WO2009104243A1 - プラズマディスプレイ装置 - Google Patents

プラズマディスプレイ装置 Download PDF

Info

Publication number
WO2009104243A1
WO2009104243A1 PCT/JP2008/052675 JP2008052675W WO2009104243A1 WO 2009104243 A1 WO2009104243 A1 WO 2009104243A1 JP 2008052675 W JP2008052675 W JP 2008052675W WO 2009104243 A1 WO2009104243 A1 WO 2009104243A1
Authority
WO
WIPO (PCT)
Prior art keywords
numbered
odd
electrodes
group
electrode
Prior art date
Application number
PCT/JP2008/052675
Other languages
English (en)
French (fr)
Inventor
勲 古川
橋本 康宣
岸 智勝
黄木 英明
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2008/052675 priority Critical patent/WO2009104243A1/ja
Publication of WO2009104243A1 publication Critical patent/WO2009104243A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/298Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels
    • G09G3/2983Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using non-standard pixel electrode arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0224Details of interlacing

Definitions

  • the present invention generally relates to an image display device, and more particularly to a plasma display device.
  • FIG. 1 is an exploded perspective view showing an example of a panel structure of a conventional PDP.
  • X electrodes 11 and Y electrodes 12 that repeatedly discharge are alternately arranged in parallel.
  • This electrode group is covered with a dielectric layer 13, and the surface thereof is further covered with a protective layer 14 such as MgO.
  • An address electrode 15 is disposed on the back plate 2 in a direction substantially perpendicular to the X electrode 11 and the Y electrode 12, and is covered with a dielectric layer 16.
  • Partitions 17 are arranged on both sides of the address electrode 15 to partition the cells in the column direction.
  • phosphors 18, 19, and 20 that are excited by ultraviolet rays and generate visible light of red (R), green (G), and blue (B). It has been applied.
  • the front plate 1 and the back plate 2 are bonded together so that the protective layer 14 and the partition wall 17 are in contact with each other, and a discharge gas such as Ne or Xe is sealed to form a panel.
  • FIG. 2 is a configuration diagram of the PDP drive circuit.
  • the PDP panel 3 is driven by a PDP drive circuit to emit light.
  • the PDP drive circuit includes an X drive circuit 4 that drives the X electrode 11, a Y drive circuit 5 that drives the Y electrode 12, an address drive circuit 6 that drives the address electrode 15, and a control circuit 7 that controls them.
  • FIG. 3 is a PDP drive subfield configuration diagram.
  • the PDP is driven by dividing one frame (16.7 ms) into several subfields 21-30.
  • the gradation expression is performed by changing the emission luminance for each of the subfields 21 to 30 and superimposing them.
  • the subfields 21 to 30 are composed of a reset period 31 for initializing cells, an address period 32 for determining light emission and non-light emission, and a SUS period 33 for actually emitting light.
  • Patent Document 1 describes a driving method in which one of an X electrode and a Y electrode is fixed at a constant potential. Specifically, the drive electrode is applied only to the scan electrode (Y electrode) while the sustain electrode (X electrode) is fixed at a constant voltage. In this way, the configuration in which the drive waveform is not applied to one of the X electrode and the Y electrode makes it possible to remove the drive circuit and the board that drive one of the electrodes, thereby reducing the unit price of the plasma display device. .
  • an object of the present invention is to provide a plasma display device capable of displaying an interlaced image in a configuration in which a drive waveform is not applied to one of an X electrode and a Y electrode.
  • the Y electrodes are connected to a scan driver and a sustain circuit.
  • the X electrode is divided into an even number group composed of even number display lines and an odd number group composed of odd number display lines, and the even number group and the odd number group are fixed via different switches.
  • the even number group and the odd number group are independently set to a high impedance state by the operation of the switch.
  • the X electrodes are connected to a constant potential
  • the Y electrode is divided into an even-numbered group consisting of even-numbered display lines and an odd-numbered group consisting of odd-numbered display lines, and the even-numbered group and the odd-numbered group are connected to different scan drivers,
  • the different scan drivers are connected to a sustain circuit through switches, respectively, and the even number group and the odd number group are independently set to a high impedance state by the operation of the switch.
  • interlaced display is possible when using a driving method in which one of the X electrode and the Y electrode is fixed at a constant potential, and high definition can be achieved.
  • Plasma display panel 62 61, 71, 81 Plasma display panel 62, 72 Y electrode driver 63, 73 Sustain circuit 64, 74-1, 74-2 Scan circuit 65, 66, 75, 76 Switch
  • the Example demonstrated below demonstrated the structure which fixes X electrode to GND
  • this invention is not limited to this structure.
  • the potential for fixing the electrode may be other potential instead of the ground potential.
  • the sustain discharge waveform may be applied to the X electrode during the sustain discharge period to fix the Y electrode at a predetermined potential.
  • FIG. 4 is a diagram showing a configuration example of a conventional ALIS panel (common electrode panel).
  • FIG. 5 is a diagram for explaining the ALIS operation.
  • FIG. 6 is a diagram showing driving waveforms of the ALIS method.
  • X electrodes and Y electrodes are alternately arranged.
  • the X electrodes include even-numbered X electrodes Xe and odd-numbered X electrodes Xo that are alternately arranged.
  • the Y electrodes include even-numbered Y electrodes Ye and odd-numbered Y electrodes Yo that are alternately arranged.
  • the Y electrode driver 42 for driving the Y electrode includes an even electrode sustain circuit 44-1, an even electrode scan circuit 45-1, an odd electrode sustain circuit 44-2, and an odd electrode scan circuit 45-. 2 is included.
  • Each scan circuit scans the Y electrode while address discharge to determine light emission / non-light emission of each cell. Further, a sustain discharge waveform is applied to each Y electrode by each sustain circuit.
  • the X electrode driver 43 for driving the X electrodes includes a sustain circuit 46-1 for even electrodes and a sustain circuit 46-2 for odd electrodes. A sustain discharge waveform is applied to each X electrode by each sustain circuit.
  • FIG. 4 shows voltage waveforms applied to the Xe, Xo, Ye, and Yo electrodes.
  • FIG. 6 shows voltage waveforms applied to the Xe, Xo, Ye, and Yo electrodes.
  • the same drive waveform is applied to Xo and Ye and the same drive waveform is applied to Xe and Yo as the drive waveforms during sustain.
  • the odd lines are lit, the same operation can be performed by switching the drive waveforms of Xo and Xe.
  • the ALIS panel enables interlaced display and achieves high definition.
  • one of the X electrode and the Y electrode is divided into two types, an even-numbered group and an odd-numbered group, and one group of even-odd electrodes is alternately set to a high impedance every frame, thereby interfacing.
  • the race display is realized.
  • FIG. 7 is a diagram showing a panel structure used in the present invention.
  • the BUS electrode 51 provided on the front substrate has high conductivity and functions to supplement the conductivity of the transparent electrode 52.
  • the electrodes Xo and Yo are paired and correspond to an odd number of one display line, and the electrodes Xe and Ye are paired and correspond to an even number of one display line.
  • a horizontal barrier rib 53 provided between each pair of electrodes divides the discharge space into lines. Further, the vertical barrier ribs 54 divide the discharge space into columns.
  • FIG. 8 is a diagram showing a configuration for controlling the X electrode and the Y electrode according to the first embodiment of the present invention.
  • X electrodes and Y electrodes are alternately arranged.
  • the X electrodes include even-numbered X electrodes Xe and odd-numbered X electrodes Xo that are alternately arranged.
  • the Y electrodes include even-numbered Y electrodes Ye and odd-numbered Y electrodes Yo that are alternately arranged.
  • the Y electrode driver 62 that drives the Y electrode includes a sustain circuit 63 and a scan circuit 64.
