WO2009104584A1 - 画像表示システムの品質管理システム及び品質管理プログラム - Google Patents

画像表示システムの品質管理システム及び品質管理プログラム Download PDF

Info

Publication number
WO2009104584A1
WO2009104584A1 PCT/JP2009/052652 JP2009052652W WO2009104584A1 WO 2009104584 A1 WO2009104584 A1 WO 2009104584A1 JP 2009052652 W JP2009052652 W JP 2009052652W WO 2009104584 A1 WO2009104584 A1 WO 2009104584A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display
lookup table
lut
image display
Prior art date
Application number
PCT/JP2009/052652
Other languages
English (en)
French (fr)
Inventor
正行 中澤
陽一 小野
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2009104584A1 publication Critical patent/WO2009104584A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • H04N17/045Self-contained testing apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/08Biomedical applications
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/06Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory

Definitions

  • the present invention relates to a quality management system and a quality management program for an image display system.
  • radiographs taken by medical diagnostic apparatuses such as X-ray diagnostic apparatuses, MRI (Magnetic Resonance Imaging) diagnostic apparatuses, and various CT (Computed Tomography) tomographic apparatuses are usually used. It is recorded on a light transmissive image recording film such as an X-ray film or other film photosensitive material, and is reproduced as a light transmissive image.
  • the film on which the diagnostic image is reproduced is set in an observation device called a schaukasten, and is observed in a state of being irradiated with light from the back, and a diagnosis of the presence or absence of a lesion is performed.
  • CRT Cathode Ray Tube
  • LCD Liquid Crystal Display liquid crystal display
  • the image characteristics vary depending on the image type of the image to be displayed, and the display characteristics vary depending on the type of the image display device to be displayed. For this reason, when diagnosis is performed by outputting a diagnostic image on a monitor, quality control (calibration) is appropriately performed on the image characteristics corresponding to the type of image to be displayed and the display characteristics of the image display device on the display output side. It is necessary to
  • a quality control (calibration) method for example, a predetermined test pattern is displayed on the display unit of the image display device, and the luminance and chromaticity are measured by a measuring unit such as a sensor. Then, based on the obtained measurement result, a lookup table (hereinafter referred to as “LUT”) as a conversion rule for converting the input signal value into a signal value suitable for display output according to the display characteristics of the image display device. create.
  • LUT lookup table
  • the calibration may be performed again.
  • the measuring means sensor
  • the display characteristics are corrected by applying the LUT created in the past rather than applying the LUT created in an inappropriate situation such as a failure of the measuring means (sensor) to the image data. In some cases.
  • the present invention has been made in view of the circumstances as described above, and even when calibration cannot be performed properly, an image that does not hinder diagnosis without interrupting the diagnostic action is displayed on the image display device. It is an object of the present invention to provide a quality management system and a quality management program for an image display system that can be displayed on the screen.
  • a quality control system for an image display system that displays and outputs an image obtained from a medical diagnostic device on an image display device, Display characteristic measuring means for displaying a test pattern corresponding to a plurality of different image signal values on the image display device, and measuring display characteristics of each test pattern;
  • Look-up table creating means for creating a look-up table for converting display characteristics of the image display device based on the measurement results into desired display characteristics;
  • Creation history storage means for storing the creation history of the lookup table; Association storage means for storing the lookup table or information for creating the lookup table in association with the creation history;
  • Application lookup table storage means for storing a lookup table that is actually applied to the image display device;
  • Lookup table rewriting means for rewriting the look-up table stored in the applied look-up table storage means to another look-up table stored in the association storage means.
  • the present invention also provides: A quality management system for an image display system for displaying an image obtained from a medical diagnostic apparatus on an image display apparatus, Display characteristic measuring means for displaying a test pattern corresponding to a plurality of different image signal values on the image display device and measuring display characteristics of each test pattern; Look-up table creating means for creating a look-up table for converting display characteristics of the image display device based on the measurement results into desired display characteristics; Creation history storage means for storing the creation history of the lookup table; Application lookup table storage means for storing a lookup table that is actually applied to the image display device; An initial lookup table storage means for storing an initial lookup table set at the time of shipment or installation of the image display device; Initial lookup table selection means for rewriting the lookup table stored in the applied lookup table storage means to an initial lookup table stored in the initial lookup table storage means. It is said.
  • the present invention also provides: A quality control program for an image display system for displaying an image obtained from a medical diagnostic device on an image display device, A display characteristic acquisition function for displaying a test pattern corresponding to a plurality of different image signal values on the image display device and acquiring a measurement result of measuring a display characteristic of each test pattern; A lookup table creation function for creating a lookup table for converting the display characteristics of the image display device based on the measurement results into desired display characteristics; A creation history storage function for storing a creation history of the lookup table; An association storage function for storing the lookup table or information for creating the lookup table in association with the creation history; An applied lookup table storage function for storing a lookup table that is actually applied to the image display device; A lookup table rewriting function for rewriting the lookup table stored as the lookup table to be actually applied to another lookup table stored in the association storage means is realized by a computer. It is said.
  • the lookup table actually applied to the image display device can be rewritten to another lookup table created in the past. For this reason, when calibration cannot be performed properly due to a failure of the measuring means, an image that does not interfere with diagnosis can be displayed on the image display device even if the gradation characteristics are not optimal. The effect of being able to continue medical practice.
  • the initial lookup table set at the time of shipment or installation of the image display device can be selected as the lookup table that is actually applied to the image display device. For this reason, when calibration cannot be performed properly due to a failure of the measuring means, an image that does not interfere with diagnosis can be displayed on the image display device even if the gradation characteristics are not optimal. The effect of being able to continue medical practice.
  • FIG. 3 is an explanatory diagram schematically illustrating an example of an LUT provided in the image characteristic LUT storage unit and the display characteristic LUT storage unit illustrated in FIG. 2. It is a figure which shows schematic structure of the image display apparatus shown in FIG. 3 is a diagram showing specific contents of a display characteristic LUT storage unit shown in FIG. 2. It is a graph showing the general display characteristic of a liquid crystal panel. 4 is a graph illustrating an example of a display characteristic LUT illustrated in FIG. 3. 4 is a graph illustrating an example of a display characteristic LUT illustrated in FIG. 3.
  • FIG. 4 is a graph illustrating an example of a display characteristic LUT illustrated in FIG. 3.
  • 4 is a graph illustrating an example of a display characteristic LUT illustrated in FIG. 3.
  • 10 is an enlarged graph of a one-dot chain line portion of FIG. 9.
  • 12A is an explanatory diagram showing an example of conversion from a monochrome image signal to an RGB equivalent color image signal
  • FIG. 12B is an RGB unequal color image signal from the monochrome image signal. It is explanatory drawing which showed an example of conversion into. It is explanatory drawing which showed an example of the image at the time of converting a monochrome image signal into the RGB color image signal of an unequal value by the gradation control unit.
  • FIG. 25A is a table showing the contrast response based on the measured luminance value
  • FIG. 25B is a table showing the contrast response based on the standard luminance value.
  • FIG. 25A is a table showing the contrast response based on the measured luminance value
  • FIG. 25B is a table showing the contrast response based on the standard luminance value.
  • FIG. 25A is a table showing the contrast response based on the measured luminance value
  • FIG. 25B is a table showing the contrast response based on the standard luminance value.
  • FIG. 1 shows a schematic configuration example of a medical image system 1 to which an image display system 100 according to this embodiment is applied.
  • a medical image system 1 is obtained by medical diagnostic apparatuses 2, 2... That generate image data of a medical image (hereinafter simply referred to as “image”) obtained by imaging a patient.
  • a plurality of image processing apparatuses 3, 3... For performing predetermined image processing on the obtained image data.
  • a plurality of image display devices 4, 4... For displaying images based on the image data processed by the image processing devices 3, 3.
  • Each of the image processing apparatuses 3, 3,... And the medical diagnosis apparatuses 2, 2,... Is a communication network such as a LAN (Local Area Network) or a WAN (Wide Area Network) via a switching hub (not shown). Connected by 5).
  • a communication network such as a LAN (Local Area Network) or a WAN (Wide Area Network) via a switching hub (not shown). Connected by 5).
  • the network 5 conforms to, for example, DICOM (Digital Image and Communication Communications in Medicine) standards.
  • DICOM MWM Mode Worklist Management
  • DICOM MPPS Mode Performed Procedure Step
  • the network 5 is preferably configured to be connectable to other information management systems in the hospital such as HIS (Hospital Information System) / RIS (Radiology Information System) according to the DICOM standard.
  • HIS Hospital Information System
  • RIS Radiology Information System
  • the medical diagnosis apparatus is a CR (Computed Radiography) apparatus (hereinafter referred to as “CR”) 2a, a CT (Computed Tomography) 2b, and an MRI (Magnetic Resonance Imaging) apparatus (hereinafter “MRI”). ) 2c and an endoscope apparatus (hereinafter referred to as “endoscope”) 2d are connected to the network 5 one by one.
  • CR Computer Radiography
  • CT Computer Tomography
  • MRI Magnetic Resonance Imaging
  • endoscope an endoscope apparatus
  • a MRT Magnetic Resonance Tomography
  • a breast image generation device mammography
  • an FPD Felat Panel Detector
  • an ultrasonic image device a terminal device that provides image data of an electronic medical record, or the like
  • a terminal device that provides image data of an electronic medical record, or the like is connected to the network 5
  • a plurality of medical diagnostic apparatuses of the same type may be connected.
  • FIG. 2 shows a schematic configuration of the image display system in the present embodiment.
  • the image processing device 3a (PC1) has an image display device 4a (Display1-1), 4b (Display1-2), and the image processing device 3b (PC2) has an image display device 4c (Display2). -1), 4d (Display 2-2), and the image processing device 3c (PC3) are connected to image display devices 4e (Display 3-1), 4f (Display 3-2), respectively.
  • the number of image processing devices 3, 3 ... connected to the network 5 and the number of image display devices 4, 4 ... connected to the image processing devices 3, 3 ... are not limited to the illustrated example.
  • FIG. 3 schematically shows the image processing device 3 and the image display device 4 connected thereto
  • FIG. 4 is a diagram showing a schematic configuration of the image display device 4. As shown in FIG.
  • the image display devices 4, 4... are connected to the image processing devices 3, 3.
  • the connection between the image display devices 4, 4... And the image processing devices 3, 3... Is not limited to that performed via the video card 45.
  • the image display devices 4, 4... are monitors that display medical diagnostic images, for example.
  • the image display devices 4, 4... Have a liquid crystal panel (LCD (Liquid Crystal Display)) 41 as a display unit that displays a color image and a monochrome image based on the image data, and a display drive unit (not shown) that drives the liquid crystal panel 41. And a backlight (not shown) for irradiating the liquid crystal panel 41 with light from the non-observation side.
  • the display unit is not limited to the liquid crystal panel 41.
  • an organic EL display or the like may be applied as the display unit.
  • the backlight may be any one that can provide light sufficient to illuminate the liquid crystal panel 41.
  • an LED, a cold cathode fluorescent tube, a hot cathode fluorescent tube, and other light emitting elements can be applied. It is preferable that display with a maximum luminance of 500 to 5000 cd / m 2 is possible so that it can be suitably used for a monitor for medical purposes.
  • the type of the liquid crystal panel 41 applicable to the present embodiment is not particularly limited, and the display driving unit drives the liquid crystal panel 41 with respect to a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, MVA ( Various driving systems such as a multi-domain (vertical alignment) system and an IPS (in-plane switching) system can be applied.
  • the liquid crystal panel 41 can reproduce the gradation of 8 bits (256 steps) for each of red (R), green (G), and blue (B) by a color filter (not shown). .
  • the liquid crystal panel 41 having three colors of red (R), green (G), and blue (B) is used, but red (R), green (G), and blue (B) are used.
  • red (R), green (G), and blue (B) are used.
  • three colors of yellow (Y), magenta (M), and cyan (C) may be used.
  • four or more colors may be used, six colors of R, G, B, Y, M, and C, and six colors of red (R1, R2), green (G1, G2), and blue (B1, B2) having different tones. But you can.
  • Image processing to be described later is not limited to three colors of red (R), green (G), and blue (B).
  • the present invention is not limited to the case where multicolor display is performed using a color filter, and can also be applied to an image display apparatus that performs multicolor display by switching a plurality of color light sources.
  • the image display devices 4, 4... include a measuring unit 42 as a display characteristic measuring unit that measures display characteristics of an image displayed on a specific target region T of the liquid crystal panel 41. It has been.
  • a known color sensor such as a luminance meter or a chromaticity meter can be used according to the type of the liquid crystal panel 41.
  • the illustrated measurement means 42 is a contact type sensor, but a non-contact type sensor may be used, and any measurement means may be used.
  • the device configuration of the measuring means 42 can be applied to the image display devices 4, 4.
  • the measuring unit 42 measures the display characteristics to be displayed and outputs the measurement result (measured value) to the control unit 31 (see FIG. 2). Yes.
  • the display characteristics of the liquid crystal panel 41 are information regarding at least one of the values of R, G, and B input to the liquid crystal panel 41 and the luminance and chromaticity of display light corresponding thereto.
  • a commonly used color index can be used.
  • XYZ color system, X 10 Y 10 Z 10 color system, xyz chromaticity coordinates, x 10 y 10 z 10 chromaticity coordinates, UCS chromaticity, L * a * b * color system, L defined by CIE * C * h * color system, L * u * v * color system, and the like can be mentioned, but the invention is not limited thereto.
  • Information on luminance and / or chromaticity may be measured at a predetermined timing using the measuring means 42 by displaying a test pattern on the target region T of the liquid crystal panel 41, or may be measured on the liquid crystal panel 41 at the time of factory shipment.
  • the result of measurement by displaying may be stored.
  • the correspondence relationship of the information on the luminance and / or chromaticity with respect to the values of R, G, B may be stored as a predetermined conversion formula without using the measurement results for the individual image display devices 4, 4,. Good.
  • the measuring means 42 measures the display characteristics, but in this embodiment, a region having an area of about 10% in the central portion of the display screen of the liquid crystal panel 41. Shall be pointed to.
  • the measuring means 42 is connected online to the image processing apparatus 3. For example, the display characteristic is measured using the measuring means 42 not connected online with the image processing apparatus 3, and the result is input via an input means such as a keyboard. Then, it may be input to the image processing apparatus 3.
  • the image processing devices 3a, 3b, and 3c include a control unit 31 and a storage unit 32 (a storage unit 32a in the image processing device 3a, a storage unit 32b in the image processing device 3b, and an image) that are configured by a CPU (Central Processing Unit) (not shown).
  • the processing device 3c is a computer that includes a storage unit 32c) and a RAM (Random Access Memory) (not shown).
  • the image processing apparatuses 3a, 3b, and 3c include a communication unit, an interface, an input unit, and the like (all not shown).
  • the communication unit is configured by a network interface or the like connected to an external device such as the medical diagnostic apparatuses 2a, 2b, 2c, and 2d via the network 5.
  • two image display devices 4, 4... are connected to the image processing devices 3a, 3b, 3c, respectively, via an interface.
  • the input unit is configured with a keyboard, a mouse, and the like, and a user can input various information.
  • the storage units 32a, 32b, and 32c are configured by an HDD (Hard Disk Drive) or the like.
  • the storage unit 32a of the image processing apparatus 3a includes a program storage unit 33, an image characteristic LUT storage unit 34, a display characteristic LUT storage unit 36, a default value storage unit 38, and a quality control data storage. It consists of part 39 etc.
  • the storage unit 32b of the image processing device 3b (PC2) and the storage unit 32c of the image processing device 3c (PC3) are configured from a program storage unit (not shown) that stores various programs. Programs and data necessary for performing basic operations such as determining the image type of the images sent to the image processing apparatuses 3b and 3c, and reading programs and LUTs necessary for processing from the storage destination Etc. are stored.
  • a quality management program 33a necessary for performing calibration processing which will be described later
  • an image processing program 33b necessary for performing image processing are a program storage unit of the storage unit 32a of the image processing apparatus 3a (PC1).
  • 33, and the LUT and data necessary for these processes are stored in the image characteristic LUT storage unit 34, the display characteristic LUT storage unit 36, the quality control data storage unit 39, etc. of the storage unit 32a.
  • the storage unit 32b of the image processing apparatus 3b (PC2) and the storage unit 32c of the image processing apparatus 3c (PC3) read out these programs, necessary LUTs, data, and the like from the storage unit 32a that is a storage destination as appropriate. Is remembered.
  • the program storage unit 33 is a program storage unit that stores an application program or the like for processing images obtained from the medical diagnostic apparatuses 2, 2.
  • a quality management program 33a and a medical diagnostic apparatus 2 for performing calibration according to the display characteristics of the image display devices 4, 4,... 2 stores an image processing program 33b for performing image processing on the image data generated by.
  • the quality management program 33a displays test patterns corresponding to a plurality of different image signal values on the image display devices 4, 4... And acquires measurement results obtained by measuring the display characteristics of each test pattern by the measuring means 42.
  • An acquisition function, a lookup table creation function for creating a display characteristic LUT 37 for converting the display characteristics of the image display devices 4, 4... Based on the measurement results into desired display characteristics, and a creation history of the display characteristic LUT 37 are stored.
  • the creation history storage function to be stored in the creation history storage unit 36a of the unit 32, and the association storage function to store the display characteristic LUT 37 or information for creating the display characteristic LUT 37 in the association storage unit 36b in association with the creation history
  • the applied look-up table storage function for storing in the initial LUT storage unit 36d for storing the initial LUT set at the time of shipment or installation of the image display devices 4, 4,.
  • the look-up table rewriting function for rewriting the display characteristic LUT 37 stored as the LUT to another display characteristic LUT 37 stored in the association storage unit 36b, and the display characteristic LUT 37 stored as the LUT to be actually applied as the initial LUT
  • the image processing program 33b stores, in a display characteristic LUT storage unit 36, which will be described later, the types of image display devices 4, 4... Among the plurality of display characteristic LUTs 37 that are prepared and stored for each combination with the type of the image, and the types of the image display devices 4, 4...
  • the display characteristic LUT selection function for selecting the display characteristic LUT 37 used for image processing in accordance with the image characteristic LUT 35 corresponding to the image characteristic caused by the medical diagnostic apparatuses 2a, 2b, 2c, and 2d as the image data input source and the selected image characteristic LUT 35
  • the program storage unit 33 performs other basic operations such as determining the image type of an image sent to the image processing apparatus 3a and reading a program and data necessary for processing.
  • a program (not shown) is stored.
  • the image characteristic LUT storage unit 34 is connected to the network 5 and has a plurality of images corresponding to medical diagnostic devices (medical diagnostic devices that are candidate image data input sources) that may input image data via the network 5.
  • Image characteristic lookup table storage means for storing a characteristic lookup table hereinafter referred to as “image characteristic LUT”.
  • the image characteristic LUT storage unit 34 includes four types of image characteristic LUTs 35a, 35b, 35c, and 35d corresponding to the medical diagnostic apparatuses 2a, 2b, 2c, and 2d connected to the network 5 (see FIG. 3). ) Is stored.
  • the image characteristic LUTs 35a, 35b, 35c, and 35d stored in the image characteristic LUT storage unit 34 are not limited to these four types. If the types of medical diagnostic apparatuses 2a, 2b, 2c, and 2d connected to the network 5 increase, the image characteristic LUT corresponding to the type is stored in the image characteristic LUT storage unit 34.
  • the image characteristic LUT is not limited to the one according to the image type caused by the medical diagnostic apparatuses 2a, 2b, 2c, and 2d, and may be prepared according to the characteristic caused by the application program or the system of another company. .
  • the image characteristic LUT 35a corresponds to the image data of the CR image generated by the CR 2a. Since the polarity of the image data of the CR image is negative (the higher the data value, the lower the luminance, that is, the higher the density), the image data of the CR image is converted by the image characteristic LUT 35a, and negative / positive linear inversion is performed.
  • the image characteristic LUT 35b corresponds to the image data of the CT image generated by the CT 2b
  • the image characteristic LUT 35c corresponds to the image data of the MRI image generated by the MRI 2c
  • the image characteristic LUT 35d is determined by the endoscope 2d. Each corresponds to the image data of the generated endoscopic image.
  • the image characteristics LUTs 35b, 35c, and 35d are selectively applied depending on whether the image data sent to the image processing apparatuses 3, 3... Is a CT image, an MRI image, or an endoscopic image.
  • the tone correction is performed to optimize the tone so as to match the image characteristics of each medical diagnostic apparatus 2, 2,.
  • the display characteristic LUT storage unit 36 is connected to any one of the image processing devices 3, 3... Connected to the network 5, and is an image display device 4 that is an output target candidate that may output and display an image based on the image data. , 4... And a display characteristic look-up table (hereinafter referred to as “display characteristic LUT”) for each combination of the types of medical diagnostic apparatuses 2a, 2b, 2c, and 2d that are image data input source candidates. This is characteristic lookup table storage means.
  • FIG. 5 shows a configuration example of the display characteristic LUT storage unit 36.
  • the display characteristic LUT storage unit 36 includes a creation history storage unit 36a, an association storage 36b, an applied LUT storage unit 36c, an initial LUT storage unit 36d, and the like.
  • the creation history storage unit 36 a is a creation history storage unit that stores a creation history of the display characteristic LUT 37.
  • the work history stored in the creation history storage unit 36a is information relating to creation of each display characteristic LUT 37, such as the date and time when the quality control process was performed (see FIG. 32).
  • the work history stored in the creation history storage unit 36a is not limited to this.
  • the test result (see FIG. 26) of the gradation characteristic test performed when creating the display characteristic LUT 37, calibration, and the like. Result (see FIG. 28) or the like may be stored as a creation history.
  • the association storage unit 36b associates and stores a display characteristic LUT 37 created in quality management processing (to be described later) performed up to the present time or information for creating the display characteristic LUT 37 in association with a creation history. It is. Each time a new quality management process is performed, the association storage unit 36b stores the display characteristic LUT 37 created in the quality management process or information for creating the display characteristic LUT 37 in association with the creation history.
  • association storage unit 36b there are a plurality of display characteristics LUTs 37, 37,... According to the display characteristics due to the inherent gradation of the image display apparatuses 4, 4,. Each is stored in association with the creation history.
  • the application LUT storage unit 36c is an application lookup table storage unit that stores display characteristics LUTs 37 that are actually applied to the image display devices 4, 4. When there is no particular setting, the display characteristic LUT 37 created by the latest quality management process is stored in the application LUT storage unit 36c as the display characteristic LUT 37 that is actually applied.
  • the initial LUT storage unit 36d is an initial look-up table storage unit that stores the initial LUT set at the time of shipment or installation of the image display devices 4, 4,.
  • the display characteristics LUTs 37, 37... are LUTs for converting the display characteristics of the image display devices 4, 4... Based on the measurement results by the measuring means 42 into desired display characteristics. 4, 4... LUT for performing gradation correction processing for conversion into an image suitable for display characteristics due to its own inherent gradation and image types due to medical diagnostic apparatuses 2, 2.
  • a plurality of display characteristics LUTs 37, 37... Are provided corresponding to the image types resulting from the image display devices 4, 4,.
  • various image processing such as window processing, level adjustment, gradation processing for giving S-shaped gradation characteristics, frequency enhancement processing, dynamic range compression processing, and the like are performed on image data of medical images.
  • image processing may also be performed according to the image type of the image data, but the gradation correction processing in this embodiment is a process that takes into account the display characteristics of the image display devices 4, 4.
  • the image processing is performed according to the above, and is different from the image processing generally performed. Note that it is more preferable to perform the gradation correction processing in the present embodiment after performing the image processing that is generally performed.
  • FIG. 6 shows the display characteristics originally provided in the liquid crystal panel 41 of the image display devices 4, 4,...
  • display luminance vertical axis
  • horizontal axes are R, G, B single colors constituting the color image data
  • R, G, B values RGB values
  • each image data is image data such as image data generated by various types of medical diagnostic apparatuses 2, 2... And electronic medical records, and preferable display gradation characteristics for each image data are different. For this reason, in order to convert these image data into display image data suitable for display on the liquid crystal panel 41, a display in which gradation conversion is performed so as to have gradation characteristics according to the image type of each image data. It is necessary to perform gradation processing.
  • the storage unit 32a has six types of display characteristics LUTs 37a, 37 corresponding to the image types of the image data as display characteristics LUTs 37, 37...
  • display characteristics LUTs 37, 37 For performing display gradation processing performed by the control unit 31.
  • 37b, 37c, 37d, 37e, and 37f are stored.
  • the display characteristics LUTs 37a to 37f will be described.
  • image types of image data suitable for displaying with such gradation characteristics for example, color images such as endoscopic images and fundus photographic images can be cited.
  • a display characteristic LUT 37b (LUT2; “LUT1-1-2” in FIG. 20 described later) is a display gradation for performing gradation conversion to lower the luminance of a display image when displayed on the liquid crystal panel 41. This is applied when processing is performed.
  • the display characteristic LUT 37b is a linear LUT in which the output signal value is proportional to the input signal value and the gradation display function is a linear function, as in the display characteristic LUT 37a.
  • the slope of the straight line is smaller than that of the display characteristic LUT 37a.
  • An image type of image data suitable for display with such gradation characteristics is a white background as a whole, such as image data of an electronic medical record, and text data is included therein.
  • Images that is, when displayed with a gradation characteristic of ⁇ 2.2 which is a characteristic of a general monitor (liquid crystal panel), it is displayed with a luminance of 300 cd / m 2 or the like. In such a case, if the display is performed with such high brightness, the visibility is dull and poor.
  • the visibility of an image such as an electronic medical record is further reduced when displayed together.
  • the electronic medical chart image data or the like is displayed with high luminance, the visibility of the image based on the image data by the image generation devices 2, 2.
  • an LUT having a smaller inclination than the display characteristic LUT 37a is used so as to lower the luminance of the display image such as an electronic medical record.
  • image type of image data suitable for displaying with such gradation characteristics for example, a color ultrasonic image or the like can be cited. Further, there are cases where CT images and MRI images are displayed with pseudo colors, which is also suitable for such pseudo color images.
  • a display characteristic LUT 37d (LUT4; referred to as “LUT1-1-3” in FIG. 20 to be described later) converts monochrome 8-bit image data according to a certain gray scale function, and outputs the converted output signal.
  • the present invention is applied when performing display gradation processing for performing gradation conversion so that monochrome display image data with values equal to R, G, B, etc. is obtained.
  • the gradation curve is converted into Although only one curve is displayed in FIG. 8, after the display gradation conversion, display image data having the same values for R, G, and B is generated for monochrome image data. Needless to say.
  • Examples of image types of image data suitable for displaying with such gradation characteristics include monochrome ultrasonic images, PET images, CT images, MRI images, and the like.
  • the display characteristic LUT 37e (LUT5; “LUT1-1-4” in FIG. 20 described later) is a monochrome 12-bit image data (input signal value is a numerical value from 0 to 4095).
  • the display gradation processing is performed so that the output signal value after conversion becomes display image data having 8-bit values of R, G, B, and the like.
  • the gradation curve is converted into
  • image type of image data suitable for displaying with such gradation characteristics for example, a monochrome CR image or the like can be cited.
  • the display characteristic LUT37f (LUT6) is an output signal value after conversion in which R, G, and B are unequal when the image data is monochrome 12-bit image data (when the input signal value is up to 4095). This is applied when display gradation processing is performed so as to obtain 8-bit display image data including a combination of the above.
  • the gradation display function of the display characteristic LUT 37f is a gradation curve according to the DICOM standard. Although it appears that only one curve is shown in FIG. 10, the values of R, G, and B after conversion for monochrome 12-bit image data are not necessarily the same.
  • FIG. 11 is an enlarged view of a portion surrounded by a one-dot chain line in the graph of FIG. As shown in FIG. 11, in the display characteristic LUT 37f, gradation conversion is performed by shifting R, G, and B values.
  • the input signal value is monochrome multi-gradation image data with 10 bits or more
  • the DICOM conversion is performed by simply reducing the output signal value to 8 bits as in the display characteristic LUT 37e
  • the number of gradations is reduced.
  • the monochrome signal having an input signal value of 10 bits or more is used. Even if the gradation image data is converted into an 8-bit output signal value, the number of gradations can be increased.
  • the display characteristic LUT 37e and the display characteristic LUT 37f are both monochromatic image data of 1 channel is input as image data, the data is distributed to 3 channels of R, G, and B, and 8 bits of R, G, and B are distributed. This is converted into B color display image data.
  • the display characteristic LUT 37e and the display characteristic LUT 37f are associated with preset correspondence when the image data is monochrome image data exceeding n (n is a positive integer of 8 or more) bits. Based on this, it is converted to n-bit R, G, B color display image data.
  • the liquid crystal panel 41 that is an image display means displays an image in three colors of R, G, and B
  • the display characteristic LUT 37e and the display characteristic LUT 37f are three of R, G, and B.
  • the display image data is converted into color display image data of the channel.
  • the image data of the number of channels corresponding to the number of display colors that is, (Color display image data of 3 channels or more) may be converted.
  • the display characteristic LUT 37e and the display characteristic LUT 37f are applied when the original image is 12-bit monochrome image data.
  • one-channel monochrome image data is displayed in three or more channels in color.
  • the display characteristic LUT 37 to be converted into image data is 1-channel monochrome image data whose image data is n (n is a positive integer greater than or equal to 8) bits, and this is converted into 3 channels of n bits based on preset correspondence. What is necessary is just to convert into the above color display image data, and is not limited to what was shown here.
  • FIG. 12 shows an example of converting 10-bit 1-channel monochrome image data into 8-bit 3-channel or more color display image data based on preset correspondence.
  • FIG. 12A shows the correspondence between monochrome image data and R, G, and B display image data after conversion when converting R, G, and B as equal values, similarly to the display characteristic LUT 37e.
  • FIG. 12B shows correspondence between monochrome image data and R, G, and B display image data after conversion when R, G, and B are converted as unequal values, similarly to the display characteristic LUT 37f. It shows the date.
  • FIG. 13 shows RGB values for each gradation control unit (1 pixel).
  • FIG. 14 shows an example of creating a display characteristic LUT 37 when converting multi-tone image data of 1 channel having an input signal value of 12 bits into multi-tone image data of 8 bits and 3 channels, which are display image data. Show.
  • FIG. 14A one-channel multi-gradation image data (“multi-gradation 1” in FIG. 14) having an input signal value of 12 bits can be prepared on the image display device 4, 4.
  • FIG. 14 shows the correspondence between signal values when converting into multi-gradation image data (“multi-gradation 2” in FIG. 14) according to the number of gradations.
  • the multi-gradation 2 after conversion may be 8 bits (256 gradations) or more, and is not particularly limited, but is preferably 10 bits (1024 gradations) or more.
  • FIG. 15 is a graph showing an LUT for converting a 12-bit multi-gradation 1 having a signal value up to 4095 to a 10.8-bit multi-gradation 2 having a signal value of 1785.
  • FIG. 14B shows the converted multi-gradation image data (“multi-gradation 2” in FIG. 14) shown in FIG. 14A and the display gradation characteristics of the image display devices 4, 4,.
  • FIG. 5 shows the correspondence between signal values and predetermined unequal 8-bit 3-channel multi-gradation image data (fixed LUT).
  • FIG. 14 (c) shows the image data (multi-gradation 1) having an input signal value of 4095 by applying the fixed LUT to the 8-bit, 3-channel multi-channel having unequal R, G, and B values. The correspondence relationship of each image signal in the case of converting to gradation image data is shown.
  • a fixed LUT (see FIG. 14B) used for realizing multi-gradation was created as follows. Note that the method of creating the fixed LUT is not limited to the one exemplified here.
  • values obtained by adding six predetermined offset values as shown in FIG. 16B to such R, G, and B values are used together.
  • FIG. 17A 3 bits such that the offset value corresponding to G is the most significant, the offset value corresponding to R is the middle, and the offset value corresponding to B is the least significant. It is preferable to add a combination offset value (FIG. 17B) which is a binary number 001 to 110 (1 to 6 in decimal number) so that the binary number monotonically increases.
  • a combination offset value (FIG. 17B) which is a binary number 001 to 110 (1 to 6 in decimal number) so that the binary number monotonically increases.
  • an offset value corresponding to G is a 2 bit of a 3 bit binary number
  • an offset value corresponding to R is a 1 bit of a 2 bit of a 3 bit binary number.
  • the offset value corresponding to the place and B corresponds to the 2 to the 0th power of a 3-bit binary number.
  • the fixed LUT created by the above method is created based on a very simple regularity, but within the range where RL, GL, and BL satisfy Expression (1), the model difference, the solid difference, and the change with time Even if there is, it is preferable because the monotonous increase in display luminance can be maintained.
  • the ratios of R, G, and B single-color luminances RL, GL, and BL have a relationship represented by the following formula (2).
  • the luminance value (signal value) of R and the luminance value (signal value) corresponding to the input data are distributed to the RGB cells constituting the unit pixel, respectively.
  • And B as the sum of luminance values (signal values), and only 768 different combinations of RGB can be obtained at the maximum, and a sufficient number of gradations cannot be obtained.
  • the conventional method does not define the order in which the respective RGB values are increased so that the binary offset value increases monotonically. Therefore, there is a problem that the luminance does not increase monotonously depending on the allocation method.
  • the fixed LUT described above adds an offset based on a combination of equal values of R, G, and B, so the image is displayed in a nearly black and white color tone, but it is also possible to add some color to the image. It is.
  • a method for creating a fixed LUT for displaying in a bluish color tone will be described.
  • FIG. 18A is the same as the fixed LUT shown in the central part of FIG. 16C, and the fixed LUT of FIG. 16C shows up to 21 as monochrome input values.
  • FIG. 18A shows up to 1785 as monochrome input values.
  • FIG. 18B is based on the value of the fixed LUT in FIG. 18A, the value corresponding to B is left unchanged, the value corresponding to R is rounded by multiplying by 231/255, and the value corresponding to G Multiplied by 243/255 and rounded off.
  • the fixed LUT shown in FIG. 18B is used, the value corresponding to R and G is smaller than the value corresponding to B, and the value of B is relatively large. it can.
  • an LUT having a smoother gradation can be obtained by the following method.
  • FIG. 19A shows the luminance ratio of R, G, B of a typical color liquid crystal panel (in this example, 0.26: 0.65: 0.
  • the result of calculating the sum by multiplying (09) is shown.
  • This sum is a value obtained by estimating the magnitude relationship of the displayed luminance.
  • the sum (brightness) does not increase monotonously with respect to the combination of R, G, and B (see A1 in FIG. 19A) where the sum (brightness) increases monotonously.
  • a combination of R, G, and B may occur. Therefore, as shown in FIG.
  • the storage unit 32 has, for example, a medical information type indicating what kind of medical diagnosis device 2, 2...
  • the image data is generated, and a color indicating whether it is a color image or a monochrome image.
  • Type (note that the medical information type and color type are collectively referred to as “image type”), information about the type of image such as the number of gradations of the image, and the type of display characteristic LUT used for display gradation processing Is stored.
  • FIG. 20 shows an example of LUT association information.
  • the display characteristic LUT storage unit 36 uses the LUT 1-1-1 as the display characteristic LUT 37 used when displaying an image on the image display apparatus 4a (Display 1-1) connected to the image processing apparatus 3a (PC1).
  • LUT1-1-2, LUT1-1-3,... are stored, as shown in FIG. 20, the LUT association information indicates what image type or the like each display characteristic LUT 37 corresponds to. Showing the relationship.
  • the medical information type is an electronic medical record
  • the color type is color
  • an image display device 4a (Display1) connected to the image processing device 3a (PC1) is an 8-bit gradation image.
  • -1) is associated with LUT1-1-2 (display characteristic LUT37b) as a display characteristic LUT37 to be applied to display
  • the medical information type is a CR image
  • the color type is monochrome
  • the number of gradations is LUT1-1-4 (display characteristic LUT37e) is associated with display characteristic LUT37 applied when displaying a 12-bit image on image display apparatus 4a (Display1-1) connected to image processing apparatus 3a (PC1). It has been.
  • control unit 31 selects a display characteristic LUT 37 to be used for image processing based on the LUT association information, and applies the selected display characteristic LUT 37 to perform image processing of image data. Yes.
  • the information related to the image associated with the display characteristic LUT 37 used for image processing is not limited to the information exemplified here.
  • the association between the information regarding the type of image and the display characteristic LUT 37 may be appropriately set by an input by a user or the like, or a preferable association may be set in advance as a default. Even if the association is set as a default in advance, the correspondence between the information related to the image type and the display characteristic LUT 37 can be changed afterwards by input and setting by the user or the like. . In this case, the LUT association information is rewritten by input / setting by the user or the like.
  • the default value storage unit 38 stores a default value when the display characteristic LUT 37 is created.
  • the user may select to generate the display characteristic LUT using default values determined in advance for each model and for each manufacturer without using the actual measurement values of the image display devices 4, 4. It can be done.
  • the display characteristic LUT (“default LUT” in FIG. 21) is created with the default value
  • the created LUT is stored in the display characteristic LUT storage unit 36 as one of the candidates that can be selected as the display characteristic LUT 37. It has become.
  • FIG. 21 shows an example of the display characteristic LUT 37 created using default values.
  • the display characteristic LUT 37 created using default values is different from each image display device 4, manufacturer, model, or monochrome image or color image. , 4..., 4...
  • gradation characteristic test data 39a gradation characteristic test data 39a
  • calibration measurement data 39b calibration measurement data 39b
  • Data (not shown) and the like are stored.
  • the gradation characteristic test data 39a includes inspection data obtained by the gradation characteristic test (measured luminance value with respect to the RGB value of the test pattern), standard data to be compared with the inspection data (standards specified in JESRA, AAPM, etc.). (Luminance value) and the result of comparing and comparing the inspection data with the standard data.
  • the calibration measurement data 39b refers to the RGB value of the test pattern obtained as a result of displaying the test pattern on the liquid crystal panel 41 of the image display device 4, 4. It is data of measured luminance values.
  • the test pattern data is a plurality of solid image data (RGB values) for displaying the test pattern on the liquid crystal panel 41.
  • RGB values solid image data
  • all or a part of 256 kinds of combinations having equal RGB values are used as data for displaying the test pattern.
  • the RGB values for displaying the test pattern are as follows. It does not have to be equal.
  • control unit 31 in this embodiment will be described.
  • the control unit 31 is composed of a CPU (Central Processing Unit) (not shown) and the like, and expands a system program read from the storage unit 32 and programs, data, and the like designated from various application programs in a RAM work area. Various processes are executed in cooperation with the program expanded in the RAM.
  • CPU Central Processing Unit
  • the control unit 31 of the image processing devices 3a to 3d performs image display control of the image display devices 4, 4..., For example, when performing a gradation characteristic test, the liquid crystal panel 41 of the image display devices 4, 4. The data of the test pattern to be displayed is output to the image display devices 4, 4.
  • control unit 31 displays the creation history (see FIG. 32) of the display characteristic LUT 37 on the image display devices 4, 4.
  • the display means for displaying the creation history of the display characteristic LUT 37 is not limited to the image display devices 4, 4. For example, it may be displayed on monitors (not shown) of the image processing apparatuses 3a to 3d.
  • the control unit 31 of the image processing apparatuses 3a to 3d performs quality management processing (calibration) in cooperation with the quality management program 33a. Specifically, the control unit 31 displays a test pattern on the liquid crystal panel 41 of the image display device 4, 4..., And causes the measurement unit 7 to measure the color stimulus value XYZ at that time. The measurement result obtained by the measuring means 7 is input to the control unit 31, and the control unit 31 has a display characteristic acquisition function for acquiring the measurement result obtained by measuring the display characteristic.
  • the value represented by Y among the color stimulus values represents luminance.
  • the control unit 31 Based on the measured luminance value for the RGB value of the test pattern obtained by this measurement and the standard luminance value defined in JESRA, AAPM, etc., the control unit 31 performs monochromatic monochrome for one channel according to the display characteristics of the liquid crystal panel 41.
  • a display characteristic LUT 37 is created as a conversion rule for converting into RGB values of three channels based on the image signal value.
  • the control unit 31 is a look-up table creation unit that creates the display characteristic LUT 37 in cooperation with the quality management program 33a.
  • control unit 31 functions as a determination unit that determines whether or not the display characteristic LUT 37 stored in the application LUT storage unit 36c satisfies a certain standard.
  • a determination criterion a certain criterion may be set as a default, or the user may arbitrarily set the criterion.
  • control unit 31 functions as a lookup table rewriting unit that rewrites the display characteristic LUT 37 stored in the application LUT storage unit 36c with another display characteristic LUT 37 stored in the association storage unit 36b.
  • the rewriting of the display characteristic LUT 37 stored in the applied LUT storage unit 36c by the control unit 31 is automatically performed when it is determined that the display characteristic LUT 37 stored in the applied LUT storage unit 36c does not satisfy a certain standard. It may be performed, or may be performed when a user inputs a rewrite instruction.
  • the display characteristic LUT 37 stored in the association storage unit 36b is rewritten to, for example, a new creation history. Make a selection. Note that selection of which display characteristic LUT 37 is rewritten is not limited to the example illustrated here. For example, evaluation information by a user or the like is associated with the display characteristic LUT 37 stored in the association storage unit 36b, and the control unit 31 selects a display characteristic LUT 37 created in the past that has a high evaluation. The display characteristic LUT 37 stored in the applied LUT storage unit 36c may be rewritten.
  • control unit 31 selects the initial LUT stored in the initial LUT storage unit 36d as the display characteristic LUT 37 to be stored in the application LUT storage unit 36c, and displays the display characteristic LUT 37 stored in the application LUT storage unit 36c. Functions as an initial look-up table selection means for rewriting to the initial LUT.
  • control unit 31 and the storage unit 32 constitute a quality management system.
  • medical diagnostic apparatuses 2a to 2d are connected to the image processing apparatuses 3a to 3d via a network interface (not shown), and the control unit 31 is connected to the medical diagnostic apparatuses 2a to 2d.
  • image data such as image data of generated medical images and image data of electronic medical records are acquired.
  • the control unit 31 of the image processing apparatuses 3a to 3d cooperates with the image processing program 33b to display an image based on the image data obtained from the medical diagnosis apparatuses 2a to 2d in a state suitable for each of the image display apparatuses 4, 4,. Perform image processing for display.
  • control unit 31 when image data is input from the medical diagnostic apparatuses 2a to 2d, the control unit 31 first determines the type of the medical diagnostic apparatuses 2a to 2d that are input image data.
  • Each image data includes, as supplementary information (header information of the image data), information related to the image type such as medical information type and color information, the number of bits per pixel, the number of bytes per pixel, and the number of pixels in the vertical direction of the image Various information such as the number of pixels in the horizontal direction of the image is attached, and the control unit 31 determines the image type of each image based on the accompanying information attached to the image data.
