WO2009104605A1 - 種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法 - Google Patents

種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法 Download PDF

Info

Publication number
WO2009104605A1
WO2009104605A1 PCT/JP2009/052705 JP2009052705W WO2009104605A1 WO 2009104605 A1 WO2009104605 A1 WO 2009104605A1 JP 2009052705 W JP2009052705 W JP 2009052705W WO 2009104605 A1 WO2009104605 A1 WO 2009104605A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
represented
carbon atoms
Prior art date
Application number
PCT/JP2009/052705
Other languages
English (en)
French (fr)
Inventor
博之 斎本
靖 芳我
Original Assignee
アリジェン製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アリジェン製薬株式会社 filed Critical アリジェン製薬株式会社
Priority to JP2009554326A priority Critical patent/JPWO2009104605A1/ja
Publication of WO2009104605A1 publication Critical patent/WO2009104605A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms

Definitions

  • the present invention relates to a novel synthetic intermediate of ascofuranone having various physiological activities and a novel shortened total synthesis method using the same. Specifically, the present invention relates to a short synthesis process characterized by a shortening of the synthesis step of the terpene side chain moiety of ascofuranone and a direct introduction method into an aromatic ring, and a novel synthetic intermediate thereof.
  • Ascofuranone a phenolic physiologically active substance, has the structure shown in formula (I) and has not only antiviral and anticancer activity, but also has the effect of lowering blood cholesterol and lowering blood pressure. In addition, since it has extremely low hepatotoxicity, it is expected as a promising adult disease drug (see Patent Document 1, Patent Document 2, etc.). JP-A-48-91278 JP-A-51-36450
  • the ascofuranone molecule represented by Formula I was constructed by dividing it into an aromatic ring segment IX on the left side and a terpene side chain segment X on the right side.
  • a method of coupling was reported (see Patent Document 4, Patent Document 5, Non-Patent Document 4, etc.).
  • this method which was the shortest step at that time, required a total of 12 steps from the commercially available starting material geranyl acetate.
  • the geranyl acetate was not directly used for the synthesis of the terpene side chain segment, but a step for exchanging the acetate portion with another protecting group was necessary, and the same aldehyde group as that of ascofuranone was used as the aromatic ring segment.
  • R 2 and R 4 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, a phenoxyalkyl group having a halogen atom on the carbon atom of the benzene ring, or a carbon atom of the benzene ring.
  • R 3 represents a Me 3 SiCH 2 CH 2 OCH 2 group
  • R 5 represents tetrahydropyran-2-yl.
  • X represents halogen.
  • the problem to be solved is to develop a total synthesis method in a short process that enables efficient synthesis of ascofuranone.
  • the present inventors have searched for a total synthesis method of ascofuranone that is more efficient than the conventional total synthesis method, but as a synthesis intermediate, a novel compound diol of formula III, diester of formula IV, formula V
  • the dihydrofuran derivative of formula VII and the furanone derivative of formula VII were found, and a short-step ascofuranone total synthesis method represented by the following reaction formula was established to complete the present invention.
  • Any of these novel compounds can obtain optical isomers by using the already reported method for asymmetric synthesis of ascofuranone (see Non-Patent Document 5, etc.). Bull. Chem. Soc. Jpn. 1999, 72, 279-284
  • Y is an R 1 COO group, a halogen atom, or an R 5 SO 3 group (R 5 is an alkyl group having 1 to 7 carbon atoms or an alkyl group having 1 to 7 carbon atoms on a carbon atom of a benzene ring)
  • R 5 is an alkyl group having 1 to 7 carbon atoms or an alkyl group having 1 to 7 carbon atoms on a carbon atom of a benzene ring
  • Represents a group selected from R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, a phenoxyalkyl group having a halogen atom on the carbon atom of the benzene ring, or a carbon atom having a 1-carbon number on the carbon atom of the benzene ring.
  • 7 represents a phenyl group having an alkoxy group having 7 or an alkoxycarbonyl group having 1-7 carbon atoms.
  • Y represents a halogen atom or an R 5 SO 3 group (R 5 has the above-mentioned meaning)
  • W represents
  • the present invention provides compounds represented by the following formulas (III), (IV), (V), and (VII), optical isomers thereof, and pharmaceutically acceptable salts thereof.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, a phenoxyalkyl group having a halogen atom on the carbon atom of the benzene ring, an alkoxy group having 1 to 7 carbon atoms or a carbon number carbon on the carbon atom of the benzene ring. Represents a phenyl group having an alkoxycarbonyl group of 1-7)
  • R 1 and R 2 are a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, a phenoxyalkyl group having a halogen atom on the carbon atom of the benzene ring, an alkoxy group having 1 to 7 carbon atoms on the carbon atom of the benzene ring, or Represents a phenyl group having an alkoxycarbonyl group having 1 to 7 carbon atoms)
  • X represents a halogen atom or an R 5 SO 3 group (R 5 represents an alkyl group having 1 to 7 carbon atoms or a phenyl group having an alkyl group having 1 to 7 carbon atoms on the carbon atom of the benzene ring)
  • R 5 represents an alkyl group having 1 to 7 carbon atoms or a phenyl group having an alkyl group having 1 to 7 carbon atoms on the carbon atom of the benzene ring
  • the present invention provides a novel total synthesis method of ascofuranone using the compounds represented by formulas (III), (IV), (V), and (VII) as synthesis intermediates, Formula II
  • R 1 is a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, a phenoxyalkyl group having a halogen atom on the carbon atom of the benzene ring, or an alkoxy group having 1 to 7 carbon atoms on the carbon atom of the benzene ring.
  • a phenyl group having an alkoxycarbonyl group having 1 to 7 carbon atoms is reacted with 2-methyl-3-butyn-2-ol to give a compound of the general formula (III)
  • R 1 represents the same meaning as described above
  • this compound is represented by the general formula R 2 CO (Hal) (wherein R 2 is a hydrogen atom, carbon number 1- An alkyl group of 7; a phenoxyalkyl group having a halogen atom on a carbon atom of the benzene ring; or a phenyl group having an alkoxy group having 1 to 7 carbon atoms or an alkoxycarbonyl group having 1 to 7 carbon atoms on the carbon atom of the benzene ring. And (Hal) represents a halogen atom.)
  • R 2 is a hydrogen atom, carbon number 1-
  • R 2 is a hydrogen atom, carbon number 1-
  • R 2 is a hydrogen atom, carbon number 1-
  • R 2 is a hydrogen atom, carbon number 1-
  • R 2 is a hydrogen atom, carbon number 1-
  • R 2 is a hydrogen atom, carbon number 1-
  • R 2 is a hydrogen atom, carbon number 1-
  • R 2 is a
  • the production method of ascofuranone is characterized by producing ascofuranone represented by the following formula.
  • the production method of the present invention uses compounds represented by the formulas (III), (IV), (V), and (VII) as novel synthetic intermediates, and therefore, compared with the conventional total synthesis method of ascofuranone, There is an advantage that the number of manufacturing steps can be greatly reduced.
  • alkyl group having 1 to 7 carbon atoms used in the claims and the specification of the present application means a linear or branched alkyl group having 1 to 7 carbon atoms.
  • alkyl group include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, n-hexyl, 2,2,2- Examples include trimethylethyl, 2,2,2-trimethyl-1-methylethyl, n-heptyl and the like.
  • an alkoxy group having 1 to 7 carbon atoms means “alkyl-O— having 1 to 7 carbon atoms”.
  • the “alkyl having 1-7 carbons” in the “alkoxy group having 1-7 carbons” has the meaning described for the “alkyl group having 1-7 carbons”.
  • C 1-7 alkoxycarbonyl group means “C 1-7 alkyl-O—CO—”.
