WO2009101850A1 - マイクロチップの製造方法、及びマイクロチップ - Google Patents

マイクロチップの製造方法、及びマイクロチップ Download PDF

Info

Publication number
WO2009101850A1
WO2009101850A1 PCT/JP2009/051070 JP2009051070W WO2009101850A1 WO 2009101850 A1 WO2009101850 A1 WO 2009101850A1 JP 2009051070 W JP2009051070 W JP 2009051070W WO 2009101850 A1 WO2009101850 A1 WO 2009101850A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin substrate
resin
substrate
microchip
substrates
Prior art date
Application number
PCT/JP2009/051070
Other languages
English (en)
French (fr)
Inventor
Naoki Shimizu
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2009553384A priority Critical patent/JPWO2009101850A1/ja
Publication of WO2009101850A1 publication Critical patent/WO2009101850A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/0338Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers

Definitions

  • the present invention relates to a method of manufacturing a microchip by bonding a resin substrate on which a channel groove is formed, and a microchip manufactured by the bonding.
  • a micro-analysis chip that uses microfabrication technology to form fine channels and circuits on silicon and glass substrates, and to perform chemical reactions, separation, and analysis of liquid samples such as nucleic acids, proteins, and blood in a minute space
  • ⁇ TAS Micro Total Analysis Systems
  • a microchip is manufactured by bonding two members having at least one member subjected to microfabrication.
  • a glass substrate is used for the microchip, and various fine processing methods have been proposed.
  • glass substrates are not suitable for mass production and are extremely expensive, development of inexpensive and disposable resin microchips is desired.
  • a method of manufacturing a resin microchip there is a method of joining a resin substrate on which a channel groove is formed and a resin substrate that covers the channel groove.
  • a welding method for heating and bonding resin substrates using hot plates, hot air, hot rolls, ultrasonic waves, vibration, laser, etc., and bonding resin substrates using adhesives and solvents Examples include a bonding method for bonding, a method for bonding using the adhesiveness of the resin substrate itself, and a method for bonding substrates by performing a surface treatment such as plasma treatment on the resin substrate.
  • a bonding positioning hole is formed in the resin substrate with a channel groove formed.
  • the cover member is formed with a predetermined dimension smaller than the resin substrate on which the channel groove is formed so as not to cover the positioning hole (for example, Patent Document 3).
  • the joint surface of the resin substrate may be peeled off, and peeling of the joint surface in the vicinity of the flow path causes the analysis sample to leak from the flow path. Even if the separation is a small separation that cannot be confirmed without observation with a microscope, the flow and movement of the analysis sample in the flow path may change. Therefore, strong bonding strength is required for the microchip.
  • a flow control mechanism for controlling the flow of the sample in the flow path, and for performing analysis on the microchip.
  • a reaction mechanism and the like are provided.
  • a method of molding a resin substrate on which a channel groove is formed there are methods such as an injection molding method, a press molding method, and a machining method.
  • the heat input condition and the pressurizing condition in the vicinity of the mechanism are likely to be non-uniform in the molding, and the molding accuracy is likely to deteriorate.
  • the planar accuracy of the surface especially around the mechanism such as the protrusion tends to deteriorate.
  • the surface accuracy of the mold is transferred, the surface accuracy of the mold is also required. For this reason, when a microchip is manufactured by bonding a resin substrate having a mechanism on the surface, there is a problem that the bonding strength tends to be lower than when a resin substrate having no mechanism on the surface is bonded.
  • a resin substrate having a channel groove formed thereon is produced by an injection molding method
  • the planar accuracy of the surface can be improved by using heat cycle molding.
  • the manufacturing cost of the resin substrate increases due to the introduction of equipment used for heat cycle molding and the prolonged molding cycle.
  • a resin substrate having a channel groove formed on the surface is manufactured by injecting resin into a cavity space formed by a molding die through an injection molding gate. Even if the surface accuracy can be improved by heat cycle molding, there is a problem that the planar accuracy of the substrate surface in the vicinity of the gate portion deteriorates in the step of separating the molded resin substrate and the injection molded gate portion.
  • the present invention solves the above-described problem, and a method for manufacturing a microchip capable of increasing the bonding strength of a resin substrate having a concavo-convex member provided on the surface, and the bonding strength between the resin substrates are enhanced.
  • An object is to provide a microchip.
  • a channel groove is formed on the surface of at least one of the two resin substrates, and at least one of the two resin substrates has A through-hole is formed, a concavo-convex member is provided on the surface of at least one resin substrate that is not joined to the other resin substrate, and the two resin substrates are formed with the channel groove.
  • a microchip manufacturing method wherein an injection-molded gate portion is passed through a cavity space formed by a mold and the gate portion is cut. And further including a substrate manufacturing step of manufacturing a resin substrate in which the channel groove is formed on the surface. In the bonding step, an end portion of at least one resin substrate of the two resin substrates is formed. A part is made inward of the end of the other resin substrate, and the surface near the gate portion of the resin substrate in which the channel groove is formed is not covered with another resin substrate. The two resin substrates are bonded together.
  • a third aspect of the present invention is a method of manufacturing a microchip according to the second aspect.
  • the flow path groove is formed by injecting resin through the gate portion.
  • a molded body left in the gate part used at the time of injection molding is produced by protruding the outer peripheral part, and a resin substrate is produced.
  • the joining step the two resin substrates are joined by avoiding the surface in the vicinity of the molded body and with the surface on which the channel groove is formed facing inside.
  • a microchip manufacturing method according to any one of the first to third aspects, wherein the bonding step is performed within 1 mm from a corner of the other resin substrate.
  • the one resin substrate is bonded to the other resin substrate while avoiding the surface included in the range.
  • a microchip manufacturing method according to any one of the first to fourth aspects, wherein in the joining step, all end portions of the other resin substrate are formed.
  • the one resin substrate is bonded to the other resin substrate while avoiding the surface included in the range of 1 mm or less.
  • a microchip manufacturing method according to any one of the first to fifth aspects, wherein the channel groove is formed on a surface of the other resin substrate.
  • the one resin substrate is a flat substrate and has a shape along the channel groove formed in the other resin substrate.
  • the two resin substrates are bonded to each other by overlapping the resin substrate with the other resin substrate in accordance with the position of the channel groove formed on the other resin substrate. .
  • a microchip manufacturing method wherein all the end portions of the one resin substrate are connected to the one resin substrate. Included within a range of 2 mm or less from the channel groove formed on the other resin substrate when the channel is overlapped with the other resin substrate in accordance with the position of the channel groove formed on the substrate. It is characterized by that.
  • the channel grooves are independent plural grooves that are not connected to each other.
  • the one resin substrate includes a plurality of individual substrates corresponding to the number of the plurality of grooves, and each of the plurality of individual substrates is a flat substrate and is formed on the other resin substrate.
  • the individual substrate and the other resin substrate are bonded to each of the independent grooves.
  • a microchip manufacturing method wherein the plurality of individual substrates are formed on the other resin substrate at all ends of the individual substrate.
  • the groove is included within a range of 2 mm from the groove formed on the other resin substrate.
  • the concavo-convex member is a resin substrate on which the through hole is formed. It is a projection provided around the through hole and protruding in the thickness direction of the resin substrate.
  • An eleventh aspect of the present invention is a microchip manufacturing method according to any one of the first to tenth aspects, wherein the two resin substrates are made of a thermoplastic resin. It is characterized by.
  • a twelfth aspect of the present invention is a microchip manufacturing method according to any of the first to eleventh aspects, wherein the two resin substrates are stacked in a state where the two resin substrates are stacked.
  • the bonding is performed by heating and welding the substrates.
  • a microchip manufacturing method according to any one of the first to twelfth aspects, wherein a microchip used for electrophoretic analysis is manufactured by the bonding.
  • a channel groove is formed on the surface of at least one of the two resin substrates, and at least one resin substrate of the two resin substrates.
  • a microchip in which the two resin substrates are joined with the surface on which the channel groove is formed inside, the through hole and the channel groove Are connected, and an uneven member is provided on the surface of at least one of the two resin substrates that is not bonded, and at least one resin substrate of the two resin substrates.
  • the microchip is characterized in that a part of the end is provided inside the end of the other resin substrate.
  • the microchip according to the fourteenth aspect wherein the resin substrate on which the channel groove is formed is formed by injection molding in a cavity space formed by a molding die.
  • the substrate is produced by injecting resin through a portion and cutting the gate portion, and a part of an end portion of at least one resin substrate of the two resin substrates is formed on the other resin substrate.
  • the two resin substrates are joined so that other resin substrates do not cover the surface in the vicinity of the gate portion of the resin substrate on which the flow path grooves are formed, inside the end portion. It is characterized by.
  • a sixteenth aspect of the present invention is the microchip according to the fifteenth aspect, wherein a part of the cut gate portion protrudes from an outer peripheral portion of the resin substrate, The two resin substrates are bonded so as to avoid the surface.
  • a microchip according to any one of the fourteenth to sixteenth aspects, avoiding a surface included in a range within 1 mm from a corner of the other resin substrate.
  • the one resin substrate and the other resin substrate are bonded to each other.
  • the microchip according to the seventeenth aspect wherein a surface included in a range within 1 mm from all end portions of the other resin substrate is avoided, A resin substrate and the other resin substrate are bonded to each other.
  • the nineteenth aspect of the present invention is the microchip according to any of the fourteenth to eighteenth aspects, wherein the flow path groove is formed on the surface of the other resin substrate,
  • the one resin substrate is a flat substrate and has a shape along the channel groove formed in the other resin substrate, and the one resin substrate is the other substrate. It is characterized in that it is bonded to the other resin substrate in accordance with the position of the channel groove formed on the resin substrate.
  • the twentieth aspect of the present invention is the microchip according to the nineteenth aspect, wherein all end portions of the one resin substrate are formed on the other resin substrate. It is included in the range within 2 mm from the groove.
  • a twenty-first aspect of the present invention is the microchip according to any one of the fourteenth to nineteenth aspects, wherein the flow path groove includes a plurality of independent grooves that are not connected to each other,
  • the one resin substrate includes a number of individual substrates corresponding to the number of the plurality of grooves, and each of the plurality of individual substrates is a flat substrate, and is formed on the other resin substrate.
  • a substrate having a shape along each of the plurality of grooves, and each of the plurality of individual substrates is provided with an independent groove in accordance with a position of each of the plurality of grooves formed on the other resin substrate. And the other resin substrate.
  • a twenty-second aspect of the present invention is the microchip according to the twenty-first aspect, wherein all end portions of the individual substrate are within a range of 2 mm from the groove formed in the other resin substrate. It is included in.
  • the microchip according to any one of the fourteenth to twenty-second aspects, wherein the concavo-convex member is the through hole of the resin substrate on which the through hole is formed. And is a protrusion protruding in the thickness direction of the resin substrate.
  • a twenty-fourth aspect of the present invention is a microchip according to any one of the fourteenth to twenty-third aspects, wherein the two resin substrates are made of a thermoplastic resin. To do.
  • a twenty-fifth aspect of the present invention is a microchip according to any one of the fourteenth to twenty-fourth aspects, wherein the two resin substrates are joined by heating and welding. It is characterized by.
  • the twenty-sixth aspect of the present invention is a microchip according to any of the fourteenth to twenty-fifth aspects, and is characterized in that it is used for electrophoretic analysis.
  • the bonding surface becomes smaller. It becomes possible to reduce the influence of the plane accuracy in the joining. As a result, it is possible to increase the bonding strength of the microchip even when bonding a resin substrate on which a concavo-convex member having a lower bonding strength is formed.
  • FIG. 2 is a cross-sectional view of one resin substrate according to the first embodiment of the present invention, and is a cross-sectional view taken along the line II-II in FIG. It is a top view of the other resin substrate according to the first embodiment of the present invention.
  • 1 is a top view of a microchip according to a first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the microchip according to the first embodiment of the present invention, and is a VV cross-sectional view of FIG. It is a top view of one resin-made board
  • FIG. 9 is a cross-sectional view of a microchip according to a modification of the first embodiment, and is a cross-sectional view taken along the line IX-IX in FIG. It is a top view of the microchip which concerns on 2nd Embodiment of this invention.
  • FIG. 11 is a cross-sectional view of a microchip according to a second embodiment of the present invention, and is a cross-sectional view taken along the line XI-XI in FIG.
  • FIG. 13 is a cross-sectional view of a microchip according to a modification of the second embodiment, and is a cross-sectional view taken along the line XIII-XIII of FIG. It is a top view of the microchip which concerns on 3rd Embodiment of this invention.
  • FIG. 15 is a cross-sectional view of a microchip according to a third embodiment of the present invention, and is a cross-sectional view along XV-XV in FIG. 14. It is a top view of the resin-made board
  • FIG. 18 is a cross-sectional view of a microchip according to a fourth embodiment of the present invention, and is a cross-sectional view of XVIII-XVIII in FIG. It is a top view of the microchip which concerns on the modification of 4th Embodiment. It is a top view of the microchip which concerns on 5th Embodiment of this invention.
  • FIG. 21 is a cross-sectional view of a microchip according to a fifth embodiment of the present invention, and is a cross-sectional view of XXI-XXI in FIG. 20.
  • FIG. 1 is a top view of one resin substrate according to the first embodiment of the present invention.
  • 2 is a cross-sectional view of one resin substrate according to the first embodiment of the present invention, and is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a top view of the other resin substrate according to the first embodiment of the present invention.
  • FIG. 4 is a top view of the microchip according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the microchip according to the first embodiment of the present invention, and is a cross-sectional view taken along the line VV of FIG.
  • the resin substrate 10 has, for example, a quadrangular outer shape such as a square or a rectangle.
  • a straight channel groove 11 and a straight channel groove 12 are formed on one surface of the resin substrate 10.
  • the channel groove 11 and the channel groove 12 are formed on the surface of the resin substrate 10 so as to be orthogonal to each other.
  • the channel groove 11 and the channel groove 12 may be formed on the resin substrate 10 without being orthogonal to each other.
  • through holes 13 are formed in both ends of the flow channel groove 11 and the flow channel groove 12 so as to penetrate in the thickness direction of the resin substrate 10.
  • the through hole 13 is connected to the ends of the channel groove 11 and the channel groove 12.
  • the resin substrate 10 according to the first embodiment is provided with an uneven member on the surface opposite to the surface on which the flow path grooves 11 and 12 are formed.
  • the resin substrate 10 is provided with a cylindrical protrusion 14 on the surface opposite to the surface on which the channel grooves 11 and 12 are formed.
  • the protrusion 14 protrudes in the thickness direction of the resin substrate 10 and is provided so as to surround the through hole 13.
  • a tube or a nozzle is fitted to the protrusion 14 to introduce or discharge a sample or the like.
  • the projection part 14 shown in FIG. 1 has a cylindrical shape, this is an example and may have a polygonal shape.
  • the resin substrate 20 to be joined to the resin substrate 10 is a flat substrate and has a substantially octagonal outer shape.
  • the resin substrate 20 has a shape in which each corner of the substrate having a square shape is cut obliquely. Each corner of the resin substrate 20 may be curved.
  • the size of the resin substrate 20 is smaller than that of the resin substrate 10 and is used for joining the resin substrate 10 while avoiding the surface near the corner of the resin substrate 10.
  • the microchip is manufactured by bonding the resin substrate 10 and the resin substrate 20 with the surface on which the flow channel grooves 11 and 12 are formed facing inside. .
  • the resin substrate 20 functions as a lid (cover) for the flow path grooves 11 and 12
  • the fine flow path 15 is formed by the flow path groove 11
  • the fine flow path 16 is formed by the flow path groove 12. It is formed.
  • through holes 13 are formed in both ends of the flow path groove 11 and the flow path groove 12 in the resin substrate 10, and by joining the resin substrate 10 and the resin substrate 20, Openings 17 are formed in the microchip.
  • the microchip according to the first embodiment includes the resin substrate 10 and the resin substrate 20. Inside the microchip, a linear microchannel 15 and a microchannel 16 are formed orthogonal to each other, and openings 17 are provided at both ends of the microchannel 15 and the microchannel 16. Is formed.
  • the opening 17 is a hole for introducing, storing, and discharging the gel, sample, and buffer solution.
  • the shape of the opening 17 (through hole 13) may be various shapes other than a circular shape and a rectangular shape.
  • the tube or nozzle provided in the analyzer is fitted to the protrusion 14 to connect the tube or nozzle to the opening 17.
  • a gel, a sample, a buffer solution, or the like is introduced into the microchannels 15 and 16 through the tube or nozzle, or the sample or the like is discharged from the microchannels 15 and 16.
  • the outer shape of the resin substrate 20 is a substantially octagonal shape, and the size of the resin substrate 20 is smaller than the size of the resin substrate 10, so that the vicinity of the corner of the resin substrate 10 is increased.
  • the resin substrate 10 and the resin substrate 20 are joined to avoid the surface. Thereby, since the surface where the resin substrate 10 and the resin substrate 20 are joined becomes small, the range affected by the plane accuracy in joining becomes smaller. As a result, even if the surface has a relatively low planar accuracy, the influence of the surface can be reduced and the resin substrate 10 and the resin substrate 20 can be joined. As a result, the bonding strength between the resin substrate 10 and the resin substrate 20 can be further increased. For example, it is preferable to join the resin substrate 10 and the resin substrate 20 while avoiding the surface included within a range of 10 mm from the corner of the resin substrate 10.
  • the resin substrate 10 is unevenly thickened, so that the planar accuracy of the joint surface in the resin substrate 10 is further lowered. More specifically, the thickness of the resin substrate 10 is partially different by forming the protrusions 14. When the thicknesses are partially different, the cooling process in each part of the resin substrate 10 is changed during molding, and the surface of the resin substrate 10 is easily distorted. As a result, when the protrusion 14 is formed, the planar accuracy of the joint surface in the resin substrate 10 is further lowered. Therefore, when the resin substrate 10 provided with the protrusions 14 is bonded, the bonding strength may be further lowered.
  • the bonding surface becomes smaller, so that it is possible to reduce the influence of the plane accuracy in the bonding. As a result, it is possible to increase the bonding strength of the microchip even when the protrusions 14 that can have a lower bonding strength are formed.
  • the resin substrate 10 is produced by injection molding, there is a possibility that the end portion and corners of the resin substrate 10 are raised. As a result, the plane accuracy is relatively low at the edges and corners, and the bonding strength between the substrates is low. For example, a surface included within a range of 1 mm from the corner of the resin substrate 10 may have a relatively low planar accuracy.
  • the outer shape of the resin substrate 20 is a substantially octagonal shape, and the size of the resin substrate 20 is made smaller than the size of the resin substrate 10, thereby making the resin substrate It is possible to bond the resin substrate 10 and the resin substrate 20 while avoiding the surface in the vicinity of the corners 10. Accordingly, it is possible to bond the resin substrate 10 and the resin substrate 20 while avoiding a surface having relatively low planar accuracy, and it is possible to further increase the bonding strength of the microchip.
  • the outer shape of the resin substrate 20 is substantially octagonal so as to avoid the surface included within the range of 1 mm from the corner of the resin substrate 10, thereby avoiding the surface with relatively low planar accuracy. It becomes possible to join the board 10 and the resin board 20 together.
  • the microchip since the microchip is easily peeled off from the corner of the substrate, the microchip that is difficult to peel from the corner can be manufactured by joining the resin substrate 10 and the resin substrate 20 while avoiding the corner of the resin substrate 10. .
  • the outer shape of the resin substrate 10 may be any shape that can be easily handled and analyzed, and is preferably a square or a rectangle.
  • the size is preferably about 10 mm square to 200 mm square, and more preferably 10 mm square to 100 mm square.
  • what is necessary is just to match
  • Resin is used for the resin substrates 10 and 20.
  • the resin include good moldability (transferability and releasability), high transparency, and low autofluorescence with respect to ultraviolet rays and visible light.
  • a thermoplastic resin is used for the resin substrates 10 and 20.
  • the thermoplastic resin include polycarbonate, polymethyl methacrylate, polystyrene, polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate, nylon 6, nylon 66, polyvinyl acetate, polyvinylidene chloride, polypropylene, polyisoprene, polyethylene, polydimethyl. It is preferable to use siloxane, cyclic polyolefin or the like.
  • the resin substrate 10 and the resin substrate 20 may be made of the same material or different materials.
  • a thermosetting resin, an ultraviolet curable resin, or the like may be used for the resin substrate 20 in which the channel groove is not formed.
  • the thermosetting resin polydimethylsiloxane is preferably used.
  • the resin substrates 10 and 20 can be produced by a method such as an extrusion molding method, a T-die molding method, an inflation molding method, a calendar molding method, an injection molding method, a press molding method, or a machining method.
  • a method such as an extrusion molding method, a T-die molding method, an inflation molding method, a calendar molding method, an injection molding method, a press molding method, or a machining method.
  • the flow path grooves and protrusions may be formed on the surface of the resin substrate by injection molding, or the flow path grooves and protrusions may be formed on the surface of the resin substrate by machining. Also good.
  • the resin substrate 10 and the resin substrate 20 may be manufactured by the same method or by different methods.
  • the shape of the microchannels 15 and 16 is 10 ⁇ m or more in both width and depth in consideration of the fact that the amount of analysis sample and reagent used can be reduced, and the fabrication accuracy of the mold, transferability, releasability, etc.
  • the value is preferably in the range of 200 ⁇ m, but is not particularly limited.
  • the width and depth of the fine channels 15 and 16 may be determined according to the use of the microchip.
  • the cross-sectional shape of the microchannels 15 and 16 is a rectangular shape, but this shape is an example and may be a curved surface. Further, the width and height of the groove may be the same or different in the fine channel 15 and the fine channel 16.
  • the plate thickness of the resin substrate 10 on which the flow path grooves 11 and 12 are formed is preferably about 0.2 mm to 5 mm, more preferably 0.5 mm to 2 mm in consideration of moldability.
  • the plate thickness of the resin substrate 20 that functions as a lid (cover) for covering the flow path grooves 11 and 12 is preferably about 0.2 mm to 5 mm, more preferably 0.5 mm to 2 mm in consideration of moldability. preferable.
  • the thickness of the film is preferably 30 ⁇ m to 300 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m.
  • the resin substrate 10 and the resin substrate 20 are overlapped with the surface on which the flow path grooves 11 and 12 are formed inside.
  • the bonding surface is melted by heating the resin substrate 10 and the resin substrate 20, and further bonded by pressing the resin substrate 10 and the resin substrate 20.
  • the resin substrates 10 and 20 are heated in a range of 70 ° C. to 200 ° C., and the substrates are bonded together by pressing the resin substrates 10 and 20 in this state.
  • the substrates are bonded together by pressing the resin substrates 10 and 20 with a roll while the resin substrates 10 and 20 are heated.
  • the resin substrate 10 and the resin substrate 20 may be joined by laser welding or ultrasonic welding.
  • the resin substrate 10 and the resin substrate 20 are overlapped with the surface on which the flow path grooves 11 and 12 are formed facing inward. In this state, the bonding surface is melted by irradiating the resin substrate 10 and the resin substrate 20 with a laser, and further, the resin substrate 10 and the resin substrate 20 are pressed to be bonded.
  • the substrates are bonded together by scanning the resin substrates with a laser intensity of 0.1 W to 20 W.
  • the resin substrate 10 and the resin substrate 20 are overlapped with the surface on which the flow channel grooves 11 and 12 are formed facing inward.
  • the bonding surface is melted by irradiating the resin substrate 10 and the resin substrate 20 with ultrasonic waves, and further, the resin substrate 10 and the resin substrate 20 are pressed to be bonded.
  • the substrates are bonded together by applying pressure to the resin substrates while applying ultrasonic waves of 10 kHz to 50 kHz.
  • a microchip in which the fine flow path 15 and the fine flow path 16 are formed orthogonally is used for, for example, electrophoresis.
  • a sample or a buffer solution is injected under pressure from the opening 17 into the microchannel 15, and electrodes are inserted into two locations of the opening 17 of the microchip, and electrophoresis is performed by applying a high voltage.
  • a buffer solution containing a polymer is pressurized and injected into the inside of the fine channel 15 from the opening 17, and then a fluorescently labeled DNA sample is injected.
  • electrodes are inserted into two locations of the opening 17 and electrophoresis is performed by applying a high voltage, and a DNA sample is detected by a fluorescence detector.
  • substrates 10 is this projection part. It is not limited to 14.
  • a flow control mechanism for controlling the flow of the sample flowing in the fine channel and a reaction mechanism for analyzing on the microchip may be formed on the surface.
  • An example of a flow control mechanism is a switch mechanism.
  • a through hole connected to the fine channel is formed in the resin substrate 10, and a switch mechanism for controlling the flow of the sample flowing through the fine channel through the through hole is formed on the surface of the resin substrate 10.
  • This switch mechanism corresponds to an example of an uneven member. By changing the degree of insertion of the switch into the fine channel, the amount of sample flowing in the fine channel is controlled.
  • a fixing part or a lens for fixing an optical fiber is applicable.
  • a fixing portion for attaching an optical fiber for analysis to a microchip is formed on the surface of the resin substrate 10.
  • a lens or the like for condensing light from the analyzer in the fine flow path may be formed on the surface of the resin substrate 10.
  • a fixing part, a lens, etc. correspond to an example of an uneven member.
  • the planar accuracy of the surface of the resin substrate 10 is lowered as in the case where the protrusions 14 are formed. Even in such a case, according to the first embodiment, by reducing the surface where the resin substrate 10 and the resin substrate 20 are bonded, the influence of the plane accuracy is reduced in the bonding, and the micro It is possible to increase the bonding strength of the chip.
  • the outer shape of the resin substrate 20 on the cover side is made substantially octagonal, and the size of the resin substrate 20 is made smaller than the size of the resin substrate 10, thereby making the resin substrate 10. Join to avoid the surface in the vicinity of the corner.
  • This bonding is an example, and by reducing the size of one of the two resin substrates, and avoiding the surface near the corner of one resin substrate, The same effect as the embodiment can be obtained.
  • the outer shape of the resin substrate 20 on the cover side is a quadrangle such as a square or a rectangle
  • the outer shape of the resin substrate 10 on which the channel groove is formed is a substantially octagon
  • the size of the resin substrate 10 is The size is made smaller than the size of the resin substrate 20.
  • FIG. 6 is a top view of one resin substrate according to a modification of the first embodiment.
  • FIG. 7 is a top view of the other resin substrate according to a modification of the first embodiment.
  • FIG. 8 is a top view of a microchip according to a modification of the first embodiment.
  • FIG. 9 is a cross-sectional view of a microchip according to a modification of the first embodiment, and is a cross-sectional view taken along the line IX-IX in FIG.
  • the through hole 13 is formed in the resin substrate 10 in which the flow path grooves 11 and 12 are formed.
  • the cover side resin substrate in which the flow path grooves are not formed is provided.
  • An opening may be formed by forming a through hole.
  • FIG. 6 shows a resin substrate on the cover side
  • FIG. 7 shows a resin substrate on which a channel groove is formed.
  • the resin substrate 10A has a quadrangular outer shape such as a square. Similar to the resin substrate 10 according to the first embodiment described above, the channel groove 11 and the channel groove 12 are formed orthogonally on one surface of the resin substrate 10A.
  • through holes are formed at both ends of the flow path grooves 11 and 12, but the resin substrate 10A according to the modification includes the flow path grooves 11 and 12A. Only 12 are formed.
  • the resin substrate 20A on the cover side has a substantially octagonal outer shape.
  • the size of the resin substrate 20A is smaller than the size of the resin substrate 10A. Furthermore, a through hole 21 is formed in the resin substrate 20A on the cover side at a position corresponding to the ends of the flow path grooves 11 and 12 formed in the resin substrate 10A. The through hole 21 is formed so as to penetrate in the thickness direction of the resin substrate 20A. Further, a projection 22 that is a concavo-convex member is provided surrounding the through hole 21.
  • the protrusion 22 has a cylindrical shape and protrudes in the thickness direction of the resin substrate 20A. This shape is an example, and the protrusion 22 may have a polygonal shape.
  • the resin substrate 10 ⁇ / b> A has the surface on which the flow path grooves 11, 12 are formed inside, and the resin substrate 20 ⁇ / b> A is provided with a protrusion 22.
  • the resin substrate 10 ⁇ / b> A and the resin substrate 20 ⁇ / b> A are joined with the surface opposite to the existing surface inside. At this time, the positions of the end portions of the flow path grooves 11 and 12 and the positions of the protrusions 22 are matched, and the resin substrate 10A and the resin substrate 20A are overlapped and joined.
  • the resin substrate 20A functions as a lid (cover) for the flow path grooves 11 and 12, the fine flow path 15 is formed by the flow path groove 11, and the fine flow path 16 is formed by the flow path groove 12. It is formed. Further, through holes 21 are formed in the resin substrate 20A at positions corresponding to the end portions of the fine flow channels 11 and 12, and the microchip is formed by joining the resin substrate 10A and the resin substrate 20A. An opening 23 is formed in the. Since the through hole 21 of the resin substrate 20 ⁇ / b> A is formed at a position corresponding to the ends of the flow path grooves 11 and 12, the opening 23 formed by the through hole 21 is connected to the fine flow paths 15 and 16. Then, the tube and the nozzle are connected to the opening 23 by fitting the tube and the nozzle to the protrusion 22 provided surrounding the opening 23.
  • the outer shape of the resin substrate 20A is substantially octagonal, and the resin substrate 20A
  • the resin substrate 20A By making the size smaller than the size of the resin substrate 10A, the resin substrate 10A and the resin substrate 20A can be joined while avoiding the surface near the corner of the resin substrate 10A. Thereby, since the bonding surface becomes small, even if there is a surface with relatively low planar accuracy, it is possible to reduce the influence of the surface and manufacture a microchip with higher bonding strength.
  • the outer shape of the resin substrate 20A is a square such as a square or a rectangle
  • the outer shape of the resin substrate 10A on which the channel grooves are formed is a substantially octagon
  • the resin substrate 10A The size may be smaller than the size of the resin substrate 20A.
  • a mechanism such as a switch mechanism or a lens may be provided on the surface of the substrate as the uneven member other than the protrusions.
  • the resin substrate 10 and the resin substrate 30 shown in FIGS. 10 and 11 are used as the cover side substrate. And join.
  • the resin substrate 30 is used for joining to the resin substrate 10 while avoiding the surface included in a predetermined distance from all ends of the resin substrate 10.
  • the resin substrate 30 is a flat substrate, and the size of the resin substrate 30 is smaller than the size of the resin substrate 10.
  • the size of the resin substrate 30 is a size that does not cover the surface included in a range within 1 mm from all the end portions of the resin substrate 10 when the resin substrate 30 is stacked on the resin substrate 10. ing.
  • the resin substrate 30 having a size that does not cover the surface within a predetermined distance (within 1 mm) from all the end portions of the resin substrate 10, the periphery of the end portion of the resin substrate 10 is used.
  • the resin substrate 10 and the resin substrate 30 can be joined. Thereby, since the bonding surface becomes small, even if there is a surface with low planar accuracy, it becomes possible to reduce the influence of the surface and manufacture a microchip with higher bonding strength.
  • the end portion of the resin substrate 10 is used by using the resin substrate 30 having a size that does not cover the surface within a predetermined distance (within 1 mm) from the end portion of the resin substrate 10.
  • the resin substrate 10 and the resin substrate 30 can be bonded to each other while avoiding the periphery. Accordingly, it is possible to bond the resin substrate 10 and the resin substrate 30 while avoiding the surface having a relatively low planar accuracy, and it is possible to further increase the bonding strength of the microchip.
  • microchip is easily peeled off from the end portion (outer peripheral portion) of the substrate, by joining the resin substrate 10 and the resin substrate 30 while avoiding the periphery of all the end portions of the resin substrate 10, A microchip that does not easily peel off from the portion can be manufactured.
  • the shape of the resin substrate 30 shown in FIG. 10 is an example.
  • the end portion of the resin substrate 30 has a curved shape, but is not limited thereto, and may have a linear shape. That is, the shape of the resin substrate 30 may be circular or rectangular as long as it does not cover the surface within a predetermined distance from the end of the resin substrate 10.
  • a through hole and a protrusion are provided in the resin substrate 30 on the cover side, and the resin substrate 10A shown in FIG.
  • the outer shape of the resin substrate 30 may be a square such as a square or a rectangle, and the size of the resin substrate 10 may be smaller than the size of the resin substrate 30.
  • the same effect as that of this embodiment can be obtained even if an uneven member other than the protrusions is provided on the surface of the resin substrate 10 or the resin substrate 30.
  • FIG. 12 is a top view of a microchip according to a modification of the second embodiment.
  • FIG. 13 is a cross-sectional view of a microchip according to a modification of the second embodiment, and is a cross-sectional view taken along the line XIII-XIII of FIG.
  • the resin substrate 10B and the resin substrate 30 on the cover side are joined.
  • the channel groove 11 and the channel groove 12 are formed to be orthogonal to each other, like the resin substrate 10 according to the first embodiment.
  • through holes 13 are formed in both ends of the flow path grooves 11 and 12 in the resin substrate 10B.
  • a cylindrical protrusion 14 surrounding the through hole 13 is provided on the surface opposite to the surface where the flow path grooves 11 and 12 are formed.
  • a protrusion 18 is provided on a part of the outer periphery of the resin substrate 10B.
  • This protrusion 18 is a molded body left in the gate portion used at the time of injection molding.
  • the molded body left in the gate portion is left as the protrusion 18 on the outer peripheral portion of the resin substrate 10B.
  • the molding die is provided with a gate portion (injection port) for guiding the resin to the cavity space in the molding die. And when resin hardens
  • the molded body left in the gate portion is provided as a protrusion 18 on the outer peripheral portion of the resin substrate 10B.
  • the width of the protrusion 18 that is a remnant of the gate portion is 15% or more and 90% or less of the width of the resin substrate 10. More preferably, it is 30% or more and 80% or less.
  • the resin substrate 10 and the resin substrate 20 are joined by avoiding the surface in the vicinity of the protrusion 18 formed on the resin substrate 10B.
  • make a microchip Specifically, the size of the resin substrate 30 is made smaller than that of the resin substrate 10B on which the flow path grooves 11 and 12 are formed, and the resin substrate 10 and the resin substrate are avoided by avoiding the surface in the vicinity of the protrusion 18.
  • the resin substrate 10 ⁇ / b> B and the resin substrate 30 are bonded to each other on the bonding surface of the resin substrate 10 ⁇ / b> B while avoiding a surface included in a range of a predetermined distance d from the outer peripheral portion where the protrusion 18 is provided.
  • the microchannels 15 and 16 are formed inside the microchip, and further, an opening 17 connected to the microchannels 15 and 16 is formed.
  • the resin substrate 10B and the resin substrate 30 are joined while the protrusion 18 is left on the resin substrate 10B.
  • This bonding is an example, and the protrusion 18 may be removed from the resin substrate 10B by cutting or polishing, and then the resin substrate 10B and the resin substrate 30 may be bonded.
  • the surface in the vicinity of the gate portion (the surface in the vicinity of the protrusion 18) is easily deformed, and it is difficult to maintain high planar accuracy.
  • the difficulty is further increased.
  • the planar accuracy of the surface near the gate portion is further lowered.
  • the difference between the maximum height and the minimum height of the waviness, that is, the PV (peak to valley) value becomes larger than the other surfaces. .
  • the PV value may be 3 ⁇ m or more, and may be 10 ⁇ m or more. For this reason, when two resin substrates are bonded together including the surface in the vicinity of the gate portion (the surface in the vicinity of the protruding portion 18), the bonding strength is lowered. For example, when the planar accuracy of the surface within the range of the distance d from the position where the protrusion 18 is provided is low, bonding the resin substrate 10B and the resin substrate 30 including that portion results in a decrease in bonding strength. End up.
  • the surfaces of the resin substrate 10B are joined while avoiding the surface having relatively low planar accuracy. It becomes possible. As a result, it is possible to bond the resin substrate 10B and the resin substrate 30 with a surface having relatively high planar accuracy as a bonding surface, so that the bonding strength of the microchip can be increased. In other words, it is preferable to join the other resin substrate while avoiding the place where the PV value is 10 ⁇ m or more (preferably, the place where it is 3 ⁇ m or more) on the surface of the resin substrate having the channel groove.
  • the dimension of the resin substrate 30 is made smaller than the dimension of the resin substrate 10B, and the gate
  • the resin substrate 10 ⁇ / b> B and the resin substrate 30 are joined while avoiding the surface in the vicinity of the portion (surface in the vicinity of the protrusion 18).
  • the resin substrate 10B having a square shape and the resin substrate 30 having an elliptical shape are joined.
  • the length of the side of the resin substrate 10B is length X
  • the length of the longest portion in the gate portion direction of the resin substrate 30 is length Y (length Y ⁇ length X).
  • the length Y of the resin substrate 30 is made shorter than the length X of the side of the resin substrate 10B by a distance d or more. That is, the length X of the side of the resin substrate 10B and the length Y of the short side of the resin substrate 30 are defined so that the relationship of length X ⁇ length Y ⁇ distance d is established.
  • the length Y of the resin substrate 30 is shorter than the length X of the side of the resin substrate 10B by a distance d or more, thereby avoiding the surface in the vicinity of the gate portion (surface in the vicinity of the protruding portion 18).
  • the resin substrate 10B and the resin substrate 30 can be joined.
  • the distance d from the outer periphery where the protrusions 18 are provided is 1 [mm]. Since the planar accuracy is relatively low on the surface included in the range within the distance d (1 mm), the resin substrate 10B and the resin substrate 30 are joined to avoid the surface included in the range.
  • the vicinity of 18 can be avoided and the resin substrate 10B and the resin substrate 30 can be joined. Accordingly, it is possible to bond the resin substrate 10B and the resin substrate 30 with the surface having a relatively high planar accuracy as a bonding surface while avoiding the surface in the vicinity of the protrusion 18 having a relatively low planar accuracy. As a result, the bonding strength of the microchip can be increased.
  • the width of the protrusion 18 is preferably 7.5 [mm] or more and 45 [mm] or less, and more preferably 15 [mm] or more and 40 [mm] or less.
  • FIG. 14 is a top view of a microchip according to a third embodiment of the present invention.
  • 15 is a cross-sectional view of a microchip according to a third embodiment of the present invention, and is a cross-sectional view taken along the line XV-XV in FIG.
  • the resin substrate 10 and the resin substrate 40 shown in FIGS. 14 and 15 are used as the cover side substrate. And join.
  • the resin substrate 40 is a flat substrate.
  • the shape of the resin substrate 40 depends on the shape of the flow path grooves 11 and 12 formed on the surface of the resin substrate 10 and the position where the through hole 13 is formed.
  • the resin substrate 40 has a shape along the flow path grooves 11 and 12 and the through hole 13.
  • the shape of the resin substrate 40 is such that all end portions of the resin substrate 40 are formed from the positions where the flow path grooves 11 and 12 are formed and the positions where the through holes 13 are formed.
  • the shape is included in a range within a predetermined distance.
  • the resin substrate 40 when the resin substrate 40 is overlapped and joined to the resin substrate 10 in accordance with the positions of the flow path grooves 11 and 12 formed on the surface of the resin substrate 10, all the ends of the resin substrate 40 are obtained.
  • the portion is included in a range within a predetermined distance from the microchannels 15 and 16 and the opening 17.
  • all the end portions of the resin substrate 40 are preferably included within a range of 2 mm from the fine flow paths 15 and 16 and the opening portion 17 and included within a range of 0.2 mm to 2 mm. More preferably.
  • a linear flow path groove 11 and a straight flow path groove 12 are formed in the resin substrate 10 so as to be orthogonal to each other, and through holes are provided at both ends of the flow path grooves 11 and 12. 13 is formed. Therefore, the resin substrate 40 on the cover side includes a linear member along the flow path groove 11 and a linear member along the flow path groove 12.
  • FIG. 14 schematically shows the shape of the resin substrate 40. If the shape of the resin substrate on the cover side is changed according to the position where the channel groove and the through hole are formed, FIG. good.
  • the resin substrate 10 and the resin It is possible to further reduce the surface where the substrate 40 is bonded. By reducing the joining surface in this way, the range affected by the plane accuracy in joining becomes smaller. Accordingly, even if there is a surface with relatively low planar accuracy, it is possible to bond the resin substrate 10 and the resin substrate 40 while reducing the influence of the surface. As a result, the bonding strength between the resin substrate 10 and the resin substrate 40 can be further increased.
  • the resin substrate 40 according to the third embodiment it becomes possible to join the resin substrates while avoiding the surface in the vicinity of the gate portion used at the time of injection molding.
  • the resin substrate 10B and the resin substrate 40 shown in FIG. 14 are bonded, the surfaces near the gate portion can be avoided and bonded. That is, since all the end portions of the resin substrate 40 on the cover side are included within a predetermined distance (0.2 mm to 2 mm) from the channel grooves 11 and 12 and the through hole 13, the resin substrate 10B The resin substrate 10B and the resin substrate 40 can be bonded to each other while avoiding the surface in the vicinity of the protrusion 18 formed on the surface (surface in the vicinity of the gate portion).
  • FIG. 16 is a top view of a resin substrate according to the fourth embodiment of the present invention.
  • FIG. 17 is a top view of a microchip according to a fourth embodiment of the present invention.
  • 18 is a cross-sectional view of a microchip according to a fourth embodiment of the present invention, and is a cross-sectional view taken along the line XVIII-XVIII in FIG.
  • a channel groove 51 and a channel groove 54 are formed on one surface of the resin substrate 50.
  • the channel grooves 51 and 54 are configured to include a linear groove and two grooves intersecting the linear groove.
  • the channel groove 51 and the channel groove 54 are not connected, and are independent grooves.
  • a through hole 52 that penetrates in the thickness direction of the resin substrate 50 is formed at the end of the channel groove 51.
  • a through hole 55 penetrating in the thickness direction of the resin substrate 50 is formed at the end of the channel groove 54.
  • the resinous substrate 50 is provided with cylindrical protrusions 53 and 56 on the surface opposite to the surface on which the channel grooves 51 and 54 are formed. .
  • the protruding portion 53 is provided surrounding the through hole 52, and the protruding portion 56 is provided surrounding the through hole 55.
  • a tube or nozzle is fitted to the protrusions 53 and 56 to introduce or discharge a sample or the like.
  • two resin substrates are used as the substrate on the cover side.
  • a resin substrate 60 and a resin substrate 70 are used as substrates on the cover side.
  • the resin substrates 60 and 70 correspond to an example of “individual substrates” of the present invention.
  • Each of the resin substrates 60 and 70 is a flat substrate.
  • the resin substrate 60 is a substrate that covers the flow path groove 51 formed on the surface of the resin substrate 50.
  • the resin substrate 70 is a substrate that covers the channel groove 54 formed on the surface of the resin substrate 50. In this way, a separate substrate is bonded to each channel groove.
  • the shape of the resin substrate 60 depends on the shape of the channel groove 51 formed on the surface of the resin substrate 50 and the position where the through hole 52 is formed.
  • the shape of the resin substrate 60 is a shape along the channel groove 51 and the through hole 52.
  • the shape of the resin substrate 60 is such that all the end portions of the resin substrate 60 are predetermined from the position where the flow channel groove 51 is formed and the position where the through hole 52 is formed. The shape is included in the range within the distance.
  • all the end portions of the resin substrate 50 are In other words, it is included in a range within a predetermined distance from the fine channel 61 and the opening 62. As an example, it is preferable that all end portions of the resin substrate 60 are included in a range within 2 mm from the fine channel 61 and the opening 62, and included in a range of 0.2 mm to 2 mm. More preferred.
  • the shape of the resin substrate 70 depends on the shape of the flow channel groove 54 and the position where the through hole 55 is formed, and is shaped along the flow channel groove 54 and the through hole 55. Yes. Specifically, the shape of the resin substrate 70 is such that all the end portions of the resin substrate 70 are predetermined from the position where the flow channel groove 54 is formed and the position where the through hole 55 is formed. The shape is included in the range within the distance. Thus, when the resin substrate 70 is overlapped and joined to the resin substrate 50 in accordance with the position of the flow channel groove 54 formed on the surface of the resin substrate 50, all the end portions of the resin substrate 70 are In other words, it is included in a range within a predetermined distance from the fine channel 71 and the opening 72. As an example, it is preferable that all end portions of the resin substrate 70 are included within a range of 2 mm or less from the fine channel 71 and the opening 72, and included within a range of 0.2 mm to 2 mm. More preferred.
  • the resin substrate 50 and the resin substrate are included. It is possible to further reduce the surface to which 60 is joined. By reducing the joining surface in this way, the range affected by the plane accuracy in joining becomes smaller. As a result, even if there is a surface with relatively low planar accuracy, the influence of the surface can be reduced and the resin substrate 50 and the resin substrate 60 can be joined. As a result, the bonding strength between the resin substrate 50 and the resin substrate 60 can be further increased. Similarly, since all the end portions of the resin substrate 70 are included within a predetermined distance from the flow path groove 54 and the through hole 55, the bonding strength between the resin substrate 50 and the resin substrate 70 is obtained. Can be made higher.
  • the implementation is possible.
  • the same effect as the form can be achieved.
  • the same effect as that of this embodiment can be obtained by providing a concavo-convex member other than the protrusions on the surface of the resin substrate 50 or the resin substrates 60 and 70.
  • the resin substrates 50, 60, and 70 are made of the same resin as the resin substrate according to the first embodiment, and are bonded by the same method as the bonding method according to the first embodiment.
  • each channel groove may be covered with a plurality of resin substrates on the cover side, instead of having a shape along the channel groove. Even in this case, the bonding area can be reduced as compared with the case where a plurality of flow path grooves are covered with a single resin substrate on the cover side. Can be increased.
  • FIG. 19 is a top view of a microchip according to a modification of the fourth embodiment.
  • the above-described resin substrate 60 and resin substrate 70 are used as the cover-side substrate, and a microchip is manufactured by bonding to the resin substrate 50A in which the channel grooves independent from each other are formed.
  • the resin substrate 50A is a substrate manufactured by injection molding.
  • the resin substrate 50A has a configuration in which a protruding portion 57 corresponding to a molded body in the gate portion is provided on a part of the outer peripheral portion of the resin substrate 50 described above. Accordingly, the configuration of the resin substrate 50A is the same as that of the resin substrate 50 except for the protrusions 57.
  • the resin substrate 60 and the resin substrate 70 are stacked on the resin substrate 50A in accordance with the position of the channel groove formed on the surface of the resin substrate 50A. Join.
  • all the end portions of the resin substrate 60 on the cover side are included in a range within a predetermined distance from the channel groove and the through hole, thereby reducing the joint surface, The range affected by the planar accuracy can be reduced. As a result, the bonding strength between the resin substrate 50A and the resin substrate 60 can be further increased. Similarly, the bonding strength can be further increased in bonding the resin substrate 70 and the resin substrate 50A.
  • all the end portions of the resin substrate 60 on the cover side have a shape included in a range of a predetermined distance (0.2 mm to 2 mm) from the channel groove 51 and the through hole 52, thereby making the resin
  • the resin substrate 50 and the resin substrate 60 can be bonded to each other while avoiding the surface in the vicinity of the protruding portion 57 formed on the substrate 50A (the surface in the vicinity of the gate portion). Accordingly, the resin substrate 50 and the resin substrate 60 are bonded to each other with the surface having a relatively high planar accuracy as a bonding surface while avoiding the surface in the vicinity of the protrusion 57 having a relatively low planar accuracy (surface near the gate portion) It becomes possible to do.
  • the bonding strength of the microchip can be further increased. Since the resin substrate 70 can also be bonded to the resin substrate 50 while avoiding the surface in the vicinity of the protrusion 57 (surface in the vicinity of the gate portion), the bonding strength can be further increased.
  • FIG. 20 is a top view of a microchip according to a fifth embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of a microchip according to a fifth embodiment of the present invention, and is a cross-sectional view of XXI-XXI in FIG.
  • the microchip according to the fifth embodiment includes a resin substrate 10B shown in FIG. 12 and a flat resin substrate 80. Since the resin substrate 10B has the same configuration as the substrate according to the modification of the second embodiment, the description thereof is omitted.
  • the resin substrate 80 is a flat substrate and is manufactured by injection molding in the same manner as the resin substrate 10B. Therefore, a part of the outer peripheral portion of the resin substrate 80 is provided with a protruding portion 81 that is a molded body remaining in the gate portion.
  • the resin substrate 80 is within the distance d from the protrusion 18 of the resin substrate 10B.
  • the resin substrate 10B and the resin substrate 80 are overlapped and bonded so that the resin substrate 10B does not cover the area within the distance d from the protrusion 81 of the resin substrate 80.
  • the resin substrates 10 ⁇ / b> B and the resin substrates 80 are alternately stacked. This makes it possible to bond the resin substrate 10B and the resin substrate 80 while avoiding the vicinity of each of the protrusion 18 and the protrusion 81, that is, the surface in the vicinity of each gate portion. As a result, it is possible to bond the resin substrate 10B and the resin substrate 80 while avoiding a surface with relatively low planar accuracy, and it is possible to manufacture a microchip with high bonding strength.
  • the resin substrate 10B and the resin substrate 80 are joined while the protrusion 18 remains on the resin substrate 10B and the protrusion 81 remains on the resin substrate 80. After removing 18 and 81 from the respective resin substrates, the two resin substrates may be joined.
  • the substrate to which the resin substrate 10B is bonded is not limited thereto.
  • a channel groove may be formed on the surface of the resin substrate 80 by injection molding, or a through hole penetrating in the thickness direction of the substrate may be formed.
  • the bonding surface is reduced by bonding the resin substrate 10B and the resin substrate 80 while avoiding the surface in the vicinity of the protrusion 18 and the surface in the vicinity of the protrusion 81. It becomes possible to make it difficult to be influenced by accuracy. As a result, even if there is a surface with relatively low planar accuracy, the bonding strength between the resin substrate 10B and the resin substrate 80 can be increased.
  • the channel groove is formed only on one resin substrate, but the channel groove may be formed on both resin substrates. Even when channel grooves are formed on both resin substrates, the size of one resin substrate is made smaller than the other resin substrate, so that the bonding surface is reduced and the plane accuracy is improved. The affected range can be reduced. Thereby, it becomes possible to produce the same effect as the above-described embodiment.
  • the number of channel grooves formed on the surface of the resin substrate is not limited. Three or more channel grooves independent of each other may be formed on the surface of the resin substrate. Furthermore, in the first to fifth embodiments, two resin substrates are bonded, but three or more resin substrates may be stacked and bonded.
  • the protrusion part which is the molded object left in the gate part may be provided in several places.
  • the resin substrate may be bonded so that the cover-side resin substrate does not cover the range within the distance d from each protrusion.
  • (Resin substrate) A transparent resin material acrylic (Delpet manufactured by Asahi Kasei Co., Ltd.) was molded with an injection molding machine to produce a resin substrate on the flow channel side in which a plurality of flow channel grooves, a plurality of through holes and protrusions were formed.
  • the resin substrate on the flow path side corresponds to an example of the resin substrate 10 on which the flow path grooves 11 and 12, the through holes 13, and the protrusions 14 are formed in the first embodiment described above.
  • a cover-side resinous substrate having an octagonal shape with a substrate thickness of 1 mm and a side length of 20.6 mm was prepared by extrusion molding using acrylic as a transparent resin material.
  • the resin substrate on the cover side corresponds to the resin substrate 20 functioning as a lid (cover) according to the first embodiment. (Joining) Next, the resin substrate on the channel side and the resin substrate on the cover side were overlapped with the surface on which the channel groove was formed facing inside.
  • a microchip was produced by sandwiching two resin substrates with a hot plate heated to 90 ° C. using a heating press, applying a pressure of 1 kgf / cm 2 and holding for 1 minute.
  • the surface of the resin substrate on the flow path side can be avoided by avoiding the surface included within the range of 1 mm from the corner of the resin substrate on the flow path side.
  • the resin substrate on the cover side was joined.
  • a transparent resin material acrylic (Delpet manufactured by Asahi Kasei Co., Ltd.) is molded with an injection molding machine, and a plurality of flow paths with a width of 50 ⁇ m and a depth of 50 ⁇ m are formed on a plate-like member having an outer dimension of 50 mm width ⁇ 50 mm width ⁇ 1 mm thickness.
  • the protrusion has a shape surrounding each through hole, and is formed on the surface opposite to the surface on which the channel groove is formed.
  • a resin substrate on the cover side having an outer dimension of width 50 mm ⁇ width 50 mm ⁇ thickness 1 mm was produced.
  • the resin substrate on the cover side functions as a lid (cover) for the channel groove.
  • the resin substrate on the channel side and the resin substrate on the cover side were overlapped with the surface on which the channel groove was formed facing inside.
  • a microchip was manufactured by sandwiching two resin substrates with a hot plate heated to 90 ° C. using a heating press, applying a pressure of 1 kgf / cm 2 and holding for 1 minute.
  • evaluation When the bonding surface of the microchip according to the comparative example was observed with a microscope, a non-welded range was observed in the vicinity of the corner and the injection molded gate.
  • the material and dimensions of the resin substrate shown in the above-described embodiments are only examples, and the present invention is not limited to these.
  • the resins mentioned in the above-described embodiments are used, it is possible to increase the bonding strength between the resin substrates compared to the comparative example.
  • the resins mentioned in the above-described embodiments are used, it is possible to increase the bonding strength between the resin substrates compared to the comparative example.
  • substrate even if it is an uneven

Abstract

 本発明は、表面に凹凸部材が設けられた樹脂製基板同士の接合強度が高められたマイクロチップを提供する。  樹脂製基板10の表面には流路用溝が形成され、微細流路の端部には貫通孔が形成されている。流路用溝が形成されている表面とは反対側の表面には、貫通孔を囲み、樹脂製基板10の厚さ方向に突出した突起部14が設けられている。樹脂製基板20は略八角形の形状を有し、樹脂製基板10の大きさよりも小さくなっている。流路用溝を内側にして、樹脂製基板10と樹脂製基板20とを接合することでマイクロチップを製造する。樹脂製基板20の形状を略八角形とすることで、樹脂製基板10の角近傍の表面を避けて接合する。

Description

マイクロチップの製造方法、及びマイクロチップ
 この発明は、流路用溝が形成された樹脂製基板を接合することでマイクロチップを製造する方法、及び、その接合によって製造されるマイクロチップに関する。
 微細加工技術を利用してシリコンやガラス基板上に微細な流路や回路を形成し、微小空間上で核酸、タンパク質、血液などの液体試料の化学反応や、分離、分析などを行うマイクロ分析チップ、あるいはμTAS(Micro Total Analysis Systems)と称される装置が実用化されている。このようなマイクロチップの利点としては、サンプルや試薬の使用量又は廃液の排出量が軽減され、省スペースで持ち運び可能な安価なシステムの実現が考えられる。
 マイクロチップは、少なくとも一方の部材に微細加工が施された2つの部材をはり合わせることにより製造される。従来においては、マイクロチップにはガラス基板が用いられ、様々な微細加工方法が提案されている。しかしながら、ガラス基板は大量生産には向かず、非常に高コストであるため、廉価で使い捨て可能な樹脂製のマイクロチップの開発が望まれている。
 樹脂製のマイクロチップを製造する方法として、流路用溝が形成された樹脂製基板と、流路用溝をカバーする樹脂製基板とを接合する方法がある。樹脂製基板同士の接合には、熱板、熱風、熱ロール、超音波、振動、レーザなどを用いて樹脂製基板を加熱して接合する溶着方法、接着剤や溶剤を用いて樹脂製基板を接合する接着方法、樹脂製基板自体の粘着性を利用して接合する方法、及び、樹脂製基板にプラズマ処理などの表面処理を施すことで基板同士を接合する方法などが挙げられる。
 しかしながら、接着方法においては、接合に用いる接着剤や溶剤が流路内に染み出てしまい、流路を汚染してしまう問題があった。そこで、従来においては、接着剤や溶剤が流路内に染み出ることを防止するために、流路用溝が形成された基板とカバー部材とに接着剤を逃がすための逃げ部を形成し、流路近傍とそれ以外の接合面とを分割して樹脂製基板同士を接合していた(例えば特許文献1、及び特許文献2)。
 また、熱板を用いた熱圧着法や熱ロールを用いた熱ラミネート法によって樹脂製基板同士を接合する場合、流路用溝が形成された樹脂製基板に、接合の位置決め用の孔を形成しておき、カバー部材は、その位置決め用の孔を覆うことがないように、流路用溝が形成された樹脂製基板よりも所定寸法小さく形成して接合していた(例えば特許文献3)。
特開2004-106508号公報 特開2004-136637号公報 特開2004-151041号公報
 ところで、樹脂製基板の接合面が剥離してしまう場合があり、流路近傍の接合面の剥離は、流路から分析試料が漏れる原因になる。その剥離が、顕微鏡で観察しなければ確認できないような小さい剥離であっても、流路内での分析試料の流れや移動が変わってしまうおそれがある。そのため、マイクロチップには、強固な接合強度が求められている。
 また、マイクロチップの表面や内部には、分析装置と接続するための突起部や、流路内での試料の流動を制御するための流動制御機構や、マイクロチップ上で分析を実行するための反応機構などが設けられている。
 また、流路用溝が形成された樹脂製基板を成形する方法には、射出成形法、プレス成形法、又は機械加工法などの方法がある。上述した突起部などの機構を有する樹脂製基板を作製する場合、成形において、その機構の近傍における入熱条件や加圧条件が不均一になりやすいため、成形の精度が悪化しやすくなる。その結果、特に突起部などの機構の周辺における表面の平面精度が悪化しやすくなる。また、成形型の面精度が転写されるため、成形型にも高い面精度が要求される。そのため、表面に機構を有する樹脂製基板を接合してマイクロチップを作製する場合、表面に機構が設けられていない樹脂製基板を接合する場合よりも、接合強度が低くなりやすい問題があった。
 上述した特許文献1と特許文献2に記載の方法では、接着剤を用いて樹脂製基板を接合している。この方法によって表面に機構を有する樹脂製基板を接合する場合、接合面の平面精度によって接着層における接合強度がばらついてしまい、接合強度が低くなってしまう問題がある。また、接着剤を逃がすための逃げ部を設けているため、その逃げ部によっても基板表面の平面精度が悪化するおそれがあり、さらに、マイクロチップのサイズが拡大してしまう問題がある。また、上述した特許文献3に記載の方法においても、接合面の平面精度に関する問題は解決されていない。
 また、流路用溝が形成された樹脂製基板を射出成形法によって作製する場合、ヒートサイクル成形を用いることにより、表面の平面精度を向上させることができる。しかしながら、ヒートサイクル成形に用いる設備の導入や、成形サイクルの長時間化によって、樹脂製基板の製造コストが高くなってしまう問題がある。また、射出成形法では、成形型によって形成されたキャビティ空間に射出成形のゲート部を通して樹脂を射出することにより、流路用溝が表面に形成された樹脂製基板を作製する。ヒートサイクル成形によって面精度を向上させることができても、成形した樹脂製基板と射出成形のゲート部とを切り離す工程において、ゲート部近傍における基板表面の平面精度が悪化してしまう問題がある。
 以上のように、樹脂製基板の平面精度が悪化することにより、2つの樹脂製基板の接合面の密着性が低下し、その結果、樹脂製基板の接合強度が低下してしまう問題があった。
 この発明は上記の問題を解決するものであり、表面に凹凸部材が設けられた樹脂製基板の接合強度を高めることが可能なマイクロチップの製造方法、及び樹脂製基板同士の接合強度が高められたマイクロチップを提供することを目的とする。
 この発明の第1の形態は、2つの樹脂製基板のうち少なくとも1つの樹脂製基板の表面には流路用溝が形成され、前記2つの樹脂製基板のうち少なくとも1つの樹脂製基板には貫通孔が形成され、少なくとも1つの樹脂製基板の表面であって他方の樹脂製基板と接合されない表面に凹凸部材が設けられ、前記2つの樹脂製基板を、前記流路用溝が形成されている面を内側にして接合するマイクロチップの製造方法であって、前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にして前記2つの樹脂製基板を接合する接合工程を含むことを特徴とするマイクロチップの製造方法である。
 また、この発明の第2の形態は、第1の形態に係るマイクロチップの製造方法であって、成形型によって形成されたキャビティ空間に射出成形のゲート部を通し、前記ゲート部を切断することで、前記流路用溝が前記表面に形成された樹脂製基板を作製する基板作製工程を更に含み、前記接合工程では、前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にし、さらに、前記流路用溝が形成された前記樹脂製基板の前記ゲート部近傍の表面を他の樹脂製基板が覆わないように、前記2つの樹脂製基板を接合することを特徴とする。
 また、この発明の第3の形態は、第2の形態に係るマイクロチップの製造方法であって、前記基板作製工程では、前記ゲート部を通して樹脂を射出することで、前記流路用溝が前記表面に形成され、前記ゲート部を切断することにより、射出成形のときに使用された前記ゲート部の中に残された成形体が外周部に突出して残された樹脂製基板を作製し、前記接合工程では、前記成形体の近傍の表面を避けて、前記流路用溝が形成されている面を内側にして前記2つの樹脂製基板を接合することを特徴とする。
 また、この発明の第4の形態は、第1の形態から第3の形態のいずれかに係るマイクロチップの製造方法であって、前記接合工程では、前記他方の樹脂製基板の角から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板を前記他方の樹脂製基板に接合することを特徴とする。
 また、この発明の第5の形態は、第1の形態から第4の形態のいずれかに係るマイクロチップの製造方法であって、前記接合工程では、前記他方の樹脂製基板のすべての端部から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板を前記他方の樹脂製基板に接合することを特徴とする。
 また、この発明の第6の形態は、第1の形態から第5の形態のいずれかに係るマイクロチップの製造方法であって、前記他方の樹脂製基板の表面には前記流路用溝が形成され、前記一方の樹脂製基板は平板状の基板であって、前記他方の樹脂製基板に形成された前記流路用溝に沿った形状を有する基板であり、前記接合工程では、前記一方の樹脂製基板を、前記他方の樹脂製基板に形成された前記流路用溝の位置に合わせて前記他方の樹脂製基板に重ねて、前記2つの樹脂製基板を接合することを特徴とする。
 また、この発明の第7の形態は、第6の形態に係るマイクロチップの製造方法であって、前記一方の樹脂製基板のすべての端部は、前記一方の樹脂製基板を前記他方の樹脂製基板に形成された前記流路用溝の位置に合わせて前記他方の樹脂製基板に重ねたときに、前記他方の樹脂製基板に形成された前記流路用溝から2mm以内の範囲に含まれることを特徴とする。
 また、この発明の第8の形態は、第1の形態から第6の形態のいずれかに係るマイクロチップの製造方法であって、前記流路用溝は、互いに繋がりがない独立した複数の溝を含み、前記一方の樹脂製基板は、前記複数の溝の数に応じた複数の個別基板を備え、前記複数の個別基板はそれぞれ平板状の基板であって、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれに沿った形状を有する基板であり、前記接合工程では、前記複数の個別基板のそれぞれを、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれの位置に合わせて、独立した溝ごとに前記個別基板と前記他方の樹脂製基板とを接合することを特徴とする。
 また、この発明の第9の形態は、第8の形態に係るマイクロチップの製造方法であって、前記個別基板のすべての端部は、前記複数の個別基板を前記他方の樹脂製基板に形成された前記溝の位置に合わせて前記他方の樹脂製基板に重ねたときに、前記他方の樹脂製基板に形成された前記溝から2mm以内の範囲に含まれることを特徴とする。
 また、この発明の第10の形態は、第1の形態から第9の形態のいずれかに係るマイクロチップの製造方法であって、前記凹凸部材は、前記貫通孔が形成された樹脂製基板の前記貫通孔を囲んで設けられ、前記樹脂製基板の厚さ方向に突出する突起部であることを特徴とする。
 また、この発明の第11の形態は、第1の形態から第10の形態のいずれかに係るマイクロチップの製造方法であって、前記2つの樹脂製基板は熱可塑性樹脂により構成されていることを特徴とする。
 また、この発明の第12の形態は、第1の形態から第11の形態のいずれかに係るマイクロチップの製造方法であって、前記2つの樹脂製基板を重ねた状態で前記2つの樹脂製基板を加熱して溶着することで前記接合を行うことを特徴とする。
 また、この発明の第13の形態は、第1の形態から第12の形態のいずれかに係るマイクロチップの製造方法であって、前記接合によって、電気泳動分析に用いるマイクロチップを製造することを特徴とする。
 また、この発明の第14の形態は、2つの樹脂製基板のうち少なくとも1つの樹脂製基板の表面には流路用溝が形成され、前記2つの樹脂製基板のうち少なくとも1つの樹脂製基板には貫通孔が形成され、前記2つの樹脂製基板を、前記流路用溝が形成されている面を内側にして接合されたマイクロチップであって、前記貫通孔と前記流路用溝とは繋がっており、前記2つの樹脂製基板のうち少なくとも1つの樹脂製基板の表面であって接合されていない表面に凹凸部材が設けられ、前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部が、他方の樹脂製基板の端部よりも内側に設けられていることを特徴とするマイクロチップである。
 また、この発明の第15の形態は、第14の形態に係るマイクロチップであって、前記流路用溝が形成された樹脂製基板は、成形型によって形成されたキャビティ空間に射出成形のゲート部を通して樹脂を射出し、前記ゲート部を切断することで作製された基板であり、前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にし、さらに、前記流路用溝が形成された前記樹脂製基板の前記ゲート部近傍の表面を他の樹脂製基板が覆わないように、前記2つの樹脂製基板が接合されていることを特徴とする。
 また、この発明の第16の形態は、第15の形態に係るマイクロチップであって、前記切断したゲート部の一部が前記樹脂製基板の外周部に突出しており、前記成形体の近傍の表面を避けて、前記2つの樹脂製基板が接合されていることを特徴とする。
 また、この発明の第17の形態は、第14の形態から第16の形態のいずれかに係るマイクロチップであって、前記他方の樹脂製基板の角から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板と前記他方の樹脂製基板とが接合されていることを特徴とする。
 また、この発明の第18の形態は、第17の形態に係るマイクロチップであって、前記他方の樹脂製基板のすべての端部から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板と前記他方の樹脂製基板とが接合されていることを特徴とする。
 また、この発明の第19の形態は、第14の形態から第18の形態のいずれかに係るマイクロチップであって、前記他方の樹脂製基板の表面には前記流路用溝が形成され、前記一方の樹脂製基板は平板状の基板であって、前記他方の樹脂製基板に形成された前記流路用溝に沿った形状を有する基板であり、前記一方の樹脂製基板は、前記他方の樹脂製基板に形成された前記流路用溝の位置に合わせて前記他方の樹脂製基板と接合されていることを特徴とする。
 また、この発明の第20の形態は、第19の形態に係るマイクロチップであって、前記一方の樹脂製基板のすべての端部が、前記他方の樹脂製基板に形成された前記流路用溝から2mm以内の範囲に含まれていることを特徴とする。
 また、この発明の第21の形態は、第14の形態から第19の形態のいずれかに係るマイクロチップであって、前記流路用溝は、互いに繋がりがない独立した複数の溝を含み、前記一方の樹脂製基板は、前記複数の溝の数に応じた数の個別基板を備え、前記複数の個別基板はそれぞれ平板状の基板であって、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれに沿った形状を有する基板であり、前記複数の個別基板のそれぞれは、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれの位置に合わせて、独立した溝ごとに前記他方の樹脂製基板と接合されていることを特徴とする。
 また、この発明の第22の形態は、第21の形態に係るマイクロチップであって、前記個別基板のすべての端部が、前記他方の樹脂製基板に形成された前記溝から2mm以内の範囲に含まれていることを特徴とする。
 また、この発明の第23の形態は、第14の形態から第22の形態のいずれかに係るマイクロチップであって、前記凹凸部材は、前記貫通孔が形成された樹脂製基板の前記貫通孔を囲んで設けられ、前記樹脂製基板の厚さ方向に突出する突起部であることを特徴とする。
 また、この発明の第24の形態は、第14の形態から第23の形態のいずれかに係るマイクロチップであって、前記2つの樹脂製基板は熱可塑性樹脂により構成されていることを特徴とする。
 また、この発明の第25の形態は、第14の形態から第24の形態のいずれかに係るマイクロチップであって、前記2つの樹脂製基板は、加熱して溶着することで接合されたことを特徴とする。
 また、この発明の第26の形態は、第14の形態から第25のいずれかに係るマイクロチップであって、電気泳動分析に用いられることを特徴とする。
 この発明によると、少なくとも一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にして2つの樹脂製基板を接合することで、接合面がより小さくなるため、接合において平面精度の影響を低減することが可能となる。その結果、接合強度がより低くなりうる凹凸部材が形成された樹脂製基板を接合する場合であっても、マイクロチップの接合強度を高めることが可能となる。