  • head information of the image data includes, as supplementary information (header information of the image data), information related to the image type such as medical information type and color information, the number of bits per pixel, the number of bytes per pixel, and the number of pixels in the vertical direction of the image
  • the control unit 31 determines the image type of each image based on the accompanying information attached to the image data.
  • the storage of medical image image data is performed in accordance with the DICOM standard, which is a standard related to the distribution of medical images, the storage format of medical images, and the like.
  • the image is stored in the header area of the image data.
  • image data can be exchanged between different apparatuses.
  • the method for attaching the auxiliary information to the image data is not particularly limited. If the image data is not stored in the storage format of the DICOM standard, necessary information is input from an input unit (not shown). Or a method of attaching necessary supplementary information by reading a barcode or the like.
  • the control unit 31 selects an image from the image characteristic LUT storage unit 34 according to the image characteristic resulting from the type of the medical diagnostic apparatus 2a to 2d.
  • An image characteristic LUT 35 suitable for use in processing is selected.
  • the control unit 31 determines the type of the image display devices 4, 4... To be output and the type of the medical diagnosis devices 2 a to 2 d that are the input source of the image data. From this, a display characteristic LUT 37 suitable for use in image processing is selected.
  • the image data input from the medical diagnostic apparatuses 2a to 2d is subjected to correction (image processing) according to the image characteristics by applying the image characteristic LUT 35, and further this correction (image processing) is performed.
  • the display characteristic LUT 37 is applied to the image data to perform correction (image processing) according to the display characteristic.
  • application programs such as the quality management program 33a and the image processing program 33b, various LUTs, data, and the like are stored in the storage unit 32a of the image processing apparatus 3a.
  • the control unit 31 of the image processing apparatuses 3b, 3c, and 3d transmits an application program (quality management program 33a, image processing program 33b, etc.) necessary for the processing to perform the quality management process and the image processing.
  • the LUT and various data necessary for various processes are read from the storage unit 32a of the image processing apparatus 3a (see FIG. 2).
  • the control unit 31 of the image processing apparatuses 3b, 3c, and 3d creates the display characteristic LUT 37 as a result of the quality management process
  • the display characteristic LUT 37 is transmitted to the image processing apparatus 3a, and the control unit of the image processing apparatus 3a. 31 is stored in the display characteristic LUT storage unit 36 of the storage unit 32a.
  • the control unit 31 Creates a display characteristic LUT 37 based on the default value stored in the default value storage unit 38 and stores it in the display characteristic LUT storage unit 36 of the storage unit 32a.
  • the control unit 31 of the image processing apparatuses 3a to 3d divides one display screen of the liquid crystal panel 41 of the image display apparatuses 4, 4,... Into a plurality of display areas, and is different for each display area. Multiple image display processing for displaying various types of images is performed. For example, one screen can be divided into three display areas, and images of different image types such as an endoscopic image, an electronic medical record image, and a CT image can be displayed in each area (see FIG. 22). In this case, how many screens are divided, what kind of image is displayed at which position, which area is set to what size, etc. may be determined by default, Etc. may be set arbitrarily.
  • control unit 31 may not have a function of performing such a process.
  • quality control (calibration) processing is performed as follows. This calibration process is realized by the cooperation of the control unit 31 and the quality management program 33a of the image processing apparatuses 3, 3,.
  • the quality control process includes a gradation characteristic test process for determining whether or not the display characteristics of the test patterns displayed on the image display devices 4, 4... Are measured, and the display characteristics of the test patterns are measured with a predetermined number of calibration points. And a calibration process for performing calibration.
  • the image display screen 41a displayed on the image display devices 4, 4,... Has gradation characteristics as well as operation buttons 411 for rotating, enlarging, and reducing images as shown in FIG.
  • a quality control processing button 412 for performing a test and calibration is provided.
  • the quality management screen 41b includes a gradation characteristic test button 413 for starting a gradation characteristic test, a calibration button 414 for performing calibration, a history display button 415 for displaying a history of quality management processing, and a quality management process.
  • An end button 416 for ending and a setting button 427 for performing various settings are provided. Then, when the user selects the gradation characteristic test button 413 on the quality management screen 41b, an instruction to start the gradation characteristic test process is input to the control unit 31, and the gradation characteristic test is started.
  • the control unit 31 when an instruction to start the gradation characteristic test process is input, the control unit 31 has a different signal value (display luminance) in the test pattern in accordance with regulations such as JESRA and AAPM. A type of test pattern is selected, read out, and output to the image display device 4. When the test pattern is output, the test pattern is displayed on the liquid crystal panel 41 (step S1).
  • the measuring means 7 measures the display light of the liquid crystal panel 41 (step S2).
  • Information about luminance and / or chromaticity, which is a measurement result of the display light, is input from the measuring unit 7 to the control unit 31.
  • the control unit 31 always determines whether or not the measurement has been performed with a predetermined number of points (for example, 18 points) (step S3). If the number of measurement points has not reached the predetermined number (step S3; NO), the number of measurement points is determined. Steps S1 to S2 are repeated until the predetermined number of points is reached.
  • the control unit 31 reads the measurement luminance input from the measurement unit 7 and reads the fixed LUT stored in the storage unit 32a of the image processing device 3a.
  • the fixed LUT is applied to perform signal conversion for converting the measured gradation level value and luminance into a standard gradation level value.
  • the control unit 31 calculates GSDF (standard gray scale function) defined in DICOM Part 14 based on the maximum luminance and the minimum luminance, and obtains standard luminance data for each signal value. Then, the contrast response value calculated based on the standard data defined in JESRA, AAPM, etc. is compared with the contrast response value calculated based on the measurement data, and the maximum absolute value of the deviation is calculated. Obtain (step; S4).
  • GSDF standard gray scale function
  • a calibrated luminometer and the TG18-LN test pattern (or a correlated luminometer and alternative pattern) are used to test for 18 digital drive levels. Measure the brightness in the area. The measured luminance value (L) is converted into a JND index (J) by the following general formula (4).
  • FIG. 25 is an example in which a contrast response ( ⁇ L / L per JND in the figure) is obtained by converting into a JND index based on the measured luminance value and the standard luminance value.
  • the “deviation” in FIG. 25A represents the deviation of the contrast response in FIG. 25A as a percentage with respect to the contrast response in FIG.
  • the above equation (4) specifically shows the calculation of the contrast response.
  • the calculated contrast response must be within ⁇ 15% of the standard value for grade 1 monitors at all measurement points, and the grade 2 monitor must also be within ⁇ 30%.
  • the control unit 31 After obtaining the maximum absolute value of the obtained deviation, the control unit 31 makes a pass / fail judgment based on the maximum absolute value of the deviation (step S5).
  • the determination criterion for pass / fail judgment is “pass” when the measurement data is included in the standard data, and “fail” when the measurement data is not included in the standard data.
  • the control unit 31 causes the liquid crystal panel 4 to display the pass / fail result determined in this way and the absolute value of the maximum deviation (step S6). In the case of failure, a warning sound or display prompting calibration may be performed.
  • FIG. 26 shows an example of a gradation test result screen 41c displaying the result of the gradation characteristic test.
  • the gradation test result screen 41c includes a condition information column 417 indicating the condition of the gradation characteristic test, a determination column 418 indicating the determination of pass / fail determination, and the number of points where the measurement was performed (this embodiment In this case, there are provided a measurement result column 419 representing the luminance for each of the predetermined points, a result display column 420 representing the result of the gradation characteristic test in a graph, a contrast response display column 421 representing the result of the contrast response, and the like.
  • the contrast response display field 421 is a graph in which the contrast response shown in FIG. 25 is plotted on the vertical axis and the JND index is plotted on the horizontal axis.
  • the configuration of the gradation test result screen 41c is not limited to the one shown here.
  • the user operates the calibration button 414 (see FIG. 23) on the quality management screen 41b with a mouse or the like and selects it in response to a warning for prompting calibration or after a certain period of time, etc.
  • An instruction to start the calibration process is input to the control unit 31, and the calibration process is started.
  • control unit 31 When an instruction to start the calibration process is input, as shown in FIG. 27, the control unit 31 reads out image data of a predetermined number of test patterns and outputs a signal by a correction LUT set in advance based on DICOM calibration. The image is converted and output to the image display device 4. When the test pattern is output, the test pattern is displayed on the liquid crystal panel 41 (step S11).
  • the measuring means 7 measures the display light of the liquid crystal panel 41 (step S12).
  • Information on luminance and / or chromaticity, which is a measurement result of display light, is input from the measuring unit 7 to the control unit 31.
  • the control unit 31 always determines whether or not the above data conversion has been performed for a predetermined number of points (step S13). If the number of measurement points has not reached the predetermined number of points (step S13; NO), the number of measurement points is the predetermined number of points. The above process is repeated until the value reaches.
  • the control unit 31 reads the measurement luminance value, converts the signal value by a fixed LUT, and sets the standard luminance.
  • the control unit 31 displays the display characteristic LUT 37 (FIG. 7) so that the display luminance by the liquid crystal panel 41 is appropriate according to the image data based on the test pattern image data and the standard luminance. (See FIG. 10) is created (step S14).
  • the control unit 31 stores the creation history of the display characteristic LUT 37 in the creation history storage unit 36a of the display characteristic LUT storage unit 36 (step S15), and creates the display characteristic LUT 37 or information for creating the display characteristic LUT 37. Is associated with the creation history and stored in the association storage unit 36b of the display characteristic LUT storage unit 36 (step S16).
  • the control unit 31 stores the latest display characteristic LUT 37 in the applied LUT storage unit 36c (step S17).
  • a calibration result screen 41d as shown in FIG. 28 is displayed.
  • a condition information column 422 indicating calibration conditions, a luminance display column 423 indicating measurement results, and a luminance measurement result in a state where the display characteristic LUT is not applied are represented by a graph.
  • An application result display field 424, an LUT display field 425 indicating a display characteristic LUT 37 applied to the signal, and the like are provided.
  • the configuration of the calibration result screen 41c is not limited to that shown here.
  • the display characteristic LUT 37 for calibration can be obtained by associating a curve based on the measured value of the test pattern with a curve based on the standard value. Specifically, as indicated by the arrows in FIG. 29, the gradation level value based on the actually measured value is set corresponding to the GSDF (standard data) to which gradation is output according to the value.
  • GSDF standard data
  • the gradation characteristic test process for automatically performing the gradation characteristic test is set to be performed, and the processing from S1 to S5 (see FIG. 24) is repeated. This is preferable because a more accurate display characteristic LUT 37 can be obtained.
  • control unit 31 expands the image processing program 33b stored in the program storage unit 32a in the work area of the RAM, and the control unit 31 cooperates with the image processing program 33b. It is realized.
  • control unit 31 determines an image type of each image data based on incidental information attached to the image data (Ste S22).
  • control unit 31 refers to LUT association information (not shown) and selects an image characteristic LUT 35 corresponding to the image type of the image data according to the image type of the image data. (Step S23). Then, the controller 31 applies the image characteristic LUT 35 to correct the image characteristic of the image data (step S24).
  • control unit 31 selects the display characteristic LUT 37 according to the type of the image display device 3 to be output and the image type of the image data (step S25). Then, the control unit 31 applies the selected display characteristic LUT 37 to correct the display characteristic for the image data (step S26). When the correction is completed, the control unit 31 outputs the image data after the image processing to the image display device 4 and causes the liquid crystal panel 41 to display the image data.
  • the above-described quality control process is performed according to a user instruction or the like, and the newly created display characteristic LUT 37 is displayed. Is stored in the applied LUT storage unit 36c, and an image to which the latest display characteristic LUT 37 is applied is displayed on the liquid crystal panel 41.
  • step S51 If the user inputs an instruction to apply the past display characteristics LUT 37 when the image quality is not improved even when the latest display characteristics LUT 37 is applied, as shown in FIG. Displays the creation history of the display characteristic LUT 37 up to the present time (step S51).
  • FIG. 32 shows an example of the creation history screen 41e.
  • the creation history screen 41e is provided with a date / time column 431 for displaying the date and time when the display characteristic LUT 37 was created, a work column 432 for displaying work contents, and the like.
  • a date / time column 431 for displaying the date and time when the display characteristic LUT 37 was created
  • a work column 432 for displaying work contents, and the like.
  • the detailed information of each item can be confirmed by operating the display button 433.
  • Unnecessary history can be deleted by operating the delete button 434.
  • the control unit 31 extracts the display characteristic LUT 37 associated with the selected history from the association storage unit 36c. (Step S52), the display characteristic LUT 37 stored in the applied LUT storage unit 36b is rewritten to the extracted past display characteristic LUT 37 (step S53).
  • a pop-up menu screen 428 including a plurality of buttons for performing various settings is displayed as shown in FIG.
  • an initial LUT capture button 429 is displayed on the pop-up menu screen 428.
  • display characteristics for applying the initial LUT to image processing are displayed.
  • An instruction to set the LUT 37 is input to the control unit 31.
  • the control unit 31 selects the initial LUT stored in the initial LUT storage unit 36d as the display characteristic LUT 37 stored in the application LUT storage unit 36b, and displays the display characteristic LUT 37 stored in the application LUT storage unit 36b. To the initial LUT.
  • the display characteristic LUT 37 created in the past is stored in the association storage unit 36c in association with the creation history, and the initial LUT is stored in the initial LUT storage unit 36d. Therefore, these can be selected and applied as the display characteristic LUT 37 applied to the image processing. For this reason, even when calibration cannot be performed properly, such as when the measuring means 42 is out of order, an image that does not interfere with the diagnosis can be obtained, and the diagnosis can be continued.
  • the LUT to be changed can be reduced when the display characteristic changes over time, and the processing complexity can be avoided.
  • an image characteristic LUT 35 and a display characteristic LUT 37 are selected so that an image based on image data of different image types is suitable for the display characteristics of the image display devices 4, 4,.
  • images with display gradation characteristics that match each image type are displayed. Can be made.
  • a plurality of images can be observed at the same time with a high gradation display suitable for diagnosis, and text information such as electronic medical record information can be displayed at a gradation with good visibility and can be referenced simultaneously. More appropriate diagnosis can be made.
  • the display characteristic LUT storage unit 36 stored in the display characteristic LUT 37 and the like is provided in the storage unit 32a of the image processing apparatus 3a.
  • the place where the display characteristic LUT storage unit 36 is provided is not limited to this.
  • the display characteristic LUT storage unit 36 may be provided in the image display device 4 as shown in FIG. 34, or is provided in the video card 45 provided in the image processing device 3 as shown in FIG. It may be.
  • application programs such as the quality management program 33a and the image processing program 33b, various LUTs such as the image characteristic LUT 35 and the display characteristic LUT, data, and the like are all stored in the storage unit 32a of the image processing apparatus 3a.
  • the storage locations of various programs, LUTs, data, etc. are not limited to those shown in this embodiment. For example, they may be stored in the storage units 32a, 32b, 32c of the image processing apparatuses 3a, 3b, 3c, respectively.
  • the image characteristic LUT 35 is applied to the image data to perform image processing
  • the display characteristic LUT 37 is applied to the image data after the image processing.
  • the image processing procedure is not limited to this.
  • control unit 31 After selecting the image characteristic LUT 35 and the display characteristic LUT 37, the control unit 31 combines the LUTs 35 and 37 to create a combined LUT and applies the combined LUT to the image data. Both image characteristics and display characteristics may be corrected.
  • the quality control processing method in the quality control process, first, a gradation characteristic test process is performed, and calibration is performed only when an instruction to perform calibration is given due to a warning or the like so that calibration is performed.
  • the quality control processing method is not limited to this.
  • the control unit 31 After comparing the contrast response values calculated based on the standard data and the measurement data and obtaining the maximum absolute value of the deviation (step S34), the control unit 31 determines the display brightness by the liquid crystal panel 41 from this value. It is determined whether or not the image data is appropriate according to the image data (step S35). When the pass / fail judgment result is acceptable (step S35), the result is displayed (step S36), and the process is terminated.
  • step S35 when the pass / fail judgment is made and the result is unacceptable (step S35; No), the absolute value of the deviation and the result of the pass / fail judgment are displayed (step S37) and the calibration is automatically performed. An instruction to start is input.
  • the control unit 31 reads test pattern data and performs signal conversion based on a correction LUT set in advance by DICOM calibration.
  • the test pattern data converted into signals is output to the image display devices 4, 4...
  • the test pattern is displayed on the liquid crystal panel 41 (step S38).
  • the measuring means 7 measures the display light of the liquid crystal panel 41 (step S29). Information about luminance and / or chromaticity, which is a measurement result of the display light, is input from the measuring unit 7 to the control unit 31.
  • the control unit 31 always determines whether or not the above data conversion has been performed for a predetermined number of points (step S40). If the number of measurement points does not satisfy the predetermined number of points (step S40; NO), the control unit 31 continues until the measurement point satisfies the predetermined number of points. Repeat the process.
  • the control unit 31 reads the measurement luminance and converts it into a standard luminance by a fixed LUT. After converting the measured luminance into the standard luminance, the control unit 31 creates the display characteristic LUT 37 so that the display luminance by the liquid crystal panel 41 is appropriate according to the image data based on the test pattern image data and the standard luminance. This is performed (step S41).
  • the created display characteristic LUT 37 is stored in the display characteristic LUT storage unit 36 (step S42).
  • the maximum number of repetitions is determined in advance, and when the number of repetitions fails, the fact can be displayed on the liquid crystal panel 41 and the program can be terminated.
  • FIG. 37 shows the display characteristics originally provided in the liquid crystal panel of the image display device as display luminance (vertical axis) with respect to an 8-bit input signal value (horizontal axis).
  • the display luminance in the case of an input signal value of (image) is shown.
  • FIG. 1 For example, six display characteristic LUTs 61a to 61f corresponding to the image type of the medical image data are stored as the display characteristic LUT 61 for performing display characteristic correction (image processing) performed by the control unit. Yes.
  • the display characteristics LUTs 61a to 61f will be described with reference to FIGS. 38 to 41.
  • FIG. 1 For example, six display characteristic LUTs 61a to 61f corresponding to the image type of the medical image data are stored as the display characteristic LUT 61 for performing display characteristic correction (image processing) performed by the control unit.
  • a display characteristic LUT 61c (hereinafter referred to as “LUT3 ′” in the drawing) is a level for converting color image data (R, G, B) into color display image data (R, G, B). This is applied when performing display gradation processing for tone conversion.
  • the display characteristic LUT 61d (hereinafter referred to as “LUT4 ′” in the drawing) converts monochrome image data according to a certain gray scale function, and the output signal value after conversion is R, G, B.
  • the present invention is applied when performing display gradation processing for performing gradation conversion so that monochrome display image data of equal value is obtained.
  • the display function of the gradation of the display characteristic LUT 61d is a straight line, and a display characteristic in accordance with the DICOM standard originally provided in the liquid crystal panel of the image display device can be obtained. Although only one straight line is displayed in FIG. 39, display image data having the same values for R, G, and B is generated for monochrome image data after display gradation conversion. Needless to say.
  • the display characteristic LUT 61e (hereinafter referred to as “LUT5 ′” in the drawing) is a case where the image data is monochrome 12-bit image data (when the input signal value can take a value from 0 to 4095). ) Is applied when the display gradation processing is performed so that the output signal value after conversion becomes display image data having 8 bits of R, G, B, etc. As shown in FIG. 40, the gradation display function of the display characteristic LUT 61e is also a straight line, and the display characteristic in accordance with the DICOM standard originally provided in the liquid crystal panel of the image display device can be obtained.
  • the display characteristic LUT 61f (hereinafter referred to as “LUT6 ′” in the drawing) is converted after the image data is monochrome 12-bit image data (when the input signal value is up to 4095). This is applied when display gradation processing is performed so that output signal values are 8-bit display image data including combinations of unequal values of R, G, and B.
  • the display function of the gradation of the display characteristic LUT 61f is a straight line, and the display characteristic according to the DICOM standard originally provided in the liquid crystal panel of the image display device can be obtained. In FIG. 41, it seems that only one curve is shown, but the values of R, G, B after conversion for monochrome 12-bit image data are not necessarily the same as in the case of FIG. is there.
  • FIGS. 6 and 37, FIGS. 7 and 38, FIGS. 8 and 39, FIGS. 9 and 40, and FIGS. 10 and 41 correspond to the display characteristics according to the original display characteristics.
  • the shape of the LUT is different, the gradation characteristics of the image displayed as a result are the same regardless of the original display characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 本発明は、キャリブレーションを適切に行うことができない場合でも、診断行為を中断することなく、診断に支障をきたさない画像を画像表示装置に表示することのできる画像表示システムの品質管理システム及び品質管理プログラムを提供する。画像表示装置(4)の表示特性を測定する測定手段(42)と、測定結果に基づく画像表示装置(4)の表示特性を所望の表示特性に変換するための表示特性LUT(37)を作成する制御部(31)と、表示特性LUT(37)又は当該表示特性LUT(37)を作成するための情報を表示特性LUT(37)の作成履歴と対応付けて記憶するとともに、画像表示装置(4)に実際に適用する表示特性LUT(37)を記憶する記憶部(32)と、を備え、制御部(31)は、実際に適用する表示特性LUT(37)として記憶されている表示特性LUT(37)を他の表示特性LUT(37)に書き換えることを特徴とする。