  • the scan circuit 63 scans the Y electrode while address discharge to determine light emission / non-light emission of each cell. Further, a sustain discharge waveform is applied to each Y electrode by the sustain circuit 64.
  • the X electrodes are divided into an even-numbered group composed of even-numbered X electrodes Xe and an odd-numbered group composed of odd-numbered X electrodes Xo.
  • a switch 65 is provided between the even-numbered group and GND, and a switch 66 is provided between the odd-numbered group and GND.
  • FIG. 9 is a diagram showing voltage waveforms for driving each electrode in the first embodiment.
  • FIG. 9 shows the voltage waveform of the odd frame.
  • a reset voltage waveform is applied to even-numbered Y electrodes Ye and odd-numbered Y electrodes Yo, and a reset operation is performed in the reset period.
  • a scan voltage pulse is applied to the odd-numbered Y electrode Yo, and display data of the odd-numbered display line is written.
  • the sustain discharge voltage waveform is applied to the even-numbered Y electrode Ye and the odd-numbered Y electrode Yo, and the even-numbered X electrode Xe is set to the HIGH impedance state, and the odd-numbered X electrodes The electrode Xo is set to the ground potential.
  • the even-numbered X electrodes Xe are in the HIGH impedance state, and the odd-numbered X electrodes Xo are at the ground potential. In this way, even-numbered display lines are not displayed, and only odd-numbered display lines can emit light.
  • the odd-numbered X electrode Xo is set to the high impedance state
  • the even-numbered X electrode Xe is set to the ground potential.
  • the odd-numbered display lines are not displayed and only the even-numbered display lines can emit light.
  • interlaced display can be realized.
  • the scan operation in the address period is performed every other display line. In the even frame, the scan operation is executed only for the even display line, and in the odd frame, the scan operation is executed only for the odd display line.
  • FIG. 10 is a diagram showing a configuration for controlling the X electrode and the Y electrode according to the second embodiment of the present invention.
  • X electrodes and Y electrodes are alternately arranged.
  • the X electrodes are commonly connected to the ground potential.
  • the Y electrodes include even-numbered Y electrodes Ye and odd-numbered Y electrodes Yo that are alternately arranged.
  • the Y electrode driver 72 that drives the Y electrode includes a sustain circuit 73, an even-numbered scan circuit 74-1, an odd-numbered scan circuit 74-2, a switch 75, and a switch 76.
  • the scan circuit 74-1 scans the even-numbered Y electrodes Ye while performing address discharge, and determines light emission / non-light emission of each cell in the even-numbered display line.
  • the scan circuit 74-2 scans the odd-numbered Y electrodes Yo while performing address discharge, and determines light emission / non-light emission of each cell in the odd-numbered display lines. Further, a sustain discharge waveform is applied to each Y electrode by the sustain circuit 73.
  • the Y electrodes are divided into an even-numbered group composed of even-numbered Y electrodes Ye and an odd-numbered group composed of odd-numbered Y electrodes Yo.
  • a switch 75 is provided between the even-numbered group and the sustain circuit 73, and a switch 76 is provided between the odd-numbered group and the sustain circuit 73.
  • FIG. 11 is a diagram showing voltage waveforms for driving the electrodes in the second embodiment.
  • FIG. 11 shows the voltage waveform of the odd-numbered frame.
  • the even-numbered Y electrodes Ye are set in a high impedance state to suppress the discharge of the even-numbered display lines. That is, only the odd-numbered display lines are set in the light emitting state.
  • the odd-numbered Y electrode Yo is set to the high impedance state to suppress the discharge of the odd display lines. That is, only even-numbered display lines are set in a light emitting state.
  • interlaced display can be realized.
  • the scan operation in the address period is performed every other display line. In the even frame, the scan operation is executed only for the even display line, and in the odd frame, the scan operation is executed only for the odd display line.
  • FIG. 12 is a diagram showing drive waveforms according to the third embodiment of the present invention.
  • the electrode structure and circuit configuration in the third embodiment are the same as those shown in FIG.
  • reset discharge and address discharge are performed in both the even-numbered group and the odd-numbered group.
  • the address period in the odd frame, the 2n + 1 line and the 2n + 2 line are simultaneously scanned and the same data is written.
  • the even frame the 2n + 2 line and the 2n + 3 line are simultaneously scanned and the same data is written.
  • the sustain period is composed of a first sustain period and a second sustain period.
  • a sustain pulse is applied in both the first sustain period and the second sustain period.
  • both the even-numbered group and the odd-numbered group are connected to the ground voltage in the first sustain period.
  • sustain discharge is performed in both the even-numbered group and the odd-numbered group.
  • the second sustain period if it is an even frame, the odd-numbered X electrodes are placed in a high impedance state to suppress discharge of the odd display lines.
  • the even-numbered X electrodes are placed in a high impedance state to suppress discharge of even-numbered display lines. Since there is a period in which the even-numbered display lines and the odd-numbered display lines are turned on at the same time, higher luminance can be obtained than in the first embodiment.
  • FIG. 13 is a diagram showing drive waveforms according to the fourth embodiment of the present invention.
  • the electrode structure and circuit configuration in the fourth embodiment are the same as those shown in FIG.
  • reset discharge and address discharge are performed in both the even-numbered group and the odd-numbered group.
  • the address period in the odd frame, the 2n + 1-th line and the 2n + 2th line are simultaneously scanned to write the same data.
  • the even frame the 2n + 2 line and the 2n + 3 line are simultaneously scanned and the same data is written.
  • the sustain period consists of a first sustain period and a second sustain period.
  • the sustain pulse is applied to both the even-numbered group and the odd-numbered group in the first sustain period.
  • the odd-numbered Y electrodes are set to the high impedance state to suppress the discharge of the odd display lines.
  • the even-numbered Y electrode is set to the high impedance state to suppress the discharge of the even-numbered display line. Since there is a period in which the even-numbered display lines and the odd-numbered display lines are turned on at the same time, higher luminance can be obtained than in the second embodiment.
  • the display discharge number of one display line is set to the display discharge number of the other display line. Decrease at a constant rate. As a result, an intermediate image between the one-line display and the two-line display is obtained.
  • the ratio of the smaller number of sustain discharges to the other number of discharges, that is, the time ratio of “first sustain period” to “first sustain period + second sustain period” is the mixing ratio ⁇ indicating the ratio of 2-line lighting. . O ⁇ ⁇ 1.
  • FIG. 14 is a diagram showing a driving state for one subframe.
  • the luminance when the display line that does not reduce the number of sustain discharges is fully lit among the two display lines in a pair is L
  • the other display line is fully lit.
  • the luminance at this time is ⁇ L.
  • is preferably 0.05 or more in order to improve luminance.
  • O.D it is preferable that it is 2 or more.
  • is preferably 0.8 or less. More preferably, ⁇ is 0.5 or less.
  • the mixing rate ⁇ is linearly changed with respect to the change in the display load factor of the plasma display panel.
  • the present invention is not limited to this, and the change in the mixing rate ⁇ with respect to the change in the display load factor is It may be non-linear.
  • the display load factor When all the cells are lit with the total number of light emission pulses in one display frame, the total number of light emission pulses of each cell over the entire screen is defined as the maximum light emission pulse number. Further, when an image for one display frame is displayed according to certain display data, the total number of light emission pulses in each cell is the total number of light emission pulses. The ratio of the number of display light emission pulses to the maximum number of light emission pulses is called a display load factor. The display load factor is 0% when all the cells are displayed in black, and 100% when all the cells are displayed with the maximum luminance.
  • the total number of light emission pulses is fixed, and when the display load factor exceeds a predetermined value, the total light emission pulse number is decreased and the power consumption exceeds the limit power of the display panel.
  • a configuration is used to control so as not to occur. Control in which the total number of light emission pulses is controlled according to the display load factor in this way is called APC (Auto Power Control). For example, when the display load factor is lower than a predetermined value (APC point), the total number of light emission pulses is reduced by APC.
  • APC Auto Power Control
  • FIG. 15 is a diagram showing a first setting method of the mixing rate ⁇ . As shown in FIG. 15, when the display load factor of the plasma display panel is higher than a certain value (first threshold value), the mixing rate ⁇ is set to zero. When the display load factor is equal to or lower than the first threshold value, the mixing rate ⁇ is gradually increased as the display load factor decreases.
  • first threshold value a certain value
  • FIG. 16 is a diagram showing an example of a method for setting the mixing ratio ⁇ shown in FIG.
  • control is performed so as to increase the mixing rate ⁇ of the two-line lighting as the display load factor decreases.
  • FIG. 13 shows the maximum luminance (luminance at the highest gradation) and the mixing rate ⁇ with respect to the display load factor.
  • the maximum luminance is also increased by increasing the mixing rate ⁇ of the two-line lighting in accordance with the display load factor.
  • FIG. 17 is a diagram showing a second setting method of the mixing ratio ⁇ .
  • FIG. 17A shows the mixing ratio of lower subframes with a light luminance weight
  • FIG. 17B shows the mixing ratio of upper subframes with a high luminance weight.
  • the control for turning on the two lines is not performed, and the control for the two lines is performed only in the upper subframe with a high luminance weight. That is, in the lower subframe, the mixing rate ⁇ of the two-line lighting is always 0 regardless of the display load factor of the plasma display panel.
  • the mixing rate ⁇ of the two-line lighting is set to 0, and the display load factor decreases below the first threshold value. Accordingly, the mixing rate ⁇ is gradually increased.
  • the mixing rate ⁇ of the two-line lighting is controlled uniformly in all the subframes, but the number of sustain discharges (the number of sustain pulses) is lower in the lower subframe with a light luminance weight. Since there are few, the effect which performs 2 line lighting is small. For the lower subframes, it is more important to make the gray scale finely controllable by reducing the minimum luminance by lighting one line rather than performing two lines lighting. Therefore, in the lower subframe, the control of the two-line lighting is not performed as shown in FIG. 17A, and the two-line lighting in accordance with the display load factor is shown in the upper subframe as shown in FIG. Take control.
  • FIG. 18 is a diagram showing a third setting method of the mixing rate ⁇ .
  • the mixing rate ⁇ is gradually increased as the display load factor decreases.
  • the mixing rate ⁇ for two-line lighting is set to zero. Further, when the display load factor is higher than the second threshold value, the mixing rate ⁇ is gradually increased as the display load factor increases.
  • control is performed so as to keep the total power constant as described above, so there is no significant improvement in brightness due to lighting of two lines.
  • one line is lit, there is reactive power consumption due to charging / discharging to the line capacity even if the non-lighting line is not lit. Therefore, when the two-line lighting is performed, the value of the reactive power with respect to the number of lighting cells is reduced, so that the luminance can be increased by the reactive power reduction.
  • the display load factor is near 100%, the entire screen is close to a white color, so that the resolution is not so necessary. Therefore, in a region where the display load factor that does not require so much resolution is in the vicinity of 100%, the reactive power can be reduced and the luminance can be improved by increasing the mixing rate ⁇ of the two-line lighting according to the display load factor. Become.
  • FIG. 19 is a diagram showing a fourth setting method of the mixing rate ⁇ .
  • FIG. 19A shows the mixing ratio of the lower subframe with a lighter luminance weight
  • FIG. 19B shows the mixing ratio of the upper subframe with a higher luminance weight.
  • the two-line lighting operation is not always performed in the lower subframe with a low luminance weight.
  • the two-line lighting operation is always performed in the upper subframe with a heavy luminance weight. That is, in the lower subframe, one line lighting is performed with the mixing ratio ⁇ always being 0, and in the upper subframe, two lines lighting is performed with the mixing ratio ⁇ being always 1.
  • interlaced driving can be realized with a simple circuit configuration without complicating the circuit configuration.
  • it is configured to switch whether or not to perform the two-line lighting control depending on whether it is a lower subframe or an upper subframe. Accordingly, it is possible to simplify the circuit configuration relating to the control of the two-line lighting.
  • the mixing ratio ⁇ can take all values in the range of 0 to 1, but the present invention is not limited to this.
  • the mixing rate ⁇ may be controlled so as not to be a value of 0.2 or less.
  • the mixing rate ⁇ may be controlled so as not to be a value of 0.8 or more.
  • FIG. 20 is a diagram showing an example of the configuration of a plasma display device that controls the mixing rate ⁇ in accordance with the display load factor.
  • 20 includes a plasma display panel 81, an address electrode drive circuit 82, a scan electrode drive circuit 83, a sustain electrode drive circuit 84, an A / D converter 85, a load factor detection circuit 86, and a SUS pulse number determination.
  • a circuit 87, a threshold determination circuit 88, an ⁇ value determination circuit 89, and a drive signal generation circuit 90 are included.
  • the A / D converter 85 A / D converts an analog input signal of display data to generate digital display data.
  • the load factor detection circuit 86 calculates a display load factor based on the digital display data. Display data is temporarily stored in a memory (not shown) for display on the plasma display panel 81. At this time, the display data is stored in the memory after being converted into data indicating lighting / non-lighting of each pixel for each subframe. In order to calculate the display load factor, the number of lighting pixels for each subframe in the converted data is counted to obtain the display light emission pulse number, and the ratio of the display light emission pulse number to the maximum light emission pulse number is obtained. Good.
  • the SUS pulse number determination circuit 87 determines the total number of light emission pulses, which is the total number of sustain pulses per display frame, based on the calculated display load factor. In general, the total number of light emission pulses is defined in advance as a function of the display load factor, and an output value according to the function may be obtained with the display load factor as an input.
  • the threshold determination circuit 88 determines whether or not the display load factor is equal to or less than the APC point shown in FIG. 16, for example.
  • the ⁇ value determination circuit 89 obtains the mixing rate ⁇ based on the determination result by the threshold determination circuit 88 and the value of the display load factor.
  • the drive signal generation circuit 90 generates a drive signal to be supplied to the address electrode drive circuit 82, the scan electrode drive circuit 83, and the sustain electrode drive circuit 84 in accordance with the obtained mixing ratio ⁇ . That is, when the drive signal generation circuit 90 generates a drive signal in accordance with the mixing ratio ⁇ , the sustain electrode drive circuit 84 operates based on this drive signal to generate a sustain discharge waveform, which is shown in FIG. The sustain discharge operation is controlled so that the ratio of the line drive period is ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

 複数のX電極と複数のY電極とが交互に配置されたプラズマディスプレイパネル(61)において、前記Y電極はスキャン回路(64)及びサステイン回路(63)に接続されており、前記X電極は偶数番目の表示ラインからなる偶数番グループ(Xe)と奇数番目の表示ラインからなる奇数番グループ(Xo)とに分けられ、それぞれのグループの電極とグランド電位との間にスイッチ(65,66)が設けられ、前記スイッチ(65,66)の動作により、奇数フレームでは前記偶数番グループ(Xe)がハイインピーダンス状態にされるとともに前記奇数番グループ(Xo)が前記グランド電位にされ、偶数フレームでは前記奇数番グループ(Xo)がハイインピーダンス状態にされるとともに前記偶数番グループ(Xe)が前記グランド電位にされる。

Description

プラズマディスプレイ装置
 本発明は、一般に画像表示装置に関し、詳しくはプラズマディスプレイ装置に関する。
 図1は、従来のPDPのパネル構造の一例を示す分解斜視図である。前面板1には繰り返し放電を行なうX電極11、Y電極12が並行に交互に配置されている。この電極群は誘電体層13に覆われており、さらにその表面はMgO等の保護層14に覆われている。背面板2にはX電極11、Y電極12とほぼ垂直方向にアドレス電極15が配置されており、さらに誘電体層16に覆われている。アドレス電極15の両側には隔壁17が配置され、列方向のセルを区分けしている。さらにアドレス電極15上の誘電体層16及び隔壁17の側面には紫外線により励起されて赤(R),緑(G),青(B)の可視光を発生する蛍光体18,19,20が塗布されている。この前面板1と背面板2を保護層14と隔壁17が接するように貼り合わせて、Ne,Xe等の放電ガスを封入し、パネルを構成している。
 図2はPDP駆動回路の構成図である。PDPのパネル3はPDP駆動回路により駆動され発光する。PDP駆動回路は、X電極11を駆動するX駆動回路4、Y電極12を駆動するY駆動回路5、アドレス電極15を駆動するアドレス駆動回路6、これらを制御する制御回路7で構成される。
 図3はPDP駆動のサブフィールド構成図である。PDPは1フレーム(16.7ms)を幾つかのサブフィールド21~30に分けて駆動される。サブフィールド21~30ごとに発光輝度を変えて、これを重ね合わせる事で階調表現を行う。このサブフィールド21~30は、セルの初期化を行うリセット期間31、発光、非発光を決定するアドレス期間32、実際に発光を行うSUS期間33で構成されている。
 特許文献1には、X電極及びY電極の一方の電極を一定の電位に固定する駆動方法が記載されている。具体的には、維持電極(X電極)は一定の電圧に固定した状態で、走査電極(Y電極)にのみ駆動波形を印加する構成となっている。このようにX電極及びY電極の一方に駆動波形を印加しない構成により、一方の電極を駆動する駆動回路及びボードを除去することが可能になり、プラズマディスプレイ装置の製品単価を低減することができる。
 しかし上記の構成では、X電極及びY電極の一方の電極を一定の電位に固定してしまうので、固定されていないもう一方の電極のみにしか駆動波形を印加できない。従って、例えばALIS方式のような偶数ラインと奇数ラインとを交互に表示するインタレース表示を行うことができなかった。
特開2005-338839号公報
 以上を鑑みて、本発明は、X電極及びY電極の一方に駆動波形を印加しない構成において、インタレース方式の画像表示が可能なプラズマディスプレイ装置を提供することを目的とする。
 第1の基板に複数のX電極と上記複数のX電極との間で放電を発生させる複数のY電極とが構成されたプラズマディスプレイ装置において、上記Y電極はスキャンドライバ及びサステイン回路に接続されており、上記X電極は偶数番目の表示ラインからなる偶数番グループと奇数番目の表示ラインからなる奇数番グループとに分けられ、該偶数番グループと該奇数番グループとをそれぞれ異なるスイッチを介して固定の電位に結合し、該スイッチの動作により該偶数番グループと該奇数番グループとを各々独立にハイインピーダンス状態に設定する。
 第1の基板に複数のX電極と上記複数のX電極との間で放電を発生させる複数のY電極とが構成されたプラズマディスプレイ装置において、上記X電極は一定の電位に接続されており、上記Y電極はは偶数番目の表示ラインからなる偶数番グループと奇数番目の表示ラインからなる奇数番グループとに分けられ、該偶数番グループと該奇数番グループとをそれぞれ異なるスキャンドライバに接続し、該異なるスキャンドライバがそれぞれスイッチを介してサステイン回路に接続され、該スイッチの動作により該偶数番グループと該奇数番グループとを各々独立にハイインピーダンス状態に設定する。
 本発明の少なくとも1つの実施例によれば、X電極及びY電極の一方を一定の電位に固定する駆動方式を用いる場合に、インタレース表示が可能となり、高精細化を図ることができる。
従来のPDPのパネル構造の一例を示す分解斜視図である。 PDP駆動回路の構成図である。 PDP駆動のサブフィールド構成図である。 従来のALISパネルの構成例を示す図である。 ALIS動作を説明するための図である。 ALIS方式の駆動波形を示す図である。 本発明で用いるパネル構造を示す図である。 本発明の第1の実施例によるX電極とY電極とを制御する構成を示す図である。 第1の実施例において各電極を駆動する電圧波形を示す図である。 第2の実施例によるX電極とY電極とを制御する構成を示す図である。 第2の実施例において各電極を駆動する電圧波形を示す図である。 第3の実施例による駆動波形を示す図である。 第4の実施例による駆動波形を示す図である。 1サブフレームについての駆動の様子を示す図である。 混合率αの第1の設定方法を示す図である。 図15に示す混合率αの設定方法の一例を示す図である。 混合率αの第2の設定方法を示す図である。 混合率αの第3の設定方法を示す図である。 混合率αの第4の設定方法を示す図である。 表示負荷率に応じて混合率αを制御するプラズマディスプレイ装置の構成の一例を示す図である。
符号の説明
61、71、81 プラズマディスプレイパネル
62、72 Y電極ドライバ
63、73 サステイン回路
64、74-1、74-2 スキャン回路
65、66、75、76 スイッチ
 以下に、本発明の実施例を添付の図面を用いて詳細に説明する。なお以下に説明する実施例ではX電極をGNDに固定する構成について説明しているが、本願発明はこの構成に限定されるものではない。例えば電極を固定する電位はグランド電位でなく他の電位であってもよい。また維持放電期間において、X電極に維持放電波形を印加して、Y電極を所定の電位に固定する構成であってもよい。
 図4は、従来のALISパネル(共通電極パネル)の構成例を示す図である。図5は、ALIS動作を説明するための図である。図6は、ALIS方式の駆動波形を示す図である。
 プラズマディスプレイパネル41には、X電極及びY電極が交互に配置されている。X電極は、交互に並べられた偶数番目のX電極Xeと奇数番目のX電極Xoとを含む。同様に、Y電極は、交互に並べられた偶数番目のY電極Yeと奇数番目のY電極Yoとを含む。Y電極を駆動するY電極ドライバ42は、偶数電極用のサステイン回路44-1、偶数電極用のスキャン回路45-1、奇数電極用のサステイン回路44-2、及び奇数電極用のスキャン回路45-2を含む。それぞれのスキャン回路により、アドレス放電しながらY電極を走査して各セルの発光/非発光を決定する。またそれぞれのサステイン回路により、各Y電極に維持放電波形を印加する。
 X電極を駆動するX電極ドライバ43は、偶数電極用のサステイン回路46-1及び奇数電極用のサステイン回路46-2を含む。それぞれのサステイン回路により、各X電極に維持放電波形を印加する。
 図4に示される構成により、1/60秒ごとに、偶数ラインと奇数ラインとを交互に光らせる。この様子が図5に示されている。またXe,Xo,Ye,Yoの各電極に印加する電圧波形が図6に示されている。偶数ラインを光らせる場合、サステイン時の駆動波形として、Xo,Yeに同じ駆動波形を印加し、Xe,Yoに同じ駆動波形を印加する。こうすることで、Xo,Ye間、Xe,Yo間は放電せずに、Xo,Yo間、Xe,Ye間のみ放電させることが出来る。奇数ラインを光らせる場合は、XoとXeの駆動波形を入れ替える事で同様の動作を行う事が出来る。このようにして、ALISパネルではインタレース表示を可能にし、高精細化を図っている。
 しかし、X電極をGNDに固定する駆動を行う際は、インタレース表示が出来ないという問題がある。そのため、本発明ではX電極及びY電極の一方の電極を偶数番目のグループと奇数番目のグループの2種類に分け、フレーム毎に交互に偶奇の電極の1つのグループをハイインピーダンスにする事によりインタレース表示を実現している。
 図7は、本発明で用いるパネル構造を示す図である。前面基板に設けられるBUS電極51は高い導電性を有し、透明電極52の導電性を補うよう機能する。電極Xo及びYoが対をなし奇数番目の一本の表示ラインに対応し、電極Xe及びYeが対をなし偶数番目の一本の表示ラインに対応する。電極各対の間に設けられる横隔壁53が、放電空間をライン毎に区分けしている。また縦隔壁54が、放電空間を列毎に区分けしている。下記実施例は、隣接するラインで電極を共有しないタイプのパネルで説明しているが、実施形態はこれに限らない。
 図8は、本発明の第1の実施例によるX電極とY電極とを制御する構成を示す図である。
 プラズマディスプレイパネル61には、X電極及びY電極が交互に配置されている。X電極は、交互に並べられた偶数番目のX電極Xeと奇数番目のX電極Xoとを含む。同様に、Y電極は、交互に並べられた偶数番目のY電極Yeと奇数番目のY電極Yoとを含む。Y電極を駆動するY電極ドライバ62は、サステイン回路63及びスキャン回路64を含む。スキャン回路63により、アドレス放電しながらY電極を走査して各セルの発光/非発光を決定する。またサステイン回路64により、各Y電極に維持放電波形を印加する。
 X電極は、偶数番目のX電極Xeからなる偶数番のグループと、奇数番目のX電極Xoからなる奇数番のグループに分けられる。偶数番のグループとGND間にスイッチ65が設けられ、奇数番のグループとGND間にスイッチ66が設けられる。このように、それぞれのグループの電極とGND間にスイッチを設けることで、偶数番目のX電極グループと奇数番目のX電極グループとを独立にハイインピーダンスとすることができる。
 図9は、第1の実施例において各電極を駆動する電圧波形を示す図である。図9は、奇数フレームの電圧波形を示す。図9に示されるように、偶数番目のY電極Yeと奇数番目のY電極Yoとにリセット電圧波形を印加して、リセット期間においてリセット動作を行なう。次にアドレス期間において、アドレス電極Aにアドレス電圧パルスを印加しながら、奇数番目のY電極Yoに走査電圧パルスを印加して、奇数番目の表示ラインの表示データを書き込む。最後に、サステイン期間において、偶数番目のY電極Yeと奇数番目のY電極Yoとに維持放電電圧波形を印加するとともに、偶数番目のX電極XeをHIGHインピーダンス状態に設定し、また奇数番目のX電極Xoをグランド電位に設定する。なお図9に示されるように、全ての期間において、偶数番目のX電極XeはHIGHインピーダンス状態にあり、奇数番目のX電極Xoはグランド電位にある。このようにして、偶数番目の表示ラインは非表示状態として、奇数番目の表示ラインのみを発光させることができる。
 上記とは逆に、偶数フレームでは奇数番目のX電極Xoをハイインピーダンス状態にして、偶数番目のX電極Xeをグランド電位に設定する。これにより、奇数番目の表示ラインは非表示状態として、偶数番目の表示ラインのみを発光させることができる。
 以上のようにして、インタレース表示を実現することができる。アドレス期間におけるスキャン動作は1表示ラインおきに行う。偶数フレームにおいては偶数表示ラインについてのみスキャン動作を実行し、奇数フレームにおいては奇数表示ラインについてのみスキャン動作を実行する。
 図10は、本発明の第2の実施例によるX電極とY電極とを制御する構成を示す図である。
 プラズマディスプレイパネル71には、X電極及びY電極が交互に配置されている。X電極は共通にグランド電位に接続される。Y電極は、交互に並べられた偶数番目のY電極Yeと奇数番目のY電極Yoとを含む。Y電極を駆動するY電極ドライバ72は、サステイン回路73、偶数番目用のスキャン回路74-1、奇数番目用のスキャン回路74-2、スイッチ75、及びスイッチ76を含む。スキャン回路74-1により、アドレス放電しながら偶数番目のY電極Yeを走査して、偶数番目の表示ラインにおける各セルの発光/非発光を決定する。またスキャン回路74-2により、アドレス放電しながら奇数番目のY電極Yoを走査して、奇数番目の表示ラインにおける各セルの発光/非発光を決定する。またサステイン回路73により、各Y電極に維持放電波形を印加する。
 Y電極は、偶数番目のY電極Yeからなる偶数番のグループと、奇数番目のY電極Yoからなる奇数番のグループに分けられる。偶数番のグループとサステイン回路73との間にスイッチ75が設けられ、奇数番のグループとサステイン回路73との間にスイッチ76が設けられる。このように、それぞれのグループの電極とサステイン回路73との間にスイッチを設けることで、偶数番目のY電極グループと奇数番目のY電極グループとに独立に維持放電電圧波形を印加することができる。
 図11は、第2の実施例において各電極を駆動する電圧波形を示す図である。図11は、奇数フレームの電圧波形を示す。図11に示されるように、奇数フレームでは偶数番目のY電極Yeをハイインピーダンス状態にして偶数表示ラインの放電を抑制する。即ち奇数番目の表示ラインのみを発光状態とする。
 逆に偶数フレームにおいては、奇数番目のY電極Yoをハイインピーダンス状態にして奇数表示ラインの放電を抑制する。即ち偶数番目の表示ラインのみを発光状態とする。
 以上のようにして、インタレース表示を実現することができる。アドレス期間におけるスキャン動作は1表示ラインおきに行う。偶数フレームにおいては偶数表示ラインについてのみスキャン動作を実行し、奇数フレームにおいては奇数表示ラインについてのみスキャン動作を実行する。
 図12は、本発明の第3の実施例による駆動波形を示す図である。第3の実施例における電極構造及び回路構成は図8に示されるものと同様である。
 少なくとも1つのサブフレームにおいて、偶数番のグループ及び奇数番のグループの両方においてリセット放電及びアドレス放電を行う。アドレス期間においては、奇数フレームでは、2n+1番目のラインと2n+2番目のラインを同時にスキャン動作し、同一データを書き込む。また偶数フレームでは、2n+2番目のラインと2n+3番目のラインを同時にスキャン動作し、同一データを書き込む。
 図12に示されるように、サステイン期間が第1のサステイン期間と第2のサステイン期間とからなる。Y電極については、第1のサステイン期間及び第2サステイン期間の両方においてサステインパルスを印加する。X電極については、第1のサステイン期間では、偶数番のグループと奇数番のグループとの両方がグランド電圧に接続される。これにより、第1のサステイン期間では、偶数番のグループと奇数番のグループとの両方において維持放電が行なわれる。第2サステイン期間においては、偶数フレームであれば、奇数番目のX電極をハイインピーダンス状態にして奇数表示ラインの放電を抑制する。逆に奇数フレームであれば、偶数番目のX電極をハイインピーダンス状態にして偶数表示ラインの放電を抑制する。偶数番目の表示ラインと奇数番目の表示ラインとを同時に点灯させる期間があるので、第1実施例よりも高輝度が得られる。
 図13は、本発明の第4の実施例による駆動波形を示す図である。第4の実施例における電極構造及び回路構成は図10に示されるものと同様である。
 少なくとも1つのサブフレームにおいて、偶数番のグループ及び奇数番のグループの両方においてリセット放電及びアドレス放電を行う。但し、アドレス期間においては、奇数フレームでは、2n+1番目のラインと2n+2番目のラインを同時にスキャン動作して、同一データを書き込む。また偶数フレームでは、2n+2番目のラインと2n+3番目のラインを同時にスキャン動作し、同一データを書き込む。
 サステイン期間は、第1サステイン期間と第2サステイン期間とからなる。Y電極については、第1サステイン期間において、偶数番のグループと奇数番のグループとの両方にサステインパルスを印加する。第2サステイン期間においては、偶数フレームでは、奇数番目のY電極をハイインピーダンス状態にして奇数表示ラインの放電を抑制する。逆に奇数フレームでは、偶数番目のY電極をハイインピーダンス状態にして偶数表示ラインの放電を抑制する。偶数番目の表示ラインと奇数番目の表示ラインとを同時に点灯させる期間があるので、第2実施例よりも高輝度が得られる。
 第3の実施例及び第4の実施例では、同一データが書き込まれる一対の2本の表示ラインのうちで、一方の表示ラインの表示放電数を、他方の表示ラインの表示放電数に対して一定の割合で少なくする。これにより、1ライン表示と2ライン表示の中間の画像となる。少ない方のサステイン放電数の他方の放電数に対する比、即ち「第1サステイン期間+第2サステイン期間」に対する「第1サステイン期間」の時間割合を、2ライン点灯の割合を示す混合率αとする。O<α<1である。
 図14は、1サブフレームについての駆動の様子を示す図である。図14に示すように、一対の組になる2本の表示ラインのうちで、サステイン放電数を減らさない表示ラインが全点灯したときの輝度をLとしたとき、もう一方の表示ラインを全点灯したときの輝度がαLである。製造ばらつきがあったとしても、輝度向上を得るには、αが0.05以上であることが好ましい。また、より輝度向上の効果を得るためには、αがO.2以上であることが好ましい。
 なお一対の組になる2本の表示ラインに同一のデータを表示すると、表示ラインに垂直な縦方向の解像度が劣化する。偶数フレームで偶数番目の表示ラインを表示し、奇数フレームで奇数番目の表示ラインを表示する場合には、表示ライン一本ごとに表示データが異なるので、表示ライン一本分の解像度がある。αが大きくなり、各フレームにおいて2本の表示ラインが同一データで表示される割合が高くなると、解像度は表示ライン2本分となってしまう。従って、解像度の向上効果を得るためには、αが0.8以下であることが好ましい。より好ましくは、αが0.5以下であることが望ましい。
 以下に、混合率αの設定方法の例を説明する。なお、以下に示す例では、プラズマディスプレイパネルの表示負荷率の変化に対して線形に混合率αを変化させているが、これに限定されず、表示負荷率の変化に対する混合率αの変化が非線形であってもよい。
 まず表示負荷率について説明する。1表示フレームにおいて全てのセルを総発光パルス数で点灯した場合において、各セルの発光パルス数の画面全体の合計を最大発光パルス数とする。また、ある表示データに応じて1表示フレーム分の画像を表示した場合において、各セルの発光パルス数の画面全体の合計を表示発光パルス数とする。この表示発光パルス数の最大発光パルス数に対する割合を表示負荷率と呼ぶ。表示負荷率は、全セルを黒表示する時が0%であり、全セルを最大輝度で表示する時が100%である。
 一般に、表示負荷率が所定値を越えない時には総発光パルス数を固定の個数とし、表示負荷率が所定値を越えた時には総発光パルス数を減少させて消費電力が表示パネルの限界電力を越えないように制御する構成が用いられる。このように表示負荷率に応じて総発光パルス数を制御する制御を、APC(Auto Power Control)と呼ぶ。例えば、表示負荷率が所定の値(APCポイント)より低い場合に、APCにより総発光パルス数を減少させることが行なわれる。
 図15は、混合率αの第1の設定方法を示す図である。図15に示すように、プラズマディスプレイパネルの表示負荷率が、ある値(第1のしきい値)より高い場合には混合率αを0に設定する。また表示負荷率が第1のしきい値以下の場合には、表示負荷率が下がるに従って混合率αを徐々に増加させていく。
 図16は、図15に示す混合率αの設定方法の一例を示す図である。表示負荷率がAPCポイントより低い領域では、表示負荷率の低下に伴って2ライン点灯の混合率αを増大させるように制御を行う。図13には、表示負荷率に対する最大輝度(最高階調時の輝度)と混合率αとが示されている。表示負荷率がAPCポイントより低い領域で、2ライン点灯の混合率αを表示負荷率に応じて増加させることにより最大輝度も増大している。
 図17は、混合率αの第2の設定方法を示す図である。図17(A)は輝度重みの軽い下位のサブフレームの混合率を示し、図17(B)は輝度重みの重い上位のサブフレームの混合率を示す。輝度重みの軽い下位のサブフレームでは2ライン点灯の制御を行わず、輝度重みの重い上位のサブフレームでのみ2ライン点灯の制御を行っている。即ち下位のサブフレームでは、プラズマディスプレイパネルの表示負荷率に関わらず、2ライン点灯の混合率αを常に0とする。また上位のサブフレームでは、表示負荷率がある値(第1のしきい値)より高い場合には2ライン点灯の混合率αを0とし、第1のしきい値以下では表示負荷率が下がるに従って混合率αを徐々に増加させていく。
 上述した図16の設定方法では、すべてのサブフレームで一律に2ライン点灯の混合率αを制御しているが、輝度重みの軽い下位のサブフレームについては、サステイン放電数(サステインパルス数)が少ないので、2ライン点灯を行う効果は小さい。下位のサブフレームについては、2ライン点灯を行うことよりも、1ライン点灯により最小輝度を小さくして階調を細かく制御可能とすることの方が重要である。そこで、下位のサブフレームでは、図17(A)に示すように2ライン点灯の制御を行わず、上位のサブフレームで図17(B)に示すように表示負荷率に応じた2ライン点灯の制御を行う。
 図18は、混合率αの第3の設定方法を示す図である。プラズマディスプレイパネルの表示負荷率が第1のしきい値以下では、表示負荷率が下がるに従って混合率αを徐々に増加させる。また表示負荷率が第1のしきい値より高く第2のしきい値以下では、2ライン点灯の混合率αを0とする。更に、表示負荷率が第2のしきい値より高い場合には、表示負荷率が上がるに従って混合率αを徐々に増加させていく。
 高表示負荷率の領域では、前述のように全電力を一定に保つように制御が行われるため、2ライン点灯による大きな輝度向上はない。しかし、1ライン点灯時は、非点灯ラインは点灯していなくとも線間容量への充放電による無効電力消費がある。したがって、2ライン点灯を行うと点灯セル数に対する無効電力の値が減るため、無効電力低減分だけ輝度上昇を図ることができる。また、表示負荷率が100%近傍の領域では、画面全体が白一色の状態に近いので、解像度はあまり必要でない。そこで、解像度がそれほど必要でない表示負荷率が100%近傍の領域において、2ライン点灯の混合率αを表示負荷率に応じて増加させることで、無効電力を低減し輝度を向上させることが可能となる。
 図19は、混合率αの第4の設定方法を示す図である。図19(A)は輝度重みの軽い下位のサブフレームの混合率を示し、図19(B)は輝度重みの重い上位のサブフレームの混合率を示す。図19(A)に示すように、表示負荷率に関わらず、輝度重みの軽い下位のサブフレームでは2ライン点灯動作を常に行わない。また図19(B)に示すように、輝度重みの重い上位のサブフレームでは2ライン点灯動作を常に行う。即ち、下位のサブフレームでは混合率αを常に0として1ライン点灯を行い、上位のサブフレームでは混合率αを常に1として2ライン点灯を行うことになる。
 この混合率αの第4の設定方法によれば、回路構成を複雑化することなく、簡単な回路構成でインタレース駆動を実現することができる。また、表示負荷率にかかわらず、下位のサブフレームであるか上位のサブフレームであるかに応じて、2ライン点灯の制御を行うか否かを切り替える構成である。従って、2ライン点灯の制御に係る回路構成を簡素化することができる。
 なお、混合率αは0~1の範囲のすべての値を取りうるようにしているが、本発明はこれに限定されるものではない。例えば、混合率αが0.2以下の値とならないように制御してもよい。また例えば、混合率αが0.8以上の値とならないように制御してもよい。
 図20は、表示負荷率に応じて混合率αを制御するプラズマディスプレイ装置の構成の一例を示す図である。図20に示されるプラズマディスプレイ装置は、プラズマディスプレイパネル81、アドレス電極駆動回路82、走査電極駆動回路83、維持電極駆動回路84、A/D変換器85、負荷率検出回路86、SUSパルス数決定回路87、閾値判定回路88、α値決定回路89、及び駆動信号生成回路90を含む。
 A/D変換器85は、表示データのアナログ入力信号をA/D変換してデジタル表示データを生成する。負荷率検出回路86は、デジタル表示データに基づいて表示負荷率を演算する。プラズマディスプレイパネル81への表示のために、表示データは一旦メモリ(図示せず)に格納される。この際、表示データは、各サブフレーム毎の各画素の点灯/非点灯を示すデータに変換してからメモリに格納される。表示負荷率を計算するためには、この変換後のデータにおける各サブフレーム毎の点灯画素数をカウントして表示発光パルス数を求め、この表示発光パルス数の最大発光パルス数に対する割合を求めればよい。
 SUSパルス数決定回路87は、計算された表示負荷率に基づいて、1表示フレームあたりのサステインパルスの総数である総発光パルス数を決定する。一般に、総発光パルス数が表示負荷率の関数として予め定義されており、表示負荷率を入力として関数に従った出力値を求めればよい。閾値判定回路88は、表示負荷率が例えば図16に示すAPCポイント以下であるか否かを判定する。α値決定回路89は、閾値判定回路88による判定の結果と表示負荷率の値とに基づいて、混合率αを求める。駆動信号生成回路90は、求められた混合率αに応じて、アドレス電極駆動回路82、走査電極駆動回路83、及び維持電極駆動回路84に供給する駆動信号を生成する。即ち、駆動信号生成回路90が混合率αに応じて駆動信号を生成することにより、この駆動信号に基づいて維持電極駆動回路84が動作して維持放電波形を生成し、図14に示される2ライン駆動の期間の割合がαとなるように維持放電動作が制御される。
 以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。

Claims (10)

  1.  第1の基板に複数のX電極と上記複数のX電極との間で放電を発生させる複数のY電極とが構成されたプラズマディスプレイ装置において、上記Y電極はスキャンドライバ及びサステイン回路に接続されており、上記X電極は偶数番目の表示ラインからなる偶数番グループと奇数番目の表示ラインからなる奇数番グループとに分けられ、該偶数番グループと該奇数番グループとをそれぞれ異なるスイッチを介して固定の電位に結合し、該スイッチの動作により該偶数番グループと該奇数番グループとを各々独立にハイインピーダンス状態に設定することを特徴とするプラズマディスプレイ装置。
  2.  1フレームを複数のサブフレームからなる駆動波形にて駆動し、少なくとも1つのサブフレームにアドレス期間とサステイン期間とが含まれ、該サステイン期間において上記偶数番グループと上記奇数番グループとの一方のX電極をハイインピーダンスにすることによりサステイン放電を抑制することを特徴とする請求項1に記載のプラズマディスプレイ装置。
  3.  上記少なくとも1つのサブフレームのサステイン期間の全期間において上記偶数番グループと上記奇数番グループとの一方の表示ラインのサステイン放電を抑制することを特徴とする請求項2に記載のプラズマディスプレイ装置。
  4.  上記少なくとも1つのサブフレームのアドレス期間において、隣接する2つの表示ラインに同一のデータを書き込むことを特徴とする請求項2に記載のプラズマディスプレイ装置。
  5.  上記少なくとも1つのサブフレームのサステイン期間において、上記偶数番グループと上記奇数番グループとの一方の表示ラインのサステイン放電を抑制する割合を表示負荷率に応じて制御することを特徴とする請求項4に記載のプラズマディスプレイ装置。
  6.  第1の基板に複数のX電極と上記複数のX電極との間で放電を発生させる複数のY電極とが構成されたプラズマディスプレイ装置において、上記X電極は一定の電位に接続されており、上記Y電極はは偶数番目の表示ラインからなる偶数番グループと奇数番目の表示ラインからなる奇数番グループとに分けられ、該偶数番グループと該奇数番グループとをそれぞれ異なるスキャンドライバに接続し、該異なるスキャンドライバがそれぞれスイッチを介してサステイン回路に接続され、該スイッチの動作により該偶数番グループと該奇数番グループとを各々独立にハイインピーダンス状態に設定することを特徴とするプラズマディスプレイ装置。
  7.  1フレームを複数のサブフレームからなる駆動波形にて駆動し、少なくとも1つのサブフレームにアドレス期間とサステイン期間とが含まれ、該サステイン期間において上記偶数番グループと上記奇数番グループとの一方のY電極をハイインピーダンスにすることによりサステイン放電を抑制することを特徴とする請求項6に記載のプラズマディスプレイ装置。
  8.  上記少なくとも1つのサブフレームのサステイン期間の全期間において上記偶数番グループと上記奇数番グループとの一方の表示ラインのサステイン放電を抑制することを特徴とする請求項7に記載のプラズマディスプレイ装置。
  9.  上記少なくとも1つのサブフレームのアドレス期間において、隣接する2つの表示ラインに同一のデータを書き込むことを特徴とする請求項7に記載のプラズマディスプレイ装置。
  10.  上記少なくとも1つのサブフレームのサステイン期間において、上記偶数番グループと上記奇数番グループとの一方の表示ラインのサステイン放電を抑制する割合を表示負荷率に応じて制御することを特徴とする請求項9に記載のプラズマディスプレイ装置。
PCT/JP2008/052675 2008-02-18 2008-02-18 プラズマディスプレイ装置 WO2009104243A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052675 WO2009104243A1 (ja) 2008-02-18 2008-02-18 プラズマディスプレイ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052675 WO2009104243A1 (ja) 2008-02-18 2008-02-18 プラズマディスプレイ装置

Publications (1)

Publication Number Publication Date
WO2009104243A1 true WO2009104243A1 (ja) 2009-08-27

Family

ID=40985138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052675 WO2009104243A1 (ja) 2008-02-18 2008-02-18 プラズマディスプレイ装置

Country Status (1)

Country Link
WO (1) WO2009104243A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261699A (ja) * 1994-02-01 1995-10-13 Fujitsu Ltd 平面表示装置及びその駆動方法
JPH08320667A (ja) * 1995-05-24 1996-12-03 Fujitsu Ltd プラズマパネルの駆動方法、駆動装置及び画像表示装置
JPH10133621A (ja) * 1996-10-30 1998-05-22 Mitsubishi Electric Corp プラズマディスプレイ
JP2001005422A (ja) * 1999-06-25 2001-01-12 Mitsubishi Electric Corp プラズマディスプレイ装置駆動方法およびプラズマディスプレイ装置
JP2001035395A (ja) * 1999-06-30 2001-02-09 Samsung Sdi Co Ltd プラズマ表示パネル及びその駆動方法
JP2001075526A (ja) * 1999-09-01 2001-03-23 Hitachi Ltd 表示装置及びその制御方法
JP2005338839A (ja) * 2004-05-25 2005-12-08 Samsung Sdi Co Ltd プラズマ表示パネルの駆動方法及びプラズマ表示装置
JP2005352484A (ja) * 2004-06-08 2005-12-22 Au Optronics Corp フラットディスプレイ装置を駆動する回路及び方法とシステム
WO2007004305A1 (ja) * 2005-07-06 2007-01-11 Fujitsu Hitachi Plasma Display Limited プラズマディスプレイモジュール及びその駆動方法、プラズマディスプレイ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261699A (ja) * 1994-02-01 1995-10-13 Fujitsu Ltd 平面表示装置及びその駆動方法
JPH08320667A (ja) * 1995-05-24 1996-12-03 Fujitsu Ltd プラズマパネルの駆動方法、駆動装置及び画像表示装置
JPH10133621A (ja) * 1996-10-30 1998-05-22 Mitsubishi Electric Corp プラズマディスプレイ
JP2001005422A (ja) * 1999-06-25 2001-01-12 Mitsubishi Electric Corp プラズマディスプレイ装置駆動方法およびプラズマディスプレイ装置
JP2001035395A (ja) * 1999-06-30 2001-02-09 Samsung Sdi Co Ltd プラズマ表示パネル及びその駆動方法
JP2001075526A (ja) * 1999-09-01 2001-03-23 Hitachi Ltd 表示装置及びその制御方法
JP2005338839A (ja) * 2004-05-25 2005-12-08 Samsung Sdi Co Ltd プラズマ表示パネルの駆動方法及びプラズマ表示装置
JP2005352484A (ja) * 2004-06-08 2005-12-22 Au Optronics Corp フラットディスプレイ装置を駆動する回路及び方法とシステム
WO2007004305A1 (ja) * 2005-07-06 2007-01-11 Fujitsu Hitachi Plasma Display Limited プラズマディスプレイモジュール及びその駆動方法、プラズマディスプレイ装置

Similar Documents

Publication Publication Date Title
US6531995B2 (en) Plasma display panel, method of driving same and plasma display apparatus
KR100508985B1 (ko) 플라즈마 디스플레이 패널 및 그의 구동방법
JPH09160525A (ja) プラズマディスプレイパネル及びその駆動方法並びにプラズマディスプレイ装置
JP3421578B2 (ja) Pdpの駆動方法
US20090153441A1 (en) Plasma Display Device
US7075243B2 (en) Driving apparatus for plasma display panel and gray level expressing method thereof
US7123217B2 (en) Method for driving plasma display panel
JPWO2008126338A1 (ja) プラズマ表示装置及び該プラズマ表示装置に用いられる駆動方法
JP4264044B2 (ja) パネル駆動方法及びディスプレイパネル
JP4604906B2 (ja) 画像表示方法
WO2009104243A1 (ja) プラズマディスプレイ装置
JPH08179726A (ja) プラズマディスプレイパネル
EP2031574A1 (en) Plasma display device
JPWO2008087805A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
KR100349924B1 (ko) 플라즈마 표시패널의 구동방법
KR20030090370A (ko) 3전극 면방전형 교류 플라즈마 디스플레이 패널
US20100118009A1 (en) Plasma display panel display apparatus and method for driving the same
JP2005017411A (ja) プラズマディスプレイ装置
JPWO2007088601A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JP2002358046A (ja) ガス放電パネル
JP5150632B2 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
KR100515339B1 (ko) 플라즈마 표시 패널 및 그의 구동방법
JP4997932B2 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JP2009053548A (ja) プラズマディスプレイ装置
JP2009128384A (ja) プラズマディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP