JP2654834B2 - 光学活性ビニル化合物、その製造中間体及びそれらの製造方法 - Google Patents

光学活性ビニル化合物、その製造中間体及びそれらの製造方法

Info

Publication number
JP2654834B2
JP2654834B2 JP1533090A JP1533090A JP2654834B2 JP 2654834 B2 JP2654834 B2 JP 2654834B2 JP 1533090 A JP1533090 A JP 1533090A JP 1533090 A JP1533090 A JP 1533090A JP 2654834 B2 JP2654834 B2 JP 2654834B2
Authority
JP
Japan
Prior art keywords
compound
optically active
general formula
reaction
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1533090A
Other languages
English (en)
Other versions
JPH04178345A (ja
Inventor
孝志 高橋
和彦 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisoo Kk
Original Assignee
Daisoo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisoo Kk filed Critical Daisoo Kk
Priority to JP1533090A priority Critical patent/JP2654834B2/ja
Publication of JPH04178345A publication Critical patent/JPH04178345A/ja
Application granted granted Critical
Publication of JP2654834B2 publication Critical patent/JP2654834B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプロスタグランジン合成の中間体として有用
である、 一般式 で示される新規光学活性ビニル化合物及びその製造方
法、並びに上記化合物[VIII]の製造中間体及びその製
造方法に関する。
本発明による光学活性ビニル化合物[VIII]は、次い
で、G.ストーク(G.Stork)らにより開発されたプロス
タグランジン合成法(G.Stork.M.Isobe,J.Am.Chem.So
c.,97,4745,(1975).)における重要な製造中間体で
ある、 一般式 (上記各式中、R1はアルコキシ基を有していてもよいア
ルキル基又はシクロアルキル基、又は−Ra−A−B(こ
こではRaはアルキル基、Aはヘテロ原子又は単結合、B
は置換基を有していてもよい芳香族環又はヘテロ環をそ
れぞれ意味する)で示される基を意味し、R2及びR3は同
一または異なり、アラルキル基、シリル基又はアシル基
を意味し、R4はアルキル基を意味し、2つのR4が互いに
結合して環を形成してもよい) で示される光学活性2−メチレンシクロペンタノン誘導
体に導かれ、更にこれは上記ストークらの方法に従って
プロスタグランジンに導かれる。
[発明の背景] プロスタグランジン(PGF及びPGE)は、生体内でプロ
スタグランジン合成酵素によりアラキドン酸などの高級
不飽和脂肪酸が化学変換されて生じる極めて強い生理活
性をもつ化合物であり、下記のような化学的構造を有し
ている。
天然のプロスタグランジンでは、上記各式中の基R′
はn−C5H11−、基Rは(CH26COOH又はCH2CH=CH(CH
23COOHであり、基R′は脂溶性を有することが生理活
性の発現上重要であることが知られている。プロスタグ
ランジンの医薬品としての開発研究が進められている中
で、更に基R′としてアルキル基、シクロアルキル基又
はアラルキル基であって炭素数4〜10のものが有効であ
り、例えばペンチル、イソプンチル、2,2−ジメチルペ
ンチル、ヘキシル、2−ヘキシル、ヘプチル、2−エト
キシ−1,1−ジメチルエチル、5−メトキシ−1−メチ
ルペンチルなどのアルキル基、シクロペンチル、3−エ
チルシクロペンチル、4−プロピルシクロヘキシルなど
のシクロアルキル基、更にはフェニルオキシメチル、3
−トリフルオロメチルフェニルオキシメチル、2−クロ
ロチオフェン−5−イルオキシメチル、フラン−2−イ
ル−2−エチルなどの基が強い生理活性を示すことが明
らかにされてきた。本発明の化合物は、これら有機基を
含めた置換基を目的化合物に導入することのできる原料
として有用なものである。
[従来の技術及び解決すべき課題] 従来、光学活性プロスタグランジンの製造経路として
は、コーリーラクトンより出発する方法や、4−ヒドロ
キシシクロペンテノンより出発する方法が知られてい
た。しかし、前者の方法では多くの工程を経る必要があ
り必然的に最終製品の収率が低下し、後者の方法では副
反応を抑えて主反応を優先させるための反応条件が比較
的設定し難くいといった問題が残されていた。また、上
述のG.ストークらが開発した方法、すなわち、中間体と
して2−メチレンシクロペンタノン誘導体[XIII]を製
造し、次いでこれをプロスタグランジンに導く方法は、
中間体として安定な化合物[XIII]を経る有用な方法と
言えるが、この方法で得られる上記中間体[XIII]はラ
セミ体であって、光学活性体は得られない。
本発明者らは、上記問題点を解決すべく鋭意検討の結
果、プロスタグランジン製造の鍵中間体である光学活性
2−メチレンシクロペンタノン誘導体[XIII]を簡便に
かつ高収率で製造する方法を見出した。本発明は化合物
[XIII]の製造の過程で得られる新規中間体及びその製
法を提供するものである。
[課題を解決するための手段] 本発明による光学活性ビニル化合物は、 一般式 (式中、R1はアルコキシ基を有していてもよいアルキル
基又はシクロアルキル基、又は−Ra−A−B(ここでは
Raはアルキル基、Aはヘテロ原子又は単結合、Bは置換
基を有していてもよい芳香族環又はヘテロ環をそれぞれ
意味する)で示される基を意味し、R2及びR3は同一また
は異なり、アラルキル基、シリル基又はアシル基を意味
し、R4はアルキル基を意味し、2つのR4が互いに結合し
て環を形成してもよい) で示される化学的構造を有する。
また、上記光学活性ビニル化合物[VIII]の製造に有
用な中間体である光学活性ヒドロキシエチル化合物は、 一般式 (式中、R1、R2、R3及びR4は上記定義のものと同じ意味
を有する) で示される化学的構造を有する。
更に、上記光学活性ビニル化合物[VIII]の製造に有
用な今1つの中間体である光学活性エステル化合物は、 一般式 (式中、R1、R2、R3及びR4は上記定義のものと同じ意味
を有し、R5はアルキル基を意味する) で示される化学的構造を有する。
上記光学活性ビニル化合物[VIII]を製造するには、 一般式 (式中、R1、R2、R3及びR4は上記定義のものと同じ意味
を有する) で示される光学活性ヒドロキシエチル化合物を脱水す
る。
上記方法に使用する光学活性ヒドロキシエチル化合物
[VII]を製造するには、 一般式 (式中、R1、R2、R3、R4及びR5は上記定義のものと同じ
意味を有する) で示される光学活性エステル化合物を還元する。
上記方法に使用する光学活性エステル化合[VI]を製
造するには、 一般式 で示される光学活性4−エン−6−オール化合物に一般
式CH3C(OR5(上記各式中、R1、R2、R3、R4及びR5
は上記定義のものと同じ意味を有する)で示されるトリ
アルキルオルトアセテートを反応させ、更に分子内転移
を起こさせる。
上記方法に使用する光学活性4−エン−6−オール化
合物[V]を製造するには、 一般式 (式中、R1、R2、R3及びR4は上記定義のものと同じ意味
を有する) で示される光学活性4−イン−6−オール化合物を還元
する。
上記方法に使用する光学活性4−イン−6−オール化
合物[III b]を製造するには、 一般式 (式中、R1、R2、R3及びR4は上記定義ものと同じ意味を
有する) で示される光学活性4−イン−6−オン化合物を還元す
る。
上記方法に使用する光学活性4−イン−6−オン化合
物[IV]を製造するには、 一般式 で示される光学活性シブロモ化合物を 一般式 で示される光学活性アルデヒド化合物と反応させて 一般式 (上記各式中、R1、R2、R3及びR4は上記定義のものと同
じ意味を有する) で示される光学活性4−イン−6−オール化合物とし、
次いで同4−イン−6−オール化合物[III a]を酸化
する。
本発明による光学活性ビニル化合物[VIII]は、次い
でこれを加水分解して 一般式 (上記各式中、R1、R2及びR3は上記定義のものと同じ意
味を有する) で示される光学活性アルデヒド化合物とし、更に同アル
デヒド化合物[IX]を 一般式 (式中、R1、R2及びR3は上記定義のものと同じ意味を有
する) で示される光学活性オキシム化合物に変換する。
つぎに、光学活性オキシム化合物[X]を分子内環化
して、 一般式 で示される光学活性イソオキサゾール誘導体を製造す
る。光学活性イソオキサゾール誘導体[XI]は通常の方
法によって光学活性2−メチレン−シクロペンタノン誘
導体[XIII]に導かれる。
本発明による光学活性ビニル化合物[VIII]、その製
造中間体、及びこれから導かれる光学活性2−メチレン
−シクロペンタノン誘導体[XIII]、並びにこれらの製
造方法は、反応経路1に示すとおりである。
本発明において、上記一般式で示される各化合物の定
義について説明する。
上記各化合物の基R1は、(a)アルコキシ基を有して
いてもよいアルキル基又はシクロアルキル基、又は
(b)は−Ra−A−B(ここでRaはアルキル基、Aはヘ
テロ原子又は単結合、Bは置換基を有していてもよい芳
香族環又はヘテロ環をそれぞれ意味する)で示される
基、R2及びR3は同一または異なり、アラルキル基、シリ
ル基又はアシル基をそれぞれ意味する)である。上記
(a)のアルキル基又はシウロアルキル基としては、メ
チル、エチル、プロピル、イソプロピル、ブチル、イソ
ブチル、ペンチル、イソペンチル、2,2−ジメチルペン
チル、ヘキシル、2−ヘキシル、ヘプチル、2−ヘプチ
ル、オクチル、2−オクチル、ノニル、2−ノニル、デ
シル、2−デシル、ウンデシル、2−ウンデシル、ドデ
シル、2−エトキシ−1,1−ジメチルエチル、5−メト
キシ−1−メチルペンチル、シクロペンチル、3−エチ
ルシクロペンチル、シクロヘキシル、2−メチルシクロ
ヘキシル、4−n−プロピルシクロヘキシルなどの直鎖
状又は分枝状アルキル基又はシクロアルキル基が例示さ
れる。また、上記(b)の基−Ra−A−Bとしては、フ
ェニルオキシメチル、3−トリフルオロメチルフェニル
オコソメチル、2−クロロチオフェン−5−イルオキシ
メチル、フラン−2−イル−エチルなどが例示される。
各化合物の基R2及びR3は同一または異なり、アラルキ
ル基、シリル基又はアシル基をそれぞれである。基R2
びR3は水酸基の保護基として働くものであって、反応経
路1の反応の条件に適合するものが適宜選定される。ア
ラルキル基の具体的としては、ベンジル、p−メトキシ
ベンジル、1−フェネチル基などが挙げられ、シリル基
の例としては、ジメチルトリフェニルメチルシリル、ジ
−tert−ブチルメチルシルル、tert−ブチルジフェニル
シリルなどが挙げられ、アシル基としては、アセチル、
プロピオニル、n−ブチリル、n−バレリル、カプロイ
ル、ベンゾイルなどが例示される。
アルキル基R4はアルデヒドのカルボニル基の保護基と
して働くものであって、これも反応経路1の反応の条件
に適合するものが適宜選定される。アルキル基の具体的
としては、メチル、エチル、n−プロピル、イソプロピ
ル、n−ブチル、sec−ブチル、tert−ブチル、n−ペ
ンチル基などの直鎖状又は分枝状アルキル基が挙げられ
る。また2つの基R4は、互いに結合して環状アセタール
構造になるように環を形成していてもよい。
アルキル基R5としては、メチル、エチル、n−プロピ
ル、イソプロピル、n−ブチル、sec−ブチル、tert−
ブチル、n−ペンチル基などの直鎖状又は分枝状アルキ
ル基が例示される。
つぎに、反応経路1の各工程について更に詳しく説明
する。
(i) まず、光学活性ジブロモ化合物[I]を光学活
性アルデヒド化合物[II]と反応させて、光学活性4−
イン−6−オール化合物[III a]を得る。
この工程では、まずジブロモ化合物[I]を2当量の
塩基と反応させてアセチレン誘導体に変換し、次いで同
誘導体を単離し又は単離することなく光学活性アルデヒ
ド化合物[II]と反応させる。
ここで用いられる塩基としては、メチルリチウム、n
−ブチルリチウム、sec−ブチルリチウム、tert−ブチ
ルリチウムなどのアルキルリチウム試薬が好ましい。反
応溶媒としては、エチルエーテル、テトラヒドロフラ
ン、エチレングリコールジメチルエーテルなどの非プロ
トン性エーテル系溶媒を単独あるいは混合して用いるこ
とが好ましい。反応は低温好ましくは−40℃以下の温度
で行ない、ジブロモ化合物[I]に塩基を滴下した後、
混合液を15〜60分その温度で撹拌する。また、この反応
混合液にアルデヒド化合物[II]を滴下した後、混合液
を10〜30分その温度で撹拌する。
(ii) 上記工程で得られた光学活性4−イン−6−オ
ン化合物[III a]を酸化して、光学活性4−イン−6
−オール化合物[IV]を得る。
この工程は、4−イン−6−オール化合物[III a]
の水酸基を酸化してケトン基にするものである。4−イ
ン−6−オール化合物[III a]の酸化には多くの方法
があり、代表例として、(a)クロム酸酸化、マンガン
酸酸化などの金属試薬による酸化や、(b)スワーン
(Swern)酸化、(c)コーリー・キム(Corey−Kim)
酸化などの方法が挙げられる。
(a)の金属試薬を用いる酸化では、その試薬とし
て、クロム酸、重クロム酸カリウム、重クロム酸ナトリ
ウム、二酸化マンガン、過マンガン酸カリウム、過マン
ガン酸ナトリウム、PCC(ピリジニウムクロロクロメー
ト)、PDC(ピリジニウムジクロメート)などが使用さ
れる。反応溶媒としては通常塩化メチレン、クロロホル
ム、四塩化炭素などが用いられる。
(b)のスワーン酸化はジメチルスルホキシドを用い
る方法である(Synthesis,165,(1978).)。この方法
ではオキザリルクロリドなどの酸ハライドやトリフルオ
ロ酢酸無水物などの酸無水物をジメチルスルホキシドと
作用させてまずスルホニウム塩とし、この塩に4−イン
−6−オール化合物[III a]を反応させた後、生成物
を塩基処理することにより4−イン−6−オン化合物
[IV]に変換する。反応溶媒としては無水にした塩化メ
チレン、クロロホルム、四塩化炭素などの非プロトン性
溶媒が好ましい。この反応は−40℃以下の低温好ましく
は−78℃付近で行なわれる。
(c)のコーリー・キム酸化はN−クロロスクシンイ
ミドとジメチルスルフィドを用いるものであり(J.Am.C
hem.Soc.,94,7587(1972).)、この方法によってもこ
の酸化は達成される。
(iii)上記工程で得られた光学活性4−イン−6−オ
ン化合物[IV]のケトン基を不斉還元して、光学活性4
−イン−6−オール化合物[III b]を得る。
この反応に用いられる還元試薬としては、水素化ホウ
素亜鉛が好ましい。この試薬は通常は濃度0.1〜0.5mol/
のジエチルエーテル溶液の形態で使用される。この反
応は、低温好ましくは、−20℃〜−40℃の4−イン−6
−オール化合物[IV]の反応溶液に同化合物[IV]に対
して1〜2当量の還元試薬を窒素雰囲気に滴下し、反応
混合液を更に5〜30分間撹拌することにより達成され
る。反応溶媒としては、ジチルエーテル、テオラヒドロ
フランなどの非プロトン性無極性溶媒を単独もしくは混
合して用いることが好ましい。
(iv) 上記工程で得られた光学活性4−イン−6−オ
ール化合物[III b]を部分還元して、光学活性4−エ
ン−6−オール化合物[V]を得る。
この工程は、4−イン−6−オール化合物[III b]
の炭素−炭素三重結合を部分還元して炭素−炭素二重結
合とし、トランスオレフィン化合[V]を得るものであ
る。この反応で使用される還元試薬としては、水酸化リ
チウムアルミニウムが好ましい。この部分還元反応は、
4−イン−6−オール化合物[III b]に対して1〜3
当量の水素化リチウムアルミニウムを含む懸濁液に0℃
で同化合物[III b]を加えた後、10〜30分間撹拌流を
行なうことにより達成される。反応溶媒としては、ジエ
チルエーテル、テトラヒドロフランなどの非プロトン性
無極性溶媒を単独あるいは混合して用いることが好まし
い。
(v) 上記工程で得られた光学活性4−エン−6−オ
ール化合物[V]にトリアルキルオルトアセテートCH3C
(OR5を反応させ、更に分子内転移を起こさせて、
光学活性エステル化合物[VI]を得る。
この工程は、4−エン−6−オール化合物[V]の水
酸基をトリアルキルオルトアセテートとの反応によって
アシル化し、さらに分子内転位によって同化合物[V]
をエステル化合物[VI]へと変換するものである。
この反応は、4−エン−6−オール化合物[V]と、
同化合物[V]に対して1〜5当量のトリアルキルオル
トアセテートと、0.01〜0.3当量の接触量の酸を溶媒に
溶かし、混合液を140〜180℃で5〜30分間加熱すること
により達成される。トリアルキルオルトアセテートとし
ては、トリメチルオルトアセテート、トリエチルオルト
アセテート、トリプロピルオルトアセテート、トリブチ
ルオルトアセテートなどが好ましく、また接触量の酸と
してはヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸
などが好ましい反応溶媒としては、通常キシレンが用い
られる。
(vi) 上記工程で得られた光学活性エステル化合物
[VI]を還元して、光学活性ヒドロキシエチル化合物
[VIII]を得る。
この工程は、エステル化合物[VI]のアルキルエステ
ル部を還元して一級アルコールとするものである。
還元剤としては水素化リチウムアルミニウムが好まし
い。この反応は、エステル化合物[VI]に同化合物[V
I]に対して1〜3当量の水素化リチウムアルミニウム
を温度5〜30℃で15〜90分間作用させることにより達成
される。反応溶媒としては、ジエチルエーテル、テトラ
ヒドロフランなどの非プロトン性無極性溶媒を単独ある
いは混合して用いることが好ましい。
(vii) 上記工程で得られた光学活性ヒドロキシエチ
ル化合物[VII]を脱水して、光学活性ビニル化合物[V
III]を得る。
この工程は、ヒドロキシエチル化合物[VII]の一級
アルコール部を脱水反応により末端オレフィンとし、ビ
ニル化合物[VIII]を得るものである。すなわち、ヒド
ロキシエチル化合物[VII]をまずセレン化合物に変換
し、これを酸化した後、脱離を起こさせることによりビ
ニル化合物[VIII]を得る。
この反応は、ヒドロキシエチル化合物[VII]に対し
て1〜3当量のアリールセレンシアニドを含むジエチル
エーテル又はテトラヒドロフランの懸濁液に、ヒドロキ
シエチル化合物[VII]を5〜30℃で滴下し、その後、
同量のトリアルキルホスフィン又はトリフェニルホスフ
ィンを滴下して更に5〜30分間撹拌を続け、次に反応溶
液を0℃に冷却し、10〜40%酸化水素水を撹拌下滴下
し、混合液を更に1〜5時間撹拌することにより達成さ
れる。
上記アリールセレンシアニドとしては、o−ニトロフ
ェニルセレンシアニド、p−ニトロフェニルセレンシア
ニドなどが用いられ、またトリアルキルホスフィンとし
ては、トリエチルホスフィン、トリプロピルホスフィ
ン、トリ−n−ブチルホスフィンなどが好ましい。
(viii) 上記工程で得られた光学活性ビニル化合物
[VIII]を加水分解して、光学活性アルデヒト化合物
[IX]を得る。
この工程は、ビニル化合物[VIII]のアセタール基を
酸触媒の存在下に加水分解してアルデヒド基へ変換する
ものである。この反応は、ビニル化合物[VIII]を60〜
90%酢酸とテトラヒドロフランの混合溶媒系に溶かし、
温度20〜60℃で1〜8時間撹拌することによって達成さ
れる。
この反応で用いられる酸としては、酢酸の他、ギ酸、
プロピオン酸、トリフルオロ酢酸などの有機酸や、塩
酸、硫酸などの鉱酸が好ましい。
以下の(ix)から(xii)までの工程は、その大筋と
してはコジコウスキー(Kozikowski)らによって開発さ
れた手法(J.Am.Chem.Soc.,104,4023,(1982).)に従
ってなされる。
(ix) 上記工程で得られた光学活性アルデヒド化合物
[IX]を光学活性オキシム化合物[X]に変換する。
この反応は、アルデヒド化合物[IX]をピリジンに溶
かし、1〜1.5当量のヒドロキシアミン塩酸塩を加え、
混合液を30〜90分間室温で撹拌することにより達成され
る。
(x) 上記工程で得られた光学活性オキシム化合物
[X]を分子内環化して、光学活性イソオキサゾール誘
導体[XI]を得る。