Description

画像表示システムの品質管理システム及び品質管理プログラム
 本発明は、画像表示システムの品質管理システム及び品質管理プログラムに関するものである。
 従来、X線診断装置、MRI(Magnetic Resonance Imaging 磁気共鳴映像法)診断装置、各種CT(Computed Tomography コンピュータ断層撮影)装置などの医療用診断装置で撮影された撮影画像(医用画像)は、通常、X線フィルムやその他のフィルム感光材料などの光透過性の画像記録フィルムに記録され、光透過性の画像として再生される。この診断画像が再生されたフィルムは、シャーカステンと呼ばれる観察用の装置にセットされて、背面から光を照射された状態で観察され、病変箇所の有無等の診断が行われる。
 また、近年は、各種の医療用診断装置で撮影された診断画像を、CRT(Cathode Ray Tube)ディスプレイやLCD(Liquid Crystal Display 液晶ディスプレイ)等のモニタに出力し、モニタに出力された画像により、診断等が行われている。
 しかし、表示させる画像の画像種別等によって画像特性は異なっており、また、表示出力対象となる画像表示装置の種別等によって表示特性が異なる。このため、診断画像をモニタ上に出力して診断等を行う際には、表示させる画像種別等に応じた画像特性と、表示出力側の画像表示装置の表示特性等について適切に品質管理(キャリブレーション)する必要がある。
 特に医用画像の場合、誤診等を招かないためにも診断を行うのに適した画像表示を行うことが重要であり、視認性の向上、高階調の画像表示を実現すべき要請が高いため、品質管理(キャリブレーション)の重要性は高い。
 また、画像表示装置の表示特性は経時的に変化するものであるため、表示特性についての品質管理(キャリブレーション)は、ある程度の期間ごとに繰り返し行うことが好ましい。
 ここで、品質管理(キャリブレーション)の手法としては、例えば、画像表示装置の表示部に所定のテストパターンを表示させ、センサ等の測定手段により輝度・色度を測定する。そして、得られた測定結果に基づき、画像表示装置の表示特性に応じて入力信号値を表示出力に適した信号値に変換する変換則としてのルックアップテーブル(以下「LUT」と称する。)を作成する。画像を表示させる際には、画像データに当該LUTを適用して、適切な信号変換を行った上で画像表示装置に出力する等の手法が採られる。
 そして、前述のように、キャリブレーションは、適宜繰り返し行われるものであるため、キャリブレーションにより得られた輝度の測定結果等及びその履歴は、必要に応じて読み出して表示すること等ができるように記憶部に記憶させておくことが提案されている(例えば、特許文献1参照)。
 また、過去に出力したテストパターンの画質に関わる情報を履歴情報として記憶部に記憶させておき、この履歴情報等に基づいてキャリブレーションを実施するか否かの判断を行う技術も提案されている(例えば、特許文献2参照)。
特開2004-295055号公報 特開2006-217192号公報
 しかしながら、例えば測定手段(センサ)が故障している場合等には、キャリブレーションを行っても適切なLUTを作成することができない。そして、このような状況下で作成されたLUTを画像データに適用するLUTとして記憶してしまうと、LUTを適用しても画像データを正しく変換することができないため、高画質の表示を行うことができず、診断に支障をきたす場合がある。
 この場合、代替の測定手段(センサ)があればキャリブレーションをやり直せばよいが、測定手段(センサ)が手元にない場合には、診療行為を行うことができなくなってしまうとの不具合を生じる。
 この点、測定手段(センサ)が故障している等、不適切な状況下で作成されたLUTを画像データに適用するよりは、過去に作成されたLUTを適用した方が、表示特性の補正を適切に行うことができる場合もある。
 しかし、例えば上記特許文献1及び特許文献2に記載の技術では、過去に行ったキャリブレーションの履歴を記憶・表示したり、過去の履歴に応じてキャリブレーションを実施するかどうかの判断をするのみであり、不適切な状況下で作成されたLUTに替えて、過去のキャリブレーションによって作成されたLUTを用いることはできなかった。
 そこで、本発明は以上のような事情に鑑みてなされたものであり、キャリブレーションを適切に行うことができない場合でも、診断行為を中断することなく、診断に支障をきたさない画像を画像表示装置に表示することのできる画像表示システムの品質管理システム及び品質管理プログラムを提供することを目的とするものである。
 前記課題を解決するために、本発明は、
 医療診断装置から得られた画像を画像表示装置に表示出力する画像表示システムの品質管理システムであって、
 前記画像表示装置に複数の異なる画像信号値に対応するテストパターンを表示させて、それぞれのテストパターンの表示特性を測定する表示特性測定手段と、
 上記測定結果に基づく前記画像表示装置の表示特性を所望の表示特性に変換するためのルックアップテーブルを作成するルックアップテーブル作成手段と、
 前記ルックアップテーブルの作成履歴を記憶する作成履歴記憶手段と、
 前記ルックアップテーブル又は当該ルックアップテーブルを作成するための情報を前記作成履歴と対応付けて記憶する対応付け記憶手段と、
 前記画像表示装置に実際に適用するルックアップテーブルを記憶する適用ルックアップテーブル記憶手段と、
 前記適用ルックアップテーブル記憶手段に記憶されている前記ルックアップテーブルを前記対応付け記憶手段に記憶されている他のルックアップテーブルに書き換えるルックアップテーブル書き換え手段と、を備えていることを特徴としている。
 また、本発明は、
 医療診断装置から得られた画像を画像表示装置に表示する画像表示システムの品質管理システムであって、
 前記画像表示装置に複数の異なる画像信号値に対応するテストパターンを表示して、それぞれのテストパターンの表示特性を測定する表示特性測定手段と、
 上記測定結果に基づく前記画像表示装置の表示特性を所望の表示特性に変換するためのルックアップテーブルを作成するルックアップテーブル作成手段と、
 前記ルックアップテーブルの作成履歴を記憶する作成履歴記憶手段と、
 前記画像表示装置に実際に適用するルックアップテーブルを記憶する適用ルックアップテーブル記憶手段と、
 前記画像表示装置の出荷時又は設置時に設定されていた初期ルックアップテーブルを記憶する初期ルックアップテーブル記憶手段と、
 前記適用ルックアップテーブル記憶手段に記憶されている前記ルックアップテーブルを前記初期ルックアップテーブル記憶手段に記憶されている初期ルックアップテーブルに書き換える初期ルックアップテーブル選択手段と、を備えていることを特徴としている。
 また、本発明は、
 医療診断装置から得られた画像を画像表示装置に表示する画像表示システムの品質管理プログラムであって、
 前記画像表示装置に複数の異なる画像信号値に対応するテストパターンを表示させて、それぞれのテストパターンの表示特性を測定した測定結果を取得する表示特性取得機能と、
 上記測定結果に基づく前記画像表示装置の表示特性を所望の表示特性に変換するためのルックアップテーブルを作成するルックアップテーブル作成機能と、
 前記ルックアップテーブルの作成履歴を記憶させる作成履歴記憶機能と、
 前記ルックアップテーブル又は当該ルックアップテーブルを作成するための情報を前記作成履歴と対応付けて記憶させる対応付け記憶機能と、
 前記画像表示装置に実際に適用するルックアップテーブルを記憶させる適用ルックアップテーブル記憶機能と、
 この実際に適用するルックアップテーブルとして記憶されている前記ルックアップテーブルを前記対応付け記憶手段に記憶されている他のルックアップテーブルに書き換えるルックアップテーブル書き換え機能と、をコンピュータに実現させることを特徴としている。
 本発明によれば、画像表示装置に実際に適用するルックアップテーブルを、過去に作成された他のルックアップテーブル等に書き換えることができる。このため、測定手段の故障等によりキャリブレーションを適切に行うことができない場合に、最適の階調特性ではないとしても、診断に支障をきたさない程度の画像を画像表示装置に表示することができ、診療行為を続けることができるとの効果を奏する。
 また、本発明によれば、画像表示装置の出荷時又は設置時に設定されていた初期ルックアップテーブルを画像表示装置に実際に適用するルックアップテーブルとして選択することができる。このため、測定手段の故障等によりキャリブレーションを適切に行うことができない場合に、最適の階調特性ではないとしても、診断に支障をきたさない程度の画像を画像表示装置に表示することができ、診療行為を続けることができるとの効果を奏する。
本実施形態における画像表示システムを適用した医用情報提供システムの概略構成を示すブロック図である。 本実施形態における画像処理装置の概略構成を示す要部ブロック図である。 図2に示す画像特性LUT記憶部及び表示特性LUT記憶部に設けられるLUTの例を模式的に示した説明図である。 図1に示す画像表示装置の概略構成を示す図である。 図2に示す表示特性LUT記憶部の具体的内容を示した図である。 液晶パネルの一般的な表示特性を表すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。 図9の一点鎖線部分を拡大したグラフである。 図12(a)は、モノクロ画像信号からRGB等値のカラー画像信号への変換の一例を示した説明図であり、図12(b)は、モノクロ画像信号からRGB非等値のカラー画像信号への変換の一例を示した説明図である。 モノクロ画像信号をRGB非等値のカラー画像信号に変換した場合の画像の一例を階調制御単位で示した説明図である。 入力信号値に固定LUTを適用して表示特性LUTを作成する作成工程を説明する説明図である。 入力信号値を所定の階調数に応じた画像データに変換した一変換例を示したグラフである。 固定LUTの作成工程を説明する説明図である。 固定LUTの作成に用いられるオフセット値の一例を示す図である。 モノクロ入力値をカラー画像データに変換する固定LUTの例を示す図である。 モノクロ入力値をカラー画像データに変換する固定LUTの例を示す図である。 LUT対応付け情報の一例を示した説明図である。 デフォルト値に基づいて作成された表示特性LUTの一例を示した図である。 液晶パネルに表示される画像表示画面の一例を示した図である。 液晶パネルに表示される品質管理画面の一例を示した図である。 階調特性試験工程の手順を示すフローチャートである。 図25(a)は測定輝度値に基づいたコントラス応答、図25(b)は標準輝度値に基づいたコントラスト応答を示す表である。 液晶パネルに表示される階調テスト結果画面の一例を示した図である。 キャリブレーション工程の手順を示すフローチャートである。 液晶パネルに表示されるキャリブレーション結果画面の一例を示した図である。 標準表示関数の生成についての説明図である。 本実施形態における画像処理の手順を示すフローチャートである。 本実施形態における適用LUT記憶部内の表示特性LUTを書き換える処理の手順を示すフローチャートである。 液晶パネルに表示される作成履歴画面の一例を示した図である。 液晶パネルに表示されるポップアップメニュー画面の一例を示した図である。 品質表示システムの一変形例を示した図である。 品質表示システムの一変形例を示した図である。 品質管理処理の手順の一変形例を示すフローチャートである。 液晶パネルの一般的な表示特性を表すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。 図3に示す表示特性LUTの一例を示すグラフである。
符号の説明
 1 医用画像システム
 2 医療診断装置
 3 画像処理装置
 4 画像表示装置
 31 制御部
 32 記憶部
 35 画像特性LUT
 36 表示特性LUT記憶部
 37 表示特性LUT
 41 液晶パネル
 100 画像表示システム
 以下に、本発明に係る画像表示システムの一実施形態について、図1から図33を参照しつつ説明する。ただし、発明の範囲を図示例に限定するものではない。
 図1は、本実施形態における画像表示システム100が適用された医用画像システム1の概略構成例を示したものである。
 図1に示すように、医用画像システム1は、患者を撮影してデジタル化された医用画像(以下、単に「画像」と称する。)の画像データを生成する医療診断装置2,2…によって得られた画像データについて所定の画像処理を行う複数の画像処理装置3,3…を備えている。各画像処理装置3,3…には、画像処理装置3,3…によって画像処理された画像データに基づく画像を表示させる複数の画像表示装置4,4…がそれぞれ接続されている。
 各画像処理装置3,3…及び医療診断装置2,2…は、例えば図示しないスイッチングハブ等を介してLAN(Local Area Network)、WAN(Wide Area Network)等の通信ネットワーク(以下単に「ネットワーク」と称する。)5により接続されている。
 なお、ネットワーク5は、例えばDICOM(Digital Image and Communications in Medicine)規格に従ったものであり、LAN接続された各装置間の通信では、DICOM MWM(Modality Worklist Management)やDICOM MPPS(Modality Performed Procedure Step)等が用いられる。ネットワーク5は、DICOM規格によりHIS(Hospital Information System)/RIS(Radiology Information System)等の病院内の他の情報管理システムと互いに接続可能に構成されていることが好ましい。なお、本実施形態に適用可能な通信方式はこれに限定されない。
 本実施形態においては、医療診断装置として、CR(Computed Radiography)装置(以下「CR」とする。)2a、CT(Computed Tomography)2b、MRI(Magnetic Resonance Imaging)装置(以下「MRI」とする。)2c、内視鏡装置(以下「内視鏡」とする。)2d、がそれぞれ1台ずつネットワーク5に接続されている。なお、ネットワーク5に接続される医療診断装置の種類及び数は図示例に限定されない。例えば、MRT(Magnetic Resonance Tomography)、乳房画像生成装置(マンモグラフィ)、FPD(Flat Panel Detector)、超音波画像装置、電子カルテの画像データ等を提供する端末装置等がネットワーク5に接続されていてもよいし、同じ種類の医療診断装置が複数接続されていてもよい。
 図2は、本実施形態における画像表示システムの概略構成を示すものである。
 本実施形態において、ネットワーク5には、3台の画像処理装置3a,3b,3cが接続されている。また、図1に示すように、画像処理装置3a(PC1)には画像表示装置4a(Display1-1),4b(Display1-2)、画像処理装置3b(PC2)には画像表示装置4c(Display2-1),4d(Display2-2)、画像処理装置3c(PC3)には画像表示装置4e(Display3-1),4f(Display3-2)がそれぞれ接続されている。なお、ネットワーク5に接続される画像処理装置3,3…の数及び各画像処理装置3,3…に接続される画像表示装置4,4…の数は図示例に限定されない。
 図3は、画像処理装置3とこれに接続された画像表示装置4を模式的に示したものであり、図4は、画像表示装置4の概略構成を示した図である。
 図4に示すように、画像表示装置4,4…は、それぞれビデオカード45を介して画像処理装置3,3…と接続されている。なお、画像表示装置4,4…と画像処理装置3,3…との接続は、ビデオカード45を介して行われているものに限定されない。
 画像表示装置4,4…は、例えば、医療用診断画像を表示させるモニタである。
 画像表示装置4,4…は、画像データに基づいてカラー画像及びモノクロ画像を表示させる表示部としての液晶パネル(LCD(Liquid Crystal Display))41と、液晶パネル41を駆動させる図示しない表示駆動部と、非観察側から液晶パネル41に光を照射する図示しないバックライトとを備えている。なお、表示部は液晶パネル41に限定されない。例えば有機ELディスプレイ等を表示部として適用してもよい。また、バックライトは、液晶パネル41を照明するに足りる光を提供し得るものであればよく、例えば、LED、冷陰極蛍光管、熱陰極蛍光管、その他の発光素子等を適用可能であるが、医療用途のモニタにも好適に利用可能なように、最大輝度500~5000cd/m2の表示が可能であることが好ましい。
 本実施形態に適用可能な液晶パネル41の種類は特に限定されず、また、表示駆動部が液晶パネル41を駆動させる方式についてもTN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、MVA(Multi-domain Vertical Alignement)方式、IPS(In Plane Switching)方式等の各種の駆動方式のものを適用することができる。なお、本実施の形態においては、液晶パネル41は、図示しないカラーフィルタにより赤色(R)、緑色(G)、青色(B)それぞれ8bit(256段階)の階調を再現することが可能である。
 なお、本実施形態では、赤色(R)、緑色(G)、青色(B)の3色からなる液晶パネル41を用いているが、赤色(R)、緑色(G)、青色(B)の3色に限定されるものではなく、例えば、黄色(Y)、マゼンタ(M)、シアン(C)の3色でもよい。また、4色以上でもよく、R、G、B、Y、M、Cの6色や、色調の異なる赤色(R1、R2)、緑色(G1、G2)、青色(B1、B2)の6色でもよい。後述の画像処理も赤色(R)、緑色(G)、青色(B)の3色に限定されるものではない。また、カラーフィルタによって多色表示する場合に限らず、複数色の光源を切り替えて多色表示する画像表示装置にも適用可能である。
 また、画像表示装置4,4…には、図4に示すように、液晶パネル41の特定のターゲット領域Tに表示される画像の表示特性を測定する表示特性測定手段としての測定手段42が備えられている。測定手段42は液晶パネル41の種類に応じて輝度計や色度計などの公知のカラーセンサを用いることができる。なお、図示の測定手段42は接触型センサであるが非接触型センサを用いても良く、測定する手段の如何は問わない。また、測定手段42の装置構成については、画像表示装置4,4…に内蔵されていても外付けされていても適用可能である。
 測定手段42は、液晶パネル41に表示させるテストパターンが切り変わる毎に、表示される表示特性を測定し、測定結果(測定値)を制御部31(図2参照)に出力するようになっている。
 液晶パネル41の表示特性とは、液晶パネル41に入力されるR,G,Bの値と、それに対する表示光の輝度及び色度の少なくともいずれか一方に関する情報である。輝度及び/又は色度に関する情報は、一般に用いられる表色の指標を用いることができる。例えばCIEで定める、XYZ表色系、X101010表色系、xyz色度座標、x101010色度座標、UCS色度、L*a*b*表色系、L*C*h*表色系、L*u*v*表色系などが挙げられるが、それに限られるものではない。
 輝度及び/又は色度に関する情報は、液晶パネル41のターゲット領域Tにテストパターンを表示して測定手段42を用いて所定のタイミングで測定してもよいし、工場出荷時に液晶パネル41にテストパターンを表示して測定した結果を記憶しておいてもよい。また、個々の画像表示装置4,4…に対する測定結果を用いずに、R,G,Bの値に対する輝度及び/又は色度に関する情報の対応関係を所定の変換式として記憶しておいてもよい。
 測定手段42が表示特性を測定する特定のターゲット領域Tの位置及び大きさには、特に制限は無いが、本実施形態においては液晶パネル41の表示画面の中央部における10%程度の面積の領域を指すものとする。測定手段42は画像処理装置3にオンライン接続されているが、例えば、画像処理装置3とオンライン接続されていない測定手段42を用いて表示特性を測定し、その結果をキーボード等の入力手段を介して画像処理装置3に入力することとしてもよい。
 画像処理装置3a,3b,3cは、図示しないCPU(Central Processing Unit)等で構成される制御部31、記憶部32(画像処理装置3aにおいて記憶部32a,画像処理装置3bにおいて記憶部32b,画像処理装置3cにおいて記憶部32c)、及び図示しないRAM(Random Access Memory)等を備えて構成されるコンピュータである。
 また、画像処理装置3a,3b,3cは、通信部、インターフェース、入力部等(いずれも図示せず)を備えている。
 通信部は、ネットワーク5を介して医療診断装置2a,2b,2c,2d等の外部機器と接続されるネットワークインターフェース等で構成されている。
 また、本実施形態において、各画像処理装置3a,3b,3cには、それぞれ2台の画像表示装置4,4…がインターフェースを介して接続されている。
 入力部は、キーボードやマウス等を備えて構成されており、ユーザが各種情報を入力可能となっている。
 本実施形態において、記憶部32a,32b,32cは、HDD(Hard Disk Drive)等で構成されている。
 図2に示すように、画像処理装置3a(PC1)の記憶部32aは、プログラム記憶部33、画像特性LUT記憶部34、表示特性LUT記憶部36、デフォルト値記憶部38、品質管理用データ記憶部39等から構成されている。
 また、画像処理装置3b(PC2)の記憶部32b及び画像処理装置3c(PC3)の記憶部32cは、各種プログラムを記憶する図示しないプログラム記憶部等から構成されており、プログラム記憶部には、画像処理装置3b,3cに送られてきた画像の画像種別を判断したり、処理に必要なプログラムやLUTを、格納先から読み出してくる等の基本的な動作を行うために必要なプログラムやデータ等が格納されている。
 本実施形態においては、後述するキャリブレーション処理を行うために必要な品質管理プログラム33a及び画像処理を行うために必要な画像処理プログラム33bが画像処理装置3a(PC1)の記憶部32aのプログラム記憶部33に記憶されており、また、これらの処理に必要なLUTやデータが記憶部32aの画像特性LUT記憶部34、表示特性LUT記憶部36、品質管理用データ記憶部39等に記憶されている。画像処理装置3b(PC2)の記憶部32b及び画像処理装置3c(PC3)の記憶部32cには、これらのプログラムや必要なLUT、データ等を適宜格納先である記憶部32aから読み出すためのプログラムが記憶されている。
 プログラム記憶部33は、医療診断装置2,2…から得られた画像を処理するためのアプリケーションプログラム等を記憶するプログラム記憶手段である。
 プログラム記憶部33には、画像表示装置4,4…の表示特性に応じたキャリブレーションを行い、後述する表示特性LUT37を作成するキャリブレーション処理を行うための品質管理プログラム33a及び医療診断装置2,2…によって生成された画像データについて画像処理を行うための画像処理プログラム33b等が格納されている。
 品質管理プログラム33aは、画像表示装置4,4…に複数の異なる画像信号値に対応するテストパターンを表示させて、測定手段42により各テストパターンの表示特性を測定した測定結果を取得する表示特性取得機能と、この測定結果に基づく画像表示装置4,4…の表示特性を所望の表示特性に変換するための表示特性LUT37を作成するルックアップテーブル作成機能と、表示特性LUT37の作成履歴を記憶部32の作成履歴記憶部36aに記憶させる作成履歴記憶機能と、表示特性LUT37又は当該表示特性LUT37を作成するための情報を作成履歴と対応付けて対応付け記憶部36bに記憶させる対応付け記憶機能と、画像表示装置4,4…に実際に適用する表示特性LUT37を適用LUT記憶部36cに記憶させる適用ルックアップテーブル記憶機能と、画像表示装置4,4…の出荷時又は設置時に設定されていた初期LUTを記憶する初期LUT記憶部36dに記憶させる初期ルックアップテーブル記憶機能と、実際に適用するLUTとして記憶されている表示特性LUT37を対応付け記憶部36bに記憶されている他の表示特性LUT37に書き換えるルックアップテーブル書き換え機能と、実際に適用するLUTとして記憶されている表示特性LUT37を初期LUTに書き換える初期LUT選択機能と、を画像処理装置3,3…の制御部31に実現させるものである。
 画像処理プログラム33bは、後述する表示特性LUT記憶部36の中に、出力対象候補である画像表示装置4,4…の種別と画像データ入力元候補である医療診断装置2a,2b,2c,2dの種別との組み合わせ毎に用意され記憶されている複数の表示特性LUT37の中から、出力対象の画像表示装置4,4…及び画像データ入力元の医療診断装置2a,2b,2c,2dの種別に応じて、画像処理に用いる表示特性LUT37を選択する表示特性LUT選択機能と、画像データ入力元の医療診断装置2a,2b,2c,2dに起因する画像特性に対応した画像特性LUT35及び選択された表示特性LUT37を適用して医療診断装置2a,2b,2c,2dにより取得された画像データに対して画像処理を行う画像処理機能と、を画像処理装置3,3…の制御部31に実現させるものである。
 また、プログラム記憶部33には、その他、画像処理装置3aに送られてきた画像の画像種別を判断したり、処理に必要なプログラムやデータを読み出してくる等の基本的な動作を行うためのプログラム(図示せず)が格納されている。
 画像特性LUT記憶部34は、ネットワーク5に接続されてネットワーク5を介して画像データを入力してくる可能性のある医療診断装置(画像データ入力元候補の医療診断装置)に対応した複数の画像特性ルックアップテーブル(以下「画像特性LUT」と称する。)を記憶している画像特性ルックアップテーブル記憶手段である。
 本実施形態において、画像特性LUT記憶部34には、ネットワーク5に接続されている医療診断装置2a,2b,2c,2dに対応する4種類の画像特性LUT35a,35b,35c,35d(図3参照)が格納されている。
 なお、画像特性LUT記憶部34に格納される画像特性LUT35a,35b,35c,35dは、この4種類に限定されない。ネットワーク5に接続される医療診断装置2a,2b,2c,2dの種類が増えれば、その種類に対応した画像特性LUTが画像特性LUT記憶部34に格納される。
 また、画像特性LUTは医療診断装置2a,2b,2c,2dに起因する画像種別に応じたものに限定されず、アプリケーションプログラムや他社のシステムに起因する特性等に応じて用意されていてもよい。
 図3に示すように、例えば、画像特性LUT35aは、CR2aによって生成されたCR画像の画像データに対応している。CR画像の画像データの極性はネガティブ(データ値が大きい程、低輝度、すなわち、高濃度)であるため、画像特性LUT35aによってCR画像の画像データを変換し、ネガポジリニア反転を行う。
 また、画像特性LUT35bは、CT2bによって生成されたCT画像の画像データに対応し、画像特性LUT35cは、MRI2cによって生成されたMRI画像の画像データに対応し、画像特性LUT35dは、内視鏡2dによって生成された内視鏡画像の画像データにそれぞれ対応している。画像特性LUT35b,35c,35dは、画像処理装置3,3…に送られてきた画像データがCT画像であるか、MRI画像であるか、内視鏡画像であるかによって選択的に適用されて、各医療診断装置2,2…の画像特性に適合するようにその階調を最適化する階調補正を行う。
 表示特性LUT記憶部36は、ネットワーク5に接続されたいずれかの画像処理装置3,3…に接続されて画像データに基づく画像を出力表示する可能性のある出力対象候補である画像表示装置4,4…の種別と画像データ入力元候補である医療診断装置2a,2b,2c,2dの種別との組み合わせ毎の表示特性ルックアップテーブル(以下「表示特性LUT」と称する。)を記憶する表示特性ルックアップテーブル記憶手段である。
 図5に、表示特性LUT記憶部36の構成例を示す。
 本実施形態において表示特性LUT記憶部36は、図5に示すように、作成履歴記憶部36a、対応付け記憶36b、適用LUT記憶部36c、初期LUT記憶部36d等を備えて構成されている。
 作成履歴記憶部36aは、表示特性LUT37の作成履歴を記憶する作成履歴記憶手段である。
 作成履歴記憶部36aに記憶されている作業履歴は、例えば、品質管理処理を行った年月日、時刻等、各表示特性LUT37の作成に関する情報である(図32参照)。なお、作成履歴記憶部36aに記憶されている作業履歴は、これに限定されず、例えば、当該表示特性LUT37を作成する際に行った階調特性試験のテスト結果(図26参照)や、キャリブレーション結果(図28参照)等を作成履歴として記憶していてもよい。
 対応付け記憶部36bは、現時点までに行われた品質管理処理(後述)において作成された表示特性LUT37又は当該表示特性LUT37を作成するための情報を作成履歴と対応付けて記憶する対応付け記憶手段である。対応付け記憶部36bには、新たに品質管理処理が行われる度に、当該品質管理処理において作成された表示特性LUT37又は当該表示特性LUT37を作成するための情報が作成履歴と対応付けて記憶される。
 対応付け記憶部36bには、画像表示装置4,4…自身の固有階調に起因する表示特性及び医療診断装置2,2…に起因する画像種別に応じた複数の表示特性LUT37,37…がそれぞれ作成履歴と対応付けられて記憶されている。
 適用LUT記憶部36cは、画像表示装置4,4…に実際に適用する表示特性LUT37を記憶する適用ルックアップテーブル記憶手段である。特に設定がない場合には、適用LUT記憶部36cには、最新の品質管理処理によって作成された表示特性LUT37が、実際に適用する表示特性LUT37として記憶されるようになっている。
 また、初期LUT記憶部36dは、画像表示装置4,4…の出荷時又は設置時に設定されていた初期LUTを記憶する初期ルックアップテーブル記憶手段である。
 ここで、表示特性LUT37について具体的に説明する。
 表示特性LUT37,37…は、測定手段42による測定結果に基づく画像表示装置4,4…の表示特性を所望の表示特性に変換するためのLUTであり、医用画像の画像データについて、画像表示装置4,4…自身の固有階調に起因する表示特性及び医療診断装置2,2…に起因する画像種別に適した画像に変換する階調補正処理を行うためのLUTである。表示特性LUT37,37…は、画像表示装置4,4…及び医療診断装置2,2…に起因する画像種別に対応して、複数種類設けられている。
 一般に医用画像の画像データに対しては、ウィンドウ処理、レベル調整、S字カーブの階調特性を与えるための階調処理、周波数強調処理、ダイナミックレンジ圧縮処理など、様々な画像処理が行われる。このような画像処理も画像データの画像種別に応じて行われる場合があるが、本実施形態における階調補正処理は画像表示装置4,4…の表示特性を加味した処理を画像データの画像種別に応じて行うものであり、一般に行われる画像処理とは異なる。なお、前記一般に行われる画像処理を行った後に、本実施形態における階調補正処理を行うとより好ましい。
 図6は、画像表示装置4,4…の液晶パネル41がもともと備えている表示特性を、8bitの入力信号値(横軸)に対する表示輝度(縦軸)として示したものである。4本の曲線は、横軸がそれぞれ、カラー画像データを構成するR,G,Bの各単色及び、R,G,Bの値(RGB値)が等値(R=G=B)であるモノクロ画像(白黒画像)の入力信号値である場合の表示輝度を示したものである。
 図6の表示特性は、一般に使われるモニタの代表的な特性であるγ=2.2の場合であるが、本発明において、画像表示装置4,4…がもともと備えている表示特性はこれに限られるものではない。
 画像データについて表示階調処理を行うにあたっては、液晶パネル41がもともと備えている表示特性に対応して、画像データを画像表示装置4,4…から出力可能な表示用の画像データに変換する処理を行う必要がある。
 しかし、各画像データは、様々な種類の医療診断装置2,2…で生成された画像データや電子カルテ等の画像データであり、各画像データに対する好ましい表示階調特性はそれぞれ異なっている。このため、これらの画像データを液晶パネル41に表示させるに適した表示用の画像データに変換するためには、各画像データの画像種別に応じた階調特性となるように階調変換する表示階調処理を行う必要がある。
 本実施形態において、記憶部32aには、制御部31によって行われる表示階調処理を行うための表示特性LUT37,37…として、画像データの画像種別に対応して、6種類の表示特性LUT37a,37b,37c,37d,37e,37fが格納されている。以下、各表示特性LUT37a~37fについて説明する。
 まず、表示特性LUT37a(LUT1;後述する図20において、「LUT1-1-1」とする。)は、画像を一般のモニタ(液晶パネル)の特性であるγ=2.2の階調特性で表示させるための階調変換を行う表示階調処理を行う際に適用されるものである。図7に示すように、表示特性LUT37aは、入力信号値に対して出力信号値が比例関係にあり、階調の表示関数は、傾きが1となる一次関数となる。すなわち、画像表示装置4,4…の液晶パネル41がもともと備えているγ=2.2の表示特性が得られる。
 このような階調特性で表示させるのに適した、画像データの画像種別としては、例えば内視鏡画像や眼底写真画像等のカラー画像が挙げられる。
 また、表示特性LUT37b(LUT2;後述する図20において、「LUT1-1-2」とする。)は、液晶パネル41に表示させる際の表示画像の輝度を低くする階調変換を行う表示階調処理を行う際に適用されるものである。図7に示すように、表示特性LUT37bは、表示特性LUT37aと同様に入力信号値に対して出力信号値が比例関係にあり、階調の表示関数が一次関数となる直線的なLUTであるが、表示特性LUT37aと比較して直線の傾きが小さくなっている。
 このような階調特性で表示させるのに適した、画像データの画像種別としては、例えば電子カルテの画像データ等、全体的に白地の背景であり、その中にテキストデータが含まれているような画像が挙げられる。すなわち、一般のモニタ(液晶パネル)の特性であるγ2.2の階調特性で表示させた場合には、300cd/m2等の輝度で表示されることとなるが、電子カルテの画像データ等の場合、このような高輝度で表示させると、まぶしくて視認性が悪くなる。特に、画像生成装置2,2…で生成された画像データに基づく画像は比較的輝度の低いものが多いため、一緒に表示させた場合、電子カルテ等の画像の視認性が余計に低下する。なおかつ、電子カルテの画像データ等が高輝度で表示されることによって、画像生成装置2,2…による画像データに基づく画像の視認性も低下してしまう。
 そこで、電子カルテ等の表示画像の輝度を低くするように表示特性LUT37aよりも傾きを小さくしたLUTを使用するようにする。
 また、表示特性LUT37c(LUT3)は、カラーの画像データ(R,G,B)をカラーの表示画像データ(R,G,B)に変換する階調変換を行う表示階調処理を行う際に適用されるものである。図7に示すように、表示特性LUT37cの階調の表示関数は、画像表示手段52の液晶パネル41がもともと備えているγ=2.2の表示特性をDICOM規格に従った表示特性に変換する階調曲線となっている。
 このような階調特性で表示させるのに適した、画像データの画像種別としては、例えばカラーの超音波画像等が挙げられる。また、CT画像やMRI画像に擬似的に色をつけて表示する場合があるが、そのような擬似的なカラー画像に対しても好適である。
 また、表示特性LUT37d(LUT4;後述する図20において、「LUT1-1-3」とする。)は、モノクロの8bitの画像データを一定のグレースケール関数に則って変換し、変換後の出力信号値がR,G,B等値のモノクロの表示画像データとなるように階調変換を行う表示階調処理を行う際に適用されるものである。図8に示すように、表示特性LUT37dの階調の表示関数は、画像表示装置4,4…の液晶パネル41がもともと備えているγ=2.2の表示特性をDICOM規格に従った表示特性に変換する階調曲線となっている。なお、図8には1本の曲線しか表示されていないが、表示階調変換後には、モノクロの画像データに対してR,G,Bそれぞれが同じ値を持つ表示画像データが生成されることは言うまでもない。
 このような階調特性で表示させるのに適した、画像データの画像種別としては、例えばモノクロの超音波画像、PET画像、CT画像、MRI画像等が挙げられる。
 また、表示特性LUT37e(LUT5;後述する図20において、「LUT1-1-4」とする。)は、画像データがモノクロの12bitの画像データである場合(入力信号値が0から4095までの数値をとり得る場合)に、変換後の出力信号値がR,G,B等値の8bitである表示画像データとなるように表示階調処理を行う際に適用されるものである。図9に示すように、表示特性LUT37cの階調の表示関数は、画像表示装置4,4…の液晶パネル41がもともと備えているγ=2.2の表示特性をDICOM規格に従った表示特性に変換する階調曲線となっている。
 このような階調特性で表示させるのに適した、画像データの画像種別としては、例えばモノクロのCR画像等が挙げられる。
 また、表示特性LUT37f(LUT6)は、画像データがモノクロの12bitの画像データである場合(入力信号値が4095まである場合)に、変換後の出力信号値がR,G,Bが非等値の組み合わせを含む8bitの表示画像データとなるように表示階調処理を行う際に適用されるものである。図10に示すように、表示特性LUT37fの階調の表示関数は、DICOM規格に従った階調曲線となっている。なお、図10では1本の曲線しか示されていないように見えるが、モノクロの12bit画像データに対する変換後のR,G,Bのそれぞれの値は必ずしも同じではない。
 図11は、図10のグラフ中、一点鎖線で囲った部分を拡大したものである。図11に示すように、表示特性LUT37fでは、R,G,Bの各値をずらして階調変換している。
 例えば、入力信号値が10bit以上のモノクロ多階調の画像データである場合に、表示特性LUT37eのように、単に8bitの出力信号値に落としてDICOM変換すると、階調数が減少してしまうが、表示特性LUT37fのようにR,G,Bの値が同じ組み合わせだけでなく、R,G,Bの値をずらした非等値の組み合わせも用いることにより、入力信号値が10bit以上のモノクロ多階調の画像データを8bitの出力信号値に落として変換しても階調数としては高くすることができる。
 すなわち、表示特性LUT37e及び表示特性LUT37fは、いずれも1チャンネルのモノクロ画像データが画像データとして入力された場合に、これをR,G,Bの3チャンネルにデータ分配して8bitのR,G,Bのカラーの表示画像データに変換するものである。ここで、本実施形態において、表示特性LUT37e及び表示特性LUT37fは、画像データが、n(nは8以上の正の整数)bitを超えるモノクロ画像データである場合に、予め設定された対応付けに基づいてnbitのR,G,Bのカラー表示画像データに変換するようになっている。
 なお、本実施形態においては、画像表示手段である液晶パネル41がR,G,Bの3色で画像表示するものであるため、表示特性LUT37e及び表示特性LUT37fは、R,G,Bの3チャンネルのカラー表示画像データである表示画像データに変換するものとしているが、液晶パネル41が4色以上で画像表示するものである場合には表示色数に合わせたチャンネル数の画像データ(すなわち、3チャンネル以上のカラー表示画像データ)に変換すればよい。
 なお、本実施形態において、表示特性LUT37e及び表示特性LUT37fは、元画像が12bitのモノクロ画像データである場合に適用されるものであるが、1チャンネルのモノクロの画像データを3チャンネル以上のカラー表示画像データに変換する表示特性LUT37は、画像データがn(nは8以上の正の整数)bitの1チャンネルのモノクロ画像データであり、これを予め設定された対応付けに基づいてnbitの3チャンネル以上のカラー表示画像データに変換するものであればよく、ここに示したものに限定されない。
 例えば、10bitの1チャンネルのモノクロ画像データを、予め設定された対応付けに基づいて8bitの3チャンネル以上のカラー表示画像データに変換する例を図12に示す。
 図12(a)は、表示特性LUT37eと同様に、R,G,Bを等値として変換する場合のモノクロの画像データと変換後のR,G,Bの表示画像データとの対応付けを示している。また、図12(b)は、表示特性LUT37fと同様に、R,G,Bを非等値として変換する場合のモノクロの画像データと変換後のR,G,Bの表示画像データとの対応付けを示している。
 図13は、階調制御単位(1ピクセル)について、それぞれRGB値を示したものである。R,G,Bが非等値の組み合わせも用いることにより、1つの入力信号値に対するR,G,Bの組み合わせの種類を増加させることができ、画像表示手段である液晶パネル41の階調特性を超える多階調表示が可能であり、図13に示すように、階調分解能の高い画像を液晶パネル41に表現させることが可能である。
 具体的には、R,G,Bの値が等値の表示特性LUT37eの場合、表示画像データに変換した場合に256色を画像表示するにすぎないが、R,G,Bの値が非等値の表示特性LUT37fの場合、液晶パネル41の階調分解能にかかわらず、より多階調の画像表示を要求される医用画像について高階調で画像表示を行うことができる。
 例えば、R,G,Bの値が等値の場合に対して、±2の範囲でR,G,Bの値をずらした場合には、約14000色の画像表示が可能である。この約14000色の中から輝度及び色度が好ましい表示色を1024通り選び出せば10bitの階調表現が可能であり、4096通りを選び出せば12bitの階調表現が可能である。
 図14に、入力信号値12bitの1チャンネルの多階調の画像データを、表示用の画像データである8bitの3チャンネルの多階調の画像データに変換する場合の表示特性LUT37の作成例を示す。
 図14(a)は、入力信号値12bitの1チャンネルの多階調の画像データ(図14中の「多階調1」)を、画像を表示させる画像表示装置4,4…側で用意できる階調数に応じた多階調の画像データ(図14中の「多階調2」)に変換する場合の各信号値の対応付けを示したものである。
 なお、変換後の多階調2は、8bit(256階調)以上であればよく、特に限定されないが、10bit(1024階調)以上であることが好ましい。例えば、図15は、信号値が4095まである12bitの多階調1から信号値が1785までの10.8bitの多階調2に変換するLUTをグラフで示したものである。
 図14(b)は、図14(a)に示した変換後の多階調の画像データ(図14中の「多階調2」)と、画像表示装置4,4…の表示階調特性によらずに予め定められた非等値の8bitの3チャンネルの多階調の画像データ(固定LUT)との各信号値の対応付けを示したものである。
 また、図14(c)は、入力信号値4095の画像データ(多階調1)を、上記固定LUTを適用してR,G,Bの値が非等値である8bitの3チャンネルの多階調の画像データに変換する場合の各画像信号の対応関係を示したものである。
 本実施形態においては、このように、図14(a)に示すLUTと、図14(b)に示す固定LUTとを掛け合わせることにより、図14(c)に示すR,G,B非等値の表示特性LUT37を作成するようになっている。
 ここで、図16及び図17を参照しつつ、上記固定LUTの作成手法について説明する。
 本実施態様では、多階調を実現するために用いられる固定LUT(図14(b)参照)を下記のように作成した。なお、固定LUTの作成手法は、ここに例示したものに限定されない。
 固定LUTに使用するR,G,Bの値の組合せは、図16(a)に示すように、R=G=B=0~254である等値の255通りの組合せである。本実施態様では、このようなR,G,Bの値に対して、図16(b)に示すような所定の6種類のオフセット値を加えた値を併せて用いる。
 具体的には、図17(a)に示すように、Gに対応するオフセット値が最上位、Rに対応するオフセット値が中位、Bに対応するオフセット値が最下位、となるような3bitの2進数001~110(10進数では1~6)である組合せのオフセット値(図17(b))を、2進数が単調増加するように加えることが好ましい。
 すなわち、図17(a)及び下記に示すように、Gに対応するオフセット値が3bitの2進数の2の2乗の位、Rに対応するオフセット値が3bitの2進数の2の1乗の位、Bに対応するオフセット値が3bitの2進数の2の0乗の位に相当する。
(G offset1, R offset1, B offset1)=(0,0,1)、
(G offset2, R offset2, B offset2)=(0,1,0)、
(G offset3, R offset3, B offset3)=(0,1,1)、
(G offset4, R offset4, B offset4)=(1,0,0)、
(G offset5, R offset5, B offset5)=(1,0,1)、
(G offset6, R offset6, B offset6)=(1,1,0)
 これを一般に色を表現する時に用いられる並び順であるR,G,Bの順に並べ替えると、図17(b)及び以下に示すようになる。
(R offset1, G offset1, B offset1)=(0,0,1)、
(R offset2, G offset2, B offset2)=(1,0,0)、
(R offset3, G offset3, B offset3)=(1,0,1)、
(R offset4, G offset4, B offset4)=(0,1,0)、
(R offset5, G offset5, B offset5)=(0,1,1)、
(R offset6, G offset6, B offset6)=(1,1,0)
 さらに、等値のR,G,Bの値がi(i=0~254の整数)である組合せ(R,G,B)=(i,i,i)に、図16(b)に示すような順序である6通りの非等値の組合せを加えることにより(下記参照)、図16(c)に示すような固定LUTを作成する(図16(c)の中央部分に示す固定LUT)。
(R, G, B)=(i + R offset1, i + G offset1, i + B offset1)
(R, G, B)=(i + R offset2, i + G offset2, i + B offset2)
(R, G, B)=(i + R offset3, i + G offset3, i + B offset3)
(R, G, B)=(i + R offset4, i + G offset4, i + B offset4)
(R, G, B)=(i + R offset5, i + G offset5, i + B offset5)
(R, G, B)=(i + R offset6, i + G offset6, i + B offset6)
 ここで、iは0~254の255個の整数であるから、これによって、255×7=1785通りの異なるR,G,Bの値の組合せが得られる。さらに、(R,G,B)=(255,255,255)を加え、全部で1786通りのR,G,Bの組合せが得られる。
 なお、必ずしも1786全ての組合せを使わなくてもよいが、これ以外の組合せは使用しないことが好ましい。
 次に、このような固定LUTを用いることの効果を説明する。
 カラー画像を表示させる画像表示装置4,4…におけるR,G,Bの各単色の輝度RL、GL、BLの比は、表示方式や画像表示装置4,4…の機種差、固体差によって様々であるが、概ね下記の式(1)に示す関係を満たしている場合が多い。
 GL>RL>BL かつ GL>RL+BL  ・・・(1)
 輝度RL、GL、BLが式(1)を満たしていれば、上述した6通りのオフセット値を用いて作成したR,G,Bの組合せからなる固定LUTによって実現される表示輝度は、図16(c)に示すように、入力信号値に対してほぼ単調増加となる。
 上記手法で作成された固定LUTは、ごく単純な規則性に基づいて作成されたものではあるが、RL、GL、BLが式(1)を満たす範囲内で、機種差、固体差、経時変化があっても、表示輝度の単調増加性を保つことができて好ましい。
 また、複数のR,G,Bの組合せによって実現される表示輝度の実測値に基づいて実測していないR,G,Bの組合せによって実現される輝度を推定するという工程が必要がなく、キャリブレーションの際の測定点数(時間)や演算時間を大幅に少なくすることができる。
 カラー画像を表示させる画像表示装置4,4…におけるR,G,Bの各単色の輝度RL、GL、BLの比は、下記の式(2)で示す関係となっていることが最も好ましい。
 GL=2・RL=4・BL  ・・・(2)
 図16(c)のように、R,G,Bの輝度比とR,G,Bの各信号値との積を求め、それらの和を求めると、ほぼ、表示輝度の大小関係を表し、モノクロ信号値に対して矢印ARの方向に向けて単調に増加する。
 しかし、式(1)を満たした上で、下記の式(3)に示す関係を満たすものであれば、単調増加性は十分に保たれる。
 GL=α・RL=β・BL (1.5<α<3.0、1.5<β<3.5)  ・・・(3)
 なお、モノクロ画像データを、R,G,Bが等値でない組合せを含むR,G,Bのカラー画像データに変換することはすでに知られている(例えば特開2001-034232号公報、2002-199241号公報、特開2003-050566号公報参照)。
 しかしながら、上記従来技術に関する公知文献には、R=G=B=0~254である等値の255通りの組合せに対して、Gに対応するオフセット値が最上位、Rに対応するオフセット値が中位、Bに対応するオフセット値が最下位、となるような3bitの2進数001~110(10進数では1~6)である組合せのオフセット値を、2進数が単調増加するように加えることは開示されていない。
 従来の方法では、例えば、入力データに対応する輝度値(信号値)が単位画素を構成するRGBの各セルにそれぞれ配分されるRの輝度値(信号値)、Gの輝度値(信号値)、及びBの輝度値(信号値)の和として表されており、RGBの異なる組合せが最大で768通りしか得られず、十分な階調数が得られない。
 また、従来の方法は、本実施形態とは異なり、RGBのそれぞれの値を増やす順番を、前記2進数のオフセット値が単調増加するように規定してはいないので、RGBに対応して表示される画像の輝度の大小関係が考慮されておらず、割り付け方によっては輝度が単調増加にならないという不具合が生じる。
 上述の固定LUTはR,G,Bが等値である組み合わせをベースにしてオフセットを加えているので、画像はほぼ白黒の色調で表示されるが、画像に若干の色味をつけることも可能である。以下、青みを帯びた色調で表示するための固定LUT作成方法を説明する。
 図18(a)は、図16(c)の中央部に示した固定LUTと同じであり、図16(c)の固定LUTがモノクロ入力値として21までを示したものであるのに対し、図18(a)はモノクロ入力値として1785までを示している。(途中の値を省略している部分もある)
 図18(b)は、図18(a)の固定LUTの値に基づき、Bに対応する値はそのままで、Rに対応する値に231/255を乗じて四捨五入した値、Gに対応する値に243/255を乗じて四捨五入した値に置き換えたものである。図18(b)の固定LUTを用いた場合、RとGに対応する値がBに対応する値よりも小さく、相対的にBの値が大きいので、青みを帯びた色調で表示することができる。
 図18(b)の固定LUTをそのまま用いても良いが、以下に示す方法で、より階調の滑らかなLUTが得られる。
 図19(a)は、図18(b)の固定LUTの値に、代表的なカラー液晶パネルのR,G,Bそれぞれの輝度比(この例では、0.26:0.65:0.09)を乗じて総和を算出した結果を示している。この総和は、表示される輝度の大小関係を推定した値である。図19(a)に示したように、この総和(輝度)が単調増加するR,G,Bの組み合わせ(図19(a)内のA1参照)に対し、この総和(輝度)が単調増加しないR,G,Bの組み合わせ(図19(a)内のA2参照)が生じる場合がある。そこで、図19(b)に示すように、総和(輝度)が単調増加するようにR,G,Bの組み合わせを並べ替えた固定LUTを用いることにより、輝度が単調増加する滑らかな階調の画像が得られる(図19(b)内のA3参照)。
 青みを帯びた色調で画像を表示することにより、人の目にはS/N比が向上したように視認されるので、診断能が向上して好ましい。
 また、記憶部32には、例えば、当該画像データがどのような医療診断装置2,2…で生成された画像データであるのかを示す医療情報種別、カラー画像かモノクロ画像かの別を示す色種別(なお、医療情報種別と色種別とを併せて「画像種別」と称する。)、当該画像の階調数等、画像の種類に関する情報と、表示階調処理に使用する表示特性LUTの種類とを対応付けるLUT対応付け情報が格納されている。
 図20にLUT対応付け情報の一例を示す。
 例えば、表示特性LUT記憶部36に、画像処理装置3a(PC1)に接続されている画像表示装置4a(Display1-1)に画像を表示させる場合に用いられる表示特性LUT37としてLUT1-1-1,LUT1-1-2,LUT1-1-3…が格納されている場合に、図20に示すように、LUT対応付け情報は、各表示特性LUT37がどのような画像種別等に対応するかの対応関係を示している。
 例えば、本実施形態においては、医療情報種別が電子カルテであり、色種別がカラーであり、階調数が8bitの画像を画像処理装置3a(PC1)に接続されている画像表示装置4a(Display1-1)に表示させる場合に適用される表示特性LUT37としてLUT1-1-2(表示特性LUT37b)が対応付けられ、医療情報種別がCR画像であり、色種別がモノクロであり、階調数が12bitの画像を画像処理装置3a(PC1)に接続されている画像表示装置4a(Display1-1)に表示させる場合に適用される表示特性LUT37としてLUT1-1-4(表示特性LUT37e)が対応付けられている。
 後述するように、制御部31は、このLUT対応付け情報に基づいて画像処理に使用する表示特性LUT37を選択し、選択した表示特性LUT37を適用して画像データの画像処理を行うようになっている。
 なお、画像処理に使用する表示特性LUT37と対応付けられる画像に関する情報は、ここに例示したものに限定されない。また、画像の種類に関する情報と表示特性LUT37との対応付けは、ユーザ等の入力によって適宜設定されるものであってもよいし、予めデフォルトとして、好ましい対応付けが設定されていてもよい。予めデフォルトとして対応付けが設定されている場合であっても、ユーザ等による入力・設定により、画像の種類に関する情報と表示特性LUT37との対応関係を事後的に変更できるように構成してもよい。この場合には、ユーザ等による入力・設定によりLUT対応付け情報の書き換えが行われる。
 また、デフォルト値記憶部38は、表示特性LUT37を作成する際のデフォルト値が格納されている。本実施形態において、ユーザは、画像表示装置4,4…の実測値を用いずに予め機種ごと、メーカーごとに定められているデフォルト値を用いて表示特性LUTを生成することを選択することができるようになっている。デフォルト値によって表示特性LUT(図21において「デフォルトLUT」)が作成された場合、作成されたLUTは、表示特性LUT37として選択できる候補の一つとして表示特性LUT記憶部36に記憶されるようになっている。
 図21にデフォルト値を用いて作成された表示特性LUT37の一例を示す。
 図21に示すように、デフォルト値を用いて作成された表示特性LUT37は、画像表示装置4,4…のメーカーごと、機種ごと、又は、モノクロ画像かカラー画像かの別と、画像表示装置4,4…に表示させる際の色調の種類等に応じて、それぞれ対応付けされている。
 品質管理用データ記憶部39には、階調特性試験用データ39a、キャリブレーション測定データ39b、階調特性試験を行う際に画像表示装置4,4…の液晶パネル41に表示させるテストパターン用のデータ(図示せず)等が記憶されている。
 階調特性試験用データ39aは、階調特性試験によって得られる検査データ(テストパターンのRGB値に対する測定輝度値)、検査データと比較対照される標準データ(JESRA、AAPM等に規定されている標準輝度値)、及び検査データと標準データとを比較対照した結果等である。
 また、キャリブレーション測定データ39bとは、キャリブレーション後に画像表示装置4,4…の液晶パネル41にテストパターンを表示させて、測定手段7による測定を行った結果得られたテストパターンのRGB値に対する測定輝度値のデータ等である。
 テストパターン用のデータは、液晶パネル41にテストパターンを表示させる複数のベタ画像データ(RGB値)である。なお、本実施形態においては、テストパターンを表示するためのデータとしてRGB値が等値である256種の組合せの全部またはその一部を用いているが、テストパターンを表示させるためのRGB値は等値でなくてもよい。
 次に本実施形態における制御部31について説明する。
 制御部31は、図示しないCPU(Central Processing Unit)等により構成されており、記憶部32から読み出したシステムプログラム及び各種アプリケーションプログラムの中から指定されたプログラム、データ等をRAMの作業領域に展開し、RAMに展開されたプログラムとの協働により、各種処理を実行するものである。
 画像処理装置3a~3dの制御部31は、画像表示装置4,4…画像表示制御を行うものであり、例えば、階調特性試験を行う際に、画像表示装置4,4…の液晶パネル41に表示させるテストパターンのデータを画像表示装置4,4…に出力する。
 また、医療診断装置2a,2b,2c,2dから得た画像データに基づく画像を画像表示装置4,4…の液晶パネル41に表示させる際には、所定の画像処理後の画像データを画像表示装置4,4…に出力する。
 また、制御部31は、表示特性LUT37の作成履歴(図32参照)を、画像表示装置4,4…に適宜表示させるようになっている。なお、表示特性LUT37の作成履歴を表示させる表示手段は画像表示装置4,4…に限定されない。例えば、画像処理装置3a~3dのモニタ(図示せず)に表示させるようにしてもよい。
 また、後述するように、画像処理装置3a~3dの制御部31は、品質管理プログラム33aとの協働により、品質管理処理(キャリブレーション)を行うようになっている。具体的には、制御部31は、画像表示装置4,4…の液晶パネル41にテストパターンを表示させ、その際の色刺激値XYZを測定手段7により測定させる。測定手段7による測定結果は制御部31に入力されるようになっており、制御部31は、表示特性を測定した測定結果を取得する表示特性取得機能を有している。ここで、色刺激値のうちのYで表される値は、輝度を表すものである。
 制御部31は、この測定により得られたテストパターンのRGB値に対する測定輝度値とJESRA、AAPM等に規定されている標準輝度値に基づいて、液晶パネル41の表示特性に応じて1チャンネルのモノクロ画像信号値に基づいて3チャンネルのRGB値に変換する変換則としての表示特性LUT37を作成する。本実施形態において、制御部31は、品質管理プログラム33aとの協働により表示特性LUT37を作成するルックアップテーブル作成手段である。
 また、制御部31は、適用LUT記憶部36cに記憶されている表示特性LUT37が一定の基準を満たすか否かを判定する判定手段として機能する。判定の基準はデフォルトとして一定の基準が定められていてもよいし、ユーザが任意に設定するようにしてもよい。
 また、制御部31は、適用LUT記憶部36cに記憶されている表示特性LUT37を対応付け記憶部36bに記憶されている他の表示特性LUT37に書き換えるルックアップテーブル書き換え手段として機能する。
 制御部31による適用LUT記憶部36cに記憶されている表示特性LUT37の書き換えは、適用LUT記憶部36cに記憶されている表示特性LUT37が一定の基準を満たさないと判定されたときに自動的に行われるとしてもよいし、ユーザによる書き換え指示の入力等があった場合に行ってもよい。
 また、適用LUT記憶部36cに記憶されている表示特性LUT37の書き換えを行う場合に、対応付け記憶部36bに記憶されている何れの表示特性LUT37に書き換えるかについては、例えば作成履歴の新しいものを選択するようにする。なお、何れの表示特性LUT37に書き換えるかの選択はここに例示したものに限定されない。例えば、対応付け記憶部36bに記憶されている表示特性LUT37に、ユーザ等による評価情報を対応付けておき、制御部31は過去に作成された表示特性LUT37のうち評価の高いものを選択して適用LUT記憶部36cに記憶されている表示特性LUT37を書き換えするようにしてもよい。
 また、制御部31は、適用LUT記憶部36cに記憶させる表示特性LUT37として、初期LUT記憶部36dに記憶されている初期LUTを選択して、適用LUT記憶部36cに記憶されている表示特性LUT37を初期LUTに書き換える初期ルックアップテーブル選択手段としても機能する。
 このように、本実施形態においては、制御部31と記憶部32により品質管理システムが構成されている。
 また、本実施形態において、画像処理装置3a~3dには、図示しないネットワークインターフェース等を介して医療診断装置2a~2d等が接続されており、制御部31は、医療診断装置2a~2d等により生成された医用画像の画像データ、電子カルテの画像データ等の各種画像データを取得するようになっている。
 画像処理装置3a~3dの制御部31は、画像処理プログラム33bとの協働によって、医療診断装置2a~2dから得られた画像データに基づく画像を各画像表示装置4,4…に適した状態で表示させるための画像処理を行う。
 具体的には、医療診断装置2a~2dから画像データが入力されると、制御部31は、まず、画像データ入力元の医療診断装置2a~2dの種別を判断する。
 各画像データには、付帯情報(画像データのヘッダ情報)として、医療情報種別及びカラー情報といった画像種別に関する情報、1画素当たりのビット数、1画素当たりのバイト数、画像の縦方向の画素数、画像の横方向の画素数、といった各種の情報が付帯されており、制御部31は、画像データに付帯するこの付帯情報に基づいて、各画像の画像種別を判定するようになっている。
 なお、医用画像の画像データの保存は、例えば医用画像の配信、医用画像の保存フォーマット等に係る規格であるDICOM規格に従って行われ、このDICOM規格の保存フォーマットでは、画像データのヘッダ領域に当該画像データに関する各種付帯情報を書き込み、付帯させる際の規格が定められている。したがって、画像データの保存がDICOM規格の保存フォーマットで行われた場合には、画像データを保存する際に、DICOM規格に従って必要な付帯情報が画像データに付帯される。このDICOM規格を適用することにより異なる装置間での画像データの交換が可能となる。なお、画像データに付帯情報を付帯させる手法は特に限定されず、画像データの保存がDICOM規格の保存フォーマットで行われていない場合には、図示しない入力部から必要な情報を入力して付帯情報としたり、バーコード等を読み込ませることにより必要な付帯情報を付帯させる手法等を用いたりすることができる。
 画像データ入力元の医療診断装置2a~2dの種別を判断すると、制御部31は、医療診断装置2a~2dの種別に起因する画像特性に応じて、画像特性LUT記憶部34の中から、画像処理に用いるのに適した画像特性LUT35を選択する。また、制御部31は、出力対象の画像表示装置4,4…の種別及び画像データ入力元の医療診断装置2a~2dの種別を判断し、これに応じて、表示特性LUT記憶部36の中から、画像処理に用いるのに適した表示特性LUT37を選択する。
 そして、まず、医療診断装置2a~2dから入力された画像データに対して画像特性LUT35を適用して画像特性に応じた補正(画像処理)を行い、さらに、この補正(画像処理)が行われた画像データに対して表示特性LUT37を適用して表示特性に応じた補正(画像処理)を行う。
 さらに、本実施形態においては、品質管理プログラム33a、画像処理プログラム33b等のアプリケーションプログラムや各種LUT及びデータ等は、画像処理装置3aの記憶部32aに格納されている。このため、画像処理装置3b,3c,3dの制御部31は、品質管理処理及び画像処理を行うにあたり、処理に必要なアプリケーションプログラム(品質管理プログラム33a、画像処理プログラム33b等)を画像処理装置3aの記憶部32aから読み込んで起動させたり、各種処理に必要なLUT及び各種のデータ等を画像処理装置3aの記憶部32aから読み込むようになっている(図2参照)。
 また、画像処理装置3b,3c,3dの制御部31は、品質管理処理を行った結果、表示特性LUT37を作成したときは、これを画像処理装置3aに送信し、画像処理装置3aの制御部31は、記憶部32aの表示特性LUT記憶部36に記憶させるようになっている。また、ユーザがいずれかの画像処理装置3a~3dの入力部から、品質管理処理を行わずデフォルト値に基づいた表示特性LUTを画像処理に用いる旨を選択・入力した場合には、制御部31は、デフォルト値記憶部38に記憶されているデフォルト値に基づいて表示特性LUT37を作成し、これを記憶部32aの表示特性LUT記憶部36に記憶させる。
 さらに、本実施形態において、画像処理装置3a~3dの制御部31は、画像表示装置4,4…の液晶パネル41の1つの表示画面を複数の表示領域に分割して、各表示領域に異なる種類の画像を表示させる複数画像表示処理を行うようになっている。例えば、1つの画面を3つの表示領域に分割して、各領域にそれぞれ内視鏡画像、電子カルテ画像、CT画像等、画像種別の異なる画像を表示させることができる(図22参照)。この場合、1つの表示画面をいくつに分割するか、どの位置にいかなる種類の画像を表示させるか、どの領域をどの程度のサイズとするか等は、デフォルトで定められていてもよいし、ユーザ等が任意に設定できるようにしてもよい。
 なお、1つの表示画面に複数種類の画像を表示させる処理は、本実施形態の必須の要素ではなく、制御部31がこのような処理を行う機能を有しないものでもよい。
 次に、本実施形態における作用について説明する。
 まず、品質管理(キャリブレーション)処理は、以下のように行われる。なお、このキャリブレーション処理は、画像処理装置3,3…の制御部31と品質管理プログラム33aとの協働によって実現されるものである。
 本実施形態における品質管理処理は、画像表示装置4,4…に表示されたテストパターンの表示特性の合否判断を行う階調特性試験工程と、所定のキャリブレーション点数でテストパターンの表示特性を測定しキャリブレーションを行うキャリブレーション工程と、に大別される。
 まず、図22から図26を参照しつつ、階調特性試験工程について説明する。
 本実施形態において、画像表示装置4,4…に表示される画像表示画面41aには、図22に示すように、画像の回転、拡大、縮小を行うための操作ボタン411のほか、階調特性試験及びキャリブレーションを行うための品質管理処理ボタン412が設けられている。
 品質管理処理ボタン412をマウス等の入力部によりユーザが操作すると、図23に示すように、品質管理画面41bに遷移する。品質管理画面41bには階調特性試験を開始させるための階調特性試験ボタン413、キャリブレーションを行うためのキャリブレーションボタン414、品質管理処理の履歴を表示させる履歴表示ボタン415、品質管理処理を終了させるための終了ボタン416、各種の設定を行うための設定ボタン427が設けられている。そして、品質管理画面41bにおいて、ユーザが階調特性試験ボタン413を選択することにより、階調特性試験工程を開始する指示が制御部31に入力され、階調特性試験が開始される。
