WO2009104288A1 - 操縦システム、操縦桿リンク切り離し方法 - Google Patents
操縦システム、操縦桿リンク切り離し方法 Download PDFInfo
- Publication number
- WO2009104288A1 WO2009104288A1 PCT/JP2008/061533 JP2008061533W WO2009104288A1 WO 2009104288 A1 WO2009104288 A1 WO 2009104288A1 JP 2008061533 W JP2008061533 W JP 2008061533W WO 2009104288 A1 WO2009104288 A1 WO 2009104288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control stick
- sticking
- sensor
- force
- control
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 93
- 230000007246 mechanism Effects 0.000 claims abstract description 89
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000000926 separation method Methods 0.000 claims abstract description 24
- 230000008569 process Effects 0.000 claims description 60
- 238000012790 confirmation Methods 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 13
- 230000001953 sensory effect Effects 0.000 claims description 10
- 230000033001 locomotion Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000644 propagated effect Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000035807 sensation Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 108090001145 Nuclear Receptor Coactivator 3 Proteins 0.000 description 1
- 102100022883 Nuclear receptor coactivator 3 Human genes 0.000 description 1
- 241001393742 Simian endogenous retrovirus Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C13/00—Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
- B64C13/02—Initiating means
- B64C13/04—Initiating means actuated personally
- B64C13/12—Dual control apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
Definitions
- the present invention relates to a control system in which two control sticks are connected by a link mechanism, and a method of separating the control stick link.
- this application claims the priority based on the Japanese application number 2008-039342, and the disclosure content in the Japanese application number 2008-039342 is incorporated into this application by reference.
- the control stick is equipped with a wheel and a column operated by the pilot.
- the pilot can perform steering input (roll input) in the roll direction by rotating the wheel, and perform steering input (pitch input) in the pitch direction by pushing and pulling the column.
- the roll input or pitch input is converted into an electrical signal by a wheel and column displacement sensor and input to the flight control computer as a pitch command and a roll command (collectively referred to as a steering command).
- a control law calculation is performed based on the steering command, and the control surface is driven by an actuator controlled according to the calculation result, so that the aircraft (for example, an aircraft) can be moved.
- An aircraft control system using such a fly-by wire is described in Japanese Patent Laid-Open No. 2000-335496.
- control stick on the pilot side and the co-pilot side are generally mechanically linked by a link mechanism. Is possible. Further, since the force (steering input) applied to one control stick is propagated to the other control stick by the link mechanism, the two control sticks operate in conjunction with each other.
- control stick as described above is fixed (stacked) on the movable part. If sticking occurs, maneuvering becomes impossible and the aircraft may be lost.
- the conventional technology is provided with a mechanism (separation mechanism) for releasing the mechanical coupling (link mechanism) of both control sticks by some method.
- a steering system including a mechanism that avoids sticking when slipping occurs when a force exceeding a specified level is applied from the control stick to the link mechanism (for example, US Pat. No. 5,782,436).
- a force exceeding a specified value for example, US Pat. No. 5,782,436
- the sticking site is unknown, it is necessary to put a large force on both control sticks in order to specify a movable control stick.
- it is necessary to apply a force exceeding a specified value to generate a slip so the pilot must always input a large steering force.
- the slip may occur depending on the situation other than the sticking.
- adverse effects such as erroneous detection of the control signal of the control stick and competition (fighting) between systems connected to both control sticks may occur.
- US Pat. No. 5,456,428 describes a steering system that performs mechanical backup by engagement by a clutch when a fly-by-wire system fails.
- an object of the present invention is to provide a control system for separating the control stick in which the sticking has occurred from the link mechanism of the control stick, and a method for separating the control stick link.
- the steering system includes a first sensor, a flight control computer, a link mechanism, a separation unit, and a second sensor.
- the first sensor detects a force applied from the outside to the first control stick.
- the second sensor detects a force transmitted from the first control stick to the link mechanism.
- the flight control computer includes a sticking determination unit that determines whether sticking has occurred in the first control stick based on the force detected by the first sensor and the force detected by the second sensor. When the sticking determination unit determines that sticking has occurred in the first control stick, the sticking determination unit outputs a separation command to the separation unit.
- the link mechanism mechanically connects the first control stick and the second control stick, and transmits the force from the first control stick to the second control stick.
- the disconnecting unit disconnects the link mechanism so as to disconnect the connection between the first control stick and the second control stick in response to the disconnection command. This makes it possible to detect the occurrence of sticking on the control stick, identify the stick with the stick, and disconnect the stick with the stick.
- the method for detaching the control stick according to the present invention mechanically connects the first control stick and a second control stick different from the first control stick, and transmits the force from the first control stick to the second control stick. This is a method of disconnecting the link mechanism.
- the method for separating the control stick link according to the present invention includes a step in which the first sensor detects a force applied from the outside to the first control stick, and a force in which the second sensor is transmitted from the first control stick to the link mechanism.
- control stick in which the sticking has occurred can be disconnected from the control stick link mechanism.
- FIG. 1 is a block diagram showing a configuration in an embodiment of an aircraft according to the present invention.
- FIG. 2 is a schematic view of a control stick according to the present invention.
- FIG. 3 is a diagram showing a configuration of the steering system according to the first embodiment of the present invention.
- FIG. 4 is a flowchart showing the overall operation of the link disconnection operation in the flight control computer according to the present invention.
- FIG. 5 is a flowchart showing the operation in the first embodiment of the sticking determination processing according to the present invention.
- FIG. 6 is a flowchart showing the operation of the steering command separation process according to the present invention.
- FIG. 7 is a flowchart showing the operation of the driving process of the separation mechanism according to the present invention.
- FIG. 8 is a diagram showing a configuration of the steering system according to the second embodiment of the present invention.
- FIG. 9 is a flowchart showing the operation in the second embodiment of the sticking determination processing according to the present invention.
- FIG. 10 is a diagram showing a configuration of the steering system according to the third embodiment of the present invention.
- FIG. 11 is a flowchart showing the operation in the third embodiment of the sticking determination processing according to the present invention.
- FIG. 12 is a diagram showing the configuration of the steering system according to the fourth embodiment of the present invention.
- FIG. 13A is a flowchart showing an operation in the fourth embodiment of the sticking determination processing according to the present invention.
- FIG. 13B is a flowchart showing an operation in the fourth embodiment of the sticking determination processing according to the present invention.
- FIG. 14 is a diagram showing the configuration of the steering system according to the fifth embodiment of the present invention.
- FIG. 15 is a flowchart showing the operation in the fifth embodiment of the sticking determination processing according to the present invention.
- FIG. 1 is a diagram showing a configuration of an aircraft according to the present invention. With reference to FIG. 1, the detail of the control operation
- the steering input Fs for the control stick 10 is converted into an electric signal (steering command Cpr) by the steering sensor 20 and input to the flight control computer 30.
- Aircraft motion such as acceleration of the airframe 60 and atmospheric parameters such as atmospheric pressure altitude are detected by the sensor 70 and input to the flight control computer 30 as airframe motion data and air data.
- the flight control computer 30 outputs an actuator command Ca based on the steering command Cpr, the body motion data, and the air data.
- the actuator 40 controls the control surface 50 based on the actuator command Ca and controls the movement of the airframe 60. As described above, in an aircraft using fly-by wires, the movement of the aircraft is controlled using the flight control computer 30.
- FIG. 2 is a schematic diagram of the control stick 10 in the present embodiment.
- the control stick 10 includes a wheel 11 and a column 12.