この発明の第1実施形態に係る一方の樹脂製基板の上面図である。 この発明の第1実施形態に係る一方の樹脂製基板の断面図であり、図1のII-II断面図である。 この発明の第1実施形態に係る他方の樹脂製基板の上面図である。 この発明の第1実施形態に係るマイクロチップの上面図である。 この発明の第1実施形態に係るマイクロチップの断面図であり、図4のV-V断面図である。 第1実施形態の変形例に係る一方の樹脂製基板の上面図である。 第1実施形態の変形例に係る他方の樹脂製基板の上面図である 第1実施形態の変形例に係るマイクロチップの上面図である。 第1実施形態の変形例に係るマイクロチップの断面図であり、図8のIX-IX断面図である。 この発明の第2実施形態に係るマイクロチップの上面図である。 この発明の第2実施形態に係るマイクロチップの断面図であり、図10のXI-XI断面図である。 第2実施形態の変形例に係るマイクロチップの上面図である。 第2実施形態の変形例に係るマイクロチップの断面図であり、図12のXIII-XIII断面図である。 この発明の第3実施形態に係るマイクロチップの上面図である。 この発明の第3実施形態に係るマイクロチップの断面図であり、図14のXV-XV断面図である。 この発明の第4実施形態に係る樹脂製基板の上面図である。 この発明の第4実施形態に係るマイクロチップの上面図である。 この発明の第4実施形態に係るマイクロチップの断面図であり、図17のXVIII-XVIII断面図である。 第4実施形態の変形例に係るマイクロチップの上面図である。 この発明の第5実施形態に係るマイクロチップの上面図である。 この発明の第5実施形態に係るマイクロチップの断面図であり、図20のXXI-XXI断面図である。
符号の説明
 10、20、10A、10B、20A、30、40、50、50A、60、70、80
 樹脂製基板
 11、12、51、54 流路用溝
 13、21、52、55 貫通孔
 14、18、22、53、56、57、81 突起部
 15、16、61、71 微細流路
 17、23、62、72 開口部
[第1の実施の形態]
 この発明の第1実施形態に係るマイクロチップの製造方法と、その製造方法により製造されたマイクロチップについて、図1から図5を参照して説明する。図1は、この発明の第1実施形態に係る一方の樹脂製基板の上面図である。図2は、この発明の第1実施形態に係る一方の樹脂製基板の断面図であり、図1のII-II断面図である。図3は、この発明の第1実施形態に係る他方の樹脂製基板の上面図である。図4は、この発明の第1実施形態に係るマイクロチップの上面図である。図5は、この発明の第1実施形態に係るマイクロチップの断面図であり、図4のV-V断面図である。
 図1に示すように、樹脂製基板10は、1例として、正方形や長方形などの四角形の外形形状を有している。樹脂製基板10の一方の表面には、直線状の流路用溝11と直線状の流路用溝12とが形成されている。この実施形態では、1例として流路用溝11と流路用溝12とが直交して樹脂製基板10の表面に形成されている。なお、流路用溝11と流路用溝12とは直交せずに樹脂製基板10に形成されていても良い。また、図1と図2に示すように、流路用溝11と流路用溝12の両端部には、樹脂製基板10の厚さ方向に貫通する貫通孔13が形成されている。貫通孔13は、流路用溝11と流路用溝12の端部に繋がっている。
 さらに、第1実施形態に係る樹脂製基板10には、流路用溝11、12が形成されている表面とは反対側の表面に凹凸部材が設けられている。例えば図1と図2に示すように、樹脂製基板10には、流路用溝11、12が形成されている表面とは反対側の表面に、円筒状の突起部14が設けられている。この突起部14は樹脂製基板10の厚さ方向に突出しており、貫通孔13を囲んで設けられている。この突起部14に、チューブやノズルを嵌合して、試料などの導入や排出を行う。なお、図1に示す突起部14は円筒状の形状を有しているが、これは1例であり、多角形の形状を有していても良い。
 また、図3に示すように、樹脂製基板10の接合の相手方となる樹脂製基板20は平板状の基板であり、略八角形の外形形状を有している。換言すると、樹脂製基板20は、正方形の形状を有する基板の各角が斜めに削られた形状を有している。樹脂製基板20の各角は曲線状であっても良い。この樹脂製基板20の大きさは樹脂製基板10よりも小さく、樹脂製基板10の角近傍の表面を避けて樹脂製基板10と接合するために用いられる。
 そして、図4と図5に示すように、流路用溝11、12が形成されている面を内側にして、樹脂製基板10と樹脂製基板20とを接合することでマイクロチップを製造する。この接合によって、樹脂製基板20が流路用溝11、12の蓋(カバー)として機能し、流路用溝11によって微細流路15が形成され、流路用溝12によって微細流路16が形成される。さらに、樹脂製基板10には、流路用溝11と流路用溝12との両端部に貫通孔13が形成されており、樹脂製基板10と樹脂製基板20とを接合することで、マイクロチップに開口部17が形成される。このように、第1実施形態に係るマイクロチップは、樹脂製基板10と樹脂製基板20とを備えて構成されている。マイクロチップの内部には、直線状の微細流路15と微細流路16とが互いに直交して形成されており、さらに、微細流路15と微細流路16の両端部には開口部17が形成されている。
 樹脂製基板10の貫通孔13は流路用溝11、12と繋がっているため、その貫通孔13による開口部17は微細流路15、16に繋がっている。この開口部17は、ゲル、試料、緩衝液の導入、保存、排出を行うための孔である。開口部17(貫通孔13)の形状は、円形状や矩形状の他、様々な形状であっても良い。突起部14に、分析装置に設けられたチューブやノズルを嵌合することで、開口部17にチューブやノズルを接続する。そのチューブやノズルを介して、ゲル、試料、又は緩衝液などを微細流路15、16に導入し、又は、微細流路15、16から試料などを排出する。
 第1実施形態では、樹脂製基板20の外形形状を略八角形の形状とし、樹脂製基板20の大きさを樹脂製基板10の大きさよりも小さくすることで、樹脂製基板10の角近傍の表面を避けて樹脂製基板10と樹脂製基板20とを接合する。これにより、樹脂製基板10と樹脂製基板20とが接合する面が小さくなるため、接合において平面精度の影響を受ける範囲がより小さくなる。そのことにより、平面精度が比較的低い表面であっても、その表面の影響を低減して樹脂製基板10と樹脂製基板20とを接合することが可能となる。その結果、樹脂製基板10と樹脂製基板20との接合強度をより高くすることが可能となる。例えば、樹脂製基板10の角から10mmの範囲内に含まれる表面を避けて、樹脂製基板10と樹脂製基板20とを接合することが好ましい。
 さらに、射出成形によって樹脂製基板10の貫通孔13を囲む突起部14を形成する場合、樹脂製基板10が偏肉するため、樹脂製基板10における接合面の平面精度はより低くなる。より詳しく説明すると、突起部14を形成することで、樹脂製基板10の厚さが部分的に異なる。厚さが部分的に異なることで、成形中、樹脂製基板10の各部分における冷却過程がそれぞれ変わってしまい、樹脂製基板10の表面に歪みができやすくなる。その結果、突起部14を形成した場合には、樹脂製基板10における接合面の平面精度がより低くなる。従って、突起部14を設けた樹脂製基板10を接合する場合は、接合強度がより低くなってしまうおそれがあった。
 これに対して第1実施形態によると、樹脂製基板10と樹脂製基板20とを接合する場合に、接合面がより小さくなるため、接合において平面精度の影響を低減することが可能となる。その結果、接合強度がより低くなり得る突起部14を形成した場合であっても、マイクロチップの接合強度を高めることが可能となる。
 また、射出成形によって樹脂製基板10を作製する場合、樹脂製基板10の端部や角が盛り上がるおそれがある。そのことにより、端部や角において平面精度が比較的低くなり、基板同士の接合強度が低くなってしまう。例えば、樹脂製基板10の角から1mmの範囲内に含まれる表面は、平面精度が比較的低くなるおそれがある。
 これに対して第1実施形態によると、樹脂製基板20の外形形状を略八角形の形状とし、樹脂製基板20の大きさを樹脂製基板10の大きさよりも小さくすることで、樹脂製基板10の角近傍の表面を避けて樹脂製基板10と樹脂製基板20とを接合することが可能となる。そのことにより、平面精度が比較的低い表面を避けて、樹脂製基板10と樹脂製基板20とを接合することが可能となり、マイクロチップの接合強度をより高めることが可能となる。例えば、樹脂製基板10の角から1mm以内の範囲内に含まれる表面を避けるように、樹脂製基板20の外形形状を略八角形とすることで、平面精度が比較的低い表面を避けて樹脂製基板10と樹脂製基板20とを接合することが可能となる。
 また、マイクロチップは基板の角から剥がれやすいため、樹脂製基板10の角を避けて樹脂製基板10と樹脂製基板20とを接合することで、角から剥がれにくいマイクロチップを作製することができる。
 なお、樹脂製基板10の外形形状は、ハンドリング、分析しやすい形状であれば良く、正方形や長方形などの形状が好ましい。例えば、10mm角~200mm角程度の大きさが好ましく、10mm角~100mm角がより好ましい。また、貫通孔13の内径は、分析手法や分析装置に合わせれば良く、例えば2mm程度であることが好ましい。
 樹脂製基板10、20には樹脂が用いられる。その樹脂としては、成形性(転写性、離型性)が良いこと、透明性が高いこと、紫外線や可視光に対する自己蛍光性が低いことなどが条件として挙げられる。例えば、樹脂製基板10、20には熱可塑性樹脂が用いられる。熱可塑性樹脂としては、例えば、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン6、ナイロン66、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソプレン、ポリエチレン、ポリジメチルシロキサン、環状ポリオレフィンなどを用いることが好ましい。特に好ましいのは、ポリメタクリル酸メチル、環状ポリオレフィンを用いることである。なお、樹脂製基板10と樹脂製基板20とで、同じ材料を用いても良いし、異なる材料を用いても良い。また、流路用溝が形成されていない樹脂製基板20には、熱可塑性樹脂の他、熱硬化性樹脂や紫外線硬化性樹脂などを用いても良い。熱硬化性樹脂としては、ポリジメチルシロキサンを用いることが好ましい。
 樹脂製基板10、20は、押出成形法、Tダイ成形法、インフレーション成形法、カレンダ成形法、射出成形法、プレス成形法、又は機械加工法等の方法によって作製することができる。例えば、射出成形法によって、流路用溝や突起部を樹脂製基板の表面に形成しても良いし、機械加工法によって、流路用溝や突起部を樹脂製基板の表面に形成しても良い。また、樹脂製基板10と樹脂製基板20とでは、同じ方法で作製しても良いし、異なる方法で作製しても良い。
 なお、微細流路15、16の形状は、分析試料、試薬の使用量を少なくできること、成形金型の作製精度、転写性、離型性などを考慮して、幅、深さともに、10μm~200μmの範囲内の値であることが好ましいが、特に限定されるものではない。また、微細流路15、16の幅と深さは、マイクロチップの用途によって決めれば良い。なお、説明を簡便にするために、微細流路15、16の断面の形状は矩形状となっているが、この形状は1例であり、曲面状となっていても良い。また、溝の幅と高さは、微細流路15と微細流路16とで同じであっても良いし、異なっていても良い。
 また、流路用溝11、12が形成された樹脂製基板10の板厚は、成形性を考慮して、0.2mm~5mm程度が好ましく、0.5mm~2mmがより好ましい。流路用溝11、12を覆うための蓋(カバー)として機能する樹脂製基板20の板厚は、成形性を考慮して、0.2mm~5mm程度が好ましく、0.5mm~2mmがより好ましい。また、蓋(カバー)として機能する樹脂製基板20に流路用溝を形成しない場合、板状の部材ではなく、フィルム(シート状の部材)を用いても良い。この場合、フィルムの厚さは、30μm~300μmでることが好ましく、50μm~150μmであることがより好ましい。
(接合)
 樹脂製基板10と樹脂製基板20との接合は、熱圧着又は熱ラミネートによって行われる。樹脂製基板10、20に対して熱圧着又は熱ラミネートを施すことにより、樹脂製基板10、20の接合面における樹脂を溶融させて、樹脂製基板10と樹脂製基板20とを接合する。
 例えば熱圧着の場合、流路用溝11、12が形成された面を内側にして、樹脂製基板10と樹脂製基板20とを重ねる。その状態で、樹脂製基板10と樹脂製基板20とを加熱することで接合面を溶融させ、さらに、樹脂製基板10と樹脂製基板20とを加圧することで接合する。例えば、70℃~200℃の範囲で樹脂製基板10、20を加熱し、その状態で樹脂製基板10、20を加圧することで、基板同士を接合する。また、熱ラミネートの場合、樹脂製基板10、20を加熱した状態で、ロールによって樹脂製基板10、20を加圧することで、基板同士を接合する。
 また、熱圧着及び熱ラミネートの他、レーザ溶着又は超音波溶着によって樹脂製基板10と樹脂製基板20とを接合しても良い。
 レーザ溶着の場合、流路用溝11、12が形成された面を内側にして、樹脂製基板10と樹脂製基板20とを重ねる。その状態で、樹脂製基板10と樹脂製基板20に対してレーザを照射することで接合面を溶融させ、さらに、樹脂製基板10と樹脂製基板20とを加圧することで接合する。例えば、0.1W~20Wのレーザ強度で樹脂製基板上を走査することで、基板同士を接合する。
 また、超音波溶着の場合、流路用溝11、12が形成された面を内側にして、樹脂製基板10と樹脂製基板20とを重ねる。その状態で、樹脂製基板10と樹脂製基板20に対して超音波を照射することで接合面を溶融させ、さらに、樹脂製基板10と樹脂製基板20とを加圧することで接合する。例えば、10kHz~50kHzの超音波を印加しながら樹脂製基板を加圧することで、基板同士を接合する。
 以上のように、溶着によって接合する場合は、接着のように接着剤を介して2つの樹脂製基板を接合するのではなく、2つの樹脂製基板を直接、接触させて接合させるため、樹脂製基板の表面の平面精度が接合状態に大きく影響する。この実施形態のように、一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にして2つの樹脂製基板を接合することにより、溶着のように2つの樹脂製基板を直接接触させる場合であっても、強固な接合強度を得ることができる。
 また、微細流路15と微細流路16とが直交して形成されたマイクロチップは、例えば電気泳動法に用いられる。例えば、開口部17から微細流路15の内部に試料や緩衝液を加圧注入し、さらに、マイクロチップの開口部17の2箇所に電極を差し込み、高電圧をかけて電気泳動を行う。1例として、開口部17から微細流路15の内部にポリマーを含む緩衝液を加圧注入し、つづいて蛍光標識したDNAサンプルを注入する。さらに、開口部17の2箇所に電極を差し込み、高電圧をかけて電気泳動を行い、蛍光検出器によりDNAサンプルを検出する。
 なお、第1実施形態においては、分析装置と接続するための突起部14を貫通孔13の周囲に設けた例について説明したが、樹脂製基板10の表面に設けられる凹凸部材は、この突起部14に限定されない。凹凸部材の別の例として、微細流路内を流れる試料の流動を制御するための流動制御機構や、マイクロチップ上で分析するための反応機構を表面に形成しても良い。
 流動制御機構の例として、スイッチ機構が該当する。例えば、微細流路と繋がる貫通孔を樹脂製基板10に形成し、その貫通孔を通して微細流路内を流れる試料の流動を制御するためのスイッチ機構を、樹脂製基板10の表面に形成する。このスイッチ機構が凹凸部材の1例に該当する。そのスイッチを微細流路内に挿入する程度を変えることで、微細流路内を流れる試料の量などを制御する。
 また、反応機構の例として、光ファイバーを固定するための固定部やレンズが該当する。例えば、分析用の光ファイバーをマイクロチップに取り付けるための固定部を樹脂製基板10の表面に形成する。また、分析装置からの光を微細流路内に集光するためのレンズなどを樹脂製基板10の表面に形成しても良い。固定部やレンズなどが凹凸部材の1例に該当する。
 以上のような凹凸部材を樹脂製基板10に形成した場合も、突起部14を形成した場合と同様に、樹脂製基板10の表面の平面精度が低くなってしまう。そのような場合であっても、この第1実施形態によれば、樹脂製基板10と樹脂製基板20とが接合する面を小さくすることで、接合において平面精度の影響を低減して、マイクロチップの接合強度を高めることが可能となる。
 なお、第1実施形態においては、カバー側の樹脂製基板20の外形形状を略八角形にし、樹脂製基板20の大きさを樹脂製基板10の大きさよりも小さくすることで、樹脂製基板10の角近傍の表面を避けて接合する。この接合は1例であり、2つの樹脂製基板のうち、いずれか一方の樹脂製基板の大きさを小さくして、一方の樹脂製基板の角近傍の表面を避けて接合することで、この実施形態と同じ効果を奏することができる。例えば、カバー側の樹脂製基板20の外形形状を正方形や長方形などの四角形にし、流路用溝が形成された樹脂製基板10の外形形状を略八角形にし、樹脂製基板10の大きさを樹脂製基板20の大きさよりも小さくする。このように、流路用溝が形成された樹脂製基板20の大きさを樹脂製基板10の大きさよりも小さくした場合も、樹脂製基板10と樹脂製基板20とが接合する面が小さくなるため、接合において平面精度の影響を低減することが可能となる。
[第1実施形態の変形例]
 次に、上述した第1実施形態の変形例について図6から図9を参照して説明する。図6は、第1実施形態の変形例に係る一方の樹脂製基板の上面図である。図7は、第1実施形態の変形例に係る他方の樹脂製基板の上面図である。図8は、第1実施形態の変形例に係るマイクロチップの上面図である。図9は、第1実施形態の変形例に係るマイクロチップの断面図であり、図8のIX-IX断面図である。
 上述した第1実施形態では、流路用溝11、12が形成された樹脂製基板10に貫通孔13を形成しているが、流路用溝が形成されていないカバー側の樹脂製基板に貫通孔を形成することで、開口部を形成しても良い。
 図6にカバー側の樹脂製基板を示し、図7に流路用溝が形成された樹脂製基板を示す。図7に示すように、樹脂製基板10Aは、正方形が長方形などの四角形の外形形状を有している。樹脂製基板10Aの一方の表面には、上述した第1実施形態に係る樹脂製基板10と同様に、流路用溝11と流路用溝12とが直交して形成されている。第1実施形態に係る樹脂製基板10には、流路用溝11、12の両端部に貫通孔が形成されているが、変形例に係る樹脂製基板10Aには、流路用溝11、12のみが形成されている。また、図6に示すように、カバー側の樹脂製基板20Aは略八角形の外形形状を有している。樹脂製基板20Aの大きさは、樹脂製基板10Aの大きさよりも小さくなっている。さらに、カバー側の樹脂製基板20Aには、樹脂製基板10Aに形成された流路用溝11、12の端部に対応する位置に、貫通孔21が形成されている。貫通孔21は樹脂製基板20Aの厚さ方向に貫通して形成されている。さらに、凹凸部材である突起部22が、貫通孔21を囲んで設けられている。この突起部22は円筒状の形状を有し、樹脂製基板20Aの厚さ方向に突出している。この形状は1例であり、突起部22は多角形の形状を有していても良い。
 そして、図8と図9に示すように、樹脂製基板10Aについては、流路用溝11、12が形成されている面を内側にし、樹脂製基板20Aについては、突起部22が設けられている面の反対側の面を内側にして、樹脂製基板10Aと樹脂製基板20Aとを接合する。このとき、流路用溝11、12の端部の位置と突起部22の位置とを合わせて、樹脂製基板10Aと樹脂製基板20Aとを重ねて接合する。この接合によって、樹脂製基板20Aが流路用溝11、12の蓋(カバー)として機能し、流路用溝11によって微細流路15が形成され、流路用溝12によって微細流路16が形成される。さらに、樹脂製基板20Aには、微細流路11、12の端部に対応する位置に貫通孔21が形成されており、樹脂製基板10Aと樹脂製基板20Aとを接合することで、マイクロチップには開口部23が形成される。樹脂製基板20Aの貫通孔21は流路用溝11、12の端部に対応する位置に形成されているため、その貫通孔21による開口部23は微細流路15、16に繋がっている。そして、開口部23を囲んで設けられた突起部22にチューブやノズルを嵌合することで、開口部23にチューブやノズルを接続する。
 この変形例のように、カバー側の樹脂製基板20Aに貫通孔と突起部とを形成した場合であっても、樹脂製基板20Aの外形形状を略八角形の形状とし、樹脂製基板20Aの大きさを樹脂製基板10Aの大きさよりも小さくすることで、樹脂製基板10Aの角近傍の表面を避けて樹脂製基板10Aと樹脂製基板20Aとを接合することができる。これにより、接合面が小さくなるため、平面精度が比較的低い表面があっても、その表面の影響を低減して接合強度がより高いマイクロチップを作製することが可能となる。
 なお、この変形例においても、樹脂製基板20Aの外形形状を正方形や長方形などの四角形にし、流路用溝が形成された樹脂製基板10Aの外形形状を略八角形にし、樹脂製基板10Aの大きさを樹脂製基板20Aの大きさよりも小さくしても良い。また、突起部以外の凹凸部材として、スイッチ機構やレンズなどの機構を基板の表面に設けても良い。
[第2の実施の形態]
 次に、この発明の第2実施形態に係るマイクロチップについて図10と図11を参照して説明する。図10は、この発明の第2実施形態に係るマイクロチップの上面図である。図11は、この発明の第2実施形態に係るマイクロチップの断面図であり、図10のXI-XI断面図である。
 第2実施形態では、カバー側の基板として、第1実施形態に係る樹脂製基板20の代わりに、図10と図11に示す樹脂製基板30を用いて、樹脂製基板10と樹脂製基板30とを接合する。樹脂製基板30は、樹脂製基板10のすべての端部から所定距離の範囲に含まれる表面を避けて樹脂製基板10と接合するために用いられる。樹脂製基板30は平板状の基板であり、樹脂製基板30の大きさは樹脂製基板10の大きさよりも小さくなっている。例えば、樹脂製基板30の大きさは、樹脂製基板30を樹脂製基板10に重ねたときに、樹脂製基板10のすべての端部から1mm以内の範囲に含まれる表面を覆わない大きさとなっている。
 このように、樹脂製基板10のすべての端部から所定距離(1mm以内)の範囲に含まれる表面を覆わない大きさの樹脂製基板30を用いることで、樹脂製基板10の端部の周辺を避けて、樹脂製基板10と樹脂製基板30とを接合することが可能となる。これにより、接合面が小さくなるため、平面精度が低い表面があっても、その表面の影響を低減して接合強度がより高いマイクロチップを作製することが可能となる。
 また、上述したように、射出成形によって樹脂製基板10を作製する場合、樹脂製基板10の端部や角が盛り上がり、平面精度が低くなってしまうおそれがある。そこで、第2実施形態では、樹脂製基板10の端部から所定距離(1mm以内)の範囲に含まれる表面を覆わない大きさの樹脂製基板30を用いることで、樹脂製基板10の端部の周辺を避けて、樹脂製基板10と樹脂製基板30とを接合することが可能となる。そのことにより、平面精度が比較的低い表面を避けて、樹脂製基板10と樹脂製基板30とを接合することが可能となり、マイクロチップの接合強度をより高めることが可能となる。
 また、マイクロチップは、基板の端部(外周部)から剥がれやすいため、樹脂製基板10のすべての端部の周辺を避けて樹脂製基板10と樹脂製基板30とを接合することで、端部から剥がれにくいマイクロチップを作製することができる。
 なお、図10に示す樹脂製基板30の形状は1例である。図10に示す例では、樹脂製基板30の端部は曲線状となっているが、これに限定されず、直線状の形状であっても良い。すなわち、樹脂製基板10の端部から所定距離の範囲の表面を覆わない形状であれば、樹脂製基板30の形状は円形状であっても良いし、矩形状であっても良い。
 また、第1実施形態の変形例と同様に、カバー側の樹脂製基板30に貫通孔と突起部とを設けて、図7に示す樹脂製基板10Aと接合しても、この実施形態と同じ効果を奏することができる。また、樹脂製基板30の外形形状を正方形や長方形などの四角形にし、樹脂製基板10の大きさを樹脂製基板30の大きさよりも小さくしても良い。さらに、突起部以外の凹凸部材を樹脂製基板10又は樹脂製基板30の表面に設けても、この実施形態と同じ効果を奏することができる。
 なお、カバー側の樹脂製基板30は第1実施形態に係る樹脂製基板と同じ樹脂が用いられる。また、樹脂製基板10と樹脂製基板30は、第1実施形態と同じ方法で接合される。
[第2実施形態の変形例]
 次に、上述した第2実施形態の変形例について図12と図13を参照して説明する。図12は、第2実施形態の変形例に係るマイクロチップの上面図である。図13は、第2実施形態の変形例に係るマイクロチップの断面図であり、図12のXIII-XIII断面図である。
 この変形例では、図12と図13に示すように、樹脂製基板10Bとカバー側の樹脂製基板30とを接合する。樹脂製基板10Bの表面は、第1実施形態に係る樹脂製基板10と同様に、流路用溝11と流路用溝12とが直交して形成されている。また、樹脂製基板10Bには、流路用溝11、12の両端部に貫通孔13が形成されている。さらに、流路用溝11、12が形成されている表面の反対側の表面には、貫通孔13を囲む円筒状の突起部14が設けられている。
 さらに、樹脂製基板10Bの外周部の一部に、突起部18が設けられている。この突起部18は、射出成形のときに使用されたゲート部の中に残された成形体である。射出成形によって樹脂製基板10Bを作製した場合、そのゲート部の中に残された成形体が突起部18として樹脂製基板10Bの外周部に残される。射出成形によって樹脂製基板10Bを作製するときには、成形型に、成形型中のキャビティ空間に樹脂を導くためのゲート部(注入口)が設けられる。そして、樹脂が固まって成形品が形成され、ゲート部で切断されるとき、ゲート部の中に入っていた樹脂も、成形品の一部に繋がった形で取り出される。そのゲート部の中に残された成形体が突起部18として、樹脂製基板10Bの外周部に設けられている。なお、キャビティ空間に樹脂を効率良く射出するために、ゲート部の名残である突起部18の幅の長さは、樹脂製基板10の幅の長さの15%以上、90%以下となっており、30%以上、80%以下であることが更に好ましい。
 この変形例においては、図12と図13に示すように、樹脂製基板10Bに形成された突起部18の近傍の表面を避けて、樹脂製基板10と樹脂製基板20とを接合することでマイクロチップを作製する。具体的には、流路用溝11、12が形成された樹脂製基板10Bよりも樹脂製基板30の寸法を小さくし、突起部18の近傍の表面を避けて樹脂製基板10と樹脂製基板30とを接合する。例えば、樹脂製基板10Bの接合面において、突起部18が設けられた外周部から所定距離dの範囲に含まれる表面を避けて、樹脂製基板10Bと樹脂製基板30とを接合する。この接合によって、マイクロチップの内部には、微細流路15、16が形成され、さらに、微細流路15、16に繋がる開口部17が形成される。
 なお、この実施形態では、突起部18を樹脂製基板10Bに残したまま、樹脂製基板10Bと樹脂製基板30とを接合している。この接合は1例であり、樹脂製基板10Bから突起部18を切断や研磨などによって取り除き、その後、樹脂製基板10Bと樹脂製基板30とを接合しても良い。
 射出成形によって樹脂製基板10Bを作製するとき、ゲート部近傍の表面(突起部18の近傍の表面)は変形しやすく、高い平面精度を保つことが困難である。特に流路用溝が形成されているような、単純な平板ではない樹脂製基板を作成する場合には、その困難さがより増大する。また、ゲート部で切断する際に、ゲート部近傍の表面の平面精度が更に低下してしまう。例えば、ゲート部近傍の表面(突起部18の近傍の表面)においては、うねりの最大高さと最小高さとの差、すなわちPV(peak to valley)値が、それ以外の表面よりも大きくなってしまう。例えば、ゲート部近傍では、PV値が3μm以上になり、10μm以上になる場合もある。そのため、ゲート部近傍の表面(突起部18の近傍の表面)を含めて2つの樹脂製基板を接合すると、接合強度が低くなってしまう。例えば、突起部18が設けられた位置から距離dの範囲内における表面の平面精度が低い場合、その部分を含めて樹脂製基板10Bと樹脂製基板30とを接合すると、接合強度が低くなってしまう。そこで、この実施形態では、外周部から距離dの範囲を避けて樹脂製基板10Bと樹脂製基板30とを接合することにより、樹脂製基板10Bにおいて平面精度が比較的低い表面を避けて接合することが可能となる。そのことにより、平面精度が比較的高い表面を接合面として樹脂製基板10Bと樹脂製基板30とを接合することが可能となるため、マイクロチップの接合強度を高めることが可能となる。換言すると、流路用溝を有する樹脂製基板の表面において、PV値が10μm以上である場所(好ましくは、3μm以上である場所)を避けて、他方の樹脂製基板を接合することが好ましい。
 この実施形態では、辺の長さが樹脂製基板10Bの辺の長さよりも短い樹脂製基板30を用いることで、樹脂製基板30の寸法を樹脂製基板10Bの寸法よりも小さくして、ゲート部近傍の表面(突起部18の近傍の表面)を避けて樹脂製基板10Bと樹脂製基板30とを接合する。例えば、正方形の形状を有する樹脂製基板10Bと、楕円状の形状を有する樹脂製基板30とを接合する。
 例えば、樹脂製基板10Bの辺の長さを長さXとし、樹脂製基板30のゲート部方向において最も長い部分の長さを長さYとする(長さY<長さX)。そして、樹脂製基板30の長さYを、樹脂製基板10Bの辺の長さXよりも距離d以上短くする。すなわち、長さX-長さY≧距離dの関係が成立するように、樹脂製基板10Bの辺の長さXと、樹脂製基板30の短辺の長さYとを規定する。なお、樹脂製基板10Bに設けられた突起部18の長さであって、樹脂製基板10Bの辺に沿った長さを長さAとする。このように、樹脂製基板30の長さYを、樹脂製基板10Bの辺の長さXよりも距離d以上短くすることで、ゲート部近傍の表面(突起部18の近傍の表面)を避けて樹脂製基板10Bと樹脂製基板30とを接合することができる。そのことにより、平面精度が比較的高い表面を接合面として樹脂製基板10Bと樹脂製基板30とを接合することが可能となるため、マイクロチップの接合強度を高めることが可能となる。
 1例として、突起部18が設けられた外周部からの距離dを1[mm]とする。この距離d(1mm)以内の範囲に含まれる表面では、平面精度が比較的低くなってしまうため、その範囲に含まれる表面を避けて、樹脂製基板10Bと樹脂製基板30とを接合する。
 この変形例では、樹脂製基板10Bの端部から所定距離(1mm以内)の範囲に含まれる表面を覆わない大きさの樹脂製基板30を用いることで、樹脂製基板10Bに形成された突起部18の近傍を避けて、樹脂製基板10Bと樹脂製基板30とを接合することが可能となる。これにより、平面精度が比較的低い突起部18近傍の表面を避けて、平面精度が比較的高い表面を接合面として、樹脂製基板10Bと樹脂製基板30とを接合することが可能となる。その結果、マイクロチップの接合強度を高めることが可能となる。さらに、上述した第2実施形態と同様に、接合面が小さくなるため、平面精度が低い表面があっても、その表面の影響を低減して接合強度がより高いマイクロチップを作製することが可能となる。また、突起部18の幅は、7.5[mm]以上、45[mm]以下であることが好ましく、15[mm]以上、40[mm]以下であることが更に好ましい。
 また、樹脂製基板10Bに貫通孔と突起部を設けず、カバー側の樹脂製基板30に貫通孔と突起部とを設けて接合しても、この変形例と同じ効果を奏することができる。さらに、貫通孔を囲む突起部以外の凹凸部材を樹脂製基板10B又は樹脂製基板30の表面に設けても、この実施形態と同じ効果を奏することができる。
[第3の実施の形態]
 次に、この発明の第3実施形態に係るマイクロチップについて図14と図15を参照して説明する。図14は、この発明の第3実施形態に係るマイクロチップの上面図である。図15は、この発明の第3実施形態に係るマイクロチップの断面図であり、図14のXV-XV断面図である。
 第3実施形態では、カバー側の基板として、第1実施形態に係る樹脂製基板20の代わりに、図14と図15に示す樹脂製基板40を用いて、樹脂製基板10と樹脂製基板40とを接合する。樹脂製基板40は平板状の基板である。また、樹脂製基板40の形状は、樹脂製基板10の表面に形成された流路用溝11、12の形状と、貫通孔13が形成されている位置とに依存する。例えば、樹脂製基板40の形状は、流路用溝11、12と貫通孔13とに沿った形状となっている。具体的には、樹脂製基板40の形状は、樹脂製基板40のすべての端部が、流路用溝11、12が形成されている位置と貫通孔13が形成されている位置とから、所定の距離以内の範囲に含まれる形状となっている。これにより、樹脂製基板10の表面に形成された流路用溝11、12の位置に合わせて樹脂製基板40を樹脂製基板10に重ねて接合したときに、樹脂製基板40のすべての端部が、微細流路15、16と開口部17とから所定の距離以内の範囲に含まれることになる。1例として、樹脂製基板40のすべての端部が、微細流路15、16と開口部17とから、2mm以内の範囲に含まれることが好ましく、0.2mm~2mmの範囲内に含まれていることがより好ましい。
 例えば、樹脂製基板10には、直線状の流路用溝11と直線状の流路用溝12とが直交して形成され、流路用溝11、12のそれぞれの両端部には貫通孔13が形成されている。そのため、カバー側の樹脂製基板40は、流路用溝11に沿った直線状の部材と、流路用溝12に沿った直線状の部材とを備えて構成されている。なお、図14には、樹脂製基板40の形状を模式的に表しており、流路用溝と貫通孔とが形成されている位置に応じて、カバー側の樹脂製基板の形状を変えれば良い。
 以上のように、カバー側の樹脂製基板40のすべての端部が、流路用溝11、12と貫通孔13とから所定の距離以内の範囲に含まれることで、樹脂製基板10と樹脂製基板40とが接合する面をより小さくすることが可能となる。このように接合面が小さくなることで、接合において平面精度の影響を受ける範囲がより小さくなる。そのことにより、平面精度が比較的低い表面があっても、その表面の影響を低減して樹脂製基板10と樹脂製基板40とを接合することが可能となる。その結果、樹脂製基板10と樹脂製基板40との接合強度をより高くすることが可能となる。
 また、第3実施形態に係る樹脂製基板40を用いることで、射出成形のときに使用されたゲート部近傍の表面を避けて、樹脂製基板同士を接合することが可能となる。例えば、図14に示す樹脂製基板10Bと樹脂製基板40とを接合する場合、ゲート部近傍の表面を避けて接合することができる。すなわち、カバー側の樹脂製基板40のすべての端部が、流路用溝11、12と貫通孔13とから所定の距離(0.2mm~2mm)の範囲に含まれるため、樹脂製基板10Bに形成された突起部18の近傍の表面(ゲート部近傍の表面)を避けて、樹脂製基板10Bと樹脂製基板40とを接合することが可能となる。これにより、平面精度が比較的低い突起部18近傍の表面を避けて、平面精度が比較的高い表面を接合面として、樹脂製基板10Bと樹脂製基板40とを接合することが可能となる。その結果、マイクロチップの接合強度をより高めることが可能となる。
 また、第1実施形態の変形例と同様に、カバー側の樹脂製基板40に貫通孔と突起部とを設けて、図7に示す樹脂製基板10Aと接合しても、この実施形態と同じ効果を奏することができる。さらに、貫通孔を囲む突起部以外の凹凸部材を樹脂製基板10又は樹脂製基板40の表面に設けても、この実施形態と同じ効果を奏することができる。
 なお、カバー側の樹脂製基板40は第1実施形態に係る樹脂製基板と同じ樹脂が用いられる。また、樹脂製基板10と樹脂製基板40は、第1実施形態と同じ方法で接合される。
[第4の実施の形態]
 次に、この発明の第4実施形態に係るマイクロチップについて図16から図18を参照して説明する。図16は、この発明の第4実施形態に係る樹脂製基板の上面図である。図17は、この発明の第4実施形態に係るマイクロチップの上面図である。図18は、この発明の第4実施形態に係るマイクロチップの断面図であり、図17のXVIII-XVIII断面図である。
 図16に示すように、樹脂製基板50の一方の表面には、流路用溝51と流路用溝54とが形成されている。流路用溝51、54は、1例として、直線状の溝とその直線状の溝に交差する2つの溝とを含んで構成されている。流路用溝51と流路用溝54とは繋がっておらず、それぞれ独立した溝である。また、流路用溝51の端部には、樹脂製基板50の厚さ方向に貫通する貫通孔52が形成されている。同様に、流路用溝54の端部には、樹脂製基板50の厚さ方向に貫通する貫通孔55が形成されている。さらに、図16に示すように、樹脂製基板50には、流路用溝51、54が形成されている表面とは反対側の表面に、円筒状の突起部53、56が設けられている。突起部53は貫通孔52を囲んで設けられ、突起部56は貫通孔55を囲んで設けられている。突起部53、56に、チューブやノズルを嵌合して、試料などの導入や排出を行う。
 第4実施形態では、カバー側の基板として、2つの樹脂製基板を用いる。例えば、図17と図18に示すように、樹脂製基板60と樹脂製基板70とをカバー側の基板として用いる。なお、樹脂製基板60、70が、この発明の「個別基板」の1例に相当する。樹脂製基板60、70はそれぞれ平板状の基板である。樹脂製基板60は、樹脂製基板50の表面に形成された流路用溝51をカバーする基板である。一方、樹脂製基板70は、樹脂製基板50の表面に形成された流路用溝54をカバーする基板である。このように、流路用溝ごとに別個の基板を接合する。
 樹脂製基板60の形状は、樹脂製基板50の表面に形成された流路用溝51の形状と貫通孔52が形成されている位置とに依存する。例えば、樹脂製基板60の形状は、流路用溝51と貫通孔52とに沿った形状となっている。具体的には、樹脂製基板60の形状は、樹脂製基板60のすべての端部が、流路用溝51が形成されている位置と貫通孔52が形成されている位置とから、所定の距離以内の範囲に含まれる形状となっている。これにより、樹脂製基板50の表面に形成された流路用溝51の位置に合わせて樹脂製基板60を樹脂製基板50に重ねて接合したときに、樹脂製基板50のすべての端部が、微細流路61と開口部62とから所定の距離以内の範囲に含まれることになる。1例として、樹脂製基板60のすべての端部が、微細流路61と開口部62とから、2mm以内の範囲に含まれることが好ましく、0.2mm~2mmの範囲内に含まれることがより好ましい。
 同様に、樹脂製基板70の形状は、流路用溝54の形状と貫通孔55が形成されている位置とに依存し、流路用溝54と貫通孔55とに沿った形状となっている。具体的には、樹脂製基板70の形状は、樹脂製基板70のすべての端部が、流路用溝54が形成されている位置と貫通孔55が形成されている位置とから、所定の距離以内の範囲に含まれる形状となっている。これにより、樹脂製基板50の表面に形成された流路用溝54の位置に合わせて樹脂製基板70を樹脂製基板50に重ねて接合したときに、樹脂製基板70のすべての端部が、微細流路71と開口部72とから所定の距離以内の範囲に含まれることになる。1例として、樹脂製基板70のすべての端部が、微細流路71と開口部72とから、2mm以内の範囲に含まれることが好ましく、0.2mm~2mmの範囲内に含まれることがより好ましい。
 以上のように、カバー側の樹脂製基板60のすべての端部が、流路用溝51と貫通孔52とから所定の距離以内の範囲に含まれることで、樹脂製基板50と樹脂製基板60とが接合する面をより小さくすることが可能となる。このように接合面が小さくなることで、接合において平面精度の影響を受ける範囲がより小さくなる。そのことにより、平面精度が比較的低い表面があっても、その表面の影響を低減して樹脂製基板50と樹脂製基板60とを接合することが可能となる。その結果、樹脂製基板50と樹脂製基板60との接合強度をより高くすることが可能となる。同様に、樹脂製基板70のすべての端部が、流路用溝54と貫通孔55とから所定の距離以内の範囲に含まれることで、樹脂製基板50と樹脂製基板70との接合強度をより高くすることが可能となる。
 また、流路用溝が形成された樹脂製基板50に貫通孔と突起部を設けず、カバー側の樹脂製基板60、70に貫通孔と突起部とを設けて接合しても、この実施形態と同じ効果を奏することができる。さらに、突起部以外の凹凸部材を樹脂製基板50又は樹脂製基板60、70の表面に設けても、この実施形態と同じ効果を奏することができる。
 なお、樹脂製基板50、60、70は第1実施形態に係る樹脂製基板と同じ樹脂が用いられ、第1実施形態に係る接合方法と同じ方法で接合される。
 また、この実施形態においては、複数のカバー側の樹脂製基板を流路用溝に沿った形状としたが、この形状に限定されない。例えば、流路用溝に沿った形状とせずに、それぞれの流路用溝を複数のカバー側の樹脂製基板で覆うようにしても良い。この場合であっても、単独のカバー側の樹脂製基板で複数の流路用溝を覆う場合に比べて、接合面積を低減できるため、平面精度が劣化した場合であっても、接合強度を高めることができる。
[第4実施形態の変形例]
 次に、上述した第4実施形態の変形例について図19を参照して説明する。図19は、第4実施形態の変形例に係るマイクロチップの上面図である。
 この変形例では、上述した樹脂製基板60と樹脂製基板70とをカバー側の基板として用い、互いに独立した流路用溝が形成された樹脂製基板50Aと接合することでマイクロチップを作製する。樹脂製基板50Aは、射出成形によって作製された基板である。樹脂製基板50Aは、上述した樹脂製基板50の外周部の一部に、ゲート部の中の成形体に相当する突起部57が設けられた構成を有している。従って、樹脂製基板50Aの構成は、突起部57を除いて樹脂製基板50と同じである。
 そして、上述した第4実施形態と同様に、樹脂製基板50Aの表面に形成された流路用溝の位置に合わせて、樹脂製基板60と樹脂製基板70とを樹脂製基板50Aに重ねて接合する。
 上述した実施形態と同様に、カバー側の樹脂製基板60のすべての端部が、流路用溝と貫通孔とから所定の距離以内の範囲に含まれることで、接合面を小さくして、平面精度の影響を受ける範囲を小さくすることが可能となる。その結果、樹脂製基板50Aと樹脂製基板60との接合強度をより高めることが可能となる。同様に、樹脂製基板70と樹脂製基板50Aとの接合においても、接合強度をより高めることが可能となる。
 さらに、カバー側の樹脂製基板60のすべての端部が、流路用溝51と貫通孔52とから所定の距離(0.2mm~2mm)の範囲に含まれる形状とすることで、樹脂製基板50Aに形成された突起部57の近傍の表面(ゲート部近傍の表面)を避けて、樹脂製基板50と樹脂製基板60とを接合することが可能となる。これにより、平面精度が比較的低い突起部57近傍の表面(ゲート部近傍の表面)を避けて、平面精度が比較的高い表面を接合面として、樹脂製基板50と樹脂製基板60とを接合することが可能となる。その結果、マイクロチップの接合強度をより高めることが可能となる。樹脂製基板70についても、突起部57近傍の表面(ゲート部近傍の表面)を避けて樹脂製基板50と接合することができるため、接合強度をより高めることが可能となる。
 なお、この実施形態では、突起部57を樹脂製基板50Aに残したまま、樹脂製基板50Aと樹脂製基板60、70とを接合しているが、樹脂製基板50Aから突起部57を取り除いた後、2つの樹脂製基板を接合しても良い。
[第5の実施の形態]
 次に、この発明の第5実施形態に係るマイクロチップについて図20と図21を参照して説明する。図20は、この発明の第5実施形態に係るマイクロチップの上面図である。図21は、この発明の第5実施形態に係るマイクロチップの断面図であり、図20のXXI-XXI断面図である。
 第5実施形態では、射出成形で作製された2つの樹脂製基板を接合する場合について説明する。第5実施形態に係るマイクロチップは、図12に示す樹脂製基板10Bと、平板状の樹脂製基板80とを備えて構成されている。樹脂製基板10Bは、第2実施形態の変形例に係る基板と同じ構成を有しているため、説明を省略する。樹脂製基板80は平板状の基板であり、樹脂製基板10Bと同様に射出成形によって作製される。従って、樹脂製基板80の外周部の一部には、ゲート部の中に残った成形体である突起部81が設けられている。
 このように、射出成形で作製された樹脂製基板10Bと樹脂製基板80とを接合する場合であっても、樹脂製基板10Bの突起部18から距離d以内の範囲内を樹脂製基板80が覆わないようし、同様に、樹脂製基板80の突起部81から距離d以内の範囲内を樹脂製基板10Bが覆わないようして、樹脂製基板10Bと樹脂製基板80とを重ねて接合する。例えば、図20と図21に示すように、樹脂製基板10Bと樹脂製基板80とを互い違いに重ねる。これにより、突起部18と突起部81のそれぞれの近傍、すなわち、それぞれのゲート部近傍の表面を避けて、樹脂製基板10Bと樹脂製基板80とを接合することが可能となる。その結果、平面精度が比較的低い表面を避けて、樹脂製基板10Bと樹脂製基板80とを接合することが可能となり、接合強度が高いマイクロチップを作製することが可能となる。
 なお、この実施形態では、突起部18を樹脂製基板10Bに残し、突起部81を樹脂製基板80に残したまま、樹脂製基板10Bと樹脂製基板80とを接合しているが、突起部18、81をそれぞれの樹脂製基板から取り除いた後、2つの樹脂製基板を接合しても良い。
 なお、この第5実施形態では、樹脂製基板80に流路用溝や貫通孔が形成されていない例について説明したが、樹脂製基板10Bの接合の相手となる基板はこれに限定されない。例えば、射出成形によって樹脂製基板80の表面に流路用溝を形成しても良いし、基板の厚さ方向に貫通する貫通孔を形成しても良い。このように、流路用溝や貫通孔が形成された樹脂製基板80と樹脂製基板10Bとを接合する場合であっても、突起部18と突起部81のそれぞれの近傍の表面を避けて接合することで、接合強度が高いマイクロチップを作製することが可能となる。
 また、上述した実施形態と同様に、突起部18近傍の表面と突起部81近傍の表面とを避けて樹脂製基板10Bと樹脂製基板80と接合することで、接合面が小さくなるため、表面精度の影響を受けにくくすることが可能となる。その結果、平面精度が比較的低い表面があった場合であっても、樹脂製基板10Bと樹脂製基板80との接合強度を高めることが可能となる。
 なお、上述した第1から第5実施形態においては、一方の樹脂製基板のみに流路用溝を形成したが、両方の樹脂製基板に流路用溝を形成しても良い。両方の樹脂製基板に流路用溝を形成した場合であっても、一方の樹脂製基板の大きさを他方の樹脂製基板よりも小さくすることで、接合面を小さくして、平面精度の影響を受ける範囲を小さくすることが可能となる。これにより、上述した実施形態と同じ効果を奏することが可能となる。
 また、樹脂製基板の表面に形成する流路用溝の数は限定されない。互いに独立した3個以上の流路用溝を、樹脂製基板の表面に形成しても良い。さらに、第1から第5実施形態においては、2つの樹脂製基板を接合しているが、3つ以上の樹脂製基板を重ねて接合しても良い。
 また、ゲート部の中に残された成形体である突起部は、複数の箇所に設けられていても良い。この場合、各突起部から距離d以内の範囲内をカバー側の樹脂製基板が覆わないように、樹脂製基板を接合すれば良い。
[実施例]
 次に、具体的な実施例について説明する。
 この実施例では、上記第1実施形態の具体例を説明する。
(樹脂製基板)
 射出成形機で透明樹脂材料のアクリル(旭化成社製デルペット)を成形し、複数の流路用溝と複数の貫通孔と突起部とが形成された流路側の樹脂製基板を作製した。この流路側の樹脂製基板が、上述した第1実施形態における流路用溝11、12と貫通孔13と突起部14とが形成された樹脂製基板10の1例に相当する。
 流路側の樹脂製基板の寸法を以下に示す。
 一辺の長さ=50mm
 厚さ=1mm
 流路用溝11、12の幅、深さ=50μm
 貫通孔13の内径=2mm
 突起部14の高さ=5mm
 突起部14の外径=4mm
 また、透明樹脂材料としてアクリルを用い、押出成形法によって、基板の厚さが1mmで、一辺の長さが20.6mmの八角形の形状を有するカバー側の樹脂製基板を作製した。このカバー側の樹脂製基板が、第1実施形態に係る蓋(カバー)として機能する樹脂製基板20に相当する。
(接合)
 次に、流路用溝が形成された表面を内側にして、流路側の樹脂製基板とカバー側の樹脂製基板とを重ねた。その状態で、加熱プレス機を用いて、90℃に加熱された熱板によって2つの樹脂製基板を挟み、1kgf/cmの圧力を加えて、1分間保持することでマイクロチップを作製した。上記の流路側の樹脂製基板とカバー側の樹脂製基板とを接合することで、流路側の樹脂製基板の角から1mm以内の範囲に含まれる表面を避けて、流路側の樹脂製基板とカバー側の樹脂製基板とを接合した。
(評価)
 上述した方法で作製したマイクロチップの接合面を顕微鏡で観察したところ、この実施例において、2つの樹脂製基板は全面溶着されていた。
(比較例)
 次に、上述した実施例に対する比較例を説明する。
(樹脂製基板)
 射出成形機で透明樹脂材料のアクリル(旭化成社製、デルペット)を成形し、外形寸法が幅50mm×幅50mm×厚さ1mmの板状部材に幅50μm、深さ50μmの複数の流路用溝と、内径2mmの複数の貫通孔と、突起部とが形成された流路側の樹脂製基板を作製した。突起部は各貫通孔を囲む形状を有し、流路用溝が形成されている表面とは反対側の表面に形成されている。同様に、外形寸法が幅50mm×幅50mm×厚さ1mmのカバー側の樹脂製基板を作製した。このカバー側の樹脂製基板が、流路用溝の蓋(カバー)として機能する。
(接合)
 次に、流路用溝が形成された表面を内側にして、流路側の樹脂製基板とカバー側の樹脂製基板とを重ねた。その状態で、加熱プレス機を用いて、90℃に加熱された熱板によって2つの樹脂製基板を挟み、1kgf/cm2の圧力を加えて、1分間保持することでマイクロチップを作製した。
(評価)
 比較例に係るマイクロチップの接合面を顕微鏡で観察したところ、角部や射出成形のゲート部近傍で未溶着の範囲が観察された。
 以上のように、この発明の実施例によると、比較例と比べて、樹脂製基板同士の接合強度が高くなることが確認できた。これは、2つの樹脂製基板の接合に供する面が小さくなり、その結果、平面精度の影響を低減することができたからと考えられる。
 なお、上述した実施例で示した樹脂製基板の材料や寸法は1例であり、この発明がこれらに限定されるものではない。例えば、上述した実施形態で挙げた樹脂を用いた場合も、比較例と比べて、樹脂製基板同士の接合強度を高くすることが可能である。また、突起部以外の凹凸部材であって、スイッチ機構やレンズなどの凹凸部材を樹脂製基板の表面に形成した場合であっても、上述した実施例と同様の結果が得られる。

Claims (26)

  1.  2つの樹脂製基板のうち少なくとも1つの樹脂製基板の表面には流路用溝が形成され、前記2つの樹脂製基板のうち少なくとも1つの樹脂製基板には貫通孔が形成され、少なくとも1つの樹脂製基板の表面であって他方の樹脂製基板と接合されない表面に凹凸部材が設けられ、前記2つの樹脂製基板を、前記流路用溝が形成されている面を内側にして接合するマイクロチップの製造方法であって、
     前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にして前記2つの樹脂製基板を接合する接合工程を含むことを特徴とするマイクロチップの製造方法。
  2.  成形型によって形成されたキャビティ空間に射出成形のゲート部を通し、前記ゲート部を切断することで、前記流路用溝が前記表面に形成された樹脂製基板を作製する基板作製工程を更に含み、
     前記接合工程では、前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にし、さらに、前記流路用溝が形成された前記樹脂製基板の前記ゲート部近傍の表面を他の樹脂製基板が覆わないように、前記2つの樹脂製基板を接合することを特徴とする請求の範囲第1項に記載のマイクロチップの製造方法。
  3.  前記基板作製工程では、前記ゲート部を通して樹脂を射出することで、前記流路用溝が前記表面に形成され、前記ゲート部を切断することにより、射出成形のときに使用された前記ゲート部の中に残された成形体が外周部に突出して残された樹脂製基板を作製し、
     前記接合工程では、前記成形体の近傍の表面を避けて、前記流路用溝が形成されている面を内側にして前記2つの樹脂製基板を接合することを特徴とする請求の範囲第2項に記載のマイクロチップの製造方法。
  4.  前記接合工程では、前記他方の樹脂製基板の角から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板を前記他方の樹脂製基板に接合することを特徴とする請求の範囲第1項から第3項のいずれかに記載のマイクロチップの製造方法。
  5.  前記接合工程では、前記他方の樹脂製基板のすべての端部から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板を前記他方の樹脂製基板に接合することを特徴とする請求の範囲第1項から第4項のいずれかに記載のマイクロチップの製造方法。
  6.  前記他方の樹脂製基板の表面には前記流路用溝が形成され、前記一方の樹脂製基板は平板状の基板であって、前記他方の樹脂製基板に形成された前記流路用溝に沿った形状を有する基板であり、
     前記接合工程では、前記一方の樹脂製基板を、前記他方の樹脂製基板に形成された前記流路用溝の位置に合わせて前記他方の樹脂製基板に重ねて、前記2つの樹脂製基板を接合することを特徴とする請求の範囲第1項から第5項のいずれかに記載のマイクロチップの製造方法。
  7.  前記一方の樹脂製基板のすべての端部は、前記一方の樹脂製基板を前記他方の樹脂製基板に形成された前記流路用溝の位置に合わせて前記他方の樹脂製基板に重ねたときに、前記他方の樹脂製基板に形成された前記流路用溝から2mm以内の範囲に含まれることを特徴とする請求の範囲第6項に記載のマイクロチップの製造方法。
  8.  前記流路用溝は、互いに繋がりがない独立した複数の溝を含み、前記一方の樹脂製基板は、前記複数の溝の数に応じた複数の個別基板を備え、前記複数の個別基板はそれぞれ平板状の基板であって、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれに沿った形状を有する基板であり、
     前記接合工程では、前記複数の個別基板のそれぞれを、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれの位置に合わせて、独立した溝ごとに前記個別基板と前記他方の樹脂製基板とを接合することを特徴とする請求の範囲第1項から第6項に記載のマイクロチップの製造方法。
  9.  前記個別基板のすべての端部は、前記複数の個別基板を前記他方の樹脂製基板に形成された前記溝の位置に合わせて前記他方の樹脂製基板に重ねたときに、前記他方の樹脂製基板に形成された前記溝から2mm以内の範囲に含まれることを特徴とする請求の範囲第8項に記載のマイクロチップの製造方法。
  10.  前記凹凸部材は、前記貫通孔が形成された樹脂製基板の前記貫通孔を囲んで設けられ、前記樹脂製基板の厚さ方向に突出する突起部であることを特徴とする請求の範囲第1項から第9項のいずれかに記載のマイクロチップの製造方法。
  11.  前記2つの樹脂製基板は熱可塑性樹脂により構成されていることを特徴とする請求の範囲第1項から第10項のいずれかに記載のマイクロチップの製造方法。
  12.  前記2つの樹脂製基板を重ねた状態で前記2つの樹脂製基板を加熱して溶着することで前記接合を行うことを特徴とする請求の範囲第1項から第11項のいずれかに記載のマイクロチップの製造方法。
  13.  前記接合によって、電気泳動分析に用いるマイクロチップを製造することを特徴とする請求の範囲第1項から第12項のいずれかに記載のマイクロチップの製造方法。
  14.  2つの樹脂製基板のうち少なくとも1つの樹脂製基板の表面には流路用溝が形成され、前記2つの樹脂製基板のうち少なくとも1つの樹脂製基板には貫通孔が形成され、前記2つの樹脂製基板を、前記流路用溝が形成されている面を内側にして接合されたマイクロチップであって、
     前記貫通孔と前記流路用溝とは繋がっており、
     前記2つの樹脂製基板のうち少なくとも1つの樹脂製基板の表面であって接合されていない表面に凹凸部材が設けられ、
     前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部が、他方の樹脂製基板の端部よりも内側に設けられていることを特徴とするマイクロチップ。
  15.  前記流路用溝が形成された樹脂製基板は、成形型によって形成されたキャビティ空間に射出成形のゲート部を通して樹脂を射出し、前記ゲート部を切断することで作製された基板であり、
     前記2つの樹脂製基板のうち少なくとも一方の樹脂製基板の端部の一部を、他方の樹脂製基板の端部よりも内側にし、さらに、前記流路用溝が形成された前記樹脂製基板の前記ゲート部近傍の表面を他の樹脂製基板が覆わないように、前記2つの樹脂製基板が接合されていることを特徴とする請求の範囲第14項に記載のマイクロチップ。
  16.  前記切断したゲート部の一部が前記樹脂製基板の外周部に突出しており、前記成形体の近傍の表面を避けて、前記2つの樹脂製基板が接合されていることを特徴とする請求の範囲第15項に記載のマイクロチップ。
  17.  前記他方の樹脂製基板の角から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板と前記他方の樹脂製基板とが接合されていることを特徴とする請求の範囲第14項から第16項のいずれかに記載のマイクロチップ。
  18.  前記他方の樹脂製基板のすべての端部から1mm以内の範囲に含まれる表面を避けて、前記一方の樹脂製基板と前記他方の樹脂製基板とが接合されていることを特徴とする請求の範囲第17項に記載のマイクロチップ。
  19.  前記他方の樹脂製基板の表面には前記流路用溝が形成され、前記一方の樹脂製基板は平板状の基板であって、前記他方の樹脂製基板に形成された前記流路用溝に沿った形状を有する基板であり、前記一方の樹脂製基板は、前記他方の樹脂製基板に形成された前記流路用溝の位置に合わせて前記他方の樹脂製基板と接合されていることを特徴とする請求の範囲第14項から第18項のいずれかに記載のマイクロチップ。
  20.  前記一方の樹脂製基板のすべての端部が、前記他方の樹脂製基板に形成された前記流路用溝から2mm以内の範囲に含まれていることを特徴とする請求の範囲第19項に記載のマイクロチップ。
  21.  前記流路用溝は、互いに繋がりがない独立した複数の溝を含み、前記一方の樹脂製基板は、前記複数の溝の数に応じた数の個別基板を備え、前記複数の個別基板はそれぞれ平板状の基板であって、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれに沿った形状を有する基板であり、前記複数の個別基板のそれぞれは、前記他方の樹脂製基板に形成された前記複数の溝のそれぞれの位置に合わせて、独立した溝ごとに前記他方の樹脂製基板と接合されていることを特徴とする請求の範囲第14項から第19項のいずれかに記載のマイクロチップ。
  22.  前記個別基板のすべての端部が、前記他方の樹脂製基板に形成された前記溝から2mm以内の範囲に含まれていることを特徴とする請求の範囲第21項に記載のマイクロチップ。
  23.  前記凹凸部材は、前記貫通孔が形成された樹脂製基板の前記貫通孔を囲んで設けられ、前記樹脂製基板の厚さ方向に突出する突起部であることを特徴とする請求の範囲第14項から第22項のいずれかに記載のマイクロチップ。
  24.  前記2つの樹脂製基板は熱可塑性樹脂により構成されていることを特徴とする請求の範囲第14項から第23項のいずれかに記載のマイクロチップ。
  25.  前記2つの樹脂製基板は、加熱して溶着することで接合されたことを特徴とする請求の範囲第14項から第24項のいずれかに記載のマイクロチップ。
  26.  電気泳動分析に用いられることを特徴とする請求の範囲第14項から第25項のいずれかに記載のマイクロチップ。
PCT/JP2009/051070 2008-02-15 2009-01-23 マイクロチップの製造方法、及びマイクロチップ WO2009101850A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553384A JPWO2009101850A1 (ja) 2008-02-15 2009-01-23 マイクロチップの製造方法、及びマイクロチップ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-034694 2008-02-15
JP2008034694 2008-02-15

Publications (1)

Publication Number Publication Date
WO2009101850A1 true WO2009101850A1 (ja) 2009-08-20

Family

ID=40956880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051070 WO2009101850A1 (ja) 2008-02-15 2009-01-23 マイクロチップの製造方法、及びマイクロチップ

Country Status (3)

Country Link
JP (1) JPWO2009101850A1 (ja)
TW (1) TW201000898A (ja)
WO (1) WO2009101850A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057102A1 (ja) * 2010-10-29 2012-05-03 コニカミノルタオプト株式会社 成形型、その成形型を用いて製造されるマイクロチップ、及びそのマイクロチップを製造する製造装置
JP2020171315A (ja) * 2019-04-05 2020-10-22 日本板硝子株式会社 反応処理容器、反応処理容器の製造方法および反応処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031638A (ja) * 2000-07-17 2002-01-31 Mitsubishi Chemicals Corp 生体試料検出用チップ及び生体試料検出方法
JP2005172773A (ja) * 2003-12-05 2005-06-30 Mari Tabuchi 電気泳動用基板、生体検査試料分析装置及びその方法
JP2006234600A (ja) * 2005-02-25 2006-09-07 Sumitomo Bakelite Co Ltd プラスチック製マイクロチップおよびその製造方法
JP2007078490A (ja) * 2005-09-13 2007-03-29 Canon Inc 液体充填性を向上させた生化学反応カセット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192450B2 (ja) * 2001-08-23 2008-12-10 東ソー株式会社 微小流路構造体の製造方法
KR20070116585A (ko) * 2005-01-18 2007-12-10 바이오셉트 인코포레이티드 패턴화된 포스트를 갖는 마이크로채널을 이용하는 세포분리법
JP4919474B2 (ja) * 2006-07-13 2012-04-18 国立大学法人京都大学 光照射による樹脂の接着方法および樹脂物品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031638A (ja) * 2000-07-17 2002-01-31 Mitsubishi Chemicals Corp 生体試料検出用チップ及び生体試料検出方法
JP2005172773A (ja) * 2003-12-05 2005-06-30 Mari Tabuchi 電気泳動用基板、生体検査試料分析装置及びその方法
JP2006234600A (ja) * 2005-02-25 2006-09-07 Sumitomo Bakelite Co Ltd プラスチック製マイクロチップおよびその製造方法
JP2007078490A (ja) * 2005-09-13 2007-03-29 Canon Inc 液体充填性を向上させた生化学反応カセット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057102A1 (ja) * 2010-10-29 2012-05-03 コニカミノルタオプト株式会社 成形型、その成形型を用いて製造されるマイクロチップ、及びそのマイクロチップを製造する製造装置
JP2020171315A (ja) * 2019-04-05 2020-10-22 日本板硝子株式会社 反応処理容器、反応処理容器の製造方法および反応処理方法
JP7341492B2 (ja) 2019-04-05 2023-09-11 株式会社ゴーフォトン 反応処理容器、反応処理容器の製造方法および反応処理方法

Also Published As

Publication number Publication date
TW201000898A (en) 2010-01-01
JPWO2009101850A1 (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
KR100572207B1 (ko) 플라스틱 마이크로 칩의 접합 방법
JP2008008880A (ja) プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ
JP5187442B2 (ja) マイクロチップ
JP2009166416A (ja) マイクロチップの製造方法、及びマイクロチップ
JP2008175795A (ja) プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ
JP2008216121A (ja) マイクロチップの製造方法
WO2009101850A1 (ja) マイクロチップの製造方法、及びマイクロチップ
JP2011214838A (ja) 樹脂製マイクロ流路チップ
JP2014122831A (ja) マイクロ流路デバイス
WO2010016372A1 (ja) マイクロチップ
WO2009101845A1 (ja) マイクロチップ及びその製造方法
JP2008157644A (ja) プラスチック製マイクロチップ、及びそれを利用したバイオチップ又はマイクロ分析チップ。
JP5251983B2 (ja) マイクロチップの製造方法
KR20110075448A (ko) 미세유동 장치의 제작 방법 및 제작된 미세유동 장치
JP2009192421A (ja) マイクロチップの製造方法、及びマイクロチップ
JP2008076208A (ja) プラスチック製マイクロチップ、及びそれを利用したバイオチップ又はマイクロ分析チップ。
WO2010016371A1 (ja) マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置
WO2009125757A1 (ja) マイクロチップ及びマイクロチップの製造方法
WO2010016399A1 (ja) マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置
JP2009226503A (ja) マイクロチップ基板の接合方法およびマイクロチップ
JP2011123000A (ja) マイクロ流路チップ用部品、マイクロ流路チップおよび分析装置
JP2012206098A (ja) 樹脂製マイクロ流路チップの製造方法およびマイクロ流路チップ
CN117443466A (zh) 微流控芯片及其封装方法
JP2013044528A (ja) マイクロ流路デバイス
JP2014006049A (ja) マイクロ流路チップの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553384

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709449

Country of ref document: EP

Kind code of ref document: A1