CN107469822A - 高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法 - Google Patents

高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法 Download PDF

Info

Publication number
CN107469822A
CN107469822A CN201710503406.5A CN201710503406A CN107469822A CN 107469822 A CN107469822 A CN 107469822A CN 201710503406 A CN201710503406 A CN 201710503406A CN 107469822 A CN107469822 A CN 107469822A
Authority
CN
China
Prior art keywords
tio
catalyst
photo
catalytic reduction
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710503406.5A
Other languages
English (en)
Inventor
赵伟荣
张萌
孙润泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Publication of CN107469822A publication Critical patent/CN107469822A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/39

Abstract

本发明涉及材料制备领域,旨在提供一种高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法。本发明以钛酸四丁酯为钛源,通过溶胶凝胶法制备C掺杂TiO2催化剂;再利用光还原沉积法制备了Cu负载TiO2光催化剂,形成催化剂表面C/Cu结构,增强Cu元素所具有的界面电子传输效应,进一步提升光催化性能。本发明利用在增强催化剂可见光吸收的同时,加速光生电荷转移,实现光生电子的高效利用。克服了现有本征半导体或单元素掺杂半导体可见光响应小,光生电荷易复合的缺点。在不添加外加碳源的情况下制备C掺杂TiO2,在催化剂表面负载过渡金属元素,实现贵金属替代,成本低廉且制备方法简单易重复。制备的催化剂脱氯效率大大提高,在不使用贵金属前提下实现高效脱氯。

Description

高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法
技术领域
本发明为一种具有可见光响应的高效电子转移Cu修饰C/TiO2光催化还原材料制备方法,属于材料制备领域。
背景技术
半导体光催化技术,是利用半导体在光源激发下产生的强氧化还原能力电子-空穴对,在温和的条件下有效的降解矿化污染物、还原CO2以及分解水产氢等,在能源与环境领域应用广泛。其中光催化还原技术利用光生电子的强还原性有效脱除有机污染物中的毒性成分为无机态物质,避免氧化过程中出现毒性更强的中间产物,在含卤有机物、硝酸盐类等污染物降解方面具有较大优势。
催化剂制备是光催化还原技术的核心。TiO2催化剂无生物毒性、化学稳定性强、成本低廉,是目前研究最为广泛的催化剂。由于单一TiO2光催化剂无法吸收可见光,并且光生电子-空穴容易复合,导致光催化还原效率不高。因此开发高可见光吸收、光生电子高效转移的TiO2基催化剂是实现光催化还原技术应用的关键。掺杂负载是实现催化剂可见光吸收与电子高效转移的重要手段。Jiang等(Journal of Materials Chemistry A, 2014,2,19861-19866)采用光还原沉积法制备了Ag颗粒负载TiO2光催化剂,利用Ag 贵金属的等离子体共振效应,拓展TiO2光吸收边至800nm,光生电荷高效分离,催化活性明显提高。贵金属负载是提高催化剂可见光吸收,加速光生电子转移的重要手段,但成本昂贵,并且用于液相污染物去除时存在二次污染,难以实现实际应用。为了克服非贵金属催化剂催化活性较低的问题,通过过渡金属、非金属掺杂负载引起了研究者的关注。专利CN106000373A通过水热法制备了比表面积较大的Zr掺杂TiO2光催化剂,在TiO2内部引入掺杂能级,促进了光生电荷的分离,有效提高了对有机污染物的降解。碳掺杂是一种广泛应用的非金属掺杂方法。专利CN104192890A利用乙酸锌和尿素制备了碳掺杂氧化锌纳米柱,可见光吸收显著增强。专利103170325A通过浸渍与煅烧法制备了碳掺杂介孔钒酸铋催化剂,有效抑制了钒酸铋电子-空穴的复合,提升光催化效率。过渡金属、非金属一定程度上提升了光催化效率,但整体催化效率依然不高,同时掺杂过程中需要外加前驱体(如碳掺杂中的碳源,葡萄糖等)。
我们在最近的研究中发现通过合成过渡金属/非金属共负载催化剂,利用二者之间的协同效应,可明显增强光催化效率。同时实现了在不添加外来碳源的基础上制备出了C掺杂TiO2
发明内容
本发明要解决技术问题是,克服现有技术中的不足,提供一种高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法。
为解决技术问题,本发明的解决方案是:
提供一种高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法,包括以下步骤:
(1)溶胶凝胶法制备C/TiO2
取1~10mL去离子水加至25mL钛酸四丁酯中形成溶胶凝胶,在室温下磁力搅拌;过滤后将沉淀物烘干,研磨并移至马弗炉中;升温至400℃煅烧2h,冷却后得到C/TiO2催化剂;
(2)光还原沉积法制备CuOx-C/TiO2
将步骤(1)中制备的C/TiO2催化剂与含铜化合物的水溶液混合,超声处理10min后,加入5mL丙三醇,再加入去离子水使混合溶液的总体积为100mL;通入氩气(纯度大于99.999%)0.5h后,在300W氙灯下光照处理2h;光照结束后离心弃上清液,取沉淀物烘干,研磨并置于马弗炉中;升温至350℃煅烧2h,冷却后得到Cu修饰C/TiO2光催化还原材料;
在步骤(2)中,控制含铜化合物的用量,使Cu修饰C/TiO2光催化还原材料中的 Cu∶Ti的摩尔比为(0.005~0.05)∶1。
本发明的步骤(1)中,磁力搅拌的时间为4~72h。
本发明的步骤(1)中,控制钛酸四丁酯的水解度,使所制备的C/TiO2催化剂中的含碳量为1.1~15.4wt%。
本发明的步骤(2)中,所述含铜化合物是CuCl2·2H2O、Cu(NO3)2·3H2O或 CuSO4·5H2O中的任意一种或多种的混合物。
本发明的步骤(2)中,所述氙灯的发射光谱为紫外-可见光,波长范围为350-780nm。
发明原理描述:
本发明以钛酸四丁酯为钛源,通过溶胶凝胶法,控制添加水量以及水解时间,制备了C掺杂TiO2催化剂,并通过元素分析,初步得出水量、水解时间与最终碳掺杂量的关系,实现碳掺杂量可控,增强催化剂可见光吸收,取得了较好的催化性能。另外,在制备出的C掺杂TiO2的基础上,利用光还原沉积法制备了Cu负载TiO2光催化剂,形成催化剂表面C/Cu结构,增强Cu元素所具有的界面电子传输效应,进一步提升光催化性能。
与现有技术相比,本发明的有益效果是:
1、本发明利用Cu、C双元素负载掺杂TiO2,构造C/Cu复合结构,在增强催化剂可见光吸收的同时,加速光生电荷转移,实现光生电子的高效利用。克服了现有本征半导体或单元素掺杂半导体可见光响应小,光生电荷易复合的缺点。
2、本发明在不添加外加碳源的情况下制备了C掺杂TiO2,在催化剂表面负载过渡金属元素,实现贵金属替代,成本低廉且制备方法简单易重复。
3、在光催化还原脱氯实验中,相较于商业化P25催化剂,本发明制备的催化剂脱氯效率大大提高,在不使用贵金属前提下实现了高效脱氯。
附图说明
图1为C/TiO2催化剂的低倍的扫描电镜图。
图2为C/TiO2催化剂的高倍的扫描电镜图。
图3为C/TiO2催化剂的低倍的透射电镜图。
图4为C/TiO2催化剂的高倍的透射电镜图。
图5为Cu修饰C/TiO2催化剂的透射电镜图,图中(a)、(b)分别是低倍和高倍的透射电镜图。
图6为Cu修饰C/TiO2催化剂的低倍的扫描电镜图。
图7为Cu修饰C/TiO2催化剂的高倍的扫描电镜图。
图8为TiO2、C/TiO2以及Cu修饰C/TiO2催化剂的紫外-可见漫反射光谱图。
图9为P25催化剂以及本发明实施例中不同浓度Cu修饰的C-TiO2脱氯效果图。
具体实施方式
下面结合实施例子来对本发明进一步详细说明,其中部分制备条件仅是作为典型情况的额说明,并非是对本发明的规定。
实施例1
(1)溶胶凝胶法制备C/TiO2
取1mL去离子水加入到25mL钛酸四丁酯中,形成溶胶凝胶,在室温下磁力搅拌 4h,过滤后放到烘箱烘干。研磨烘干的滤饼,放入马弗炉中400℃煅烧2h,冷却后得到C/TiO2催化剂;
经检测,所制备的C掺杂TiO2中含碳量为1.1%。
(2)光还原沉积法制备CuOx-C/TiO2
取0.6g步骤(1)中制备好的C/TiO2催化剂与3.7mL 0.01mol/L的CuCl2溶液混合超声10min,加入5mL丙三醇,并加入去离子水使混合溶液的总体积为100mL,氙灯光照2h(氙灯光照的功率为300W,其出射光谱波长范围在350~780nm)。光照之前,通入高纯氩气(纯度大于99.999%)0.5h。光照结束后,离心并倒掉上清液,沉淀物放入烘箱烘干。烘干的催化剂研磨后,置于马弗炉中350℃煅烧2h,冷却后得到Cu修饰 C/TiO2光催化还原材料。
经检测,所制备的Cu修饰C/TiO2光催化还原材料中,Cu∶Ti的摩尔比为0.005∶1。
实施例2
(1)溶胶凝胶法制备C/TiO2
取3mL去离子水加入到25mL钛酸四丁酯中,形成溶胶凝胶,在室温下磁力搅拌 8h,过滤后将滤饼放到烘箱烘干。研磨烘干的滤饼,放入马弗炉中400℃煅烧2h,冷却后得到C/TiO2催化剂;
经检测,所制备的C掺杂TiO2中含碳量为3.5%。
(2)光还原沉积法制备CuOx-C/TiO2
取0.6g步骤(1)中制备好的C/TiO2催化剂与7.2mL 0.01mol/L的Cu(NO3)2溶液混合超声10min,加入5mL丙三醇,并加入去离子水使混合溶液的总体积为100mL,氙灯光照2h(氙灯光照的功率为300W,其出射光谱波长范围在350~780nm)。光照之前,通入高纯氩气(纯度大于99.999%)0.5h。光照结束后,离心并倒掉上清液,沉淀物放入烘箱烘干。烘干的催化剂研磨后,置于马弗炉中350℃煅烧2h,冷却后得到 Cu修饰C/TiO2光催化还原材料。
经检测,所制备的Cu修饰C/TiO2光催化还原材料中,Cu∶Ti的摩尔比为0.01∶1。
实施例3
(1)溶胶凝胶法制备C/TiO2
取5mL去离子水加入到25mL钛酸四丁酯中,形成溶胶凝胶,在室温下磁力搅拌12h,过滤后将滤饼放到烘箱烘干。研磨烘干的滤饼,放入马弗炉中400℃煅烧2h,冷却后得到C/TiO2催化剂;
经检测,所制备的C掺杂TiO2中含碳量为4.6%。
(2)光还原沉积法制备CuOx-C/TiO2
取0.6g步骤(1)中制备好的C/TiO2催化剂与14.3mL 0.01mol/L的CuSO4溶液混合超声10min,加入5mL丙三醇,并加入去离子水使混合溶液的总体积为100mL,氙灯光照2h(氙灯光照的功率为300W,其出射光谱波长范围在350~780nm)。光照之前,通入高纯氩气(纯度大于99.999%)0.5h。光照结束后,离心并倒掉上清液,沉淀物放入烘箱烘干。烘干的催化剂研磨后,置于马弗炉中350℃煅烧2h,冷却后得到 Cu修饰C/TiO2光催化还原材料。
经检测,所制备的Cu修饰C/TiO2光催化还原材料中,Cu∶Ti的摩尔比为0.02∶1。
实施例4
(1)溶胶凝胶法制备C/TiO2
取7mL去离子水加入到25mL钛酸四丁酯中,形成溶胶凝胶,在室温下磁力搅拌48h,过滤后将滤饼放到烘箱烘干。研磨烘干的滤饼,放入马弗炉中400℃煅烧2h,冷却后得到C/TiO2催化剂;
经检测,所制备的C掺杂TiO2中含碳量为11.4%。
(2)光还原沉积法制备CuOx-C/TiO2
取0.6g步骤(1)中制备好的C/TiO2催化剂与26.6mL 0.01mol/L的CuCl2溶液混合超声10min,加入5mL丙三醇,并加入去离子水使混合溶液的总体积为100mL,氙灯光照2h(氙灯光照的功率为300W,其出射光谱波长范围在350~780nm)。光照之前,通入高纯氩气(纯度大于99.999%)0.5h。光照结束后,离心并倒掉上清液,沉淀物放入烘箱烘干。烘干的催化剂研磨后,置于马弗炉中350℃煅烧2h,冷却后得到Cu 修饰C/TiO2光催化还原材料。
经检测,所制备的Cu修饰C/TiO2光催化还原材料中,Cu∶Ti的摩尔比为0.04∶1。
实施例5
(1)溶胶凝胶法制备C/TiO2
取10mL去离子水加入到25mL钛酸四丁酯中,形成溶胶凝胶,在室温下磁力搅拌72h,过滤后将滤饼放到烘箱烘干。研磨烘干的滤饼,放入马弗炉中400℃煅烧2h,冷却后得到C/TiO2催化剂;
经检测,所制备的C掺杂TiO2中含碳量为15.4%。
(2)光还原沉积法制备CuOx-C/TiO2
取0.6g(1)中制备好的C/TiO2催化剂与31.7mL 0.01mol/L的CuCl2溶液混合超声10min,加入5mL丙三醇,并加入去离子水使混合溶液的总体积为100mL,氙灯光照2h(氙灯光照的功率为300W,其出射光谱波长范围在350~780nm)。光照之前,通入高纯氩气(纯度大于99.999%)0.5h。光照结束后,离心并倒掉上清液,放入烘箱烘干。烘干的催化剂研磨后,置于马弗炉中350℃煅烧2h,冷却后得到Cu修饰C/TiO2光催化还原材料。
经检测,所制备的Cu修饰C/TiO2光催化还原材料中,Cu∶Ti的摩尔比为0.05∶1。
性能测试(脱氯效果实验)
由于光催化脱氯技术尚未进入工业化使用,本发明采用已商业化使用的P25催化剂作为对照。分别取商业化TiO2催化剂(P25)以及实施例1-5制备的Cu修饰C/TiO2光催化还原材料进行脱氯效果实验:
称取催化剂样品0.05g,放入带循环夹套的自制光催化反应器中,放入磁力搅拌子,加入100mL 5v%丙三醇溶液,5g/L的三氯乙烯储备液500μL,使2,4-二氯苯酚的初始浓度为25mg/L。用硅胶垫垫于石英反应器盖和反应器中间,在连接处均匀涂抹真空硅脂,并在边缘缠绕密封胶带,使反应器密封。从取样口持续通高纯氩气(纯度大于 99.999%)0.5h,使反应器中空气排尽。之后迅速用密封垫及生料带密封取样口,并打开光源。实验所用光源为300W氙灯,出射光谱波长范围为350~780nm,光线从上到下照射。持续通入循环水,使反应体系的温度维持稳定。整个反应过程不断磁力搅拌,使样品一直处于悬浮状态。取样时间为0,20,40,60,80,100,120min。取得的样品用一次性微孔滤头(0.45μm聚醚砜膜)过滤。采用高效液相色谱(HPLC)分析2,4 -二氯苯酚浓度。
测试结果说明:
对比例及实施例1-5脱氯测试的结果如图4所示。从图中可以看出,相较于商业化P25催化剂,本发明制备的Cu修饰C-TiO2表现出更好的光催化脱氯效果,实现了光催化还原过程中电子高效转移。当Cu修饰C-TiO2,脱氯效果显著增强。所制备催化剂,当含碳量为4.6%,Cu∶Ti的摩尔比为0.02∶1时,脱氯效果最佳。

Claims (5)

1.一种高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法,其特征在于,包括以下步骤:
(1)溶胶凝胶法制备C/TiO2
取1~10mL去离子水加至25mL钛酸四丁酯中形成溶胶凝胶,在室温下磁力搅拌;过滤后将沉淀物烘干,研磨并移至马弗炉中;升温至400℃煅烧2h,冷却后得到C/TiO2催化剂;
(2)光还原沉积法制备CuOx-C/TiO2
将步骤(1)中制备的C/TiO2催化剂与含铜化合物的水溶液混合,超声处理10min后,加入5mL丙三醇,再加入去离子水使混合溶液的总体积为100mL;通入氩气0.5h后,在300W氙灯下光照处理2h;光照结束后离心弃上清液,取沉淀物烘干,研磨并置于马弗炉中;升温至350℃煅烧2h,冷却后得到Cu修饰C/TiO2光催化还原材料;
在步骤(2)中,控制含铜化合物的用量,使Cu修饰C/TiO2光催化还原材料中的Cu∶Ti的摩尔比为(0.005~0.05)∶1。
2.根据权利要求1所述的方法,其特征在于,在步骤(1)中,磁力搅拌的时间为4~72h。
3.根据权利要求1所述的方法,其特征在于,在步骤(1)中,控制钛酸四丁酯的水解度,使所制备的C/TiO2催化剂中的含碳量为1.1~15.4wt%。
4.根据权利要求1所述的方法,其特征在于,在步骤(2)中,所述含铜化合物是CuCl2·2H2O、Cu(NO3)2·3H2O或CuSO4·5H2O中的任意一种或多种的混合物。
5.根据权利要求1所述的方法,其特征在于,在步骤(2)中,所述氙灯的发射光谱为紫外-可见光,波长范围为350-780nm。
CN201710503406.5A 2016-12-19 2017-06-27 高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法 Pending CN107469822A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611176984 2016-12-19
CN2016111769844 2016-12-19

Publications (1)

Publication Number Publication Date
CN107469822A true CN107469822A (zh) 2017-12-15

Family

ID=60595997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710503406.5A Pending CN107469822A (zh) 2016-12-19 2017-06-27 高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法

Country Status (1)

Country Link
CN (1) CN107469822A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075854A (zh) * 2019-05-06 2019-08-02 东南大学 一种整体式催化剂的制备及其应用方法
CN111041523A (zh) * 2020-01-02 2020-04-21 东莞理工学院 一种铜掺杂二氧化钛光电极及其制备方法和在光电催化分解水中的应用
CN112916014A (zh) * 2021-01-25 2021-06-08 吉林大学 一种全固态矢量Z机制复合光催化剂CaTiO3/Cu/TiO2、制备方法及其应用
CN113731414A (zh) * 2021-09-14 2021-12-03 镇江市高等专科学校 一种Cu团簇负载TiO2水处理催化剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (ja) * 2005-11-29 2007-06-14 Shinshu Univ 光触媒ファイバーとそれを使用した液体浄化装置
CN101385968A (zh) * 2008-10-30 2009-03-18 上海交通大学 光催化活性碳掺杂二氧化钛纳米材料的制备方法
CN104888770A (zh) * 2015-04-30 2015-09-09 华中农业大学 一种负载金属Ag的C掺杂TiO2纳米颗粒可见光催化剂及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (ja) * 2005-11-29 2007-06-14 Shinshu Univ 光触媒ファイバーとそれを使用した液体浄化装置
CN101385968A (zh) * 2008-10-30 2009-03-18 上海交通大学 光催化活性碳掺杂二氧化钛纳米材料的制备方法
CN104888770A (zh) * 2015-04-30 2015-09-09 华中农业大学 一种负载金属Ag的C掺杂TiO2纳米颗粒可见光催化剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. MAICU等: "Cu-doped TiO2 systems with improved photocatalytic activity", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
康华 等: "Cu与非金属共掺杂对TiO2光催化活性的影响", 《黑龙江科技大学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075854A (zh) * 2019-05-06 2019-08-02 东南大学 一种整体式催化剂的制备及其应用方法
CN110075854B (zh) * 2019-05-06 2022-03-08 东南大学 一种整体式催化剂的制备及其应用方法
CN111041523A (zh) * 2020-01-02 2020-04-21 东莞理工学院 一种铜掺杂二氧化钛光电极及其制备方法和在光电催化分解水中的应用
CN112916014A (zh) * 2021-01-25 2021-06-08 吉林大学 一种全固态矢量Z机制复合光催化剂CaTiO3/Cu/TiO2、制备方法及其应用
CN112916014B (zh) * 2021-01-25 2022-02-18 吉林大学 一种全固态矢量Z机制复合光催化剂CaTiO3/Cu/TiO2、制备方法及其应用
CN113731414A (zh) * 2021-09-14 2021-12-03 镇江市高等专科学校 一种Cu团簇负载TiO2水处理催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
Zhao et al. A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride
Yang et al. ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity
Kong et al. Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis
Behzadifard et al. Novel visible light driven CuO/SmFeO3 nanocomposite photocatalysts with enhanced photocatalytic activities for degradation of organic pollutants
Ohno et al. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light
Chen et al. In situ synthesis of V4+ and Ce3+ self-doped BiVO4/CeO2 heterostructured nanocomposites with high surface areas and enhanced visible-light photocatalytic activity
Mohamed et al. A novel design of porous Cr2O3@ ZnO nanocomposites as highly efficient photocatalyst toward degradation of antibiotics: a case study of ciprofloxacin
Zhang et al. High H2 evolution from quantum Cu (II) nanodot-doped two-dimensional ultrathin TiO2 nanosheets with dominant exposed {001} facets for reforming glycerol with multiple electron transport pathways
Kim et al. Sustainable treatment of harmful dyeing industry pollutants using SrZnTiO3/g-C3N4 heterostructure with a light source-dependent charge transfer mechanism
Jiang et al. Porous F-doped BiVO4: Synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination
CN107469822A (zh) 高效电子转移Cu修饰C/TiO2光催化还原材料的制备方法
CN105749893A (zh) 一种表面负载纳米二氧化钛的改性活性炭纤维丝的制备方法
Chen et al. S-scheme-enhanced PMS activation for rapidly degrading tetracycline using CuWO4− x/Bi12O17Cl2 heterostructures
CN101773841A (zh) 一种用于水处理的光催化剂
JP2007216223A (ja) 半導体特性を有する光触媒物質及びその製造方法と利用方法
CN101618332A (zh) 一种BiOI/TiO2异质结型光催化材料及其低温制备方法
Mohamed et al. Mesoporous BiVO4/2D-g-C3N4 heterostructures for superior visible light-driven photocatalytic reduction of Hg (II) ions
CN103230802B (zh) 一种可见光响应的复合光催化剂的制备方法及其除砷方法
Sun et al. Designing double Z-scheme heterojunction of g-C3N4/Bi2MoO6/Bi2WO6 for efficient visible-light photocatalysis of organic pollutants
Paragas et al. Enhanced visible-light-driven photocatalytic degradation of acetaminophen over CeO2/I, K-codoped C3N4 heterojunction with tunable properties in simulated water matrix
Liu et al. Solvothermal synthesized Ag-decorated TiO2/sepiolite composite with enhanced UV–vis and visible light photocatalytic activity
Zhang et al. CuPc sensitized Bi2MoO6 with remarkable photo-response and enhanced photocatalytic activity
CN106732504A (zh) 石墨烯二氧化钛光催化复合材料的制备方法及应用
Zhao et al. Preparation of g-C3N4/TiO2/BiVO4 composite and its application in photocatalytic degradation of pollutant from TATB production under visible light irradiation
CN104801308A (zh) 一种NiFe2O4/TiO2/海泡石复合光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171215