- the wheel 11 is connected to the column 12 and rotates, for example, at a predetermined angle around the A axis.
- a force transmission shaft (not shown) in the column 12 rotates at a predetermined angle.
- the column 12 rotates at a predetermined angle around the X axis at the connection portion with the machine body.
- the pilot can input the steering force in the roll direction via the force transmission shaft in the column 12 by rotating the wheel 11 (roll input).
- the pilot can input the steering force in the pitch direction by pushing and pulling the wheel 11 in the Y-axis direction to rotate the column 12 (pitch input).
- FIG. 3 is a diagram showing the configuration of the steering system according to the first embodiment of the present invention. With reference to FIG. 3, the structure of the control system in 1st Embodiment is demonstrated. In the following description, A or m is added to the reference symbol of the main pilot component, and B or c is added to the reference symbol of the copilot component.
- the control system in the first embodiment includes a main pilot control stick 10A, a copilot control stick 10B, a separation unit 100, a display 130, a flight control computer 30, and an actuator 40.
- Main pilot control stick 10A and co-pilot control stick 10B are mechanically connected via link mechanisms 120A and 120B. For this reason, the operation force in the roll direction (roll input) and the operation force in the pitch direction (pitch input) applied to one of the control sticks 10A and 10B are controlled via the other link mechanisms 120A and 120B. 10B is propagated to the other.
- the main pilot control stick 10A includes a steering sensor 20A, a roll sensor 21A, and a pitch sensor 22A.
- the steering sensor 20A detects the displacement of the wheel 11A in the roll direction and the displacement of the column 12A in the pitch direction, converts it into an electrical signal, and outputs it to the flight control computer 30 as a steering command Cprm.
- the roll sensor 21A and the pitch sensor 22A are attached to a site where the pilot operating force is transmitted to the main pilot control stick 10A.
- the roll sensor 21A detects an operation force (roll input) in the roll direction applied to the wheel 11A, converts it into an electrical signal, and outputs it to the flight control computer 30 as a roll input signal Frm.
- the pitch sensor 22A detects an operation force (pitch input) in the pitch direction applied to the column 12A, converts it into an electric signal, and outputs it to the flight control computer 30 as a pitch input signal Fpm.
- pitch input an operation force
- Fpm pitch input signal
- various sensors such as a strain gauge, a capacitive sensor, a semiconductor sensor, and a piezoelectric sensor can be suitably used.
- the configuration of the co-pilot control stick 10B is the same as that of the main pilot control stick 10A.
- the roll sensor 21B detects an operation force in the roll direction applied to the wheel 11B, converts it into an electric signal, and outputs it to the flight control computer 30 as a roll input signal Frc.
- the pitch sensor 22B detects the operation force in the pitch direction applied to the column 12B, converts it into an electric signal, and outputs it to the flight control computer 30 as a pitch input signal Fpc.
- the disconnection unit 100 disconnects the connection between the link mechanism 120A and the link mechanism 120B in accordance with control from the flight control computer 30.
- the separation unit 100 includes a roll sensor 101, a pitch sensor 102, and a separation mechanism 103.
- the roll sensor 101 detects a roll input transmitted via the link mechanisms 120A and 120B, converts it into an electrical signal, and outputs it to the flight control computer 30 as a roll input signal Frk.
- the pitch sensor 102 detects a pitch input transmitted via the link mechanisms 120A and 120B, converts it into an electrical signal, and outputs it to the flight control computer 30 as a pitch input signal Fpk.
- the roll sensor 101 and the pitch sensor 102 are provided at portions where the roll input and the pitch input are transmitted in the link mechanisms 120A and 120B, respectively.
- the separation mechanism 103 is provided at a connection location between the link mechanism 120A and the link mechanism 120B.
- the disconnect mechanism 103 disconnects the mechanical connection between the link mechanism 120A and the link mechanism 120B in response to the disconnect command Ck output from the flight control computer 30.
- the separation mechanism 103 cuts off the transmission of roll input and pitch input.
- an electromagnetic clutch type mechanism is preferably used where a roll input is transmitted, and a hydraulic damper mechanism is preferably used where a pitch input is transmitted.
- Signals output from all the above-mentioned sensors are converted into digital signals by a signal adjustment circuit (SIG.COND: Signal Conditioner).
- the change is input to the sticking determination unit 31 in the flight control computer 30.
- the flight control computer 30 includes a sticking determination unit 31, a control law calculation unit 32, and an output unit 33.
- the sticking determination unit 31 determines whether sticking has occurred in the control stick based on the operation force applied to the control stick and the force transmitted from the control stick to the link mechanism. More specifically, the sticking determination unit 31 determines the occurrence of sticking (detection of sticking) based on the roll input signals Frm, Frc, Frk or the pitch input signals Fpm, Fpc, Fpk, and the control stick on which sticking has occurred. Is specified and output as a determination result.
- the determination result output includes the determination result J1 output to the output unit 33, the determination result J2 output to the control law calculation unit 32, and the determination result J3 output to the power drive unit (PWR.DRVR: Power Driver). There is.
- the determination result J1 includes information indicating the presence or absence of sticking, information specifying the control stick where sticking has occurred, and the like.
- the output unit 33 converts the determination result J1 into a display signal OUT and outputs the display signal OUT to the display unit 130.
- the display 130 displays the result of the sticking determination based on the display signal OUT so as to be visible.
- the indicator 130 is a lamp or the like for notifying whether or not the sticking is associated with the control stick, and notifies the pilot of the sticking by turning on the lamp.
- the display device 130 is a monitor device, and displays information indicating the presence / absence of the sticking and the sticking control stick based on the display signal OUT.
- the output unit 33 converts the determination result J1 into an audio signal corresponding to the content and outputs the sound signal to the acoustic device.
- the steering system may include both the display device 130 and an audio device that notifies the determination result. By providing an output device (display device 130 or acoustic device) that notifies the presence or absence of sticking, the pilot can easily confirm the occurrence of sticking.
- the control stick in which the sticking has occurred is separated from the link mechanism and is not used for steering.
- control stick that can be steered can be specified without the display 130. .
- the mounting of the indicator 130 may be omitted. In this case, however, the pilot may not be able to determine whether or not the cause of the steering failure is due to sticking.
- the determination result J2 includes information indicating the presence or absence of sticking, information specifying the control stick where sticking has occurred, and the like. Normally, when both the control sticks 10A and 10B are not fixed, the control law calculation unit 32 and the body motion data and air data input from the sensor 70 and the steering command Cpr input from the steering sensor 20A or the steering sensor 20B. And the calculation result is output to the actuator servo control device (ACTR.SERV). The actuator servo control device outputs an actuator command Ca corresponding to the calculation result to the actuator 40.
- the control law calculation unit 32 refers to the determination result J2 to fix the sticking.
- a control stick 10 is specified. Then, the control law calculation unit 32 prohibits the use or input of the steering command Cpr from the sticky control stick 10 and performs a calculation for controlling the actuator using the steering command Cpr from the other control stick 10. Do. For example, when the main pilot control stick 10A is stuck, the control law calculation unit 32 prohibits the use of the steering command 20A and executes the calculation for controlling the actuator using the steering command 20B. Thereby, control surface control by the sticking stick can be prevented.
- the determination result J3 includes information indicating the presence or absence of sticking.
- the power driving unit (PWR.DRVR: Power Driver) outputs a disconnection command Ck for controlling the disconnection mechanism 103 to disconnect the link mechanism to the disconnection mechanism 103 when the adhering determination information J3 indicates the presence of adhering.