  • alkyl having 1-7 carbons in the “alkoxycarbonyl group having 1-7 carbons” has the meaning described for the “alkyl group having 1-7 carbons”.
  • halogen used in the claims and specification of the present application means fluorine, chlorine, bromine and iodine.
  • phenoxyalkyl group used in the claims and the specification of the present application means “phenyl-O-alkyl”.
  • Alkyl in the “phenoxyalkyl group” means “an alkyl group having 1 to 3 carbon atoms”.
  • C 1-3 alkyl group means a linear or branched alkyl group having 1-3 carbon atoms.
  • alkyl groups include methyl, ethyl, n-propyl, i-propyl.
  • ascofuranone used in the claims and the specification of the present application means a derivative of ascofuranone in which the substituent on the benzene ring of ascofuranone and ascofuranone is different from that of ascofuranone.
  • examples of such derivatives include an ascofuranone derivative in which the aldehyde group on the benzene ring of ascofuranone is replaced by an acetyl group, and an ascofuranone derivative in which the aldehyde group on the benzene ring of ascofuranone is replaced by a carboxyl group. it can.
  • pharmaceutically acceptable salt means any salt that can be used in the manufacture of a medicament, such as an alkali metal (eg, sodium, Organic bases that impart physiologically acceptable cations such as salts with potassium or lithium), alkaline earth metals (eg calcium or magnesium); ammonium salts; salts with methylamine, dimethylamine, trimethylamine, piperidine and morpholine And the salt.
  • an alkali metal eg, sodium, Organic bases that impart physiologically acceptable cations such as salts with potassium or lithium
  • alkaline earth metals eg calcium or magnesium
  • ammonium salts salts with methylamine, dimethylamine, trimethylamine, piperidine and morpholine And the salt.
  • suitable pharmaceutically acceptable salts include acid addition salts with hydrogen chloride, nitric acid, sulfuric acid, phosphoric acid, and acetic acid, tartaric acid, malic acid, citric acid, maleic Acid addition salts with acids, organic acids such as methanesulfonic acid and p-toluenesulfonic acid are included. These salts can be obtained by methods well known or conventional in the art.
  • a secondary hydroxyl group of a racemic diol prepared from an aldehyde represented by the formula (II) in three steps was oxidized to obtain an alquinone represented by the formula (XIII). This was subjected to an asymmetric reduction reaction to give (S) -form diol stereoselectively. Only the secondary hydroxyl group was acylated to obtain a compound represented by the formula (S) -XI. This was subjected to a ring closure reaction under a silver catalyst to lead to a dihydrofuran derivative represented by the formula (XIV).
  • the compound of II) in the short-step ascofuranone total synthesis method represented by the above reaction formula using the compounds represented by the formulas (III), (IV), (V), and (VII) as synthesis intermediates,
  • the compound of II) can be prepared in two steps from geranylol, which is a commercially available starting material, with reference to known methods (see Non-Patent Document 2, etc.).
  • geranylol which is a commercially available starting material
  • Non-Patent Document 2 it has been impossible to obtain a compound of formula (III) by directly reacting a compound of formula (II) with a propargyl alcohol derivative anion. After changing to an ether type, it is reacted with a propargyl alcohol derivative anion and further esterified to obtain a compound of formula (XI). Since this ether type protecting group was removed in a later step, the total synthesis step becomes longer. This has contributed (see Patent Document 4, Patent Document 5, Non-Patent Document 4, etc.).
  • the present inventors have protected the hydroxyl group in the compound of the formula (II) by suppressing the equivalent of the propargyl alcohol derivative to the compound of the formula (II) to 1 or less and lowering the reaction temperature and the reaction termination temperature. Since the compound of the formula (III) could be synthesized by reacting with the propargyl alcohol derivative anion while the group remained in the ester form, the hydroxyl protecting group in the compound of the formula (II) was changed from the ester form to the ether form. The process of changing could be omitted.
  • acetyl ascofuranone can be obtained instead of ascofuranone by using 3-chloro-4,6-dihydroxy-2-methylacetophenone instead of the benzaldehyde derivative represented by the formula (VIII).
  • the corresponding ascofuranone derivative can be obtained by using various phenol derivatives instead of the phenol derivative represented by the formula (VIII). All methods for producing such ascofuranone derivatives are also included in the scope of the present invention.
  • Example 1 Acetic acid (2E, 6E) -8,11-dihydroxy-3,7,11-trimethyl-2,6-dodecadiene-9-inyl (2) ((2E, 6E) -8,11-Dihydroxy-3,7, 11-trimethyl-2,6-dodecadien-9-ynyl acetate (2))
  • Example 2 Acetic acid (2E, 6E) -11-hydroxy-3,7,11-trimethyl-8-pivaloxy-2,6-dodecadiene-9-inyl (3) ((2E, 6E) -11-Hydroxy-3,7, 11-trimethyl-8-pivaloxy-2,6-dodecadien-9-ynyl acetate (3))
  • IR (neat) 2978 2943, 2860, 1763, 1736, 1655, 1481, 1460, 1366, 1331, 1275, 1234, 1146, 1105, 1028, 955, 876, 837, 760, 604, 586 cm - 1 .
  • a known aldehyde (J. Org. Chem. 1985, 50, 50) prepared in two steps from 5-methylresorcinol in a solution of bromide 6 (136 mg, 0.431 mmol) in methanol (0.5 ml). 3997-4005) (67 mg, 0.36 mmol) and CaCl 2 .2H 2 O (37 mg, 0.25 mmol) were added and cooled to 0 ° C. To this was added KOH (1M methanol solution, 0.76 ml, 0.76 mmol) and stirred at the same temperature for 8 hours. Saturated brine was added to the reaction solution, and the mixture was extracted with ethyl acetate.
  • the aldehyde represented by the formula (II) that is the starting material can be produced, for example, by any of the following methods.
  • Production method 1 of aldehyde represented by formula (II) A carboxylic acid ester of geraniol represented by formula 1 or a derivative thereof can be oxidized using selenium dioxide (SeO 2 ) and manganese dioxide (MnO 2 ) to obtain an aldehyde compound represented by formula (II).
  • Non-patent Document 7 geranyl acetate is oxidized using selenium dioxide (SeO 2 ) and manganese dioxide (MnO 2 ) to obtain an aldehyde compound represented by the formula (II) in a yield of 46%. It is described. K. Mori, M. Ohki, and M. Matsui, Tetrahedron, 30, 715 (1974)
  • Production method 2 of aldehyde represented by formula (II) Ozone (O 3 ) decomposition of the carboxylic acid ester of geraniol represented by formula 1 or a derivative thereof can give the corresponding aldehyde represented by formula 2. Further, when 2- (triphenylphospharanylidene) propionaldehyde is added to the obtained toluene solution of the aldehyde of formula 2 and reacted, an aldehyde compound represented by formula (II) can be obtained.
  • Production method 2 has one production step compared to production method 1, but has the advantage that the aldehyde compound of formula (II) can be obtained without using toxic selenium dioxide (SeO 2 ).
  • a production example based on production method 2 will be described below.
  • Production Example 1 Production of (E) -3-methyl-6-oxo-2-hexenyl acetate
  • the production method of the present invention uses the compounds represented by the formulas (III), (IV), (V), and (VII) as novel synthetic intermediates, the conventional total synthesis method of ascofuranone and its derivatives Compared to the above, the number of manufacturing processes can be greatly reduced. Therefore, it is extremely useful in terms of time and economy as an industrial process for ascofuranone and its derivatives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 アスコフラノンを合成する際に下記式(III)、(IV)、(V)、および(VII)で表される化合物、またはその光学異性体を合成中間体として用いる。 【化1】 (式中、RとRは、同一または異なって、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数炭素数1-7のアルコキシカルボニル基を有するフェニル基を表し、Xは、ハロゲン原子またはRSO基(Rは炭素数1-7のアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルキル基を有するフェニル基を表す)を表す)。  上記化合物を使用することにより、従来の方法によれば12工程を要したアスコフラノンの全合成が7工程ないしは8工程に短縮することができる。

Description

種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法
 本発明は、種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法に関する。詳細には、アスコフラノンのテルペン側鎖部分の合成工程の短縮と芳香環への直接導入方法を特徴とする短工程による全合成方法と、その新規合成中間体に関する。
 フェノール系生理活性物質であるアスコフラノンは、式(I)に示す構造をしており、抗ウィルス性、制ガン作用を有するばかりでなく、血中のコレステロール量を低下させ血圧を降下させる効果をもち、しかも肝毒性が極めて低いため、有望な成人病薬として期待されている(特許文献1、特許文献2等参照)。
特開昭48-91278号公報 特開昭51-36450号公報
Figure JPOXMLDOC01-appb-C000023
 また、アスコフラノンは、トリパノソーマ症の化学療法剤としても注目されている(特許文献3、非特許文献1等参照)。トリパノソーマ症(アフリカ睡眠病)はトリパノソーマ科原虫によって発症し、毎年20-30万人の新たな患者が発症しているといわれている。アフリカ睡眠病はアフリカの人々の健康及び経済的発展を著しく妨げており、これがWHOが制圧すべき感染症の一つに掲げている理由である。
特開平9-165332号公報 Parasitol. Int. 1998, 47, 131-137; 2003, 52, 155-164; 2006, 55, 39-43
 アスコフラノンの実用化を考えたとき、アスコキイタ属に属するアスコフラノン生産菌を好気的に培養する方法(特許文献1等参照)では、アスコフラノンの単離精製操作が煩雑であるという欠点があるため、全合成による方法がいくつか開発されてきた。世界初の全合成(非特許文献2等参照)とその後の方法(非特許文献3等参照)は、アスコフラノン分子を構成するパーツを端から順次つないで行く方法であり、反応工程が長いという欠点を有していた。
Tetrahedron 1984, 40, 2711-2720; 1985, 41, 3049-3062 J. Org. Chem. 1985, 50, 3997-4005
 全合成方法の改良として、式Iで示されるアスコフラノン分子を、その左部分である芳香環セグメントIXと右部分であるテルペン側鎖セグメントXに分けてそれぞれ構築し、全合成の終盤で両者を結合する方法が報告された(特許文献4、特許文献5、非特許文献4等参照)。しかし、その時点では最短工程であったこの方法でも、市販の出発原料である酢酸ゲラニルから合計12工程を必要とした。酢酸ゲラニルをそのままテルペン側鎖セグメントの合成に利用せず、酢酸エステル部分を他の保護基に交換する工程が必要であったこと、さらに、芳香環セグメントとしてアスコフラノンと同じアルデヒド基を用いることができずエステル型の合成中間体を利用し、左右のセグメントを結合した後でアルデヒド基に変換する工程が必要であったこと、さらに芳香環セグメントIX上の水酸基を保護して利用した後で脱保護する工程を必要としたことなどの要因により、十分な工程短縮に至らなかったという問題があった。そこで、アスコフラノンの効率的合成を可能にする短工程での全合成法の開発が強く望まれてきた。
特開昭61-152665号公報 特開昭62-36334号公報 Bull. Chem. Soc. Jpn. 1995, 68, 2727-2734
Figure JPOXMLDOC01-appb-C000024
(上記式中、RとRは、同一または異なって、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数1-7のアルコキシカルボニル基を有するフェニル基を表し、RはMeSiCHCHOCH基を表し、Rはテトラヒドロピラン-2-イル基を表し、Xはハロゲンを表す。)
 解決しようとする問題点は、アスコフラノンの効率的合成を可能にする短工程での全合成法を開発することである。
 本発明者らは、従来の全合成法よりも効率的なアスコフラノンの全合成法の探索を行ってきたが、合成中間体として新規化合物である式IIIのジオール、式IVのジエステル、式Vのジヒドロフラン誘導体、式VIIのフラノン誘導体を見出し、下記の反応式で示される短工程のアスコフラノン全合成法を確立し、本発明を完成させた。これらの新規化合物は、既に報告されているアスコフラノンの不斉合成法(非特許文献5等参照)を用いれば、いずれもその光学異性体を得ることが可能である。
Bull. Chem. Soc. Jpn. 1999, 72, 279-284
Figure JPOXMLDOC01-appb-C000025
(式中、R、R、およびXは、以下に記載する意味を表す。)
 本発明は、一般式(XX)、
Figure JPOXMLDOC01-appb-C000026
(式中、YはRCOO基、またはハロゲン原子、またはRSO基(Rは炭素数1-7のアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルキル基を有するフェニル基を表す)を表し、
Wは、次の基
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
から選択される基を表し、
 RとRは、同一または異なって、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数1-7のアルコキシカルボニル基を有するフェニル基を表す。但し、Yがハロゲン原子またはRSO基(Rは上記の意味を有する。)を表す場合、Wは
Figure JPOXMLDOC01-appb-C000031
の基を表す。)
で示される化合物、およびその光学異性体、並びにそれらの医薬上許容される塩を提供する。
 例えば、本発明は、下記式(III)、(IV)、(V)、および(VII)で表される化合物、およびその光学異性体、並びにそれらの医薬上許容される塩を提供する。
Figure JPOXMLDOC01-appb-C000032
(式(III)において、
 Rは、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数炭素数1-7のアルコキシカルボニル基を有するフェニル基を表す)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
(式(IV)および式(V)において、
 RとRは、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数炭素数1-7のアルコキシカルボニル基を有するフェニル基を表す)
Figure JPOXMLDOC01-appb-C000035
(式(VII)において、
 Xは、ハロゲン原子またはRSO基(Rは炭素数1-7のアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルキル基を有するフェニル基を表す)を表す)
 更に、本発明は、式(III)、(IV)、(V)、および(VII)で示される化合物を合成中間体とするアスコフラノンの新規な全合成法、即ち、
 一般式II
Figure JPOXMLDOC01-appb-C000036
(式中、Rは、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数1-7のアルコキシカルボニル基を有するフェニル基を表す。)で表される化合物を2-メチル-3-ブチン-2-オールと反応させることにより、一般式(III)
Figure JPOXMLDOC01-appb-C000037
(式中、Rは、前記と同じ意味を表す。)で表される化合物を得、この化合物を一般式RCO(Hal)(式中、Rは、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数1-7のアルコキシカルボニル基を有するフェニル基を表し、(Hal)はハロゲン原子を表す。)で表されるアシルハライドと反応させることにより、一般式(IV)
Figure JPOXMLDOC01-appb-C000038
(式中、RおよびRは、前記と同じ意味を表す。)で表される化合物を得、この化合物を閉環反応によって一般式(V)
Figure JPOXMLDOC01-appb-C000039
(式中、RおよびRは、前記と同じ意味を表す。)で表される化合物に変換し、この化合物を脱アシル化反応によって一般式(VI)
Figure JPOXMLDOC01-appb-C000040
で表される化合物に変換し、この化合物の末端OH基をハロゲン原子に置換することによって一般式(VII)
Figure JPOXMLDOC01-appb-C000041
(式中、Xは、ハロゲン原子を表す。)
で表される化合物に変換し、この化合物を一般式(VIII)
Figure JPOXMLDOC01-appb-C000042
で表される化合物と反応させることにより、次式(I)
Figure JPOXMLDOC01-appb-C000043
で示されるアスコフラノンを製造することを特徴とする、アスコフラノンの製造方法を提供する。
 本発明の製造方法は、式(III)、(IV)、(V)、および(VII)で示される化合物を新規な合成中間体として使用するため、従来のアスコフラノンの全合成法に比べ、製造工程の数を大幅に削減することを可能にするという利点がある。
 本願の特許請求の範囲および明細書中で用いられる用語「炭素数1-7のアルキル基」とは、直鎖状もしくは分枝状の炭素数が1-7のアルキル基を意味する。かかるアルキル基としては、例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、t-ブチル、n-ペンチル、i-ペンチル、n-ヘキシル、2,2,2-トリメチルエチル、2,2,2-トリメチル-1-メチルエチル、n-ヘプチルなどが挙げられる。
 本願の特許請求の範囲および明細書中で用いられる用語において、「炭素数1-7のアルコキシ基」とは、「炭素数1-7のアルキル-O-」を意味する。当該「炭素数1-7のアルコキシ基」における「炭素数1-7のアルキル」は上記「炭素数1-7のアルキル基」について記載された意味を有する。
 本願の特許請求の範囲および明細書中で用いられる用語において、「炭素数1-7のアルコキシカルボニル基」とは、「炭素数1-7のアルキル-O-CO-」を意味する。当該「炭素数1-7のアルコキシカルボニル基」における「炭素数1-7のアルキル」は上記「炭素数1-7のアルキル基」について記載された意味を有する。
 本願の特許請求の範囲および明細書中で用いられる用語「ハロゲン」とは、フッ素、塩素、臭素、およびヨウ素を意味する。
 本願の特許請求の範囲および明細書中で用いられる用語「フェノキシアルキル基」とは、「フェニル-O-アルキル」を意味する。当該「フェノキシアルキル基」における「アルキル」は「炭素数1-3のアルキル基」を意味する。ここにおいて、「炭素数1-3のアルキル基」とは、直鎖状もしくは分枝状の炭素数が1-3のアルキル基を意味する。かかるアルキル基としては、メチル、エチル、n-プロピル、i-プロピルが挙げられる。
 本願の特許請求の範囲および明細書中で用いられる用語「アスコフラノン」とは、アスコフラノン及びアスコフラノンのベンゼン環上の置換基がアスコフラノンと相違するアスコフラノンの誘導体を意味する。このような誘導体としては、例えば、アスコフラノンのベンゼン環上のアルデヒド基がアセチル基によって置き換わったアスコフラノン誘導体、アスコフラノンのベンゼン環上のアルデヒド基がカルボキシル基によって置き換わったアスコフラノン誘導体を挙げることができる。
 本願の特許請求の範囲および明細書中で用いられる用語「医薬上許容される塩」とは、医薬の製造において使用することができる任意の塩を意味し、例えば、アルカリ金属(例えば、ナトリウム、カリウム又はリチウム)、アルカリ土類金属(例えば、カルシウム又はマグネシウム)との塩;アンモニウム塩;メチルアミン、ジメチルアミン、トリメチルアミン、ピペリジン及びモルホリンとの塩の如き生理学的に許容できるカチオンを付与する有機塩基との塩が挙げられる。加えて、十分に塩基性である化合物については、適する薬学的に許容できる塩には、塩化水素、硝酸、硫酸、リン酸との酸付加塩、及び酢酸、酒石酸、リンゴ酸、クエン酸、マレイン酸、メタンスルホン酸及びp-トルエンスルホン酸の如き有機酸との酸付加塩が含まれる。これらの塩は、当該技術分野において周知の若しくは慣用的な方法によって得ることができる。
 合成中間体として新規化合物である前記式(III)のジオール誘導体、式(IV)のジエステル誘導体、式(V)のジヒドロフラン誘導体、および式(VII)のフラノン誘導体、並びに最終生成物であるアスコフラノンは、既に報告されているアスコフラノンの不斉合成法(非特許文献5等参照)を用いれば、いずれもその光学異性体を得ることが可能である。以下にその概要を説明する。
Figure JPOXMLDOC01-appb-C000044
 式(II)で示されるアルデヒドから3工程で調製されるラセミ体のジオールの2級水酸基を酸化し、式(XIII)で表されるアルキノンとした。これを不斉還元反応に供し、立体選択的に(S)-体のジオールとした。この2級水酸基のみをアシル化し、式(S)-XIで表される化合物を得た。これを銀触媒下における閉環反応に供し、式(XIV)で示されるジヒドロフラン誘導体へと導いた。これは以前に報告されている式(I)で示されるアスコフラノンのラセミ体合成(非特許文献4)時の重要中間体であり、同様の方法を用いると光学活性体の合成も可能である。上記反応式中、「3 steps」は3工程、「oxidation」は酸化、「enantioselective reduction」はエナンチオ選択的還元、「known」は非特許文献4に記載された公知の方法、をそれぞれ意味する。
 本発明による、前記式(III)、(IV)、(V)、(VII)で示される化合物を合成中間体とする上記の反応式で示される短工程のアスコフラノン全合成法において、式(II)の化合物は、既知の方法を参考にして市販の出発原料であるゲラニルオールから2工程で調製できる(非特許文献2等を参照)。従来、式(II)の化合物にプロパルギルアルコール誘導体アニオンを直接反応させて式(III)の化合物を得ることは不可能であったので、式(II)の化合物中の水酸基の保護基をエステル型からエーテル型に替えた後にプロパルギルアルコール誘導体アニオンと反応させ、さらにエステル化して式(XI)の化合物を得、後々の工程でこのエーテル型保護基を除去していたので全合成の工程が長くなる一因となっていた(特許文献4、特許文献5、非特許文献4等を参照)。
 しかし、本発明者らは、式(II)の化合物に対するプロパルギルアルコール誘導体の当量を1以下に抑え、反応温度と反応停止温度を低温にすることにより、式(II)の化合物中の水酸基の保護基がエステル型のままで、プロパルギルアルコール誘導体アニオンと反応させて式(III)の化合物を合成することができたので、式(II)の化合物中の水酸基の保護基をエステル型からエーテル型に替える工程を省略できた。さらに、従来の合成中間体である式(X)の化合物(式中、Xはハロゲン原子を表す)を調製するためには、式(XI)の化合物中のエステル型保護基とエーテル型保護基を別々の工程で除去する必要があった。しかし、本発明の式(III)の化合物から前記式(IV)の化合物を経て得られる前記式(V)の化合物は、ジエステル型の化合物であるので、1工程で両方のエステル型保護基を除去して前記式(VI)のアルコール型化合物に変換することができたので、全合成の工程を短縮することができた。加えて、従来の合成では、芳香環セグメント(IX)とテルペン側鎖セグメント(X)との結合を無水条件化でフェニルリチウム型の中間体を経て形成させていたため、それぞれのエステル型の官能基をアルデヒド型、ケトン型に変換する必要があり、全合成の工程が長くなる一因となっていた。しかし、本発明者らは、芳香環セグメントとしてアスコフラノンと同じアルデヒド型の前駆体(VIII)、またテルペン側鎖セグメントとしてアスコフラノンと同じケトン型の前駆体(VII)を採用し、以前に開発した塩化カルシウム/水酸化カリウム複合反応剤を用いる方法(非特許文献6等を参照)により結合したので、官能基変換の工程を省略することができた。以上のように、アスコフラノンの全合成についてはこれまでに幾つか報告されているが、最短でも12工程を要していた(特許文献4、特許文献5、非特許文献4等を参照)が、本発明では新たな合成中間体を見出したことにより、市販の酢酸ゲラニルを出発原料とした場合、7工程での全合成に成功した。
J. Org. Chem. 1996, 61, 6768-6769
 以下に、本発明の製造方法における各工程について説明する。
1.式(III)化合物の製造
 2-メチル-3-ブチン-2-オール(HC≡C-C(CHOH)(1当量)のTHF溶液に攪拌しながら-20℃でn-ブチルリチウム(2当量)を加え、これを-50℃に冷却した後、ここに式(II)で示されるアルデヒド(1.1当量)のTHF溶液を滴下し、同温度で攪拌を続けて調製した。
2.式(IV)化合物の製造
 式(III)で示されるジオール(1当量)のクロロホルム溶液に0℃でピリジン(3.6当量)、4-ジメチルアミノピリジン(0.2当量)および一般式RCO(Hal)(式中、Rおよび(Hal)は前記の意味を表す。)で示されるアシルハライド(2.2当量)を加え、その後同温度で攪拌を続けて調製した。
3.式(V)化合物の製造
 式(IV)で示されるジエステル化合物(1当量)のトルエン溶液に室温で触媒量の四フッ化ホウ酸銀を加え、遮光下で加熱、攪拌して調製した。
4.式(VI)化合物の製造
 式(V)で示されるジヒドロフラン誘導体(1当量)のメタノール溶液に室温でナトリウムメトキシド(1Mメタノール溶液として0.3当量)を加え、攪拌を続けることで調製した。
5.式(VII)化合物の製造
 式(VI)で示される1級アルコール(1当量)のジエチルエーテル溶液に0℃で四臭化炭素(2.5当量)とトリオクチルホスフィン(n-(C17P)(2.5当量)を加え、同温度で攪拌を続けて調製した。
6.式(I)化合物(アスコフラノン)の製造
 式(VII)で示される化合物(1.2当量)のメタノール溶液に、式(VIII)で示されるベンズアルデヒド誘導体(3-クロロ-4,6-ジヒドロキシ-2-メチルベンズアルデヒド)(1当量)と塩化カルシウム二水和物(0.7当量)を加え、これを0℃に冷却した後、ここに水酸化カリウム(1Mメタノール溶液として2.1当量)を滴下し、同温度で攪拌して調製した。
 なお、上記において、式(VIII)で示されるベンズアルデヒド誘導体の代わりに3-クロロ-4,6-ジヒドロキシ-2-メチルアセトフェノンを用いることにより、アスコフラノンの代わりにアセチルアスコフラノンを得ることができる。このように、式(VIII)で示されるフェノール誘導体の代わりに種々のフェノール誘導体を用いることにより対応するアスコフラノン誘導体を得ることができる。このようなアスコフラノン誘導体の製造方法もすべて本願発明の範囲に包含される。
 以下に本発明を実施例に基づいて詳細に説明するが、これは本発明を何ら限定するものではない。
実施例1
 酢酸(2E,6E)-8,11-ジヒドロキシ-3,7,11-トリメチル-2,6-ドデカジエン-9-インイル(2)((2E,6E)-8,11-Dihydroxy-3,7,11-trimethyl-2,6-dodecadien-9-ynyl acetate (2))
Figure JPOXMLDOC01-appb-C000045
 2-メチル-3-ブチン-2-オール(185mg,2.20mmol)のTHF(14ml)溶液にAr気流下、-20℃でn-ブチルリチウム(1.58Mヘキサン溶液,2.7ml,4.3mmol)を加え、2時間撹拌した。反応溶液を-50℃に冷却した後、市販の酢酸ゲラニルから調製した既知の(2E,6E)-8-アセトキシ-2,6-ジメチル-2,6-オクタジエナール(Tetrahedron 1974, 30, 715)(505mg,2.40mmol)のTHF(18ml)溶液を滴下した。同温度で9時間撹拌した後、飽和NHCl水溶液(5ml)を加え、反応を停止させた。反応溶液を酢酸エチルで抽出し、有機層を飽和食塩水で洗い、NaSOで乾燥した。溶媒を留去した後、残さをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)で精製し、ジオール2を得た(479mg,68%)。
1H-NMR (400 MHz, CDCl3)δ5.54 (1H, t, J = 7.0 Hz, AcOCH2CH=C), 5.33 {1H, t, J = 7.1 Hz, CH=C(CH3)CH(OH)}, 4.76 {1H, d, J = 5.1 Hz, CH=C(CH3)CH(OH)}, 4.59 (2H, d, J = 7.0 Hz, AcOCH2CH=C), 2.20-2.16 (2H, m, CH2), 2.12-2.09 (2H, m, CH2), 2.06 (3H, s, CH3C=O), 1.97 {1H, d, J = 5.1 Hz, CH=C(CH3)CH(OH)}, 1.74 (3H, s, CH3), 1.71 (3H, s, CH3), 1.61 {1H, s, C(OH)(CH3)2}, 1.53 {6H, s, C(OH)(CH3)2}. IR (neat) 3382, 2978, 2922, 1734, 1711, 1663, 1443, 1362, 1236, 1167, 1024, 951, 864, 712, 610, 554 cm-1.
実施例2
 酢酸(2E,6E)-11-ヒドロキシ-3,7,11-トリメチル-8-ピバロキシ-2,6-ドデカジエン-9-インイル(3)((2E,6E)-11-Hydroxy-3,7,11-trimethyl-8-pivaloxy-2,6-dodecadien-9-ynyl acetate (3))
Figure JPOXMLDOC01-appb-C000046
 ジオール2(1.058g,3.594mmol)のCHCl(2.8ml)溶液にAr気流下、0℃でピリジン(1.06ml,13.1mmol),DMAP(88mg,0.72mmol),塩化ピバロイル(0.97ml,7.9mmol)を加え、同温で8時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。合わせた有機層を飽和食塩水で洗い、NaSOで乾燥した。溶媒を留去した後、残さをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=7/2)で精製し、ピバル酸エステル3を得た(1.322g,97%)。
1H-NMR (400 MHz, CDCl3)δ5.77 (1H, s, CHOPiv), 5.62 {1H, t, J = 7.0 Hz, CH=C(CH3)CHOPiv}, 5.35 (1H, t, J = 7.3 Hz, AcOCH2CH=C), 4.59 (2H, d, J = 7.3 Hz, AcOCH2CH=C), 2.22-2.16 (2H, m, CH2), 2.12-2.08 (2H, m, CH2), 2.06 (3H, s, CH-3C=O), 1.71 (3H, s, CH3), 1.69 (3H, s, CH3), 1.62 {1H, br, C(OH)(CH3)2}, 1.51 {6H, s, C(OH)(CH3)2}. 1.19 {9H, s, C(CH3)3}. IR (neat) 3460, 2978, 2922, 2866, 1732, 1666, 1481, 1456, 1366, 1265, 1234, 1144, 1028, 955, 932, 864, 785, 708, 608, 561 cm-1.
実施例3
ピバル酸5-[(1E,5E)-7-アセトキ-1,5-ジメチル-1,5-ヘプタジエニル]-2,2-ジメチル-3-オキソレン-3-イル(4)(5-[(1E,5E)-7-acetoxy-1,5-dimethyl-1,5-heptadienyl]-2,2-dimethyl-3-oxolen-3-yl pivalate (4))
Figure JPOXMLDOC01-appb-C000047
 ピバル酸エステル3(937mg,2.48mmol)のトルエン(25ml)溶液にAr気流下、室温でAgBF(38mg,0.20mmol)を加え、遮光しながら80℃で4時間撹拌した。反応溶液を室温に戻してから、水を加え、CHClで抽出した。合わせた有機層を飽和食塩水で洗い、NaSOで乾燥した。溶媒を留去した後、残さをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸ブチル=20/1)で精製し、ジヒドロフラン4を得た(589mg,63%)。
1H-NMR (400 MHz, CDCl3)δ5.58 (1H, d, J = 1.5 Hz, CH=CHOPiv), 5.47 (1H, t, J = 6.8 Hz, CH2CH2CH=C), 5.34 (1H, dt, J = 1.1, 7.0 Hz, AcOCH2CH=C), 5.14 (1H, d, J = 0.8 Hz, CH=CHOPiv), 4.58 (2H, d, J = 7.0 Hz, AcOCH2CH=C), 2.20-2.15 (2H, m, CH2), 2.10-2.05 (2H, m, CH2), 2.06 (3H, s, CH-3C=O), 1.70 (3H, s, CH3), 1.60 (3H, s, CH3), 1.37 {3H, s, C(CH3)2}, 1.33 {3H, s, C(CH3)2}, 1.28 {9H, s, C(CH3)3}. IR (neat) 2978, 2943, 2860, 1763, 1736, 1655, 1481, 1460, 1366, 1331, 1275, 1234, 1146, 1105, 1028, 955, 876, 837, 760, 604, 586 cm-1.
実施例4
4,5-ジヒドロ-5-[(1E,5E)-7-ヒドロキシ-1,5-ジメチル-1,5-ヘプタジエニル]-2,2-ジメチル-3(2H)-フラノン(5)(4,5-Dihydro-5-[(1E,5E)-7-hydroxy-1,5-dimethyl-1,5-heptadieyl]- 2,2-dimethyl-3(2H)-furanone (5))
Figure JPOXMLDOC01-appb-C000048
 ジヒドロフラン4(810mg,2.14mmol)のメタノール(63ml)溶液に室温でNaOMe(1Mメタノール溶液,0.63ml,0.63mmol)を加え、3時間撹拌した。反応溶液に水を加え、エーテルで抽出した。合わせた有機層を飽和食塩水で洗い、NaSOで乾燥した。溶媒を留去した後、残さをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し、フラノン5を得た(498mg,92%)。
1H-NMR (500 MHz, CDCl3)δ5.56 (1H, t, J = 7.0 Hz, HOCH2CH=C), 5.42 (1H, t, J = 6.9 Hz, CH=C), 4.57 (1H, dd, J = 6.4, 10.1 Hz, CHCH2C=O), 4.16 (2H, d, J = 6.2 Hz, HOCH2CH=C), 2.52 (1H, dd, J = 6.4, 18.2 Hz, CHCH2C=O), 2.52 (1H, dd, J = 6.4, 18.2 Hz, CHCH2C=O), 2.45 (1H, dd, J = 10.1, 18.2 Hz, CHCH2C=O), 2.27-2.14 (2H, m, CH2CH2), 2.11-2.08 (2H, m, CH2CH2), 1.67 (3H, s, CH3), 1.66 (3H, s, CH3), 1.59 (1H, br, OH), 1.31 (3H, s, CH3), 1.24 (3H, s, CH3). 物性およびスペクトルデータは文献値(非特許文献5)と一致した。
実施例5
5-[(1E,5E)-7-ブロモ-1,5-ジメチル-1,5-ヘプタジエニル]-4,5-ジヒドロ-2,2-ジメチル-3(2H)-フラノン(6)(5-[(1E,5E)-7-Bromo-1,5-dimethyl-1,5-heptadienyl]-4,5-dihydro-2,2-dimethyl-3(2H)-furanone (6))
Figure JPOXMLDOC01-appb-C000049
 フラノン5(448mg,1.78mmol)のエーテル(10ml)溶液にAr気流下、0℃でCBr(1.482g,4.469mmol),(17P(1.642g,4.430mmol)を加え、同温で4時間撹拌した。溶媒を留去した後、残さをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1)で精製し、臭化物6を得た(538mg,96%)。
1H-NMR (400 MHz, CDCl3)δ5.54 (2H, m, 2 x CH=C), 4.57 {1H, dd, J = 6.4, 10.2 Hz, C(O)CH2CH}, 4.02 (2H, d, J = 8.4 Hz, BrCH2CH=C), 2.53 {1H, dd, J = 6.4, 18.2 Hz, C(O)CH2CH}, 2.45 {1H, dd, J = 10.2, 18.2 Hz, C(O)CH2CH}, 2.24-2.17 (2H, m, CH2), 2.15-2.09 (2H, m, CH2), 1.74 (3H, s, CH3), 1.67 (3H, s, CH3), 1.31 {3H, s, C(CH3)2}, 124 {3H, s, C(CH3)2}. IR (neat) 2965, 2901, 2860, 1757, 1659, 1460, 1377, 1356, 1342, 1310, 1202, 1170, 1111, 1001, 856, 675 cm-1
実施例6
3-クロロ-4,6-ジヒドロキシ-2-メチル-5-[(2E,6E)-3-メチル-7-(3,3-ジメチル-4-オキソ-2-オキサシクロペンチル)-2,6-オクタジエニル]ベンズアルデヒド(アスコフラノン)(3-Chloro-4,6-dihydroxy-2-methyl-5-[(2E,6E)-3-methyl-7-(3,3-dimethyl-4-oxo-2-oxacyclopentyl)-2,6-octadienyl]benzaldehyde (ascofuranone))
Figure JPOXMLDOC01-appb-C000050
 臭化物6(136mg,0.431mmol)のメタノール(0.5ml)溶液に5-メチルレゾルシノールから2工程で調製した前記式(VIII)で示される既知のアルデヒド(J. Org. Chem. 1985, 50, 3997-4005)(67mg,0.36mmol)、CaCl・2HO(37mg,0.25mmol)を加え、0℃に冷却した。これにKOH(1Mメタノール溶液,0.76ml,0.76mmol)を加え、同温で8時間撹拌した。反応溶液に飽和食塩水を加えた後、酢酸エチルで抽出した。合わせた有機層をNaSOで乾燥した後、溶媒を留去し、残さをPTLC(1回目:ヘキサン/THF=5/1,2回目:ヘキサン/酢酸エチル=5/1)および再結晶(ヘキサン/酢酸エチル)で精製し、dl-アスコフラノンを得た(52mg,34%)。物性およびスペクトルデータは文献値と一致した(非特許文献2、3、特許文献4、5、非特許文献4等を参照)。Mp 88-90℃.
1H-NMR (500 MHz, CDCl3)δ 12.70 (1H, s, Ar-OH), 10.14 (1H, s, Ar-CHO), 6.43 (1H, s, Ar-OH), 5.51 (1H, t, J = 6.9 Hz, CH=C), 5.21 (1H, d, J = 7.1 Hz, ArCH2CH=C), 4.52 {1H, dd, J = 6.3, 10.1 Hz, C(O)CH2CH}, 3.39 (2H, d, J = 7.1 Hz, ArCH-2CH=C), 2.61 (3H, s, Ar-CH3), 2.42 {1H, dd, J = 6.3, 18.2 Hz, C(O)CH2CH}, 2.35 {1H, dd, J = 10.1, 18.2 Hz, C(O)CH2CH}, 2.18-2.14 (2H, m, CH2), 2.06-2.02 (2H, m, CH2), 1.79 (3H, s, CH3), 1.63 (3H, s, CH3), 1.28 {3H, s, C(CH3)2}, 1.22 {3H, s, C(CH3)2}. IR (KBr) 3327, 2985, 2922, 2874, 1740, 1634, 1582, 1460, 1418, 1371, 1325, 1304, 1283, 1248, 1203, 1171, 1111, 1059, 1011, 907, 824, 712, 631, 592, 523 cm-1.
 なお、出発物質である式(II)で示されるアルデヒドは、例えば、次のいずれかの方法で製造することができる。
式(II)で示されるアルデヒドの製法1
 式1で示されるゲラニオールまたはその誘導体のカルボン酸エステルを二酸化セレン(SeO)及び二酸化マンガン(MnO)を用いて酸化し、式(II)で示されるアルデヒド化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000051
(式中、Rは、前記と同じ意味を表す。)
 なお、下記の非特許文献7には、酢酸ゲラニルを二酸化セレン(SeO)及び二酸化マンガン(MnO)を用いて酸化し、式(II)で示されるアルデヒド化合物を46%の収率で得たことが記載されている。
K. Mori, M. Ohki, and M. Matsui, Tetrahedron, 30, 715 (1974)
式(II)で示されるアルデヒドの製法2
 式1で示されるゲラニオールまたはその誘導体のカルボン酸エステルをオゾン(O)分解することによって、式2で示される対応するアルデヒドを得ることができる。更に、得られた式2のアルデヒドのトルエン溶液に2-(トリフェニルフォスファラニリデン)プロピオンアルデヒドを加えて反応させると式(II)で示されるアルデヒド化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000052
(式中、Rは、前記と同じ意味を表す。)
 製法2は製法1に比べて製造工程が1工程が多いが、有毒な二酸化セレン(SeO)を用いずに式(II)のアルデヒド化合物を得ることができるという利点がある。以下に製法2に基づく製造例を記す。
製造例1
(E)-3-methyl-6-oxo-2-hexenyl acetate の製造
Figure JPOXMLDOC01-appb-C000053
 市販の酢酸ゲラニル (294 mg, 1.5 mmol)のpyridine (0.39 ml)とジクロロメタン(12 ml)の混合溶媒に、-80℃でO3を吹き込みながら5時間攪拌した。反応終了後、同温でアルゴンを溶液に吹き込み過剰なOを取り除いた後、同温でトリフェニルフォスフィン(1180mg, 4.5 mmol)を加え、除々に室温に戻しながら3時間攪拌した。1 M HClを加え、CHCl3で3回抽出し、合わせた有機層を飽和食塩水で洗い、Na2SO4で乾燥した。溶媒を留去したあと、残渣をシリカゲルクロマトグラフィー(Hexane : EtOAc = 6:1)で精製し、対応するアルデヒドを得た(130mg,収率51%)。NMR (400 MHz, CDCl3) δ 9.78 (s, 1H), 5.36 (t, J = 7.0 Hz, 1 H), 4.58 (d, J = 7.0), 2.59 (t, J = 7.5 Hz, 2H), 2.38 (t, 7J = 7.5 Hz, 2H), 2.06 (s, 3H), 1.73 (s, 3H).
製造例2
(E,E)-3,7-Dimethyl-8-oxo-2,6-octadienyl acetate の製造
Figure JPOXMLDOC01-appb-C000054
 (E)-3-methyl-6-oxo-2-hexenyl acetate (36 mg, 0.2 mmol)のトルエン(5 ml)溶液に2-(Triphenylphosphranylidene) propionaidehyde (130 mg, 0.4 mmol)を加え、100℃で36時間攪拌した。溶媒を留去した後、Et2Oを加え濾過した。濾液を濃縮して得られた粗生成物を分取用TLC (n-Hexane : EtOAc = 4:1)で精製し既知のアルデヒド(Tetrahedron, 30, 715 (1974))を得た(38mg,収率91%)。 NMR (400 MHz, CDCl3) δ 9.40 (s, 1H), 6.45 (t, J = 7.0, 1H), 5.39 (t, J = 7.0, 1H), 4.60 (d, J = 7.0, 2H), 2.20~2.50 (m, 4H), 2.06 (s, 3H), 1.76 (s, 3H), 1.75 (s,3H).
 本発明の製造方法は、式(III)、(IV)、(V)、および(VII)で示される化合物を新規な合成中間体として使用するため、従来のアスコフラノンおよびその誘導体の全合成法に比べ、製造工程の数を大幅に削減することを可能にする。したがって、アスコフラノンおよびその誘導体の工業的製法として時間的にも経済的にも極めて有用である。

Claims (9)

  1.  一般式(XX)、
    Figure JPOXMLDOC01-appb-C000001
    (式中、YはRCOO基、またはハロゲン原子、またはRSO基(Rは炭素数1-7のアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルキル基を有するフェニル基を表す)を表し、
    Wは、次の基
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    から選択される基を表し、
     RとRは、同一または異なって、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数1-7のアルコキシカルボニル基を有するフェニル基を表す。但し、Yがハロゲン原子またはRSO基(Rは上記の意味を有する。)を表す場合、Wは
    Figure JPOXMLDOC01-appb-C000006
    の基を表す。)
    で示される化合物、およびその光学異性体、並びにそれらの医薬上許容される塩。
  2.  下記式
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは、前記と同じ意味を表す。)
    で表される化合物である、請求項1記載の化合物、およびその光学異性体、並びにそれらの医薬上許容される塩。
  3.  下記式
    Figure JPOXMLDOC01-appb-C000008
    (式中、RおよびRは、前記と同じ意味を表す。)
    で表される化合物である、請求項1記載の化合物、およびその光学異性体、並びにそれらの医薬上許容される塩。
  4.  下記式
    Figure JPOXMLDOC01-appb-C000009
    (式中、RおよびRは、前記と同じ意味を表す。)
    で表される化合物である、請求項1記載の化合物、およびその光学異性体、並びにそれらの医薬上許容される塩。
  5.  下記式
    Figure JPOXMLDOC01-appb-C000010
    (式中、Xはハロゲン原子を表す。)
    で表される化合物である、請求項1記載の化合物、およびその光学異性体、並びにそれらの医薬上許容される塩。
  6.  一般式(II)
    Figure JPOXMLDOC01-appb-C000011
    (式中、Rは、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数1-7のアルコキシカルボニル基を有するフェニル基を表す。)で表される化合物を2-メチル-3-ブチン-2-オールと反応させることにより、一般式(III)
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは、前記と同じ意味を表す。)で表される化合物を得、この化合物を一般式RCO(Hal)(式中、Rは、水素原子、炭素数1-7のアルキル基、ベンゼン環の炭素原子上にハロゲン原子を有するフェノキシアルキル基またはベンゼン環の炭素原子上に炭素数1-7のアルコキシ基あるいは炭素数1-7のアルコキシカルボニル基を有するフェニル基を表し、(Hal)はハロゲン原子を表す。)で表されるアシルハライドと反応させることにより、一般式(IV)
    Figure JPOXMLDOC01-appb-C000013
    (式中、RおよびRは、前記と同じ意味を表す。)で表される化合物を得、この化合物を閉環反応によって一般式(V)
    Figure JPOXMLDOC01-appb-C000014
    (式中、RおよびRは、前記と同じ意味を表す。)で表される化合物に変換し、この化合物を脱アシル化反応によって一般式(VI)
    Figure JPOXMLDOC01-appb-C000015
    で表される化合物に変換し、この化合物の末端OH基をハロゲン原子に置換することによって一般式(VII)
    Figure JPOXMLDOC01-appb-C000016
    (式中、Xは、ハロゲン原子を表す。)
    で表される化合物に変換し、この化合物を一般式(VIII)
    Figure JPOXMLDOC01-appb-C000017
    で表される化合物と反応させることにより、次式(I)
    Figure JPOXMLDOC01-appb-C000018
    で示されるアスコフラノンを製造することを特徴とする、アスコフラノンの製造方法。
  7.  既知の不斉合成法を用いる、請求項6記載の製造方法。
  8.  式1
    Figure JPOXMLDOC01-appb-C000019
          