この工程は、オキシム化合物[X]のオキシム部とオ
レフィン部で分子内[3+2]環化付加して、同化合物
[X]をイソオキサゾール誘導体[XI]へ変換するもの
である。
この反応は、オキシム化合物[X]と0.01〜0.3当量
のトリエチルアミンを溶媒中撹拌し、混合液に低温好ま
しくは0℃付近で5〜30%の次亜塩素酸ナトリウムを1
〜10当量滴下し、混合液を約0℃で30〜2時間、更に10
〜30℃で5〜24時間撹拌することにより達成される。反
応溶媒としては、塩化メチレン、クロロホルム、四塩化
炭素などが好ましい。
(xi) 上記工程で得られた光学活性イソオキサゾール
誘導体[XI]を還元して、光学活性シクロペンタノン誘
導体[XII]を得る。
この反応は、イソオキサゾール誘導体[XI]と不活性
化した触媒量のラネーニッケルと三塩化ホウ素のヘキサ
ン溶液との混合液を80%メタノール水溶液中で水素ガス
雰囲気下で約3時間撹拌することにより達成される。
(xii) 上記工程で得られた光学活性シクロペンタノ
ン誘導体[XII]を脱水し、光学活性2−メチレンシク
ロペンタノン誘導体[XIII]を得る。
この反応は、シクロペンタノン誘導体[XII]を無水
ピリジンに溶かし、低温好ましくは0℃付近でメタンス
ルホニルクロリドと作用させることにより達成される。
かくして得られた光学活性2−メチレンシクロペンタ
ノン誘導体[XIII]は、前記G.ストークらのプロスタグ
ランジン合成法に従って、プロスタグランジン(前記PG
F及びPGE)に導くことができる。
つぎに、本発明のプロスタグランジン製造中間体を製
造するに当たって、反応経路1の出発原料となる光学活
性ジブロモ化合物[I]と光学活性アルデヒド化合物
[II]の各製造工程についてそれぞれ説明する。
光学活ジプロモ化合物[I]は反応経路2に従って製
造される。
反応経路2の各化合物において、基R3及びR4は反応経
路1のものと同じ意味を有し、Acはアセチル基を意味す
る。まず、D−マンニトール[XIV]を酸触媒の存在下
でアセトンと反応させて、トリアセトニド[XV]とし、
これを含水酢酸で部分加水分解してテトラオール[XV
I]とする。得られたテトラオール[XVI]の2つの一級
水酸基のみを選択的にトシルクロリド/ピリジンでトシ
ル化した後、炭酸カリウムなどの塩基と反応させて、テ
トラオール[XVI]をジエポキシド[XVII]とする。得
られたジエポキシド[XVII]をビニルグリニャール銅
(I)などのビニルアニオン等価体と反応させて2つの
エポキシド環を開環させ、得られたジエン[XXVIII]を
塩基性条件下にR3X(Xは塩素、臭素、ヨウ素を表わ
す)と反応させてジエン[XVIII]とする。次いでジエ
ン[XVIII]を含水酢酸で加水分解して後、生成したジ
オール[XXXIX]をピリジン/塩化アセチルでアセチル
化してジアセトキシジエン[XIX]とする。得られたジ
アセトキシジエン[XIX]をオゾン分解し、生成したア
ルデヒドをアセタールにして保護してテトラメトキシオ
クタン[XX]とし、これらのアセチル基を塩基性条件下
で加水分解して、同オクタン[XX]をジオール[XXI]
とする。ジオール[XXI]を炭酸カリウムの存在下で四
酢酸鉛、過ヨウ素酸ナトリウムなどと反応させて、炭素
−炭素結合を酸化的に切断してジオール[XXI]をブタ
ナール[XXII]とし、次いでこれをトリフェニルホスフ
ィン及びテトラプロモメタンと反応させる。かくして、
本発明の出発原料であるジプロモ化合物[I]が得られ
る。
今1つの出発原料である光学活性アルデヒド化合物
[II]は、反応経路3に従って製造することができる。
反応経路3の各化合物において、基R1及びR2は反応経路
1のものと同じ意味を有し、Msはメチルスルホキシ基、
Phはフェニル基をそれぞれ意味する。
まず、D−マンニトール[XIV]より反応経路2の方
法と同様にしてテトラオール[XVI]を得る。得られた
テトラオール[XVI]の2つの一級水酸基のみを選択的
に塩基性条件下でペンゾイル化し、更に2つの二級水酸
基をメシル化して、テトラオール[XVI]をアセトニド
[XXIII]とする。得られたアセトニド[XX III]を炭
酸カリウムと反応させ、ジエポキシド[XXIV]とし、更
にジエポキシド[XXIV]をCuCNあるいはCuIの存在下にR
7MgBr(R7はR1よりも炭素数が1個少ない基を意味す
る)と反応させることによりジオール[XXV]とする、
次いでジオール[XXV]を塩基性条件下でR2X(Xは塩
素、臭素、ヨウ素を表わす)と反応させてアセタール
[XXVI]とし、得られたアセタール[XXVI]を含水酢酸
で加水分解してジオール[XXVII]とした後、四酢酸鉛
あるいは過ヨウ素酸ナトリウムなどで酸化する。かくし
て光学活性アルデヒド化合物[II]が得られる。
[発明の効果] 本発明によって提供された新規化合物及びその製法に
よって、プロスタグランジン製造の鍵中間体である光学
活性2−メチレンシクロペンタノン誘導体[XIII]を簡
便かつ高収率で製造することができる。
[実 施 例] 本発明の技術的特徴を例証するために、以下に本発明
の実施例と出発原料の合成その他の参考例をいくつか挙
げる。ただし、これらは本発明を限定するものではな
い。これは実施例及び参考例において、上述の説明でロ
ーマ数字[I]〜[XXIX]で示した化合物群にそれぞれ
属する具体的化合物を、上記ローマ数字に対応するアラ
ビア数字[1]〜[29]で示す。また、割合を示す%は
すべて重量%を示す。
参考例1 ジブロモ化合物[1]の合成 45gのD−マンニトール[14]を、濃塩酸1mlを含むア
セトン1中で室温下3日間激しく撹拌した後、炭酸カ
リウム50gを加え、更に1日撹拌を続けた。固形物を吸
引濾過で除き、濾液中の溶媒を減圧下に留去し、得られ
た残渣に水を加え、析出した結晶を吸引濾取して粗生成
物45gを得た。これをエタノール20mlに加熱溶解した
後、溶液を濾過し、濾液を室温に冷却して、析出した結
晶を濾取し、(2R,3R,4R,5R)体のトリアセトニド[1
5]37.3g(収率50%)を得た。1 HNMR(CCl4)δ:1.40(6H,s,CH3×2),1.43(12H,s,C
H3×4),3.7−44(8H,m,CH2,CH). 上記トリアセトニド[15]15g(0.05mol)を70%酢酸
50ml中40℃で3.5時間撹拌した後、反応液を40℃ででき
るだけ速やかに減圧濃縮し、残渣にアセトンを加え、結
晶化したD−マンニトール(0.72g)を濾別し、濾液よ
りアセトンを減圧留去してシロップ状の生成物を得た。
これをベンゼン50mlで再結晶し、(2R,3R,4R,5R)体の
テトラオール[16]8.8g(収率80%)を得た。1 HNMR(D2O)δ:1.38(6H,s,CH3×2),3.3−4.2(8H,
m,CH2,CH). 上記工程と同様にして得た(2R,3R,4R,5R)ヘキサン
−1,2,5,6−テトラオール[16]31.8g(0.14mol)の無
水ピリジン124ml溶液に、0℃で撹拌下p−トルエンス
ルホニルクロリド60.4g(0.32mol)を加え、混合液を同
温度で3時間撹拌し、更に室温で2時間撹拌した。薄層
クロマトグラフィーで反応の完結を確認し、反応混合物
をジエチルエーテル400mlを加え、セライトを通して濾
過を行ない、溶媒を減圧下に留去した。残渣にメタノー
ル300ml、炭酸カリウム40.5g(0.29mol)を加え、混合
液を室温で4時間撹拌した。反応混合物をジエチルエー
テル200mlを加え、セライトを通して濾過し、濾液を減
圧下で溶媒留去し、(2R,3R,4R,5R)ジエポキシド[1
7]9.18gを得た。収率35%。
bp:85〜90℃1 HNMR(CDCl3)δ:1.45(6H,s),2.72(2H,dd,J=3.9,
4.6Hz),2.83(2H,dd,J=4.1,4.6Hz),3.0−3.2(2H,
m),3.7−3.9(2H,m) シアン化第1銅327mgと無水テトラヒドロフラン200ml
の混合物に別途調製した濃度1.5Mのビニールマグネシウ
ムクロリド溶液72ml(0.108M)を0℃で5分間かけて加
えた。更に5分間撹拌後、上記(2R,3R,4R,5R)ジエポ
キシド[17]6.67g(35.9mM)の無水テトラヒドロフラ
ン20ml溶液を0℃で撹拌下10分間かけて滴下し、更に1
時間撹拌を続けた。反応の完結を薄層クロマトグラフィ
ーで確認した後、塩化アンモニウムと飽和食塩水を加
え、30分間撹拌後、エチルエーテルで3回抽出を行なっ
た。抽出液を併せて1規定塩酸、飽和重曹水及び飽和食
塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、溶
媒を減圧下に留去して、(4R,5R,6R,7R)4,7−ジヒドロ
キシデカ−1,9−ジエン[28]7.38g(30.5mM)を得た。
収率85%。
[α]25 D:6.83゜(C=1.200,CHCl3).1 HNMR(CDCl3)δ:1.40(6H,s),2.0−2.8(4H,m),2.8
5−3.38(2H,br s),3.4−3.85(4H,m),5.0−5.3(4H,
m),5.6−6.15(2H,m).13 CNMR(CDCl3)δ:27.0,38.6,72.2,82.7,108.9,118.1,
134.3. R(neat):3300,1640,1070,915cm-1 上記(4R,5R,6R,7R)4,7−ジヒドロキシデカ−1,9−
ジエン[28]7.38g(30.5mM)を無水テトラヒドロフラ
ン30mlに溶かし、これに水素化ナトリウム0.48g(1.07m
M)の無水テトラヒドロフラン100ml懸濁液を還流下15分
間かけて滴下し、混合液を更に1時間撹拌下環流した
後、0℃に冷却した。この懸濁液にDC−18−クラウンエ
ーテル−6の132mgと臭化ベンジル9.3ml(78mol)を0
℃で加え、4時間撹拌下還流を行なった。減圧下溶媒留
去後、1規定塩酸を加え、ヘキサンで抽出を行なった。
抽出液を飽和重曹水と飽和食塩水で順次洗浄し、無水硫
酸マグネシウムで乾燥し、溶媒を減圧下に留去して、
(4R,5R,6R,7R)4,7−ジベンジルオキシデカ−1,9−ジ
エン[18]11.3g(26.8mM)を得た。収率88%。1 HNMR(CDCl3)δ:1.39(6H,s),2.42(4H,br t,J=6H
z),3.60(2H,m),4.06(2H,m),4.54(4H,ABq),4.98
−5.22(4H,m),5.74−6.03(2H,m),7.28(10H,s).13 CNMR(CDCl3)δ:27.28,34.55,71.79,79.65,116.99,1