- the disconnect mechanism 103 disconnects the mechanical connection between the link mechanism 120A and the link mechanism 120B so as to disconnect the transmission of the roll input and the pitch input in response to the disconnect command Ck. Thereby, the mechanical connection between the main pilot control stick 10A and the co-pilot control stick 10B is cut off, and it is possible to prevent the resistance force due to sticking from being transmitted to the stick 10 without sticking.
- the sticking determination unit 31 and the control law calculation unit 32 are preferably realized by executing a program stored in a storage device (not shown) by a calculation device (not shown).
- FIG. 4 is a flowchart showing the entire link disconnecting operation in the flight control computer 30.
- the sticking determination unit 31 includes sensors in the control stick 10 and the separation unit 100 (steering sensors 20A, 20B, roll sensors 21A, 21B, 101, pitch sensors 22A, 22B, 102 pitch sensors). The sticking determination is performed based on the force detected in (Step S1). Next, the sticking determination unit 31 performs a steering command disconnection process based on the sticking determination result in step S1 (step S2).
- the sticking determination unit 31 determines whether to disconnect the input of the steering command Cpr (the steering command Cprm or the steering command Cprc) to the control law calculation unit 32 based on the sticking determination result. Further, the sticking determination unit 31 performs a driving process of the separation mechanism based on the sticking determination result in step S1 (step S3). Here, the sticking determination unit 31 determines whether or not to drive the separation mechanism 103 (whether or not to separate the link mechanisms 120A and 120B).
- the order of the processing of step S2 and step S3 is not limited to the order shown in FIG. 4, and may be performed simultaneously in the reverse order.
- FIG. 5 is a flowchart showing the first embodiment of the sticking determination operation in step S1. Details of the sticking determination operation in the first embodiment will be described with reference to FIG. In the following, the sticking determination operation will be described taking the sticking determination with respect to the roll input as an example.
- the sticking determination unit 31 takes in the input roll signals Frm, Frc, and Frk at a predetermined timing, and acquires Srm, Src, and Srk corresponding to the roll signals Frm, Frc, and Frk (step S101).
- Srm, Src, and Srk indicate the forces detected by the roll sensors 20A, 20B, and 101, respectively.
- the sticking determination unit 31 determines whether one of the sizes of Srm and Src (absolute values of Srm and Src) is smaller than a predetermined reference value F0 (step S102).
- F0 is a reference value for determining that no operating force is applied to the control stick 10 from the outside. For this reason, if an operating force greater than the reference value F0 is not applied to either the main pilot control stick 10A or the copilot control stick 10B, the process proceeds to step S103 (step S102 Yes), and otherwise, the step The process proceeds to S101 (No in step S102).
- the sticking determination unit 31 determines whether the magnitude of Srm (absolute value of Srm) is greater than a predetermined reference value Fxm.
- Fxm is a reference value for determining the magnitude of the operating force applied to the main pilot control stick 10A.
- the sticking determination unit 31 sets the counter value Krm to 0 (Steps S103 No, S104).
- Krm is a counter value for determining sticking of the roll input system on the main pilot control stick 10A side. As will be described later, Krm is a barometer indicating the possibility of sticking.
- the sticking determination unit 31 determines that sticking has occurred in the roll input system on the main pilot control stick 10A side.
- the sticking determination unit 31 determines that the magnitude of the difference between Srm and Srk (the absolute value of (Srm ⁇ Srk)) is greater than the predetermined reference value Fsm. It is determined whether it is small (step S105).
- Fsm is a reference value for determining whether or not the operating force applied to the main pilot control stick 10A is transmitted to the link mechanisms 120A and 120B.
- the sticking determination unit 31 sets the counter value Krm to 0 (Yes in steps S105 and S104).
- step S105 it is verified how much the operating force Srm in the roll direction applied to the main pilot control stick 10A has propagated to the link mechanism 120A.
- step S106 when the sticking determination unit 31 counts up the counter value Krm, it determines whether Krm is equal to or greater than the reference value Krm_stk (step S107).
- Krm_stk is a reference value for determining that it is fixed.
- the process proceeds to the next process (the process of step S109) while maintaining the value of Krm (No in step S107).
- STKrm is set to 1 and the process proceeds to the next process (the process of step S109) (steps S107 Yes, S108). At this time, Krm may be reset to 0.
- STKrm is information indicating the presence or absence of sticking in the roll input system of the main pilot control stick 10A.
- STKrm is information indicating the presence or absence of sticking in the roll input system of the main pilot control stick 10A.
- the sticking determination unit 31 outputs information indicating that sticking has occurred in the roll input system of the main pilot control stick 10A to the output unit 33 as the determination result J1.
- the indicator 130 displays in a visible manner that the roll input system of the main pilot control stick 10A is fixed.
- the sticking determination unit 31 determines whether the magnitude of Src (absolute value of Src) is greater than a predetermined reference value Fxc.
- Fxc is a reference value for determining the magnitude of the operating force applied to the co-pilot control stick 10B.
- the sticking determination unit 31 sets Krc, which is a counter value, to 0 (steps S109 No, S110).
- Krc is a counter value for determining sticking of the roll input system on the copilot control stick 10B side.
- Krc is a barometer indicating the possibility of sticking, and when Krc is large, it can be determined that the possibility of sticking is high.
- the sticking determination unit 31 determines that sticking has occurred in the roll input system on the copilot control stick 10B side.
- the sticking determination unit 31 determines that the difference between Src and Srk (the absolute value of (Src ⁇ Srk)) is greater than the predetermined reference value Fsc. It is determined whether it is small (step S111).
- Fsc is a reference value for determining whether or not the operating force applied to the co-pilot control stick 10B is transmitted to the link mechanisms 120B and 120A.
- the sticking determination unit 31 sets the counter value Krc to 0 (steps S111 Yes, S110).
- step S111 it is verified how much the operating force Src in the roll direction applied to the copilot control stick 10B has propagated to the link mechanism 120B.
- step S112 when the sticking determination unit 107 counts up the counter value Krc, the sticking determination unit 107 determines whether Krc is greater than or equal to the reference value Krc_stk (step S113).
- Krc_stk is a reference value for determining that it is fixed. If Krc is smaller than Krc_stk, the process proceeds to the next process (the process of step S101) while maintaining the value of Krc (No in step S113). On the other hand, if Krc is equal to or greater than Krc_stk, STKrc is set to 1 and the process proceeds to the next process (steps S113 Yes, S114). At this time, Krc may be reset to zero.
- STKrc is information indicating the presence or absence of sticking in the roll input system of the co-pilot control stick 10B.
- STKrc When STKrc is set to 1, it indicates that sticking has occurred in the roll input system of the co-pilot control stick 10B, and when 0 is set, it indicates that there is no sticking.
- the sticking determination unit 31 When STKrc is set to 1, the sticking determination unit 31 outputs information indicating that sticking has occurred in the roll input system of the co-pilot control stick 10B to the output unit 33 as the determination result J1. Thereby, the indicator 130 displays in a visible manner that the roll input system of the co-pilot control stick 10B is fixed.
- the order of the processing from step S103 to S108 and the processing from step S109 to S114 is not limited to the order described above, and may be performed in reverse order or simultaneously.
- Krm When the operating force Srm applied to the control stick 10A is equal to or less than the predetermined value Fxm (No in Step S103), or when the difference between the force Srk propagating through the link mechanism 120A and the operating force Srm is smaller than Fsm (Yes in Step S105). Krm is reset to zero. For this reason, even if Krm clears the sticking determination condition and is counted up, if Krm does not satisfy the determination condition, it is reset to zero. That is, only when Srm and Srk captured by the sticking determination unit 31 satisfy the above-described determination conditions continuously for a predetermined period, Krm becomes equal to or greater than a predetermined value Krm_stk and is determined to be sticking.
- F0, Fxm, Fxc, Fsm, Fsc, Krm_stk, and Krc_stk are set according to the system characteristics, the characteristics of the aircraft, the operating environment, and the like. For example, when it is estimated that the friction between the control stick 10 and the separation unit 100 is large, it is preferable to set large values for Fxm, Fxc, Fsm, Fsc, Krm_stk, and Krc_stk.
- the sticking determination unit 31 can obtain the sticking determination results STKrm and STKrc in the input system in the roll direction and the sticking judgment results STKpm and STKpc in the pitch direction as the determination results of the sticking determination. Based on STKrm, STKrc, STKpm, and STKpc, the sticking determination unit 31 specifies the sticking presence / absence and the sticking location, and outputs judgment results J1, J2, and J3.
- the sticking determination unit 31 outputs the sticking presence / absence and the sticking location specified based on STKrm, STKrc, STKpm, and STKpc to the output unit 33 as the judgment result J1. For example, when STKrm is 1, and each of STKrc, STKpm, and STKpc is 0, a determination result J1 indicating that the roll input system of the main pilot control stick 10A is fixed is output.
- the sticking determination unit 31 outputs STKrm, STKrc, STKpm, and STKpc to the output unit 33 as the judgment result J1, and the output unit 33 displays a sticking judgment result based on STKrm, STKrc, STKpm, and STKpc.
- the signal OUT may be output.
- the indicator 130 displays the presence / absence of sticking and the location where sticking occurs when sticking occurs. As a result, the pilot can check the displayed fixing location.
- the sticking determination unit 31 may output to the output unit 33 the determination result J1 including Krm and Krc indicating the sticking possibility of the roll input system and the values Kpm and Kpc indicating the sticking possibility of the pitch input system. good.
- the output unit 33 outputs a display signal OUT for displaying the degree of sticking possibility corresponding to the values of Krm, Krc, Kpm, and Kpc to the display unit 130.
- the indicator 130 can display the information which shows the degree of sticking possibility timely. By confirming the displayed degree of sticking possibility, the pilot can identify the control stick 10 whose sticking possibility has increased and can expect the sticking to occur.
- FIG. 6 is a flowchart showing details of the steering command disconnection process in step S2.
- the sticking determination unit 31 controls the sticking determination result J2 based on the sticking determination results STKrm and STKrc in the input system in the roll direction and the sticking determination results STKpm and STKpc in the input system in the pitch direction obtained by the process of step S1.
- the result is output to the law calculation unit 32.
- the sticking determination unit 31 checks the values of STKrm and STKpm at a predetermined timing (step S21).
- Step S21 Yes, S22 the control law calculation unit 32 sets the steering command Cprm to 0 according to the determination result J2, and prohibits the control surface control by the main pilot control stick 10A.
- the sticking determination unit 31 confirms the values of STKrc and STKpc (No in steps S21 and S23).
- the control law calculation unit 32 sets the steering command Cprc to 0 according to the determination result J2, and prohibits the control surface control by the copilot control stick 10B.
- step S21 the control law calculation unit 32 performs steering control using the input steering command Cprm and steering command Cprc as usual.
- the sticking determination unit 31 detects sticking, the use of the steering command Cpk from the control stick where sticking has occurred can be prohibited. As a result, after the occurrence of sticking, the pilot does not need to perform steering from the other stick to override the steering command Cpk from the sticking stick, and the same steering characteristics as before the sticking occur are ensured. Is possible.
- FIG. 7 is a flowchart showing details of the driving process of the separation mechanism in step S3.
- the sticking determination unit 31 obtains the sticking determination result J3 based on the sticking determination results STKrm and STKrc in the roll direction input system and the pitch direction input system obtained in the process of step S1 and the sticking determination result J3 based on PWR. Output to DRVR.
- the sticking determination unit 31 checks the values of STKrm, STKpm, STKrc, and STKpc at a predetermined timing (step S31).
- PWR the sticking determination unit 31
- the disconnect mechanism 103 disconnects the connection between the roll input system and the pitch input system in the link mechanisms 120A and 120B in response to the disconnect command Ck.
- the link mechanism is not disconnected and the process proceeds to step S31.
- Pr and Pp output as determination results may be integrated into one signal.
- the sticking determination unit 31 detects sticking, the link mechanism that connects the control sticks 10 can be cut. As a result, when the control stick 10 is operated, no resistance is received from the stick 10 with sticking. Moreover, the pilot can continue a smooth operation. The sticking determination may not be performed after the sticking is determined and the link mechanism between the control sticks is disconnected.
- the steering system in the second embodiment has a configuration in which an autopilot function is added to the steering system in the first embodiment.
- an autopilot function is added to the steering system in the first embodiment.
- the flight control computer 30 in the second embodiment includes an autopilot unit 34 that realizes an autopilot function.
- the steering system in the second embodiment is provided with an autopilot actuator 140 connected to either one of the link mechanisms 120A and 120B.
- the autopilot actuator 140 is connected to the link mechanism 120B on the copilot control stick 10B side.
- the autopilot unit 34 outputs an autopilot actuator control signal Caa in accordance with the airframe motion data and air data from the sensor 70, route information programmed in advance, and the like.
- the autopilot actuator 140 causes the aircraft to automatically navigate in response to the autopilot actuator control signal Caa.
- the autopilot actuator 140 operates the control stick 10 via the link mechanisms 120B and 120A based on the autopilot actuator control signal Caa. That is, in the autopilot mode, steering control is performed by operating the control stick 10 by the autopilot actuator 140 instead of the pilot. At this time, the force applied to the control stick 10B by the autopilot actuator 140 is detected by the roll sensor 21B and the pitch sensor 22B, and the displacement of the control stick 10B is detected by the steering sensor 20B.
- the autopilot unit 34 outputs an engagement signal EN to the sticking determination unit 31 in the autopilot mode.
- the sticking determination unit 31 can confirm that the vehicle is navigating in the autopilot mode based on the engagement signal EN.
- the autopilot unit 34 can be realized by a program executed by the arithmetic device.
- the autopilot unit 34 may be realized by a device other than the flight control computer 30 depending on the model. In this case, the engagement determination unit 31 can be notified of the autopilot mode by the engagement signal EN being taken into the flight control computer 30 from the device.
- FIG. 9 is a flowchart showing a second embodiment of the sticking determination operation in step S1. With reference to FIG. 9, details of the sticking determination operation in the second embodiment will be described. In the following, the sticking determination operation will be described taking the sticking determination with respect to the roll input as an example.
- the sticking determination unit 31 sets the variable ENGap to 0 in the normal mode, and sets the variable ENGap to a predetermined value, for example, 1 when the engagement signal EN is input.
- the variable ENGap confirmation process is performed at a predetermined timing before the above-described step S101 (step S201).
- step S201 when ENGap is set to a predetermined value, for example, 1, that is, in the autopilot mode, Krm and Krc are set to 0, and the process proceeds to the next process (steps S201 No, S202).
- step S201 when ENGap is set to 0 in step S201, that is, in the normal mode, the process proceeds to step S101 as in the first embodiment, and sticking determination processing is performed (Yes in step S201).
- the pilot operates the control stick, and the operating force may override the autopilot actuator 140.
- the flight control computer 30 in the present embodiment does not perform the sticking determination in the autopilot mode, it is possible not to determine that the operation of overriding the autopilot actuator 140 is the sticking.
- FIGS. 1-10 A third embodiment of the steering system according to the present invention will be described with reference to FIGS.
- the steering system in the third embodiment has a configuration in which an artificial sensory function is added to the steering system in the first embodiment.
- an artificial sensory function is added to the steering system in the first embodiment.
- the flight control computer 30 in the third embodiment includes an artificial sensory unit 35 that generates a reaction force according to the navigational status of the aircraft 60.
- the steering system in the third embodiment is provided with an artificial sensory device 150 connected to one of the link mechanisms 120A and 120B.
- the artificial sensory device 150 is connected to the link mechanism 120B on the copilot control stick 10B side.
- the artificial sensation unit 35 controls the artificial sensation apparatus 150 by outputting the body motion data and air data from the sensor 70 and the artificial sensation apparatus control signal Caf generated according to preset artificial sensation scheduling and the like.
- the artificial sensory device 150 applies a reaction force based on the artificial sensory device control signal Caf to the control stick 10 via the link mechanisms 120B and 120A.
- FIG. 11 is a flowchart showing a third embodiment of the sticking determination operation in step S1. With reference to FIG. 11, details of the sticking determination operation in the present embodiment will be described. In the following, the sticking determination operation will be described taking the sticking determination with respect to the roll input as an example.
- the sticking is determined based on the force obtained by subtracting Faf, which is the reaction force of the artificial sensory device, from the difference between the operating force Srm for the control stick 10 and the force Srk detected by the detachment unit 100. A determination is made. That is, the sticking determination process in the third embodiment includes steps S301 and S302 instead of steps S105 and S111 of the sticking determination process in the first embodiment.
- the sticking determination unit 31 determines the magnitude of the reaction force from the magnitude of the difference between Srm and Srk (the absolute value of (Srm ⁇ Srk)). It is determined whether the size obtained by subtracting Faf is smaller than Fsm (step S301).
- the sticking determination unit 31 sets the counter value Krm to 0 (steps S301 Yes, S104).
- the sticking determination unit 31 adds 1 to the counter value Krm (No in steps S301 and S106). Similarly, in the process of step S109, when the absolute value of Src is larger than Fxc, the sticking determination unit 31 determines the magnitude of the reaction force Faf from the magnitude of the difference between Src and Srk (the absolute value of (Src ⁇ Srk)). It is determined whether the size obtained by subtracting is smaller than Fsc (step S302).
- the sticking determination unit 31 sets the counter value Krc to 0 (steps S302 Yes, S110).
- the sticking determination unit 31 adds 1 to the counter value Krc (No in steps S302 and S112).
- the steering system according to the third embodiment can determine sticking in consideration of the reaction force in the artificial sensory device.
- the sticking determination method as described above is effective when a variable artificial sensory device is provided.
- the sticking determination is performed by Fsm or Fsc set in consideration of the reaction force in the method shown in the first embodiment.
- FIGS. 12, 13A and 13B A fourth embodiment of the steering system according to the present invention will be described with reference to FIGS. 12, 13A and 13B.
- the steering system in the fourth embodiment has a configuration in which a sticking confirmation function is added to the steering system in the first embodiment.
- a sticking confirmation function is added to the steering system in the first embodiment.
- the steering system in the fourth embodiment includes a confirmation switch (confirmation SW) 160.
- the pilot confirms the sticking determination result displayed on the display unit 130. If there is sticking, the pilot operates the confirmation SW 160 to disconnect the link mechanism. Even if the sticking determination unit 31 in the fourth embodiment detects sticking, the sticking determination unit 31 does not perform the detachment control of the link mechanism until the confirmation command Cc for instructing the separation is input from the confirmation SW 160.
- FIG. 13A and FIG. 13B are flowcharts showing a fourth embodiment of the sticking determination operation in step S1.
- movement in this Embodiment is demonstrated.
- the sticking determination operation will be described taking the sticking determination with respect to the roll input as an example.
- the sticking determination process in the fourth embodiment includes step S401 instead of step S108 in the first embodiment, step S402 instead of step S114, and further confirmation processes using confirmation signals Cc (steps S403 to S405). ) Is added.
- the sticking determination unit 31 sets XSTKrm to 1 and resets Krm (step S401).
- XSTKrm is a sticking determination flag of the main pilot-side roll input system before confirmation. For example, when XSTKrm is set to 0 as an initial value (not fixed) and set to 1, it indicates fixed.
- the sticking determination unit 31 outputs information indicating that sticking has occurred in the roll input system of the main pilot control stick 10A to the output unit 33 as the determination result J1. Thereby, the indicator 130 displays in a visible manner that the roll input system of the main pilot control stick 10A is fixed.
- the sticking determination unit 31 sets XSTKrc to 1 and resets Krc (step S402).
- XSTKpm is a sticking determination flag of the main pilot side pitch input system before being confirmed
- XSTKrc is a sticking determination flag of the copilot side roll input system before being confirmed
- XSTKpc is a sticking determination flag of the copilot side pitch input system before being confirmed.
- step S403 when the process of step S110 ends, in the case of step S113 No, when the process of step S402 ends, the sticking determination unit 31 confirms the value set in the variable SWk (step S403).
- SWk is a variable whose value is set by the confirmation signal Cc.
- SWk is set to “Confirm” in response to the confirmation signal Cc indicating confirmation, SWk is set to “Reset” in response to the confirmation signal Cc indicating reset, and SWk is set to “Operation” in response to the confirmation signal Cc indicating no operation. It is set to “None”.
- the sticking determination unit 31 sets XSTKrm, XSTKpm, XSTKrc, and XSTKpc to STKrm, STKpm, STKrc, and STKpc, respectively (step S404). At this time, the sticking determination unit 31 may output a signal for deleting the sticking display to the display unit 130 via the output unit 33.
- the sticking determination unit 31 sets all of XSTKrm, XSTKpm, XSTKrc, and XSTKpc to 0 (step S405). At this time, the sticking determination unit 31 may output a signal for deleting the sticking display to the display unit 130 via the output unit 33. If SWk is set to “no operation” in step S403, the process proceeds to the next process without performing any process.
- the link mechanism between the control sticks can be disconnected after the confirmation of the sticking by the pilot is completed. For this reason, it is possible to prevent disconnection at an unintended time of the pilot. Further, since the link mechanism is disconnected in accordance with the pilot's operation, it is possible to prevent disconnection due to a determination error of the flight control computer 30.
- FIGS. 1-10 A fifth embodiment of the steering system according to the present invention will be described with reference to FIGS.
- the steering system in the fifth embodiment has a configuration in which a determination instruction function is added to the steering system in the first embodiment.
- a determination instruction function is added to the steering system in the first embodiment.
- the steering system in the fifth embodiment includes a determination switch (determination SW) 170.
- determination SW determination switch
- the pilot can instruct the flight control computer 30 to determine the fixation by operating the determination SW 170.
- the sticking determination unit 31 in the fifth embodiment executes the sticking process in accordance with the determination signal Cj from the determination SW 170.
- FIG. 15 is a flowchart showing a fifth embodiment of the sticking determination operation in step S1.
- the details of the sticking determination operation in the present embodiment will be described.
- the sticking determination operation will be described taking the sticking determination with respect to the roll input as an example.
- the confirmation process of SWjdg is performed at a predetermined timing before step S101 in the first embodiment (step S501).
- SWjdg is a determination instruction flag set to “1 (determination)” or “0 (reset)” according to the input determination signal Cj.
- the sticking determination unit 31 sets Krm and Krc to 0 when SWjdg is not set to “determination”, for example, when “0” is set (step S502), and proceeds to the next process (step S502). S501 No).
- SWjdg is set to “determination” in step S501, the process proceeds to step S101 as in the first embodiment, and a sticking determination process is performed (step S501 Yes).
- the sticking determination is performed according to the operation of the confirmation SW 170 by the pilot, so that the sticking determination process is not always performed.
- the pilot determines that the sticking is suspected, the pilot can operate the judgment switch and perform a failure judgment only in the judgment mode. Therefore, the pilot can be prevented from being disconnected at an unintended time, and can be prevented from being disconnected due to an erroneous fixing determination.
- the processing load on the flight control computer can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Control Devices (AREA)
Abstract
Description
本実施の形態では、フライバイワイヤを利用した航空機に設けられた操縦システムを一例に説明する。フライバイワイヤとは、パイロットの操作を電気的な信号に変え、電気-油圧サーボ・アクチュエータに入力して電気的に操舵する方法である。図1は本発明に係る航空機の構成を示す図である。図1を参照して、フライバイワイヤを利用した航空機の制御動作の詳細を説明する。操縦桿10に対する操舵入力Fsは、操舵センサ20によって電気信号(操舵コマンドCpr)に変換されてフライトコントロールコンピュータ30に入力される。機体60の加速度等の機体運動や気圧高度等の大気緒元等はセンサ70で検出され、機体運動データやエアデータとしてフライトコントロールコンピュータ30に入力される。フライトコントロールコンピュータ30は、操舵コマンドCprや機体運動データ及びエアデータに基づいてアクチュエータコマンドCaを出力する。アクチュエータ40は、アクチュエータコマンドCaに基づいて舵面50を制御し、機体60の運動を制御する。このように、フライバイワイヤを利用した航空機では、フライトコントロールコンピュータ30を利用して、機体の運動が制御される。
図8及び図9を参照して、本発明による操縦システムの第2の実施の形態を説明する。第2の実施の形態における操縦システムは、第1の実施の形態における操縦システムに、オートパイロット機能が付加された構成である。以下では、第1の実施の形態と異なる構成及び動作のみを説明し、第1の実施の形態と同様な構成及び動作の説明は省略する。
図10及び図11を参照して、本発明による操縦システムの第3の実施の形態を説明する。第3の実施の形態における操縦システムは、第1の実施の形態における操縦システムに、人工感覚機能が付加された構成である。以下では、第1の実施の形態と異なる構成及び動作のみを説明し、第1の実施の形態と同様な構成及び動作の説明は省略する。
図12、図13A及び図13Bを参照して、本発明による操縦システムの第4の実施の形態を説明する。第4の実施の形態における操縦システムは、第1の実施の形態における操縦システムに、固着確認機能が付加された構成である。以下では、第1の実施の形態と異なる構成及び動作のみを説明し、第1の実施の形態と同様な構成及び動作の説明は省略する。
図14及び図15を参照して、本発明による操縦システムの第5の実施の形態を説明する。第5の実施の形態における操縦システムは、第1の実施の形態における操縦システムに、判定指示機能が付加された構成である。以下では、第1の実施の形態と異なる構成及び動作のみを説明し、第1の実施の形態と同様な構成及び動作の説明は省略する。
Claims (20)
- 第1操縦桿に対して外部から加わる力を検出する第1センサと、
前記第1操縦桿と、前記第1操縦桿と異なる第2操縦桿とを機械的に連結し、前記第1操縦桿からの力を前記第2操縦桿へ伝達するリンク機構と、
前記第1操縦桿から前記リンク機構に伝達される力を検出する第2センサと、
前記第1センサで検出された力と前記第2センサで検出された力とに基づいて前記第1操縦桿において固着が発生したかどうかを判定する固着判定部を備えるフライトコントロールコンピュータと、
切り離しコマンドに応じて、前記第1操縦桿と前記第2操縦桿との連結を切り離すように前記リンク機構を切断する切り離しユニットと、
を具備し、
前記固着判定部は、前記第1操縦桿において固着が発生したと判定すると前記切り離しコマンドを前記切り離しユニットに出力する
操縦システム。 - 請求の範囲1に記載の操縦システムにおいて、
前記固着判定部は、前記第1センサで検出された力と前記第2センサで検出された力の差が基準値以上である場合、前記第1操縦桿において固着が発生したと判定する
操縦システム。 - 請求の範囲1又は2に記載の操縦システムにおいて、
前記固着判定部は、前記第1センサで検出された力と前記第2センサで検出された力の差が前記基準値以上である回数が、所定の回数以上となる場合、前記第1操縦桿において固着が発生したと判定する
操縦システム。 - 請求の範囲1から3のいずれか1項に記載の操縦システムにおいて、
前記第1センサは、前記第1操縦桿に対するロール方向の力を検出する第1ロールセンサと、前記第1操縦桿に対するピッチ方向の力を検出する第1ピッチセンサとを備え、
前記第2センサは、前記リンク機構に伝達される前記第1操縦桿に対するロール方向の力を検出する第2ロールセンサと、前記リンク機構に伝達される前記第1操縦桿に対するピッチ方向の力を検出する第2ピッチセンサとを備え、
前記固着判定部は、前記第1ロールセンサで検出された力と前記第2ロールセンサで検出された力との差が第1基準値以上である場合、又は前記第1ピッチセンサで検出された力と前記第2ピッチセンサで検出された力との差が第2基準値以上である場合、前記第1操縦桿において固着が発生したと判定する
操縦システム。 - 請求の範囲1から4のいずれか1項に記載の操縦システムにおいて、
前記第1操縦桿と前記第2操縦桿の少なくとも一方に対し、反力を付与する人工感覚装置を更に具備し、
前記固着判定部は、前記第1センサで検出された力と前記第2センサで検出された力の差から前記反力を減じた値が前記基準値以上である場合、前記第1操縦桿において固着が発生したと判定する
操縦システム。 - 請求の範囲1から5のいずれか1項に記載の操縦システムにおいて、
オートパイロットモードの際、前記固着判定部は、固着の判定処理を停止する
操縦システム。 - 請求の範囲1から6のいずれか1項に記載の操縦システムにおいて、
前記固着判定部における固着判定結果を、パイロットが確認できる状態で出力する出力装置を更に具備する操縦システム。 - 請求の範囲1から7のいずれか1項に記載の操縦システムにおいて、
操縦者による操作に応じて判定信号を出力する判定スイッチを更に具備し、
前記固着判定部は、前記判定信号に基づいて前記固着の判定を行う
操縦システム。 - 請求の範囲1から8のいずれか1項に記載の操縦システムにおいて、
前記第1操縦桿の変位を検出する変位センサを更に具備し、
前記フライトコントロールコンピュータは、前記変位センサで検出された変位に応じて舵面を制御し、
前記固着判定部は、前記第1操縦桿において前記固着が発生したと判定すると、前記変位センサで検出された変位に応じた舵面の制御を禁止する
操縦システム。 - 請求の範囲1から9のいずれか1項に記載の操縦システムにおいて、
操縦者による操作に応じて確認信号を出力する確認スイッチを更に具備し、
前記フライトコントロールコンピュータは、前記確認信号に基づいて前記切り離しコマンドを出力する
操縦システム。 - 第1操縦桿と、前記第1操縦桿と異なる第2操縦桿とを機械的に連結し、前記第1操縦桿からの力を前記第2操縦桿へ伝達するリンク機構を切り離す方法において、
第1センサが、前記第1操縦桿に対して外部から加わる力を検出するステップと、
第2センサが、前記第1操縦桿から前記リンク機構に伝達される力を検出するステップと、
前記第1センサで検出された力と前記第2センサで検出された力とに基づいて前記第1操縦桿において固着が発生したかどうかを判定するステップと、
前記固着の判定ステップにおいて、第1操縦桿において前記固着が発生したと判定すると切り離しコマンドを出力するステップと、
前記切り離しコマンドに応じて、前記第1操縦桿と前記第2操縦桿との連結を切り離すように前記リンク機構を切断するステップと、
を具備する操縦桿リンク切り離し方法。 - 請求の範囲11に記載の操縦桿リンク切り離し方法において、
前記固着の判定ステップは、
前記第1センサで検出された力と前記第2センサで検出された力の差を算出するステップと、
前記力の差が基準値以上である場合、前記第1操縦桿において固着が発生したと判定するステップと、
を備える操縦桿リンク切り離し方法。 - 請求の範囲11又は12に記載の操縦桿リンク切り離し方法において、
前記固着の判定ステップは、
前記第1センサで検出された力と前記第2センサで検出された力の差を算出するステップと、
前記力の差が前記基準値以上である回数を計数するステップと、
前記回数が、所定の回数以上である場合、前記第1操縦桿において固着が発生したと判定するステップと、
を備える操縦桿リンク切り離し方法。 - 請求の範囲11から13のいずれか1項に記載の操縦桿リンク切り離し方法において、
前記第1センサが、第1操縦桿に対して外部から加わる力を検出するステップは、
第1ロールセンサが、前記第1操縦桿に対するロール方向の力を検出するステップと、
第1ピッチセンサが、前記第1操縦桿に対するピッチ方向の力を検出するステップと、
を備え、
前記第2センサが、前記第1操縦桿から前記リンク機構に伝達される力を検出するステップは、
第2ロールセンサが、前記リンク機構に伝達される前記第1操縦桿に対するロール方向の力を検出するステップと、
第2ピッチセンサが、前記リンク機構に伝達される前記第1操縦桿に対するピッチ方向の力を検出するステップと、
を備え
前記固着の判定ステップは、
前記第1ロールセンサで検出された力と前記第2ロールセンサで検出された力との差が第1基準値以上である場合、又は前記第1ピッチセンサで検出された力と前記第2ピッチセンサで検出された力との差が第2基準値以上である場合、前記第1操縦桿において固着が発生したと判定するステップを備える
操縦桿リンク切り離し方法。 - 請求の範囲11から14のいずれか1項に記載の操縦桿リンク切り離し方法において、
前記第1操縦桿と前記第2操縦桿の少なくとも一方に対し、反力を付与するステップを更に具備し、
前記固着の判定ステップは、
前記第1センサで検出された力と前記第2センサで検出された力の差から前記反力を減じた値を算出するステップと、
前記力の差から前記反力を減じた値が前記基準値以上である場合、前記第1操縦桿において固着が発生したと判定するステップと、
を備える操縦桿リンク切り離し方法。 - 請求の範囲11から15のいずれか1項に記載の操縦桿リンク切り離し方法において、
オートパイロットモードの際、前記固着判定部が、固着の判定処理を停止するステップを更に具備する
操縦桿リンク切り離し方法。 - 請求の範囲11から16のいずれか1項に記載の操縦桿リンク切り離し方法において、
前記固着の判定ステップにおける固着判定結果を、パイロットが確認できる状態で出力するステップを更に具備する操縦桿リンク切り離し方法。 - 請求の範囲11から17のいずれか1項に記載の操縦桿リンク切り離し方法において、
操縦者による操作に応じて判定信号を出力するステップを更に具備し、
前記固着の判定ステップは、前記判定信号に基づいて前記固着の判定を開始するステップを備える
操縦桿リンク切り離し方法。 - 請求の範囲11から18のいずれか1項に記載の操縦桿リンク切り離し方法において、
前記第1操縦桿の変位を検出するステップと、
前記検出された変位に応じて舵面を制御するステップと、
を更に具備し、
前記固着の判定ステップは、前記第1操縦桿において前記固着が発生したと判定すると、前記検出された変位に応じた舵面の制御を禁止する
操縦桿リンク切り離し方法。 - 請求の範囲11から19のいずれか1項に記載の操縦桿リンク切り離し方法において、
操縦者による操作に応じて確認信号を出力するステップを更に具備し、
前記切り離しコマンドを出力するステップは、前記確認信号に基づいて前記切り離しコマンドを出力するステップを備える
操縦桿リンク切り離し方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0815764A BRPI0815764B1 (pt) | 2008-02-20 | 2008-06-25 | sistema de controle de voo, e, método de separar uma articulação de alavanca de controle |
US12/674,509 US8352098B2 (en) | 2008-02-20 | 2008-06-25 | Flight control system and method of separating control lever linkage |
CA2697432A CA2697432C (en) | 2008-02-20 | 2008-06-25 | Flight controlsystem and method of separating control lever linkage |
EP08790600.4A EP2184228A4 (en) | 2008-02-20 | 2008-06-25 | CONTROL SYSTEM AND DISCONNECTING SYSTEM FOR CONTROL PANEL CONNECTION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008039342A JP4691121B2 (ja) | 2008-02-20 | 2008-02-20 | 操縦システム、操縦桿リンク切り離し方法 |
JP2008-039342 | 2008-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104288A1 true WO2009104288A1 (ja) | 2009-08-27 |
Family
ID=40985183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/061533 WO2009104288A1 (ja) | 2008-02-20 | 2008-06-25 | 操縦システム、操縦桿リンク切り離し方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8352098B2 (ja) |
EP (1) | EP2184228A4 (ja) |
JP (1) | JP4691121B2 (ja) |
BR (1) | BRPI0815764B1 (ja) |
CA (1) | CA2697432C (ja) |
WO (1) | WO2009104288A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4935875B2 (ja) * | 2009-09-04 | 2012-05-23 | 株式会社デンソー | 操作装置 |
FR2952447B1 (fr) * | 2009-11-06 | 2012-08-17 | Ratier Figeac Soc | Dispositif de controle electronique de fonctionnement d'un organe de pilotage a surveillance croisee, dispositif de pilotage et aeronef |
DE102010035822A1 (de) * | 2010-08-30 | 2012-03-01 | Liebherr-Aerospace Lindenberg Gmbh | Steuersystem für ein Luftfahrzeug |
WO2012068136A2 (en) * | 2010-11-15 | 2012-05-24 | Lam Aviation, Inc. | Mechanical control mixer and method therefor |
JP5819780B2 (ja) * | 2012-05-30 | 2015-11-24 | 住友精密工業株式会社 | 航空機操向装置の制御装置 |
FR2993065B1 (fr) * | 2012-07-09 | 2014-08-29 | Ratier Figeac Soc | Dispositif de conjugaison d'effort entre organes de pilotage, organe de pilotage et aeronef |
US9096325B2 (en) * | 2013-11-18 | 2015-08-04 | Bell Helicopter Textron Inc. | Fly-by-wire engine power control system |
CN104527970B (zh) * | 2014-12-04 | 2017-01-04 | 中国航空工业集团公司第六三一研究所 | 一种分布式大型飞机襟翼控制计算机系统 |
FR3031959B1 (fr) * | 2015-01-27 | 2017-02-17 | Ratier Figeac Soc | Procede et dispositif de conjugaison d'organes de pilotage |
US11021244B2 (en) * | 2017-03-06 | 2021-06-01 | Textron Innovations Inc. | Collective control stick mounted throttle control assembly |
US11014648B2 (en) | 2017-04-17 | 2021-05-25 | Textron Innovations, Inc. | Interconnected sidesticks for fly-by-wire flight control |
US10793257B2 (en) * | 2018-02-05 | 2020-10-06 | The Boeing Company | Flight control systems and methods for an aerial vehicle |
US11649040B2 (en) * | 2020-07-24 | 2023-05-16 | Tlie Boeing Company | Providing continuously variable feel forces for fully-powered flight control systems |
US20250010975A1 (en) * | 2021-11-19 | 2025-01-09 | Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi | A force measurement system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3949958A (en) * | 1973-12-07 | 1976-04-13 | Lockheed Aircraft Corporation | Pitch control system |
JPH0632291A (ja) * | 1992-06-03 | 1994-02-08 | Boeing Co:The | 航空機のためのフライバイワイヤーフライトコントロールシステムおよび航空機上の複数個の飛行制御翼面の位置を制御する方法 |
US5456428A (en) * | 1993-07-21 | 1995-10-10 | Honeywell Inc. | Mechanically linked active sidesticks |
JPH08310494A (ja) * | 1995-05-15 | 1996-11-26 | Boeing Co:The | 航空機のフライトデッキ操縦装置を位置決めするためのバックドライブシステム、および航空機のフライトデッキ操縦装置をバックドライブする方法 |
US5782436A (en) * | 1996-01-19 | 1998-07-21 | Mcdonnell Douglas Corporation | Torque tube breakout mechanism |
JP2000335496A (ja) * | 1999-05-31 | 2000-12-05 | Mitsubishi Heavy Ind Ltd | 航空機の操縦システム |
JP2008039342A (ja) | 2006-08-09 | 2008-02-21 | Paloma Ind Ltd | 調理器用温度センサ |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3638821A1 (de) * | 1986-09-12 | 1988-03-24 | Messerschmitt Boelkow Blohm | Hoehenruder-steuerungssystem |
US5489830A (en) * | 1994-09-09 | 1996-02-06 | Mcdonnell Douglas Corporation | Control system with loadfeel and backdrive |
JPH10127946A (ja) * | 1996-11-05 | 1998-05-19 | Konami Co Ltd | 操作レバー装置 |
GB0127254D0 (en) * | 2001-11-13 | 2002-01-02 | Lucas Industries Ltd | Aircraft flight surface control system |
FR2899562B1 (fr) * | 2006-04-05 | 2009-01-09 | Eurocopter France | Dispositif de commandes de vol d'un giravion |
-
2008
- 2008-02-20 JP JP2008039342A patent/JP4691121B2/ja not_active Expired - Fee Related
- 2008-06-25 CA CA2697432A patent/CA2697432C/en not_active Expired - Fee Related
- 2008-06-25 BR BRPI0815764A patent/BRPI0815764B1/pt not_active IP Right Cessation
- 2008-06-25 US US12/674,509 patent/US8352098B2/en not_active Expired - Fee Related
- 2008-06-25 EP EP08790600.4A patent/EP2184228A4/en not_active Withdrawn
- 2008-06-25 WO PCT/JP2008/061533 patent/WO2009104288A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3949958A (en) * | 1973-12-07 | 1976-04-13 | Lockheed Aircraft Corporation | Pitch control system |
JPH0632291A (ja) * | 1992-06-03 | 1994-02-08 | Boeing Co:The | 航空機のためのフライバイワイヤーフライトコントロールシステムおよび航空機上の複数個の飛行制御翼面の位置を制御する方法 |
US5456428A (en) * | 1993-07-21 | 1995-10-10 | Honeywell Inc. | Mechanically linked active sidesticks |
JPH08310494A (ja) * | 1995-05-15 | 1996-11-26 | Boeing Co:The | 航空機のフライトデッキ操縦装置を位置決めするためのバックドライブシステム、および航空機のフライトデッキ操縦装置をバックドライブする方法 |
US5782436A (en) * | 1996-01-19 | 1998-07-21 | Mcdonnell Douglas Corporation | Torque tube breakout mechanism |
JP2000335496A (ja) * | 1999-05-31 | 2000-12-05 | Mitsubishi Heavy Ind Ltd | 航空機の操縦システム |
JP2008039342A (ja) | 2006-08-09 | 2008-02-21 | Paloma Ind Ltd | 調理器用温度センサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2184228A4 |
Also Published As
Publication number | Publication date |
---|---|
US8352098B2 (en) | 2013-01-08 |
EP2184228A4 (en) | 2013-07-24 |
CA2697432C (en) | 2014-01-07 |
JP4691121B2 (ja) | 2011-06-01 |
JP2009196475A (ja) | 2009-09-03 |
CA2697432A1 (en) | 2009-08-27 |
BRPI0815764B1 (pt) | 2019-09-10 |
EP2184228A1 (en) | 2010-05-12 |
BRPI0815764A2 (pt) | 2015-02-18 |
US20100305780A1 (en) | 2010-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4691121B2 (ja) | 操縦システム、操縦桿リンク切り離し方法 | |
CA2914392C (en) | Aircraft sidestick priority and dual input control logic | |
US9221538B2 (en) | Flight control system for unmanned aerial vehicle | |
KR101477275B1 (ko) | 주 조종 장치 | |
JP2019513610A5 (ja) | ||
CN104204983A (zh) | 自动驾驶仪及其方法 | |
EP3223104A2 (en) | Method and apparatus for latent fault detection and management for fly-by-wire flight control systems | |
US20190321981A1 (en) | System and Method for Providing In-Cockpit Actuation of Aircraft Controls | |
JP2009530151A (ja) | 多発エンジン航空機の推力制御方法および装置 | |
CN112714893A (zh) | 双飞控切换方法、飞控系统和飞行器 | |
EP2821341A1 (en) | Inceptor and method for operating an inceptor | |
CA2916961C (en) | Inceptor and method for operating an inceptor | |
EP3489134B1 (en) | System and method for pilot-in-control sensing in a rotorcraft | |
US20220009651A1 (en) | Interactive electronic checklists for autonomous aircraft | |
EP3492373B1 (en) | System and method for flight mode annunciation | |
KR101362912B1 (ko) | 고장진단기능이 구비된 비행제어컴퓨터시스템 및 그 제어방법 | |
US20120056039A1 (en) | Control system for an aircraft | |
CN112722246A (zh) | 用于交通工具自主远程控制或手动操作的交通工具控制系统 | |
CN109720589B (zh) | 一种大型水陆两栖飞机的水舵操纵系统的指示与告警系统 | |
CN115027662B (zh) | 用于减缓飞行器的操纵器件的卡阻的系统和方法 | |
KR20170074389A (ko) | 비상 비행제어가 가능한 fbw 비행제어시스템 | |
CN114384922A (zh) | 一种无人机飞行控制冗余技术 | |
JP5860741B2 (ja) | 操向装置の制御装置 | |
CN115258135B (zh) | 用于飞行器的失速保护方法、系统、存储介质及飞行器 | |
KR20130056652A (ko) | 자동 추력 제어 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08790600 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2697432 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008790600 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12674509 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0815764 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100223 |