    (式中、Rは、前記と同じ意味を表す。)
    で示されるゲラニオールまたはその誘導体のカルボン酸エステルを二酸化セレン(SeO)及び二酸化マンガン(MnO)を用いて酸化し、式(II)で示されるアルデヒド化合物を得る、請求項6または7記載の方法。
  9.  式1
          

    (式中、Rは、前記と同じ意味を表す。)
    で示されるゲラニオールまたはその誘導体のカルボン酸エステルのオゾン分解によって、式2
    Figure JPOXMLDOC01-appb-C000021
         

    (式中、Rは、前記と同じ意味を表す。)
    で示される対応するアルデヒドを得、次いで得られた式2のアルデヒドに下式
    Figure JPOXMLDOC01-appb-C000022
    (式中、Phはフェニル基を表す。)
    で示される2-(トリフェニルフォスファラニリデン)プロピオンアルデヒドを加えて反応させることにより式(II)で示されるアルデヒド化合物を得る、請求項6または7記載の方法。
PCT/JP2009/052705 2008-02-18 2009-02-17 種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法 WO2009104605A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554326A JPWO2009104605A1 (ja) 2008-02-18 2009-02-17 種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008036014 2008-02-18
JP2008-036014 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009104605A1 true WO2009104605A1 (ja) 2009-08-27

Family

ID=40985484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052705 WO2009104605A1 (ja) 2008-02-18 2009-02-17 種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法

Country Status (2)

Country Link
JP (1) JPWO2009104605A1 (ja)
WO (1) WO2009104605A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152665A (ja) * 1984-12-27 1986-07-11 Sagami Chem Res Center 六置換ベンゼン誘導体
JPS6236334A (ja) * 1985-08-08 1987-02-17 Sagami Chem Res Center 水酸基の脱保護法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152665A (ja) * 1984-12-27 1986-07-11 Sagami Chem Res Center 六置換ベンゼン誘導体
JPS6236334A (ja) * 1985-08-08 1987-02-17 Sagami Chem Res Center 水酸基の脱保護法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 68, 1995, pages 2727 - 2734 *
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 72, 1999, pages 279 - 284 *
JOURNAL OF ORGANIC CHEMISTRY, vol. 61, 1996, pages 6768 - 6769 *
TETRAHEDRON LETTERS, vol. 32, 1991, pages 683 - 686 *
TETRAHEDRON, vol. 30, 1974, pages 715 - 718 *
THE CHEMICAL SOCIETY OF JAPAN: "Shin Jikken Kagaku Koza 14 Yuki Kagobutsu no Gosei to Hanno V", SHIN JIKKEN KAGAKU KOZA 14 YUKI KAGOBUTSU NO GOSEI TO HANNO V, 20 July 1978 (1978-07-20), pages 2495 - 2516 *

Also Published As

Publication number Publication date
JPWO2009104605A1 (ja) 2011-06-23

Similar Documents

Publication Publication Date Title
US6700025B2 (en) Process for stereoselective synthesis of prostacyclin derivatives
JP3171931B2 (ja) (R)−(−)−4−シアノ−3−ヒドロキシ酪酸t−ブチルエステル及びその製造方法
JP3351563B2 (ja) 3−ヒドロキシ酪酸誘導体の製造法
Żurawiński et al. Stereocontrolled synthesis of enantiopure anticancer cyclopentenone prostaglandin analogues:(−)-and (+)-TEI-9826
JP5622019B2 (ja) アミノアルコール誘導体塩構造を有する不斉有機分子触媒及び該不斉有機分子触媒を用いた光学活性化合物の製造方法
KR0144684B1 (ko) 디카르복실산의 모노에스테르 및 그의 제조방법
JP2506505B2 (ja) 環状ペルオキシアセタ―ルラクトン、ラクト―ルおよびエ―テル化合物
CN1421429A (zh) 制备2-烷基-2-环戊烯酮的方法
WO2014094511A1 (zh) 一种制备曲前列尼尔的中间体、其制备方法以及通过其制备曲前列尼尔的方法
WO2009104605A1 (ja) 種々の生理活性を有するアスコフラノンの新規合成中間体およびそれを用いた新規短縮全合成法
Avery et al. The first total synthesis of natural grenadamide
JP2010229097A (ja) 新規オキサゾリジン誘導体及び新規オキサゾリジン誘導体塩、並びに該オキサゾリジン誘導体塩を不斉有機分子触媒とした光学活性化合物の製造方法
JPS60208942A (ja) 光学活性α−アリ−ルアルカン酸の製造方法
JP3986606B2 (ja) ビタミンd誘導体のa環部分の合成に有用な合成中間体、その製造方法およびその使用方法
JPH0745504B2 (ja) プロスタグランジン前駆体およびその製法
WO2002072505A1 (fr) Systeme de resolution optique et procede de resolution optique d'alcool utilisant celui-ci
Matsuo et al. Concise formal synthesis of (S)-gregatin B
JP2654835B2 (ja) 光学活性4―エン―6―オール化合物、その製造中間体及びそれらの製造方法
JP4811547B2 (ja) 光学活性シクロヘキセン化合物の製造法及びこの製造に用いる光学活性シクロヘキセン誘導体
JP3823668B2 (ja) スフィンゴミエリン類縁体およびその製法
JP2756608B2 (ja) 光学活性イソオキサゾール誘導体の製造方法、並びにその製造中間体及びその製造方法
JP2005306755A (ja) 2−ベンゾイルオキシアセトアルデヒド誘導体の製造法
JP4987700B2 (ja) (5h,9h)−6,8−ジオキサベンゾシクロヘプテンの新規7,7−二置換誘導体、その調製方法、非ステロイド性ビタミンdアナログの合成におけるその使用
JP2654834B2 (ja) 光学活性ビニル化合物、その製造中間体及びそれらの製造方法
JP2743798B2 (ja) 光学活性化合物の製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009554326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713587

Country of ref document: EP

Kind code of ref document: A1