27.33,127.62.128.07,128.85,134.71,138.31. R(neat):1641,1089,1071,913,872,778,736,697cm-1 上記(4R,5R,6R,7R)4,7−ジベンジルオキシデカ−1,
9−ジエン[18]11.3g(26.8mM)を80%酢酸10ml中100
℃で10時間加熱加熱した後、溶媒を減圧留去し、次いで
ジエチルエーテルで抽出を行ない、抽出液を苛性ソーダ
水溶液で洗浄し、水層を更にジエチルエーテルで抽出し
た。抽出液を併せて1規定塩酸、飽和重曹水及び食塩水
で順次洗浄して無水硫酸マグネシウムで乾燥した。溶媒
を減圧留去後、シリカゲルカラムクロマトグラフィーに
付し、ジエチルエーテル:ヘキサン=1:4の画分より(4
R,5R,6R,7R)4,7−ジベンジルオキシデカ−1,9−ジエン
−5,6−ジオール[29]8.71g(22.8mM)を得た。収率85
%。1 HNMR(CDCl3)δ:2.40(4H,br t,J=6Hz),3.54−3.92
(4H,m),4.53,4.69(4H,4Bq,J=11.2Hz),4.97−5.29
(4H,m),5.56−6.14(2H,m),7.32(10H,s). IR(neat):3468,1640,1092,1028,914,737,698cm-1. 上記(4R,5R,6R,7R)4,7−ジベンジルオキシデカ−1,
9−ジエン−5,6−ジオール[29]8.71g(22.8mM)とピ
リジン4.33g(54.8mM)を塩化メチレン100mlに溶かし、
塩化アセチル4.30g(5.48mM)を撹拌下に滴下し、混合
液を25℃で3時間撹拌した。反応混合物えを0.5規定塩
酸、飽和重曹水及び飽和食塩水で順次洗浄し、無水硫酸
マグネシウムで乾燥した後、溶媒を減圧留去し、(4R,5
R,6R,7R)5,6−ジアセトキシ−4,7−ジベンジルオキシ
デカ−1,9−ジエン[19]9.55g(20.5mM)を得た。収率
90%。1 HNMR(CDCl3)δ:2.00(6H,s),2.37(4H,br t,J=6H
z),3.58(2H,br q,J=5Hz),4.50(4H,s),5.00−5.19
(4H,m),5.40(2H,br d,J=3.6Hz),5.70−5.95(2H,
m),7.32(10H,s).13 CNMR(CDCl3)δ:21.07,34.30,71.31,72.32,77.76,11
7.84,128.14.128.41,128.67,134.52,138.31,170.53. IR(neat):1744,1642,1370,1224,1090,915,736,698cm
-1. 上記(4R,5R,6R,7R)5,6−ジアセトキシ−4,7−ジベ
ンジルオキシデカ−1,9−ジエン[19]9.55g(20.5mM)
を無水メタノール950mlに溶かし、−78℃に冷却し、撹
拌下オゾンガスを反応が青色を呈するまで導入し、同温
度で更に15分間撹拌を続けた後、蒸留したジメチルスル
フィド15mlを加え、反応液を室温に戻し、5時間撹拌し
た。反応混合液にp−トルエンスルホン酸0.2gを加え、
室温で10時間撹拌後、炭酸カリウム10gを加え、懸濁液
を3時間撹拌した。反応液を濾過し、濾液を減圧留去
し、残渣にジエチルエーテと水を加えて、抽出を行な
い、水層を更にジエチルエーテルで抽出した。抽出液を
併せて飽和食塩水で洗浄し、無水硫酸マグネシウムで乾
燥後、溶媒を減圧留去し、残渣をシリカゲルカラムクロ
マトグラフィーに付し、酢酸エチル:ヘキサン=1:1の
画分より(3R,4R,5R,6R)4,5−ジアセトキシ−3,6−ジ
ベンジルオキシ−1,1,8,8−テトラメトキシオクタン[2
0]8.41g(15.0mM)を得た。収率73%。
上記と同じ経路を経て得られた(3R,4R,5R,6R)4,5−
ジアセトキシ−3,6−ジベンジルオキシ−1,1,8,8−テト
ラメトキシオクタン[20]9.76g(17.4mM)と炭酸カリ
ウム6.17g(43.5mM)をメタノール100mlに加え、撹拌下
2時間加熱還流を行ない、薄層クロマトグラフィーで反
応の完結を確認した後、減圧下に溶媒を留去した。残渣
に水を加え、ジエチルエーテルで抽出し、抽出液を飽和
食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒
を減圧留去し、(3R,4R,5R,6R)3,6−ジベンジルオキシ
−1,1,8,8−テトラメトキシオクタン−4,5−ジオール
[21]7.55g(15.8mM)を得た。収率91%。1 HNMR(CDCl3)δ:1.77−2.17(4H,m),3.03,3.23(2H,
br d),3.26(6H,s),3.30(6H,s),3.64−3.96(4H,
m),4.38−4.85(2H,m),4.63(4H,s).7.32(10H,
S). 上記(3R,4R,5R,6R)3,6−ジベンジルオキシ−1,1,8,
8−テトラメトキシオクタン−4,5−ジオール[21]7.55
g(15.8mM)、炭酸カリウム6.52g(46mM)及び無水ベン
ゼン200mlの混合物中に撹拌下0℃で4酢酸鉛10.46g(2
1.5mM)を加え、0℃で10分間撹拌した。薄層クロマト
グラフィーで反応の完結を確認した後、反応混合物にヘ
キサンを加え、混合液をセライト−545を通して濾過
し、濾液を飽和重曹水で洗浄した。水層をジエチルエー
テルで抽出し、抽出液を併せて飽和食塩水で洗浄し、無
水硫酸マグネシウムで乾燥した後、溶媒を減圧下に留去
し、(R)2−ベンジルオキシ−4,4−ジメトキシブタ
ナール[22]6.17g(25.9mM)を得た。収率82%。
トリフェニルホスフィン24.5g(93.4mM)の無水塩化
メチレン120ml溶液中に、撹拌下0℃でテトラブロモメ
タン15.4g(46.5mM)を滴下し、10分間同温度で撹拌し
た後、上記(R)2−ベンジルオキシ−4.4−ジメトキ
シブタナール[22]6.17g(25.9mM)の無水塩化メチレ
ン24ml溶液を加え、混合液を室温に戻し、3時間同温度
で撹拌した。反応の完結をクロマトグラフィーで確認し
た後、ヘキサン800mlを加え、懸濁液をセライト−545を
通して、濾液を飽和重曹水で洗浄し、水層をジエチルエ
ーテルで抽出した。抽出液を併せて飽和食塩水で洗浄
し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去
し、残渣をシリカゲルカラムクロマトグラフィーに付
し、ジエチルエーテル:ヘキサン=1:10の画分より
(R)3−ベンジルオキシ−1,1−ジプロモ−5,5−ジメ
オキシペンタ−1−エン[1]7.25g(18.4mM)を得
た。収率71%。
[α]25 D:+13.78゜(C=1.016,CHCl3).1 HNMR(CDCl3)δ:1.75−2.02(2H,m),3.28(2H,s),
3.30(3H,s),4.10−4.80(4H,m),6.43(1H,d,J=8.6H
z),7.26(5H,s). IR(neat):1615。1100−1060,735,695cm-1. 参考例2 光学活性アルデヒド[2]の合成 参考例1と同様にしてD−マンニトール[14]から得
たテトラオール[16]15.3g(0.069mol)、無水ピリジ
ン55ml(0.68mol)及び塩化メチレン50mlの溶液中に、
−70℃で塩化ベンゾイル16ml(0.138mol)と無水塩化メ
チレン5mlの混合液を15分間かけて滴下し、滴下後更に
−30℃で1時間及び室温で10時間撹拌した。反応の完結
を薄層クロマトグラフィーで確認した後、溶媒を減圧留
去した。この残渣にメタンスルホニルクロリド11.2ml
(0.144mol)を0℃で20分間かけて加え、更にこの懸濁
液を室温で3日間撹拌した。反応の完結を薄層クロマト
グラフィーで確認した後、反応混合物をエチルエーテ
ル:ヘキサン=7:3(容量)の混合溶媒100mlを加え、こ
の黄色の懸濁液をセライト−545で濾過し、溶媒を減圧
留去した。得られた褐色の残渣を塩化メチレンで希釈
し、濃塩酸を加えて酸性にした後、塩化メチレンで3回
抽出を行なった。抽出液を飽和重曹水と飽和食塩水で順
次洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を
減圧留去し、(2R,3S,4S,5R)体の褐色半固体物アセト
ニド[23]42gを得た。
(式中、Msはメチルスルホキシ基、Phはフェニル基をそ
れぞれ意味する) 上記アセトニド[23]42gと炭酸カリウム20gをメタノ
ール130ml中で15時間撹拌した後、反応液をセライト−5
45を通して濾過し、濾液を40℃で減圧濃出し、エチルエ
ーテル:ヘキサン=7:3(容量)の混合溶媒30mlを加え
て、混合液を再度セライト−545で濾過し、溶媒を40℃
で減圧留去し、更に減圧蒸留により粗生成物を見た。こ
れらをさらにベンゼンで再結晶し、(2s,3R,4R,5S)体
のジエポキシド[24]2.7g(収率21%)を得た。1 HNMR(CDCl3)δ:1.39(6H,s,CH3×2),2.6−2.9(4
H,m,CH2×2),2.95−3.12(2H,m,CH),3.7−3.95(2H,
m,CH). シアン化第一銅320mgと無水テトラヒドロフラン100ml
の混合物に、別途調製した濃度1.47molのn−ブチルマ
グネシウムプロミドのエーテル溶液64ml(94mol)を0
℃で5分間かけて加えた。更に5分間撹拌後、上記ジエ
ポキシド[24]6.48gの無水テトラヒドロフラン50ml溶
液を0℃で撹拌下10分間かけて滴下し、更に1時間撹拌
を続けた。反応の完結を薄層クロマトグラフィーで確認
した後、塩化アンモニウムと飽和食塩水を加え、30分間
撹拌後、エチルエーテルで3回抽出を行なった。抽出液
を併せて1規定塩酸、飽和重曹水及び飽和食塩水で順次
洗浄し、無水硫酸マグネシウムで乾燥して濾過し、濾液
の溶媒を留去し、(6S,7R,8R,9S)体の粗ジオール[2
5]を得た。
(式中、Bnはベンジル基を意味し、以下の式においても
同じ) 上記粗ジオール[25]を無水テトラヒドロフラン30ml
に溶かし、これに水素化ナトリウム0.48g(1.07m mol)
の無水テトラヒドロフラン100ml懸濁液を還流下15分間
かけて滴下し、混合液を更に1時間撹拌還流した後0℃
に冷却した。この懸濁液にDC−18−クラウンエーテル−
6の132mgと臭化ベンジル9.3ml(78mol)を0℃で加
え、4時間撹拌下還流を行なった。反応液を減圧濃縮
し、1規定塩酸の添加後ヘキサンで3回抽出し、抽出液
を併せて飽和重曹水と飽和食塩水で順次洗浄し、無水硫
酸マグネシウムで乾燥した後、溶媒を減圧留去し、(6
S,7R,8R,9S)体のアセトニド[26]を得た。
上記アセトニド[26]を80%酢酸100ml中100℃で10時
間加熱撹拌した後、溶媒を減圧留去し、次いでエチルエ
ーテルで抽出を行ない、抽出液を苛性ソーダ水溶液で洗
浄し、水層は更にエチルエーテルで抽出した。抽出液を
併せて1規定塩酸、飽和重曹水及び食塩水で順次洗浄し
て無水硫酸マグネシウムで乾燥した。溶媒の留去後、シ
リカゲルカラムクロマトグラフィー(エチルエーテル:
ヘキサン:1:4(容量)で溶出)で精製し、(6S,7R,8R,9
S)体のジオール[27]8.66gを得た。1 HNMR(CDCl3)δ:0.88,(6H,br,CH3×2),1.0−1.8
(16H,m,CH2×8),3.4−3.7(4H,m,CH),4.46(2H,d,J
=10.8Hz,CH),4.62(2H,d,J=10.8Hz,CH),7.30(10H,
s,C6H5 上記ジオール[27]200mg、炭酸カリウム60mg及び無
水ベンゼン4.5mlの混合液中に四酢酸鉛260mgを4℃で加
えて同液を3分間撹拌した。反応終了後ヘキサン100ml
を加え、セライト−545を用いて反応液を濾過し、濾液
を飽和重曹水で洗浄し、水層をヘキサンで2回抽出し、
抽出液を併せて飽和食塩水で洗浄した後無水硫酸マグネ
シウムで乾燥した。溶媒の留去後、シリカゲルカラムク
ロマトグラフィー(エチルエーテル:ヘキサン=1:2
(容量))で精製して、(S)−2−ベンジルオキシヘ
プタナール[2]160mg(収率80%)を得た。
[α]25 D:−83.23゜(C=1.014,CHCl3).1 HNMR(CDCl3)δ:0.87(3H,t,J=5.8Hz,CH3),1.0−1.
8(8H,m,CH2),3.73(1H,dt,J=2.2Hz,6.2Hz,CH),4.51
(1H,d,J=11.6Hz,CH),4.65(1H,d,J=11.6Hz,CH),7.
35(5H,s,C6H5),9.64(1H,d,J=2.2Hz).13 CNMRδ:13.9,22.4,24.4,30.1,31.6,72.5,83.6,128.0,
128,5,137,6,203.5. IR(neat):1728,1179,1119,738,698cm-1. 実施例1 上記(R)3−ベンジルオキシ−1,1−ジプロモ−5,5
−ジメオキシペンタ−1−エン[1]6.62g(16.8mM)
の無水テトラヒドロフラン100ml溶液を−78℃に冷却
し、窒素雰囲気下で濃度1.62mol/のブチルリチウム/
ヘキサン溶液20.8ml(33.6mM)を10分間かけて滴下し、
混合液を−78℃で更に1時間、室温で1時間撹拌して、
上記化合物[1]を(R)3−ベンジルオキシ−5,5−
ジメトキシペンタ−1−インのリチウムアセチリドに変
換した。この反応混合液を再び−78℃に冷却し、これに
(S)2−ベンジルオキシヘプタナール[2]3.61g(1
6.4mM)の無水テトラヒドロフラン20ml溶液を滴下し、3
0分間更に撹拌の後、塩化アンモニウム水溶液を加え、
ジエチルエーテルで3回抽出を行ない、飽和食塩水で抽
出液洗浄した。抽出液を無水硫酸マグネシウムで乾燥し
た後、溶媒を減圧留去し、シリカゲルカラムクロマトグ
ラフィーに付し、ジエチルエーテル:ヘキサン=1:3の
画分よりエリトロ体とトレオ体の混合物である(3R,7
S)3,7−ジベンジルオキシ−1,1−ジメトキシドデカ−
4−イン−6−オール[3a]5.73g(12.6mM)を得た。
収率77%。1 HNMR(CCl4)δ:0.87(3H,br t),1.05−1.55(8H,
m),1.77(2H,dd,J=7Hz),3.18(4H,s),4.10−5.85
(11H,m),7.35. IR(neat):3430,1065,738,697,595cm-1. 実施例2 無水ジメチルスルホキシド680mg(8.7mM)の無水塩化
メチレン15ml溶液にオキザリルジクロリド0.38ml(4.4m
M)を−78℃で5分間かけて滴下し、更に30分間同温度
で撹拌を続けた。この混合液に同温度で上記(3R,7S)
3.7−ジベンジルオキシ−1,1−ジメトキシドデカ−4−
イン−6−オール[3a]1.32g(2.9mM)の無水塩化メチ
レン溶液10mlを滴下し、10分間同温度で撹拌し、無水ト
リエチルアミン2.1ml(15.3mM)を一度に加えて反応を
完結せしめた。この混合液を1規定塩酸(6.6mM)中に
注ぎ込み、水層を塩化メチレンで3回抽出した。抽出液
を併せて飽和塩化アンモニウム水溶液次いで飽和食塩水
で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下
で溶媒を留去し、(3R,7S)3.7−ジベンジルオキシ−1,
1−ジメトキシドデカ−4−イン−5−オン[4]1.25g
(2.76mM)を得た。収率95%。
[α]25 D:+30.37゜(C=1.014,CHCl3).1 HNMR(CDCl3)δ:0.87(3H,br t),1.05−1.95(8H,
m),1.95−2.10(2H,m),3.26(3H,s),3.30(3H,s),
3.91(1H,t,J=6.3Hz),4.22−4.95(6H,m),7.20−7.5
0(10H,m).13 CNMR(CDCl3)δ:13.9,22.4,24.8,31.5,32.2,38.5,5
3.1,53.5,65,4,71,3,72.5.83.4,85.0,93.1,101.3,127.
9,128.1,128.5,137.2,137.5,189.3. IR(neat):2200,1680,1130,1090,740,695cm-1. 実施例3 上記(3R,7S)3,7−ジベンジルオキシ−1,1−ジメト
キシドデカ−4−イン−5−オン[4]944mg(2.1mM)
の無水ジエチルエーテル20ml溶液中へ、−30℃で濃度0.
26mol/の水素化ホウ素亜鉛/ジエチルエーテル溶液1
2.6ml(3.3mM)を窒素雰囲気下5分間かけて滴下し、更
に同温度で30分間撹拌を続けた。反応終了後、水と0.5
規定塩酸20mlを加え、混合液を0℃で30分間撹拌した。
水層をジエチルエーテルで3回抽出し、抽出液を併せて
飽和重曹水と飽和食塩水で順次洗浄し、無水硫酸マグネ
シウムで乾燥した後、溶媒を減圧下に留去した。残渣を
シリカゲルカラムクロマトグラフィーに付し、ジエチル
エーテル:ヘキサン=1:3の画分より(3R,6R,7S)3,7−
ジベンジルオキシ−1,1−ジメトキシシドデカ−4−イ
ン−6−オール[3b]654mg(1.44mM)を得た。収率69
%。
[α]25 D:+50.59゜(C=0.854,CHCl3).1 HNMR(CDCl3)δ:0.88(3H,br t),1.04−1.90(8H,
m),1.95−2.18(2H,m),2.3−3.6(1H,m),3.27(3H,
s),3.30(3H,s),3.38−3.62(1H,m),4.10−4.90(7
H,m),7.2−7.6(10H,m).13 CNMR(CDCl3)δ:14.0,22.5,25.3,30.2,31.9,53.1,5
3.3,64,2,65,6,70.7.72.5,81.7,84.4,84.7,101.7,127.
6,127.7,128.0,128.3,128.4,137.9,138.3. IR(neat):3426,1091,1071,738,698cm-1. 実施例4 上記(3R,6R,7S)3,7−ジベンジルオキシ−1,1−ジメ
トキシドデカ−4−イン−6−オール[3b]654mg(1.4
4mM)の無水テトラヒドロフラン溶液10ml溶液を、水素
化リチウムアルミニウム115.7mg(3.02mM)の無水テト
ラヒドロフラン5ml懸濁中に0℃で加え、18分間撹拌下
還流を行なった。反応終了後、酢酸エチル、エタノー
ル、水及び0.1規定塩酸を順次加えた後、水層をジエチ
ルエーテルで3回抽出した。抽出液を併せて飽和食塩水
で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を
減圧留去した。残渣をシリカゲルカラムクロマトグラフ
ィーに付し、ジエチルエーテル:ヘキサン=1:3の画分
より(3R,6R,7S)3,7−ジベンジルオキシ−1,1−ジメト
キシドデカ−4−イン−6−オール[5]538mg(1.18m
M)を得た。収率82%。
[α]25 D:+28.92゜(C=1.964,CHCl3).1 HNMR(CDCl3)δ:0.88(3H,br t),1.0−1.70(8H,
m),1.70−2.04(2H,m),2.14−2.38(1H,br s),3.26
(3H,s),3.28(3H,s),3.32−3.60(1H,m),3.76−4.0
6(1H,m),4.18−4.80(6H,m).5.60−5.84(2H,m),7.
04−7.60(10H,m).13 CNMR(CDCl3)δ:14.0,22.6,25.4,29.7,32.0,39.1,5
2.6,53.3,70.3.72.3,72.8.76.2,82.3,101.9,127.5,127.
7,128.3,128.4,131.9,132.4,138.5,138.6. IR(neat):3450,1140−1040,738,698cm-1. 実施例5 上記(3R,6R,7S)3,7−ジベンジルオキシ−1,1−ジメ
トキシドデカ−4−エン−6−オール[5]1.15g(2.5
3mM)、トリエチルオルトアセテート1.65ml(9.03mM)
及び触媒量のヘプタン酸をキシレン15ml中160℃で20分
間加熱反応させ、キシレンと生成したエタノールを減圧
留去し、反応終了後、飽和重曹水を加えた。水層をジエ
チルエーテルで3回抽出し、抽出液を併せて飽和食塩水
で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減
圧留去した後、残渣をシリカゲルクロマトグラフィーに
付し、ジエチルエーテル:ヘキサン1:10の画分より
(1′R,3S,6S)6−ベンジルオキシ−3−(1′−ベ
ンジルオキシ−3′3′−ジメトキシプロピル)ウンデ
カ−4−エン酸エチル[6]671mg(1.85mM)を得た。
収率73%。1 HNMR(CDCl3)δ:0.87(3H,br t),1.00−2.00(14H,
m),2.16−2.78(2H,m),3.24(3H,s),3.30(3H,s),
3.44−3.82(3H,m),4.08(2H,q,J=7Hz)。4.24−4.90
(4H,m).5.40−5.60(2H,m),7.12−7.60(10H,m). IR(neat):1740,1130,1090,740,705cm-1. 実施例6 上記(1′R,3S,6S)6−ベンジルオキシ−3(1′
−ベンジルオキシ−3′,3′−ジメトキシプロピル)ウ
ンデカ−4−エン酸エチル[6]971mg(1.85mM)を無
水ジエチルエーテル15mlに溶かし、水素化リチウムアル
ミニウム141mg(3.7mM)を加え、混合液を室温で1時間
撹拌した。反応混合物に飽和硫酸ナトリウム水溶液次い
で10%水酸化ナトリウムを加えた後、ジエチルエーテル
溶液をデカントしてとり、残ったアルミニウム塩をジエ
チルエーテルで5回洗浄した。これらジエチルエーテル
溶液を併せて飽和食塩水で洗浄し、無水硫酸マグネシウ
ムで乾燥した後、減圧下に溶媒を留去し、残渣をシリカ
ゲルクロマトグラフィーに付し、ジエチルエーテル:ヘ
キサン=1:6の画分及び塩化メチレンの画分より(3R,4
S,7S)3,7−ジベンジルオキシ−4−(2′−ヒドロキ
シエチル−1,1−ジメトキシドデカ−5−エン[7]886
mg(1.83mM)を得た収率99%。
[α]25 D:−2.19゜(C=1.114,CHCl3).1 HNMR(CDCl3)δ:0.87(3H,br t),1.03−2.10(13H,
m),2.40−2.76(1H,br),3.24(3H,s),3.29(3H,s),
3.40−3.84(3H,m),4.20−4.80(6H,m),5.40−5.58
(2H,m).7.06−7.56(10H,m). IR(neat):3420,1665,1120,1070,729,698cm-1. 実施例7 o−ニトロフェニルセレンジアニド997mg(3.67mM)
の無水テトラヒドロフラン12ml懸濁液に上記(3R,4S,7
S)3,7−ジベンジルオキシ−4−(2′−ヒドロキシエ
チル−1,1−ジメトキシドデカ−5−エン[7]886mg
(1.83)mM)を滴下し、混合液を数分間撹拌し、トリ−
n−ブチルホスフィン0.91ml(3.67mM)を滴下し、10分
間撹拌を続けた。反応液を0℃に冷却し、35%過酸化水
素水を同温度で撹拌下に滴下し、3時間撹拌後、ジエチ
ルエーテル:ヘキサン=7:3の混合溶媒で水層を3回抽
出した。抽出液を併せて飽和重曹水と飽和食塩水で順次
洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧下
に留去し、残渣より析出した結晶を濾取して、(3R,3S,
7S)3,7−ジベンジルオキシ−4−ビニル−1,1−ジメオ
キシドデカ−5−エン[8]776mg(1.67mM)を得た。
収率91%。1 HNMR(CDCl3)δ:0.86(3H,br t),1.00−2.00(11H,
m),3.25(3H,s),3.29(3H,s),3.46−3.86(3H,m),
4.31−4.58(2H,ABq,J=11.9Hz),4.48,4.84(2H,ABq,J
=11.2Hz),4.90−5.40(2H,m),5,40−6.14(3H,m),
7.18−7.60(10H,m). IR(neat):2900,1630,1120,1095,1070,918,730,692cm
-1. 参考例3 上記(3R,4S,7S)3,7−ジベンジルオキシ−4−ビニ
ル−1,1−ジメトキシドデカ−5−エン[8]776mg(1.
67mM)を80%酢酸13mlとテトラヒドロフラン20mlの混合
液中で40℃で5時間加熱撹拌した。反応の完結を薄層ク
ロマトグラフィーで確認し、反応液を飽和重曹中に注
ぎ、ジエチルエーテル:ヘキサン=7:3の混合溶媒で3
回抽出を行なった。抽出液を併せて飽和重曹水と飽和食
塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減
圧下で溶媒を留去し、(3R,4S,7S)3,7−ジベンジルオ
キシ−4−ビニルデカ−5−エンカルボアルデヒド
[9]701mg(1.67mM)を得た。収率100%。
[α]25 D:+3.81゜(C=1.02,CHCl3).1 HNMR(CDCl3)δ:0.84(3H,br t),1.06−1.80(8H,
m),2.50−2.75(2H,m),2.92−3.34(1H,m),3.50−3.
86(1H,m),3.88−4.16(1H,m).4.20−4.80(4H,m),
4.90−5.44(2H,m),5.44−6.10(3H,m),7.05−7.50
(10H,m).9.88(1H,t).13 CNMR(CDCl3)δ:13.9,22.5,25.0,31.6,35.7,46.4,5
0.3,70.1.72.1,80.0,117.1,127.3,127.5,127.7,128.2,1
28.3,130.7,134.3,136.9,137.9,138.9。200.7. IR(neat):1730,1100,1070,920,740,700cm-1. 参考例4 上記(3R,4S,7S)3,7−ジベンジルオキシ−4−ビニ
ルドデカ−5−エンカルボアルデヒド[9]701mg(1.6
7mM)をピリジン5mlに溶かし、再結晶したヒドロキシア
ミン・塩酸塩138mg(2.00mM)を加え、1時間撹拌し
た。反応液エーテル80mlを加え、混合液を飽和食塩水で
4回洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒
を減圧下留去した。残渣をシリカゲルでフラッシュクロ
マトグラフィーに付し、12%のジエチルエーテル/ヘキ
サン液で流出した画分より(3R,4R,7S)3,7−ジベンジ
ルオキシ−4−ビニルドデカ−5−エンカルボオキシム
[10]552mg(1.27mM)を得た。収率76%。1 HNMR(CDCl3)δ:0.86(3H,br t),1.0−1.80(8H,
m),2.30−2.76(2H,m),2.95−3.25(1H,br q),3.40
−3.88(2H,m),4.18−4.76(4H,m).4.95−6.16(6H,
m),7.18−7.60(10H,m). IR(neat):3270,1090−1060,915,738,695cm-1. 参考例5 上記(3R,4S,7S)3,7−ジベンジルオキシ−4−ビニ
ルドデカ−5−エンカルボオキシム[10]552mg(1.27m
M)と触媒量のトリエチルアミンを塩化メチレン12mlに
溶かし、0℃で激しく撹拌した。この溶液に10%次亜塩
酸ナトリウム6ml(8.2mM)を滴下し、混合液を同温度で
1時間撹拌した。更に室温で10時間撹拌後、反応混合物
を飽和重曹水中に注ぎ、水層をジエチルエーテル:ヘキ
サン=7:3の混合溶媒で3回抽出し、抽出液を併せて飽
和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。
溶媒を減圧下に留去した後、残渣をシリカゲルカラムク
ロマトグラフィーに付し、ジエチルエーテル:ヘキサン
=3:7の画分より光学活性イソオキサゾール誘導体[1
1]400mg(0.93mM)を得た。収率73%。1 HNMR(CDCl3)δ:0.87(3H,br t),1.0−1.80(8H,
m),2.2−2.84(2H,m),2.88−3.20(1H,br q),3.20−
3.44(1H,m),3.44−4.00(2H,m).4.00−4.80(6H,
m),5.00−5.80(2H,m),7.20−7.60(10H,m). IR(neat):1740,1090,1060,910,730,693cm-1. 参考例6 上記光学活性イソオキサゾール誘導体[11]374mg
(0.86mM)、不活性化したW−2−ラネーニッケル748m
g及び1mol/濃度の三塩化ホウ素のヘキサン溶液0.86ml
を、80%メタノール水溶液80ml中で水素ガス雰囲気下で
3時間撹拌した。反応混合物をセライトを通して濾過
し、セライトを酢酸エチル70mlで洗浄し、濾液を併させ
て飽和食塩水100mlと塩化メチレン400mlの混合液中に注
ぎ、抽出を行なった。水層を更に塩化メチレンで3回抽
出し、抽出液を併させて飽和重曹水と飽和食塩水で順次
洗浄し、無水硫酸マグネシウムで乾燥した。減圧下で溶
媒を留去し、残渣をシリカゲルクロマトグラフィーに付
し、ジエチルエーテル:ヘキサン=6:4の混合溶媒で流
出した画分より光学活性シクロペンタノン誘導体[12]
326mg(0.75mM)を得た。収率87%。1 HNMR(CDCl3)δ:0.88(3H,t,J=7.0Hz),1.20−1.80
(8H,m),2.13(1H,br t,J=5.5Hz),2.30(1H,dd,J=
5.5Hz,18.4Hz),2.65(1H,d,J=18Hz),2.86(1H,ddd,J
=4Hz,9Hz,12Hz),3.65(1H,dt,J=7Hz,9Hz),3.79(2
H,ABq),3.94−4.02(1H,m),4.17(1H,t,J=4.5Hz),
4.35(1H,d,J=12Hz),4.44(1H,d,J=12Hz),4.58(2
H,dd,J=6Hz,12Hz),5.56(1H,dd,J=9Hz,16Hz),5.93
(1H,dd,J=9Hz,16Hz),7.23−7.35(10H,m). IR(neat):3640,1740,1090,1065,980,695cm-1. 参考例7 上記光学活性シクロペンタノン誘導体[12]253mg
(0.58mM)を無水ピリジン19mlに溶かし、0℃で撹拌
下、蒸留したメタンスルホニルクロリド360μ(4.6m
M)を滴下し、混合液を2時間同温度で撹拌した後、0.5
規定塩酸中に注ぎ、塩化メチレンで抽出を行なった。抽
出液を0.5規定塩酸、飽和重曹水及び飽和食塩水で順次
洗浄し、無水硫酸マグネシウムで乾燥した後、残渣をOD
S化したシリカゲルを用いて高速液体クロマトグラフィ
ーに付し、0.5%2−プロパノール/ヘキサンを溶離液
として分取し、光学活性2−メチレンシクロペントノン
誘導体[13]188mg(0.45mM)を得た。収率78%。
[α]25 D:−76.00゜(C=0.287,CHCl3).1 HNMR(CDCl3)δ:0.87(3H,br t),1.00−1.80(8H,
m),2.20−2.95(2H,m),3.24−3.66(1H,m),3.66−3.
96(1H,m),3.96(1H,dt,J=6.6Hz,7.3Hz),4.44(1H,
d,J=11.7Hz),4.62(2H,s).4.65(1H,d,J=11.7Hz),
5.25(1H,d,J=2.5Hz),5.50−5.70(2H,m),6.14(1H,
d,J=2.5Hz),7.30(10H,s) IR(neat):1731,1640,1095,1027,737,698cm-1.
【図面の簡単な説明】
第1図は本発明の反応経路を示すフローシートであり、
第2図及び第3図は出発原料の製造工程を示すフローシ
ートである。
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 67/343 C07C 67/343 69/734 69/734 Z

Claims (11)

    (57)【特許請求の範囲】
  1. 【請求項1】一般式 (式中、R1はアルコキシ基を有していてもよいアルキル
    基又はシクロアルキル基、又は−Ra−A−B(ここでは
    Raはアルキル基、Aはヘテロ原子又は単結合、Bは置換
    基を有していてもよい芳香族環又はヘテロ環をそれぞれ
    意味する)で示される基を意味し、R2及びR3は同一また
    は異なり、アラルキル基、シリル基又はアシル基を意味
    し、R4はアルキル基を意味し、2つのR4が互いに結合し
    て環を形成していてもよい) で示される光学活性ビニル化合物。
  2. 【請求項2】請求項1記載の光学活性ビニル化合物[VI
    II]を製造するに当たり、 一般式 (式中、R1、R2、R3及びR4は請求項1のものと同じ意味
    を有する) で示される光学活性ヒドロキシエチル化合物を脱水する
    ことを特徴とする方法。
  3. 【請求項3】請求項2記載の方法において、光学活性ヒ
    ドロキシエチル化合物[VII]を製造するに当たり、 一般式 (式中、R1、R2、R3及びR4は請求項2のものと同じ意味
    を有し、R5はアルキル基を意味する) で示される光学活性エステル化合物を還元することを特
    徴とする方法。
  4. 【請求項4】請求項3記載の方法において、光学活性エ
    ステル化合物[VI]を製造するに当たり、 一般式 で示される光学活性4−エン−6−オール化合物に一般
    式CH3C(OR5(上記各式中、R1、R2、R3、R4及びR5
    は請求項3のものと同じ意味を有する)で示されるトリ
    アルキルオルトアセテートを反応させ、更に分子内転移
    を起こさせることを特徴とする方法。
  5. 【請求項5】請求項4記載の方法において、光学活性4
    −エン−6−オール化合物[V]を製造するに当たり、 一般式 (式中、R1、R2、R3及びR4は請求項4のものと同じ意味
    を有する) で示される光学活性4−イン−6−オール化合物を部分
    還元することを特徴とする方法。
  6. 【請求項6】請求項5記載の方法において、光学活性4
    −イン−6−オール化合物[III b]を製造するに当た
    り、 一般式 (式中、R1、R2、R3及びR4は請求項5のものと同じ意味
    を有する) で示される光学活性4−イン−6−オン化合物を還元す
    ることを特徴とする方法。
  7. 【請求項7】請求項6記載の方法において、光学活性4
    −イン−6−オン化合物[IV]を製造するに当たり、 一般式 で示される光学活性シブロモ化合物を 一般式 で示される光学活性アルデヒド化合物と反応させて 一般式 (上記各式中、R1、R2、R3及びR4は請求項6のものと同
    じ意味を有する) で示される光学活性4−イン−6−オール化合物とし、
    次いで同4−イン−6−オール化合物[III a]を酸化
    することを特徴とする方法。
  8. 【請求項8】一般式 (式中、R1、R2、R3及びR4は請求項1のものと同じ意味
    を有する) で示される光学活性ヒドロキシエチル化合物。
  9. 【請求項9】請求項8記載の光学活性ヒドロキシエチル
    化合物[VII]を製造するに当たり、 一般式 (式中、R1、R2、R3及びR4は請求項8のものと同じ意味
    を有し、R5はアルキル基を意味する) で示される光学活性エステル化合物を還元することを特
    徴とする方法。
  10. 【請求項10】一般式 (式中、R1、R2、R3及びR4は請求項1のものと同じ意味
    を有し、R5はアルキル基を意味する) で示される光学活性エステル化合物。
  11. 【請求項11】請求項10記載の光学活性エステル化合物
    [VI]を製造するに当たり、 一般式 で示される光学活性4−エン−6−オール化合物に一般
    式CH3C(OR5(上記各式中、R1、R2、R3、R4及びR5
    は請求項10のものと同じ意味を有する)で示されるトリ
    アルキルオルトアセテートを反応させ、更に分子内転移
    を起こさせることを特徴とする方法。
JP1533090A 1990-01-25 1990-01-25 光学活性ビニル化合物、その製造中間体及びそれらの製造方法 Expired - Lifetime JP2654834B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1533090A JP2654834B2 (ja) 1990-01-25 1990-01-25 光学活性ビニル化合物、その製造中間体及びそれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1533090A JP2654834B2 (ja) 1990-01-25 1990-01-25 光学活性ビニル化合物、その製造中間体及びそれらの製造方法

Publications (2)

Publication Number Publication Date
JPH04178345A JPH04178345A (ja) 1992-06-25
JP2654834B2 true JP2654834B2 (ja) 1997-09-17

Family

ID=11885772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1533090A Expired - Lifetime JP2654834B2 (ja) 1990-01-25 1990-01-25 光学活性ビニル化合物、その製造中間体及びそれらの製造方法

Country Status (1)

Country Link
JP (1) JP2654834B2 (ja)

Also Published As

Publication number Publication date
JPH04178345A (ja) 1992-06-25

Similar Documents

Publication Publication Date Title
JPH05331128A (ja) (R)−(−)−4−シアノ−3−ヒドロキシ酪酸t−ブチルエステル及びその製造方法
US7345181B2 (en) Process for preparing prostaglandin derivatives and starting materials for the same
US4233231A (en) Novel vinyl-stannyl derivatives
US5677467A (en) Synthesis of acetogenins
JP2756608B2 (ja) 光学活性イソオキサゾール誘導体の製造方法、並びにその製造中間体及びその製造方法
JP2654834B2 (ja) 光学活性ビニル化合物、その製造中間体及びそれらの製造方法
JP2654835B2 (ja) 光学活性4―エン―6―オール化合物、その製造中間体及びそれらの製造方法
JPH06122653A (ja) 飽和単環炭化水素化合物の製造方法およびその中間体
JP2743797B2 (ja) 光学活性化合物の製法
JP2785657B2 (ja) 光学活性化合物の製法
JP2743798B2 (ja) 光学活性化合物の製法
US5210201A (en) Optically active isoxazole derivatives and intermediates for preparation thereof as well as processes for producing the same
JP2785658B2 (ja) 光学活性化合物の製法
JP2000143688A (ja) ゼアキサンチンモノ−β−グルコシドの製造方法
US5266703A (en) Optically active isoxazole derivatives
US5220074A (en) Optically active isoxazole derivatives and intermediates for preparation thereof as well as processes for producing the same
JPH0611735B2 (ja) 光学活性なβ―アルキル―γ―アシルオキシカルボン酸エステルの製造方法
WO1998021179A1 (fr) Procede de preparation de prostaglandines
JPH0631201B2 (ja) 光学活性γ―ラクトン誘導体の製法
WO2002060850A1 (fr) Procede de synthese d'acide gras insature $g(a)-cetol
JPH0873390A (ja) カルシトリオール中間体及びその製法
JPH0710793B2 (ja) 第1級アリルエステルの製造方法
JPH0651693B2 (ja) 光学活性化合物
JP2002265412A (ja) 新規シクロペンテノン誘導体
WO1991008187A1 (fr) Compose terpenique en chaine