬した。
次に、よく乾燥し、再分散した、シクロトリメチレントリ-トラミン付きのイットリアドープ 無水ジルコユアからなる多成分系集塊物(粒径が 24〜190nm)を、シクロトリメチレン トリ-トラミンの融点(〜204°C)を経て、その熱デトネーシヨン(〜230°C)の温度へと 急速に上昇させ、複合的な、多箇所での、ナノ爆発を起こさせると共に、脱集塊を起 こさせた。その爆発の前のナノ秒以内に、溶解したシクロトリメチレントリ-トラミンがジ ルコユアの弱く凝集した集塊物に含浸して、その集塊物の粉砕とともに爆発する。引 き続いて 500°Cまでの非等温的加熱をし、焼成を行い、不純物を除去し、合成を終 了した。
これにより、実施例 5においては、 3mol%のイットリアを固溶したナノサイズの正方 晶ジルコ-ァ粉体を得た。この粉体の平均粒径は約 30nmであった (表 1参照)。 実施例 6
実施例 6として、 3mol%のイットリアを固溶したジルコユアにナノサイズの白金を含 有させた、ナノサイズ粉体を製造した。 3mol%のイットリアで安定ィ匕されたジルコユア 粉体及び爆薬となるシクロトリメチレントリ-トラミンの調整は、実施例 5と同様にして行 なった。
最初に、 l〜7nmの白金を含有したイットリア固溶ジルコユアのナノ凝集物は、次の ようにして製造した。
イットリアでドープし、少し集塊化したジルコユア粉体の水懸濁液 100cm3を、テトラ クロ口プラチネート 2カリウム塩 (K PtCl、和光純薬製)とともに混合した。具体的に
2 4
は、マグネチックスターラを用いて 5時間撹拌後、 Pt (II)イオン (Pt2+)を音化学的還 元処理により、金属 Ptへ還元した。この音化学的還元処理には、周波数可変型の超 音波発生器 (株式会社カイジョー製、 4021型)を用い、白金ナノ粒子を、ジルコユア 集塊物の細孔中及びその表面へ析出させ、ナノサイズの白金を含有したイットリア固 溶ジルコユアのナノ凝集物を得た。
次に、実施例 5と同様な方法で、ナノサイズの白金を含有したイットリア固溶ジルコ ユアのナノ凝集物ヘシクロトリメチレントリ-トラミンを浸漬させ、洗浄し、再分散し、乾 燥し、シクロトリメチレントリ-トラミン付きのイットリア固溶無水ジルコユア力 なるシク ロトリメチレントリ-トラミン付きのイットリアドープ無水ジルコユア力もなる多成分系集 塊物 (粒径が 3〜265nm)を得た。この多成分系集塊物を実施例 5と同様に、容器に 入れ、熱デトネーシヨン(〜230°C)の温度へと急速に上昇させた。
この反応後、白金を含有する 3mol%のイットリア固溶ジルコユアのナノ粉体、すな わち、金属一セラミック複合粉体のナノ粉体が得られた。このナノ粉体の大きさは、 15 〜40nmであった(表 1参照)。
実施例 7
[0069] 実施例 7としてランタン酸化物 (La O )のナノサイズ粉体を製造した。出発材料とし
2 3
て、硝酸ランタンの 6水塩 (La (NO ) · 6Η 0、純度は 99%)と、爆薬源としてのへ
3 3 2
キサメチレンテトラァミンと、を用いた。これらの試薬は、和光純薬製である。濃度や手 順は、基本的には実施例 1と同様に行なった。このようにして製造したランタン酸ィ匕物 ナノ粉体の寸法は、約 9〜54nmであった (表 1参照)。
[0070] (比較例 1〜3)
比較例 1〜3として、第 3の製造工程のナノ爆発工程の代わりに、通常の燃焼工程 により 450°Cまで昇温した以外は、それぞれ、実施例 1乃至 3と同様に、セリア—ガド リニア合成物を製造した。昇温は 5°CZ分とし、爆薬を含む前駆体集塊物が、爆発を 起こす臨界昇温速度未満の昇温速度とした。
[0071] 図 9は、比較例 1の爆発を起こす臨界速度未満の条件下での、 3成分系前駆体集 塊物の熱分解における熱重量分析 (TG)、示差熱分析 (TDA)、及び容器の温度変 化を示すグラフである。図 9において、横軸は時間経過(分)を示し、左縦軸は TGの 熱重量変化(%)を、右縦軸は TDAの温度差 Δ T V)及び容器温度 (°C)を示して いる。なお、容器の昇温速度は、 5°CZ分である。 図 9から明らかなように、検出された DTA曲線には明確な発熱ピークが存在しない 。すなわち、サブクリティカルな温度一時間の条件は、ホットスポットへの複合的な熱 デトネーシヨンを妨げ、単にシクロトリメチレントリ-トラミンがゆっくり燃焼するだけであ り、単に燃焼経路が生じているだけで、ナノ爆発が生じていないことが分かる。
[0072] 図 10は、比較例 1で合成したセリア—ガドリニア合成物の TEM像を示す。図 10か ら明らかなように、大きな、不均一な形態の超微細一次結晶子からなる高密度集塊 物、すなわち、ガドリニア粒子が黒い粒子として存在していることが分かる。
X線回折パターンの測定からは、比較例 1の臨界昇温速度未満の条件で、すなわ ち、従来の燃焼ルートで合成したナノ凝集物は、凝集物の中にセリウム及びガドリ- ゥムが存在することが分力つた(図 7 (b)参照)。また、比較例 2及び 3においても、比 較例 1と同様に凝集物の中にセリウム及びガドリニウムが存在することが分力つた。 実施例 8
[0073] 実施例 8として実施例 1〜3と同じ Ce Gd Ο δ固溶体のナノサイズ粉体を製造
0.8 0.2 2- した。用いたナノ粉体合成の原料は、実施例 1〜3とは異なり、塩ィ匕セリウム (CeCl ·
3
7H O)及び塩化ガドリニウム(GdCl · 6Η Ο)である。これらの材料の試薬は何れも
2 3 2
純度が 99. 9%の和光純薬製であり、さらに精製することなくそのまま用いた。
[0074] 最初に、塩ィ匕セリウム及び塩ィ匕ガドリニウムを秤量し、別々に二回蒸留脱イオン化し た水に溶解して濃度を 0. 1Mとした。上記のセリウム及びガドリニウム塩ィ匕物の初期 量は製造する固溶体中の両酸ィ匕セラミックの濃度に応じて変えればよい。
次に、上記二成分中間体ィ匕合物からなる集塊物を製造するために、尿素 (和光純 薬製)を沈降剤として用いた。尿素は脱イオン水に溶解して、 1— χΜの塩ィ匕セリウム 及び χΜの塩ィ匕ガドリニウム当り 2Μの濃度とした。塩ィ匕セリウム尿素水溶液 200cm3 と、塩ィ匕ガドリニウム尿素水溶液 100cm3との 2試料を用意した。全量は 300cm3であ る。
続いて、予め 60°Cに加熱した 200cm3の尿素水溶液及び塩化セリウム尿素水溶液 を用い、尿素水溶液を攪拌条件 1600rpmで塩ィ匕セリウム尿素水溶液中にスプレー することで、塩ィ匕セリウム尿素水溶液中にセリアの核を形成した。これに続く所定温度 での攪拌は 10時間とし、セリア懸濁液を作成した。 [0075] 次に、ガドリニウム錯体の初期核ィ匕を行なった。塩ィ匕ガドリニウム尿素水溶液を 160 Orpmで攪拌しながら、上記で合成したセリア懸濁液中にスプレーした。未反応の尿 素が残存するために、塩ィ匕ガドリニウム尿素溶液スプレーの開始とともに分解が始ま つた。 30分後に 100cm3の尿素溶液をセリア懸濁液にスプレーして追カ卩した。続い て 80°C、 5時間の攪拌によって合成と、懸濁液の均一化を行なった。
最後に生成物を水洗し、実施例 1と同様に、さらに、超音波装置(島津製、 USP- 600型)を用いてエタノール(関東ィ匕学製、 99. 5%)中にセリア及びガドリニア力らな る集塊物を再分散させた。
[0076] 次に、爆薬となるシクロトリメチレントリ-トラミンを、実施例 4と同様にして、濃硝酸( 和光純薬製、約 93%)及びへキサメチレンテトラミン水溶液力 合成した。へキサメチ レンテトラミンは、脱イオン水に溶解して濃度 0. 1Mとし、このへキサメチレンテトラミン 水溶液へ濃硝酸に添加することによりシクロトリメチレントリ-トラミンを生成し沈殿させ た。これにより、シクロトリメチレントリ-トラミンのナノ粒子が良く分散した水溶液を得た
[0077] 引き続いて、セリア及びガドリニア力もなる集塊物へ、上記シクロトリメチレントリ-トラ ミンを飽和又はナノレベルで浸漬させた。浸漬は、上記セリア及びガドリニア力もなる 集塊物を、合成したシクロトリメチレントリ-トラミン懸濁液と混合して行なった。
最後に、セリアとガドリニウム中間体ィ匕合物とシクロトリメチレントリ-トラミンとからなる 3成分系前駆体集塊物を、 lOOOOrpm, 15分の遠心分離で上澄みから分離した。こ の粉末は残存反応副生物を除去するために脱イオン蒸留水を用いて水洗した。水 洗に続いてエタノ―ルで 2度洗浄し、続いて遠心分離して、新鮮なエタノール中への 再分散を行ない、最後に、乾燥器を用いてエタノールの最終蒸発 (T= 70°C)を行な つて乾燥した。このようにして、合成したナノ爆発前の 3成分系前駆体粉体の粒径は 28〜740nmであった。
[0078] 上記のシクロトリメチレントリ-トラミンをしみ込ませたセリア及びガドリニアの集塊物 力もなる 3成分系前駆体集塊物を、実施例 1と同様に、シクロトリメチレントリ-トラミン の熱デトネーシヨン(〜230°C)の温度へと急速に上昇させ、ナノ爆発を生起させた。 引き続き、 450°Cで 30分の非等温の焼成を行なった。 [0079] 図 11は、実施例 8で得たセリア—ガドリニア粉体の透過電子顕微鏡像である。加速 電圧は 200kVで、倍率は 1万 5千倍である。
図 11から明らかなように、実施例 8のセリア—ガドリニア(Ce Gd O )粉体は、
0.8 0.2 1.95 セリアにガドリニアがドープされた平均粒径が 6〜14nmの一次結晶子であり、凝集 物の粒度分布は 18〜67nmで、均質な形態と精密な化学量論的組成とを有して!/ヽ る。そして、 450°Cで焼成した後の粉体の粒径は 22〜74nmとなった。表 2は実施例 8及び後述する比較例 4で得たナノサイズ粉体の粒径を示している。
これにより、実施例 8の合成方法においても実施例 1〜3と同様に、ナノサイズのセリ ァ及びガドリニアからなる粉体、すなわち、セリアへガドリニアが固溶、あるいはドープ されたセラミック粉体が得られることが判明した。
[表 2]
Figure imgf000031_0001
[0080] (比較例 4)
比較例 4として、第 3の製造工程のナノ爆発工程の代わりに、通常の燃焼工程によ り 450°Cまで昇温した以外は、実施例 8と同様に、セリア—ガドリニア合成物を製造し た。昇温は 5°CZ分とし、爆薬を含む前駆体集塊物が、爆発を起こす臨界昇温速度 未満の昇温速度とした。
表 2に示すように、比較例 4の前駆体粉体の粒径は 30〜1260nmであり、通常の 燃焼工程及び 450°Cでの焼成後のセリア—ガドリニア (Ce Gd O )粉体の粒径
0.8 0.2 1.95
は 230〜360nmとなった。
[0081] 上記実施例 1乃至 8の結果から、本発明のナノサイズ粉体の製造方法によれば、単 一成分セラミック、多成分セラミック及び金属及びセラミック複合体からなる粉体が再 現性良く製造できることが分力つた。
[0082] 本発明は、これらの実施例に限定されるものではなぐ特許請求の範囲に記載した 発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれること はいうまでもない。

Claims

請求の範囲
[1] ナノサイズ粉体の製造方法であって、
上記粉体の原料を溶かした媒体から、単一又は多成分からなる前駆体集塊物を化 学的に沈殿させる際に、上記前駆体集塊物を爆発性化合物によって飽和させるか、 又は、爆発性ィ匕合物をナノレベルに浸み込ませ、爆発性化合物を含む前駆体集塊 物を調製する第 1の工程と、
上記爆発性化合物を含む前駆体集塊物を、その成分的及び形態的均質性を維持 しながら洗浄し乾燥する第 2の工程と、
上記乾燥させた爆発性化合物を含む前駆体集塊物を、ナノスケールで爆発させる のに十分な昇温速度で加熱して爆発させることにより単一又は多成分力 なるナノサ ィズ粉体を得る第3の工程と、
を含むことを特徴とする、ナノサイズ粉体の製造方法。
[2] ナノサイズ粉体の製造方法であって、
上記粉体の原料を溶かした媒体から、単一又は多成分からなる前駆体集塊物を化 学的に沈殿させ、該前駆体集塊物に予め調製したナノサイズの爆発性化合物を浸 み込ませ、爆発性化合物を含む前駆体集塊物を調製する第 1の工程と、
上記ナノサイズの爆発性ィ匕合物を含む前駆体集塊物を、その成分的及び形態的 均質性を維持しながら洗浄し乾燥する第 2の工程と、
上記乾燥させたナノサイズの爆発性ィ匕合物を含む前駆体集塊物を、ナノスケール で爆発させるのに十分な昇温速度で加熱して爆発させることにより単一又は多成分 力もなるナノサイズ粉体を得る第 3の工程と、
を含むことを特徴とする、ナノサイズ粉体の製造方法。
[3] 前記第 3の工程の後で、さらに、ナノサイズ粉体を熱処理すること特徴とする、請求 項 1又は 2に記載のナノサイズ粉体の製造方法。
[4] 前記爆発性化合物は、シクロトリメチレントリ-トラミン、トリ-トロトルエン (TNT)、二 トログリセリン、グリセリンの何れかであることを特徴とする、請求項 1又は 2に記載のナ ノサイズ粉体の製造方法。
[5] 前記粉体の原料は、金属又は金属を含む塩であることを特徴とする、請求項 1又は 2に記載のナノサイズ粉体の製造方法。
[6] 前記金属は、セリウム、ガドリニウム、ランタンなどの希土類元素、コバルト、ニッケル
、マンガン、亜鉛、ノ リウム、チタニウム、バナジウム、ニオブ、タンタル、タングステン
、モリブデン、マグネシウム、カルシウム、イットリウム、ジルコニウム、ハフニウム、アル ミニゥム、鉛、銅、錫、スカンジウム、インジウム、珪素、鉄、ストロンチウム、金や白金 などの貴金属元素の何れか、又は、これらの金属の組み合わせであることを特徴とす る、請求項 5に記載のナノサイズ粉体の製造方法。
[7] 前記塩を形成する陰イオンは、硝酸イオン、塩酸イオン、硫酸イオン、シユウ酸ィォ ン、酢酸イオン、ォキシ水酸化イオン、水酸イオンの何れかであることを特徴とする、 請求項 5に記載のナノサイズ粉体の製造方法。
[8] 前記ナノサイズ粉体は、セラミック力もなることを特徴とする、請求項 1又は 2に記載 のナノサイズ粉体の製造方法。
[9] 前記ナノサイズ粉体は、セラミックにナノサイズの金属が混合された金属及びセラミ ック複合粉体力 なることを特徴とする、請求項 1又は 2に記載のナノサイズ粉体の製 造方法。
PCT/JP2006/301650 2005-02-02 2006-02-01 ナノサイズ粉体の製造方法 WO2006082844A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007501587A JP5024796B2 (ja) 2005-02-02 2006-02-01 ナノサイズ粉体の製造方法
DE112006000294.5T DE112006000294B4 (de) 2005-02-02 2006-02-01 Verfahren zur Herstellung von Pulverteilchen mit Nanogröße

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005027060 2005-02-02
JP2005-027060 2005-02-02

Publications (1)

Publication Number Publication Date
WO2006082844A1 true WO2006082844A1 (ja) 2006-08-10

Family

ID=36777228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301650 WO2006082844A1 (ja) 2005-02-02 2006-02-01 ナノサイズ粉体の製造方法

Country Status (3)

Country Link
JP (1) JP5024796B2 (ja)
DE (1) DE112006000294B4 (ja)
WO (1) WO2006082844A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290959A (ja) * 2006-04-25 2007-11-08 Samsung Corning Co Ltd 酸化イットリウム組成物、その製造方法及びそれを利用した酸化イットリウム層の製造方法
WO2009107681A1 (ja) * 2008-02-25 2009-09-03 国立大学法人京都大学 マイクロ波を用いた不純物ドープ金属酸化物の製造方法
JP2011523928A (ja) * 2008-05-27 2011-08-25 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ ナノメートルサイズのセラミック材料、その合成法及びその使用
JP2012505075A (ja) * 2008-10-13 2012-03-01 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ ナノ粒子層で被覆されたセラミック粉末及びその調製方法
JP2014500785A (ja) * 2010-10-18 2014-01-16 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ エマルジョンの乳化及び爆発が同時に行われるナノ物質の連続合成方法
JP2014501601A (ja) * 2010-10-15 2014-01-23 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ エマルジョンの調製及び爆発によるナノ物質の合成方法、そのナノ物質及びエマルジョン
CN104973615A (zh) * 2015-06-26 2015-10-14 山东大学 一种纳米氧化钆粉体的微波燃烧制备方法
CN104985175A (zh) * 2015-07-02 2015-10-21 广东光华科技股份有限公司 一种去除纳米金属粉体表面阴离子的方法
WO2021193968A1 (ja) * 2020-03-27 2021-09-30 旭化成株式会社 粒子の製造方法及び粒子製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510238A (ja) * 1995-04-05 1998-10-06 サン−ゴバン インダストリアル セラミックス,インコーポレイティド ゾルゲルアルミナ粒子の焼成
JP2000509656A (ja) * 1997-01-17 2000-08-02 サン−ゴバン インダストリアル セラミックス,インコーポレイティド 爆発的破砕プロセス
JP2003268119A (ja) * 2002-03-13 2003-09-25 Hitachi Cable Ltd 粉体の製造方法
JP2005324983A (ja) * 2004-05-13 2005-11-24 Ohc Carbon:Kk ナノカーボンの製造方法及び装置
JP2006120344A (ja) * 2004-10-19 2006-05-11 Ohc Carbon:Kk 導電性無機微粒子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3581293D1 (de) * 1984-02-09 1991-02-21 Toyota Motor Co Ltd Verfahren zur herstellung von ultrafeinen keramikpartikeln.
JPH0779957B2 (ja) * 1991-06-11 1995-08-30 株式会社椿本チエイン 粉,粒体状材料の合成装置
US5855827A (en) * 1993-04-14 1999-01-05 Adroit Systems, Inc. Pulse detonation synthesis
ATE411258T1 (de) * 2004-03-19 2008-10-15 Cuf Companhia Uniao Fabril Sgp Herstellung von feinem aluminiumoxidpulver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510238A (ja) * 1995-04-05 1998-10-06 サン−ゴバン インダストリアル セラミックス,インコーポレイティド ゾルゲルアルミナ粒子の焼成
JP2000509656A (ja) * 1997-01-17 2000-08-02 サン−ゴバン インダストリアル セラミックス,インコーポレイティド 爆発的破砕プロセス
JP2003268119A (ja) * 2002-03-13 2003-09-25 Hitachi Cable Ltd 粉体の製造方法
JP2005324983A (ja) * 2004-05-13 2005-11-24 Ohc Carbon:Kk ナノカーボンの製造方法及び装置
JP2006120344A (ja) * 2004-10-19 2006-05-11 Ohc Carbon:Kk 導電性無機微粒子の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI J.-G. ET AL.: "Reactive 10mol% RE203 (RE=Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics", MATERIALS SCIENCE & ENGINEERING. B. SOLID-STATE MATERIALS FOR ADVANCED TECHNOLOGY, vol. 121, no. 1-2, 22 June 2005 (2005-06-22), pages 54 - 59, XP004940740 *
VASYLKIV O. ET AL.: "Nanoevplotion Synthesis of Multimetal Oxide Ceramic Nanopowders", NANOLETTERS, AMERICAN CHEMICAL SOCIETY, vol. 5, no. 12, 17 January 2006 (2006-01-17), pages 2598 - 2604, XP003000926 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290959A (ja) * 2006-04-25 2007-11-08 Samsung Corning Co Ltd 酸化イットリウム組成物、その製造方法及びそれを利用した酸化イットリウム層の製造方法
WO2009107681A1 (ja) * 2008-02-25 2009-09-03 国立大学法人京都大学 マイクロ波を用いた不純物ドープ金属酸化物の製造方法
JPWO2009107681A1 (ja) * 2008-02-25 2011-08-04 国立大学法人京都大学 マイクロ波を用いた不純物ドープ金属酸化物の製造方法
JP2011523928A (ja) * 2008-05-27 2011-08-25 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ ナノメートルサイズのセラミック材料、その合成法及びその使用
JP2012505075A (ja) * 2008-10-13 2012-03-01 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ ナノ粒子層で被覆されたセラミック粉末及びその調製方法
JP2014501601A (ja) * 2010-10-15 2014-01-23 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ エマルジョンの調製及び爆発によるナノ物質の合成方法、そのナノ物質及びエマルジョン
JP2014500785A (ja) * 2010-10-18 2014-01-16 イノブナノ−マテリアイス アバンサドス,ソシエダッド アノニマ エマルジョンの乳化及び爆発が同時に行われるナノ物質の連続合成方法
CN104973615A (zh) * 2015-06-26 2015-10-14 山东大学 一种纳米氧化钆粉体的微波燃烧制备方法
CN104985175A (zh) * 2015-07-02 2015-10-21 广东光华科技股份有限公司 一种去除纳米金属粉体表面阴离子的方法
CN104985175B (zh) * 2015-07-02 2017-03-08 广东光华科技股份有限公司 一种去除纳米金属粉体表面阴离子的方法
WO2021193968A1 (ja) * 2020-03-27 2021-09-30 旭化成株式会社 粒子の製造方法及び粒子製造装置

Also Published As

Publication number Publication date
JPWO2006082844A1 (ja) 2008-06-26
DE112006000294T5 (de) 2008-07-17
DE112006000294B4 (de) 2016-12-22
JP5024796B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5024796B2 (ja) ナノサイズ粉体の製造方法
Tsuzuki et al. Synthesis of ultrafine ceria powders by mechanochemical processing
Venkatachari et al. A combustion synthesis process for synthesizing nanocrystalline zirconia powders
CA1275783C (en) Preparation of unagglomerated metal oxide particles with uniform particle size
KR100691908B1 (ko) 금속산화물 표면에 금속산화물 초미립자를 코팅하는 방법및 이로부터 제조된 코팅체
Hosseini et al. A facile one-step route for production of CuO, NiO, and CuO–NiO nanoparticles and comparison of their catalytic activity for ammonium perchlorate decomposition
JP2008504199A (ja) 細粒化粒子の生成方法
Wirunchit et al. Facile sonochemical synthesis of near spherical barium zirconate titanate (BaZr 1− y Ti y O 3; BZT); perovskite stability and formation mechanism
Rai et al. An overview on recent developments in the synthesis, characterization and properties of high dielectric constant calcium copper titanate nano-particles
Hasan et al. Synthesis of stoichiometric nickel aluminate spinel nanoparticles
JP5256232B2 (ja) アルミナ−セリア複合酸化物微粒子の合成方法
Ram Synthesis and structural and optical properties of metastable ZrO 2 nanoparticles with intergranular Cr 3+/Cr 4+ doping and grain surface modification
Vasylkiv et al. Nanoexplosion synthesis of multimetal oxide ceramic nanopowders
Caminata et al. Effect of microwave heating during evaporation solvent and polymeric precursor formation in synthesis of BaZr0. 08Ti0. 92O3 nanopowders
Zhang et al. Synthesis of cerium oxide nanoparticles by the precipitation method
Chen et al. Novel salt-assisted combustion synthesis of high surface area ceria nanopowders by an ethylene glycol-nitrate combustion process
Vasylkiv et al. Nanoreactor engineering and SPS densification of multimetal oxide ceramic nanopowders
Vasylkiv et al. Nano-explosion synthesis of multi-component ceramic nano-composites
Castkova et al. Sintering of Ce, Sm, and Pr oxide nanorods
Grabis et al. Characteristics and sinterability of ceria stabilized zirconia nanoparticles prepared by chemical methods
KR100504937B1 (ko) 제어된 입도 분포를 가지는 산화세륨 나노 분말의 제조방법
JP2008247714A (ja) 金属酸化物粉末の製造法
JP5567838B2 (ja) シングルナノ粒子担持化合物の製造方法
Kong et al. Ceramic powder synthesis
Spiridigliozzi et al. Doped Ceria Electrolytes: Synthesis Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007501587

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120060002945

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712793

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712793

Country of ref document: EP

RET De translation (de og part 6b)

Ref document number: 112006000294

Country of ref document: DE

Date of ref document: 20080717

Kind code of ref document: P