 図24に示すように、階調特性試験工程が開始する指示が入力されると、制御部31はJESRA及びAAPM等の規定に準拠して、テストパターンのうち信号値(表示輝度)の異なる18種類のテストパターンを選択し、これを読み出して画像表示装置4に出力する。テストパターンが出力されると、液晶パネル41にテストパターンが表示される(ステップS1)。
 テストパターンが液晶パネル41に表示されると、測定手段7が液晶パネル41の表示光を測定する(ステップS2)。表示光の測定結果である輝度及び/又は色度に関する情報は、測定手段7から制御部31に入力される。制御部31は、上記測定が所定点数(例えば18点)行われたか否かを常に判断し(ステップS3)、測定点数が所定点数に達していない場合(ステップS3;NO)には、測定点数が所定点数に達するまでステップS1からステップS2までの処理を繰返す。
 測定点数が所定点数に達した場合(ステップS3;Yes)、制御部31は測定手段7から入力された測定輝度を読み出すとともに、画像処理装置3aの記憶部32aに記憶されている固定LUTを読み出し、この固定LUTを適用して、測定した階調レベル値及び輝度を、標準の階調レベル値に変換する信号変換を行う。さらに、制御部31は、最大輝度と最低輝度に基づいてDICOM Part14に規定されたGSDF(標準グレースケール関数)を計算し、各信号値に対する標準輝度のデータを求める。その後、JESRA、AAPM等に規定された標準データに基づいて算出されるコントラスト応答の値と、測定データに基づいて算出されるコントラスト応答との値を比較し、その偏差の絶対値の最大値を求める(ステップ;S4)。
 具体的には、コントラスト応答を求めるには、較正済みの輝度計とTG18-LNテストパターンとを使用して(または相関を取った輝度計及び代替パターンで)、18段階のデジタル駆動レベルについてテスト領域内の輝度を測定する。測定した輝度値(L)を下記一般式(4)によりJNDインデックス(J)に変換する。
J(L)=71.498068+94.593053×log10(L)+41.912053×log10(L)+9.8247004×log10(L)+0.281754
07×log10 (L)-1.1878455×log10(L)-0.180143
49×log10 (L)+0.14710899×log10 (L)-0.017046845×log10(L)    ・・・(4)
 次に、測定データをJNDインデックス(JNDN+1+JNDN)÷2に対応したコントラスト値(Ln+1-Ln)÷{(Ln+1+Ln)÷2}に変換する。このΔL/Lを各点に対応するJNDインデックスの差JNDN+1-JNDNで除することにより各点におけるコントラスト応答が求められる。
 図25は測定輝度値及び標準輝度値に基づいてJNDインデックスに変換してコントラスト応答(図中のΔL/L per JND)を求めた例である。図25(a)における「偏差」とは、図25(b)のコントラスト応答に対する図25(a)のコントラスト応答の偏差を百分率で表したものである。
 上記の式(4)は、コントラスト応答の計算を具体的に示したものである。コントラスト応答の計算値は、グレード1のモニタは全ての測定点で標準値の±15%以内でなければならず、グレード2のモニタは同じく±30%以内にならなければならない。
 求めた偏差の絶対値の最大値を求めた後、制御部31は偏差の絶対値の最大値に基づいて合否判断を行う(ステップS5)。合否判断の判定基準は、測定データが標準データにのる場合は「合格」であり、標準データにのらない場合には「不合格」となる。制御部31はこのように決定された合否結果と偏差の最大値の絶対値とを液晶パネル4に表示させる(ステップS6)。なお、不合格の場合にはキャリブレーションを促す警告音や表示等を行うようにしてもよい。
 図26は、階調特性試験の結果を表示する階調テスト結果画面41cの例を示したものである。
 図26に示すように、階調テスト結果画面41cには、階調特性試験の条件を示す条件情報欄417、合否判断の判定を示す判定欄418、測定が行われた各点数(本実施形態では所定点数は18点)毎の輝度を表す測定結果欄419、階調特性試験の結果をグラフで表す結果表示欄420及びコントラスト応答の結果を示すコントラスト応答表示欄421等が設けられている。
 階調特性試験では、デフォルト等により設定されている表示特性LUTを適用した状態で階調特性の測定が行われ、結果表示欄420には、これによって得られた結果が表示されている。また、コントラスト応答表示欄421は、図25に示されたコントラスト応答を縦軸に、JNDインデックスを横軸にグラフ化したものである。
 なお、階調テスト結果画面41cの構成はここに示したものに限定されない。
 次に、図27~図29を参照しつつ、キャリブレーション工程について説明する。
 そして、キャリブレーションを促す警告等に応じて又は一定の期間の経過等により任意に、ユーザが品質管理画面41bのキャリブレーションボタン414(図23参照)をマウス等により操作し、選択することにより、キャリブレーション工程を開始する指示が制御部31に入力され、キャリブレーション工程が開始される。
 キャリブレーション工程が開始する指示が入力されると、図27に示すように、制御部31は、所定点数のテストパターンの画像データを読み出し、DICOMキャリブレーションに基づいて予め設定された補正LUTによって信号変換を行って画像表示装置4に出力する。テストパターンが出力されると、液晶パネル41にテストパターンが表示される(ステップS11)。
 テストパターンが液晶パネル41に表示されると、測定手段7が液晶パネル41の表示光を測定する(ステップS12)。表示光の測定結果である輝度及び/又は色度に関する情報は測定手段7から制御部31に入力される。
 制御部31は、上記のデータ変換が所定点数行われたか否かを常に判断し(ステップS13)、測定点数が所定点数に達していない場合(ステップS13;NO)には、測定点数が所定点数に達するまで前記処理を繰返す。
 次いで、測定点数が所定点数に達した場合(ステップS13;Yes)には、制御部31は測定輝度値を読み出し、固定LUTによって信号値を変換し標準輝度とする。測定輝度を標準輝度に変換したら、制御部31はテストパターンの画像データと、標準輝度に基づき、液晶パネル41による表示輝度を画像データに応じた適正なものとするような表示特性LUT37(図7~図10参照)の作成を行う(ステップS14)。制御部31は、表示特性LUT37の作成履歴を表示特性LUT記憶部36の作成履歴記憶部36aに記憶させるとともに(ステップS15)、作成された表示特性LUT37又は当該表示特性LUT37を作成するための情報を作成履歴と対応付けて、表示特性LUT記憶部36の対応付け記憶部36bに記憶させる(ステップS16)。また、制御部31は、当該最新の表示特性LUT37を適用LUT記憶部36cに記憶させる(ステップS17)。
 キャリブレーションが完了すると、図28に示すようなキャリブレーション結果画面41dが表示される。
 図28に示すように、キャリブレーション結果画面41dには、キャリブレーションの条件を示す条件情報欄422、測定結果を示す輝度表示欄423、表示特性LUTを適用しない状態の輝度測定結果をグラフで表す適用結果表示欄424及び当該信号について適用される表示特性LUT37を示すLUT表示欄425等が設けられている。
 なお、キャリブレーション結果画面41cの構成はここに示したものに限定されない。
 ここで、前記キャリブレーション工程における表示特性LUT37の算出方法について説明する。
 一般に、液晶パネルの表示輝度は入力信号値Pに対して、γ=2.2の特性を有していることが多い。すなわち、表示輝度をL、入力信号値をSとすると、図28に示すように、下記一般式(5)に準拠した曲線となる。図28では、前記のDICOM GSDFに沿った標準輝度(標準データ)を実線で示している。
 L=a・S2.2+b(a及びbは定数である)・・・(5)
 キャリブレーションのための表示特性LUT37は、図29に示すように、テストパターンの実測値に基づく曲線と標準値に基づく曲線を対応付けして求めることができる。具体的には、図29の矢印で示すように、実測値に基づく階調レベル値をその値に応じてどの階調を出力するかをGSDF(標準データ)に対応させて設定する。
 また、表示特性を補正するキャリブレーション工程が終了した後、自動的に階調特性試験を行う階調特性試験工程を行うように設定し、前記S1からS5までの処理(図24参照)を繰り返すようにするとより正確な表示特性LUT37を得ることができて好ましい。
 なお、コントラスト応答の評価値の標準値に対する偏差が大きい輝度範囲、すなわちコントラスト応答の悪い範囲でのキャリブレーション点数を、他の範囲でのキャリブレーション点数より相対的に多くすると、より正確な表示特性LUT37を得ることができる。
 ここで、本実施形態における画像処理について、図30を参照しつつ説明する。なお、この画像処理は、制御部31が、プログラム記憶部32aに格納されている画像処理プログラム33bをRAMの作業領域に展開して、制御部31とこの画像処理プログラム33bとの協働により、実現されるものである。
 図30に示すように、画像データが画像処理装置3に入力されると(ステップS21)、制御部31は、画像データに付帯する付帯情報に基づいて、各画像データの画像種別を判定する(ステップS22)。
 画像データの画像種別が判定されると、制御部31は、図示しないLUT対応付け情報を参照し、画像データの画像種別に応じて、当該画像データの画像種別に対応する画像特性LUT35を選択する(ステップS23)。そして、制御部31は画像特性LUT35を適用して、画像データの画像特性の補正を行う(ステップS24)。
 さらに、制御部31は、出力対象である画像表示装置3の種別及び画像データの画像種別に応じて表示特性LUT37を選択する(ステップS25)。そして、制御部31は選択された表示特性LUT37を適用して、画像データについて表示特性の補正を行う(ステップS26)。補正が完了すると、制御部31は、画像処理後の画像データを画像表示装置4に出力し、液晶パネル41に表示させる。
 例えば、液晶パネル41に画像を表示させた結果、所望の画質の画像が得られない場合には、ユーザの指示等に応じて前述の品質管理工程が行われ、新たに作成された表示特性LUT37が適用LUT記憶部36cに記憶されて、最新の表示特性LUT37を適用した画像が液晶パネル41に表示される。
 そして、最新の表示特性LUT37を適用しても画質の向上が見られない場合等において、ユーザが過去の表示特性LUT37を適用する旨の指示を入力すると、図31に示すように、制御部31は、現時点までの表示特性LUT37の作成履歴を表示させる(ステップS51)。
 図32に作成履歴画面41eの一例を示す。作成履歴画面41eには、表示特性LUT37の作成された年月日、時刻を表示する日時欄431、作業内容を示す作業欄432、等が設けられている。また、より詳しい内容を見たい場合には、表示ボタン433を操作することにより、各項目の詳細情報を確認できるようになっている。また、不要な履歴については、削除ボタン434を操作することにより削除することができる。
 ユーザの入力指示等により作成履歴画面41eに表示された中からある履歴が選択されると、制御部31は、選択された履歴と対応付けられた表示特性LUT37を対応付け記憶部36cから抽出して(ステップS52)、適用LUT記憶部36bに記憶されている表示特性LUT37を抽出された過去の表示特性LUT37に書き換える(ステップS53)。
 また、前記品質管理画面41b(図23参照)において、設定ボタン427が操作されると、図33に示すように、各種設定を行うための複数のボタンを含むポップアップメニュー画面428が表示される。
 本実施形態において、ポップアップメニュー画面428には初期LUTの取込みボタン429が表示されるようになっており、ユーザがこの初期LUTの取込みボタン429を操作すると、初期LUTを画像処理に適用する表示特性LUT37とする旨の指示が制御部31に入力される。この場合、制御部31は、初期LUT記憶部36dに記憶されている初期LUTを適用LUT記憶部36bに記憶される表示特性LUT37として選択し、適用LUT記憶部36bに記憶されている表示特性LUT37を初期LUTに書き換える。
 以上のように、本実施形態によれば、過去に作成された表示特性LUT37を作成履歴と対応付けて対応付け記憶部36cに記憶するとともに、初期LUTを初期LUT記憶部36dに記憶しているので、画像処理に適用する表示特性LUT37として、これらを選択・適用することができる。このため、測定手段42が故障している場合等、適切にキャリブレーションができない場合でも、診断に支障をきたさない程度の画像を得ることができ、診断を続けることができる。
 また、画像特性LUT35及び表示特性LUT37をそれぞれ別個に備えているので、表示特性が経時的に変化した場合等に、変更するLUTを少なくすることができ、処理の煩雑を回避することができる。
 また、画像ごとに、画像種別の異なる画像データに基づく画像を画像表示装置4,4…の表示特性に適するように、画像特性LUT35及び表示特性LUT37を選択し、これを適用して画像処理を行うので、表示画面上に複数表示させる場合に、各画像データに基づく画像を表示するのに適した表示階調特性が異なる場合でも、それぞれの画像種別に合致した表示階調特性の画像を表示させることができる。これにより、診断に適した高階調の表示で複数の画像を同時に観察することができ、また、電子カルテ情報等のテキスト情報も視認性のよい階調で表示させ、同時に参照することができるため、より適切な診断を行うことができる。
 なお、本実施形態においては、品質管理システムとして、表示特性LUT37等が記憶する表示特性LUT記憶部36を画像処理装置3aの記憶部32aに設けられている場合を例としたが、品質管理システムにおいて表示特性LUT記憶部36の設けられる場所はこれに限定されない。例えば、図34に示すように、表示特性LUT記憶部36が画像表示装置4に設けられていてもよいし、図35に示すように、画像処理装置3に設けられたビデオカード45に設けられていてもよい。
 また、本実施形態においては、品質管理プログラム33a、画像処理プログラム33bといったアプリケーションプログラムや、画像特性LUT35、表示特性LUT等の各種LUTやデータ等がすべて画像処理装置3aの記憶部32aに記憶されている場合を例としたが、各種プログラム、LUT、データ等の格納場所は、本実施形態に示したものに限定されない。例えば、各画像処理装置3a,3b,3cの記憶部32a,32b,32cにそれぞれ格納されていてもよい。
 また、本実施形態においては、画像特性LUT35及び表示特性LUT37を選択した後、まず画像データに画像特性LUT35を適用して画像処理を行い、さらに画像処理後の画像データに表示特性LUT37を適用して画像処理を行うようにしたが、画像処理の手順はこれに限定されない。
 例えば、画像特性LUT35及び表示特性LUT37を選択した後、制御部31において両LUT35,37を合成して合成LUTを作成し、この合成LUTを画像データに適用することにより、1回の画像処理で画像特性及び表示特性の両方の補正を行うようにしてもよい。
 また、本実施形態では、品質管理処理において、まず階調特性試験工程を行い、ここでキャリブレーションを行うように警告等がなされる等によりキャリブレーションを行うことが入力指示された場合にのみキャリブレーション工程を行うようにしたが、品質管理処理の手法はこれに限定されない。
 例えば、階調特性試験工程から自動的にキャリブレーション工程に移行するようにしてもよい。
 具体的には、図36に示すような処理を行う。なお、S31からS34までのプロセスは図24において説明したS1からS4までのプロセスと同様に行われるため、説明を省略する。
 標準データ及び測定データに基づいて算出されるコントラス応答の値を比較し、その偏差の絶対値の最大値を求めた後(ステップS34)、制御部31はこの値から液晶パネル41による表示輝度が画像データに応じた適正なものであるかどうかの合否判断を行う(ステップS35)。合否判断の結果が合格であった場合(ステップS35)、その結果を表示し(ステップS36)、処理を終了する。
 また、合否判断を行いその結果が不合格であった場合(ステップS35;No)には、偏差の絶対値の最大値と合否判断の結果を表示する(ステップS37)とともに、自動的にキャリブレーションを開始する指示が入力される。
 処理を開始する指示が入力されると、制御部31は、テストパターンのデータを読み出して、DICOMキャリブレーションにより予め設定された補正LUTに基づいて信号変換を行う。信号変換されたテストパターンのデータは画像表示装置4,4…に出力され、テストパターンが液晶パネル41に表示される(ステップS38)。テストパターンが液晶パネル41に表示されると、測定手段7が液晶パネル41の表示光を測定する(ステップS29)。表示光の測定結果である輝度及び/又は色度に関する情報は、測定手段7から制御部31に入力される。
 制御部31は、上記のデータ変換が所定点数行われたか常に判断し(ステップS40)、測定点数が所定点数を満たさない場合(ステップS40;NO)には、測定点数が所定点数を満たすまで前記処理を繰返す。
 測定点数が所定点数を満たした場合(ステップS40;Yes)、制御部31は測定輝度を読み出し、固定LUTによって変換して標準輝度とする。測定輝度を標準輝度に変換したら、制御部31はテストパターンの画像データと、標準輝度に基づき、液晶パネル41による表示輝度を画像データに応じた適正なものとするような表示特性LUT37の作成を行う(ステップS41)。作成された表示特性LUT37は表示特性LUT記憶部36に保存される(ステップS42)。
 なお、予め繰り返しの最大回数を定めておき、その回数繰り返し後不合格となる場合には、液晶パネル41にその旨を表示させ、プログラムを終了するようにすることもできる。
 なお、本実施形態においては、画像表示装置4がもともと備えている表示特性がγ=2.2の場合を例示したが、以下において、画像表示装置がもともと備えている表示特性がDICOM規格に従った階調曲線である場合について説明する。
 図37は、画像表示装置の液晶パネルがもともと備えている表示特性を、8bitの入力信号値(横軸)に対する表示輝度(縦軸)として示している。4本の曲線は、横軸がそれぞれ、カラー画像データを構成するR,G,Bの各単色及び、R,G,Bの値が等値(R=G=B)であるモノクロ画像(白黒画像)の入力信号値である場合の表示輝度を示したものである。
 この場合、例えば、制御部によって行われる表示特性の補正(画像処理)を行うための表示特性LUT61として、医用画像データの画像種別に対応して、6種類の表示特性LUT61a~61fが格納されている。以下、各表示特性LUT61a~61fについて、図38~図41を参照して説明する。
 まず、表示特性LUT61a(以下、図面中において、「LUT1’」とする。)は、画像を一般のモニタ(液晶パネル)の特性であるγ=2.2の階調特性で表示させるための表示特性の補正を行う画像処理を行う際に適用されるものである。図38に示すように、表示特性LUT61aは、入力信号値に対する出力信号値の関係が、画像表示装置の液晶パネルがもともと備えているDICOM規格に従った表示特性を、γ=2.2の表示特性に変換する階調曲線となっている。
 また、表示特性LUT61b(以下、図面中において、「LUT2’」とする。)は、液晶パネルに表示させる際の表示画像の輝度を低くする階調変換を行う表示階調処理を行う際に適用されるものである。図38に示すように、表示特性LUT61bは、表示特性LUT61aと同様に入力信号値に対する出力信号値の関係が、画像表示装置の液晶パネルがもともと備えているDICOM規格に従った表示特性を、γ=2.2の表示特性に変換する階調曲線であるが、表示特性LUT61aと比較して全体的に傾きが小さくなっている。
 また、表示特性LUT61c(以下、図面中において、「LUT3’」とする。)は、カラーの画像データ(R,G,B)をカラーの表示画像データ(R,G,B)に変換する階調変換を行う表示階調処理を行う際に適用されるものである。図38に示すように、表示特性LUT61cの階調の表示関数は、画像表示装置の液晶パネルがもともと備えているDICOM規格に従った表示特性を、γ=2.2の表示特性に変換する階調曲線となっている。
 また、表示特性LUT61d(以下、図面中において、「LUT4’」とする。)は、モノクロの画像データを一定のグレースケール関数に則って変換し、変換後の出力信号値がR,G,B等値のモノクロの表示画像データとなるように階調変換を行う表示階調処理を行う際に適用されるものである。図39に示すように、表示特性LUT61dの階調の表示関数は、直線となっており、画像表示装置の液晶パネルがもともと備えているDICOM規格に従った表示特性が得られる。なお、図39には1本の直線しか表示されていないが、表示階調変換後には、モノクロの画像データに対してR,G,Bそれぞれが同じ値を持つ表示画像データが生成されることは言うまでもない。
 また、表示特性LUT61e(以下、図面中において、「LUT5’」とする。)は、画像データがモノクロの12ビットの画像データである場合(入力信号値が0から4095までの数値をとり得る場合)に、変換後の出力信号値がR,G,B等値の8ビットである表示画像データとなるように表示階調処理を行う際に適用されるものである。図40に示すように、表示特性LUT61eの階調の表示関数も、直線となっており、画像表示装置の液晶パネルがもともと備えているDICOM規格に従った表示特性が得られる。
 また、表示特性LUT61f(以下、図面中において、「LUT6’」とする。)は、画像データがモノクロの12ビットの画像データである場合(入力信号値が4095まである場合)に、変換後の出力信号値がR,G,Bが非等値の組み合わせを含む8ビットの表示画像データとなるように表示階調処理を行う際に適用されるものである。図41に示すように、表示特性LUT61fの階調の表示関数は、直線となっており、画像表示装置の液晶パネルがもともと備えているDICOM規格に従った表示特性が得られる。なお、図41では1本の曲線しか示されていないように見えるが、モノクロの12ビット画像データに対する変換後のR、G、Bの値は必ずしも同じではないことは図12の場合と同様である。
 以上のように、図6と図37、図7と図38、図8と図39、図9と図40、図10と図41がそれぞれ対応しており、元々の表示特性に応じて表示特性LUTの形状は異なるが、結果的に表示される画像の階調特性は元々の表示特性によらずに同じである。
 その他、本発明が本実施形態に限定されないことはもちろんである。

Claims (5)

  1.  医療診断装置から得られた画像を画像表示装置に表示出力する画像表示システムの品質管理システムであって、
     前記画像表示装置に複数の異なる画像信号値に対応するテストパターンを表示させて、それぞれのテストパターンの表示特性を測定する表示特性測定手段と、
     上記測定結果に基づく前記画像表示装置の表示特性を所望の表示特性に変換するためのルックアップテーブルを作成するルックアップテーブル作成手段と、
     前記ルックアップテーブルの作成履歴を記憶する作成履歴記憶手段と、
     前記ルックアップテーブル又は当該ルックアップテーブルを作成するための情報を前記作成履歴と対応付けて記憶する対応付け記憶手段と、
     前記画像表示装置に実際に適用するルックアップテーブルを記憶する適用ルックアップテーブル記憶手段と、
     前記適用ルックアップテーブル記憶手段に記憶されている前記ルックアップテーブルを前記対応付け記憶手段に記憶されている他のルックアップテーブルに書き換えるルックアップテーブル書き換え手段と、
     を備えていることを特徴とする画像表示システムの品質管理システム。
  2.  前記適用ルックアップテーブル記憶手段に記憶されている前記ルックアップテーブルが一定の基準を満たすか否かを判定する判定手段を備え、
     前記ルックアップテーブル書き換え手段は、前記判定手段により前記ルックアップテーブルが一定の基準を満たさないと判定されたときに、当該ルックアップテーブルを他のルックアップテーブルに書き換える
     ことを特徴とする請求の範囲第1項に記載の画像表示システムの品質管理システム。
  3.  医療診断装置から得られた画像を画像表示装置に表示する画像表示システムの品質管理システムであって、
     前記画像表示装置に複数の異なる画像信号値に対応するテストパターンを表示して、それぞれのテストパターンの表示特性を測定する表示特性測定手段と、
     上記測定結果に基づく前記画像表示装置の表示特性を所望の表示特性に変換するためのルックアップテーブルを作成するルックアップテーブル作成手段と、
     前記ルックアップテーブルの作成履歴を記憶する作成履歴記憶手段と、
     前記画像表示装置に実際に適用するルックアップテーブルを記憶する適用ルックアップテーブル記憶手段と、
     前記画像表示装置の出荷時又は設置時に設定されていた初期ルックアップテーブルを記憶する初期ルックアップテーブル記憶手段と、
     前記適用ルックアップテーブル記憶手段に記憶されている前記ルックアップテーブルを前記初期ルックアップテーブル記憶手段に記憶されている初期ルックアップテーブルに書き換える初期ルックアップテーブル選択手段と、を備えている
     ことを特徴とする画像表示システムの品質管理システム。
  4.  前記作成履歴を表示する表示手段をさらに備えている
     ことを特徴とする請求の範囲第1項から第3項のいずれか一項に記載の画像表示システムの品質管理システム。
  5.  医療診断装置から得られた画像を画像表示装置に表示する画像表示システムの品質管理プログラムであって、
     前記画像表示装置に複数の異なる画像信号値に対応するテストパターンを表示させて、それぞれのテストパターンの表示特性を測定した測定結果を取得する表示特性取得機能と、
     上記測定結果に基づく前記画像表示装置の表示特性を所望の表示特性に変換するためのルックアップテーブルを作成するルックアップテーブル作成機能と、
     前記ルックアップテーブルの作成履歴を記憶させる作成履歴記憶機能と、
     前記ルックアップテーブル又は当該ルックアップテーブルを作成するための情報を前記作成履歴と対応付けて記憶させる対応付け記憶機能と、
     前記画像表示装置に実際に適用するルックアップテーブルを記憶させる適用ルックアップテーブル記憶機能と、
     この実際に適用するルックアップテーブルとして記憶されている前記ルックアップテーブルを前記対応付け記憶手段に記憶されている他のルックアップテーブルに書き換えるルックアップテーブル書き換え機能と、
     をコンピュータに実現させることを特徴とする画像表示システムの品質管理プログラム。
PCT/JP2009/052652 2008-02-21 2009-02-17 画像表示システムの品質管理システム及び品質管理プログラム WO2009104584A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-039843 2008-02-21
JP2008039843 2008-02-21

Publications (1)

Publication Number Publication Date
WO2009104584A1 true WO2009104584A1 (ja) 2009-08-27

Family

ID=40985464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052652 WO2009104584A1 (ja) 2008-02-21 2009-02-17 画像表示システムの品質管理システム及び品質管理プログラム

Country Status (1)

Country Link
WO (1) WO2009104584A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162555A1 (ja) * 2013-04-04 2014-10-09 Necディスプレイソリューションズ株式会社 表示装置、階調補正装置、階調補正方法、及び階調補正プログラム
WO2016152502A1 (ja) * 2015-03-26 2016-09-29 Necディスプレイソリューションズ株式会社 映像信号監視方法、映像信号監視装置、および表示装置
CN106157904A (zh) * 2015-04-22 2016-11-23 深圳市巨烽显示科技有限公司 液晶显示器及其显示器自动校正方法和装置
WO2019045543A1 (en) * 2017-09-04 2019-03-07 Samsung Electronics Co., Ltd. DISPLAY APPARATUS, CONTENT MANAGEMENT APPARATUS, CONTENT MANAGEMENT SYSTEM, AND CONTENT MANAGEMENT METHOD
CN114862801A (zh) * 2022-05-11 2022-08-05 南京巨鲨显示科技有限公司 一种医学显示器显示性能检测方法、系统、装置以及存储介质
WO2022168171A1 (ja) * 2021-02-02 2022-08-11 Eizo株式会社 画像表示システム、画像表示装置、画像表示方法及びコンピュータプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013628A (ja) * 1998-06-26 2000-01-14 Ricoh System Kaihatsu Kk 色修正方法およびそれを格納した記録媒体
JP2004245899A (ja) * 2003-02-10 2004-09-02 Fuji Photo Film Co Ltd マルチディスプレイシステムの品質管理システム
JP2004295055A (ja) * 2003-02-07 2004-10-21 Fuji Photo Film Co Ltd 医療用ディスプレイおよび医療用ディスプレイシステム
JP2005045769A (ja) * 2003-07-09 2005-02-17 Matsushita Electric Ind Co Ltd 画像表示装置及び画像表示方法
JP2006217192A (ja) * 2005-02-03 2006-08-17 Ricoh Co Ltd 画像処理システム、画像処理装置、画像形成装置、画像読取装置、情報端末装置及び画像処理方法並びに該方法を実行するためのプログラムを格納したコンピュータ読み取り可能な記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013628A (ja) * 1998-06-26 2000-01-14 Ricoh System Kaihatsu Kk 色修正方法およびそれを格納した記録媒体
JP2004295055A (ja) * 2003-02-07 2004-10-21 Fuji Photo Film Co Ltd 医療用ディスプレイおよび医療用ディスプレイシステム
JP2004245899A (ja) * 2003-02-10 2004-09-02 Fuji Photo Film Co Ltd マルチディスプレイシステムの品質管理システム
JP2005045769A (ja) * 2003-07-09 2005-02-17 Matsushita Electric Ind Co Ltd 画像表示装置及び画像表示方法
JP2006217192A (ja) * 2005-02-03 2006-08-17 Ricoh Co Ltd 画像処理システム、画像処理装置、画像形成装置、画像読取装置、情報端末装置及び画像処理方法並びに該方法を実行するためのプログラムを格納したコンピュータ読み取り可能な記録媒体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162555A1 (ja) * 2013-04-04 2014-10-09 Necディスプレイソリューションズ株式会社 表示装置、階調補正装置、階調補正方法、及び階調補正プログラム
US10192088B2 (en) 2015-03-26 2019-01-29 Nec Display Solutions, Ltd. Video signal monitoring method, video signal monitoring device, and display device
CN107430840A (zh) * 2015-03-26 2017-12-01 Nec显示器解决方案株式会社 视频信号监视方法、视频信号监视装置和显示装置
JPWO2016152502A1 (ja) * 2015-03-26 2017-12-07 Necディスプレイソリューションズ株式会社 映像信号監視方法、映像信号監視装置、および表示装置
WO2016152502A1 (ja) * 2015-03-26 2016-09-29 Necディスプレイソリューションズ株式会社 映像信号監視方法、映像信号監視装置、および表示装置
US10635873B2 (en) 2015-03-26 2020-04-28 Nec Display Solutions, Ltd. Video signal monitoring method, video signal monitoring device, and display device
CN106157904A (zh) * 2015-04-22 2016-11-23 深圳市巨烽显示科技有限公司 液晶显示器及其显示器自动校正方法和装置
CN106157904B (zh) * 2015-04-22 2018-07-03 深圳市巨烽显示科技有限公司 液晶显示器及其显示器自动校正方法和装置
WO2019045543A1 (en) * 2017-09-04 2019-03-07 Samsung Electronics Co., Ltd. DISPLAY APPARATUS, CONTENT MANAGEMENT APPARATUS, CONTENT MANAGEMENT SYSTEM, AND CONTENT MANAGEMENT METHOD
WO2022168171A1 (ja) * 2021-02-02 2022-08-11 Eizo株式会社 画像表示システム、画像表示装置、画像表示方法及びコンピュータプログラム
JP7361958B2 (ja) 2021-02-02 2023-10-16 Eizo株式会社 画像表示システム、画像表示装置、画像表示方法及びコンピュータプログラム
US11935455B2 (en) 2021-02-02 2024-03-19 Eizo Corporation Image display system, image display device, image display method, and computer program
CN114862801A (zh) * 2022-05-11 2022-08-05 南京巨鲨显示科技有限公司 一种医学显示器显示性能检测方法、系统、装置以及存储介质

Similar Documents

Publication Publication Date Title
JPWO2008015903A1 (ja) 画像表示方法及び画像表示装置
US7920145B2 (en) Image processing apparatus control method and image processing apparatus
WO2009104584A1 (ja) 画像表示システムの品質管理システム及び品質管理プログラム
US6906727B2 (en) Method of reproducing a gray scale image in colors
US6577753B2 (en) Medical network system
JPWO2008044437A1 (ja) 画像処理方法及び画像処理装置
WO2005050614A1 (ja) 輝度調整方法、液晶表示装置、およびコンピュータプログラム
JP2008006191A (ja) 画像処理装置
JP5227539B2 (ja) 出力値設定方法、出力値設定装置及び表示装置
JP2008175915A (ja) 表示画像検査方法、表示画像検査システム及び表示画像検査プログラム
WO2009104583A1 (ja) 画像表示システム及び画像処理プログラム
KR100859937B1 (ko) 디스플레이의 그레이 레벨 대 휘도 곡선을 신속히 생성하는방법 및 장치
US20080007574A1 (en) Image display method
US9218553B2 (en) Image forming apparatus reproducing gradation based on hue instead of luminance, and image forming method
JP5029022B2 (ja) キャリブレーション方法、キャリブレーションシステム及びキャリブレーションプログラム
JP2005070080A (ja) 階調補正方法およびプログラム
JP2008116558A (ja) 画像処理方法、画像表示装置及びプログラム
WO2007083556A1 (ja) 画像表示装置、画像表示方法、及び画像表示プログラム
JP2004242143A (ja) マルチディスプレイシステム
JP2004245899A (ja) マルチディスプレイシステムの品質管理システム
JP2008116561A (ja) 画像処理方法、画像表示装置及びプログラム
WO2008044438A1 (fr) Procédé d'affichage d'image, programme d'affichage d'image et système d'affichage d'image
JP2022129407A (ja) 画像表示システム、サーバ装置及び画像表示方法
JP2003295851A (ja) 画像表示装置
JP2008015044A (ja) 画像表示方法および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP