WO2010016399A1 - マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置 - Google Patents

マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置 Download PDF

Info

Publication number
WO2010016399A1
WO2010016399A1 PCT/JP2009/063259 JP2009063259W WO2010016399A1 WO 2010016399 A1 WO2010016399 A1 WO 2010016399A1 JP 2009063259 W JP2009063259 W JP 2009063259W WO 2010016399 A1 WO2010016399 A1 WO 2010016399A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
protrusion
plate
microchip
hole
Prior art date
Application number
PCT/JP2009/063259
Other languages
English (en)
French (fr)
Inventor
清水 直紀
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010523830A priority Critical patent/JPWO2010016399A1/ja
Publication of WO2010016399A1 publication Critical patent/WO2010016399A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • B29C66/92451Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power using joining tools having different pressure zones or using several joining tools with different pressures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/08PVDC, i.e. polyvinylidene chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • B29K2031/04Polymers of vinyl acetate, e.g. PVAc, i.e. polyvinyl acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Definitions

  • the present invention relates to a microchip, a microchip manufacturing method, and a microchip manufacturing apparatus.
  • Such a microchip has two substrates formed of resin or the like, and after fine processing is performed on at least one substrate, the two substrates are sandwiched between hot plates and bonded together. It is manufactured.
  • microchip there is a microchip provided on the surface with a projection that is fitted into a tube or the like and introduces or discharges a sample (for example, see Patent Document 1).
  • Patent Document 1 does not disclose a specific method for pressing the substrates provided with the protrusions from the side of the protrusions to join the substrates together, simply manufacturing such a microchip. Then, the bonding strength between the substrates decreases or varies within the bonding surface.
  • An object of the present invention is to provide a microchip, a microchip manufacturing method, and a microchip manufacturing apparatus capable of manufacturing a microchip having protrusions on the surface with uniform and strong bonding strength.
  • a microchip for sandwiching two substrates, which are laminated to form a flow path on the inside, between two pressing means facing each other, and heat-bonding the stomach surfaces of these substrates.
  • the manufacturing method Of the two substrates, one having at least one protrusion on the back is used as one substrate.
  • one pressing means presses at least one of the tip end and the base end face of the one substrate to the other substrate side, and the other pressing means presses the other substrate.
  • a bonding step is performed in which the back surface is pressed against the one substrate side and the substrates are heated and bonded.
  • a hole that is disposed so as to face the back surface of the one substrate and accommodates the protrusion in a position facing the protrusion is formed through the thickness direction, and is thicker than the length of each protrusion.
  • a large plate-shaped member, A columnar member accommodated in the hole in a state of being relatively movable with respect to each hole, Use what has In the joining step, The plate-shaped member and each columnar member are moved independently in the contact / separation direction with respect to the one substrate, While pressing the base end surface of the projection to the other substrate side by the plate-like member, It is preferable that the tip of the protrusion located inside the hole is pressed to the other substrate side by the columnar member.
  • a hole that is disposed so as to face the back surface of the one substrate and accommodates the protrusion in a position facing the protrusion is formed through the thickness direction, and is thicker than the length of each protrusion.
  • a plate having a plate-like member that is disposed so as to face the back surface of the one substrate and has a hole that accommodates the protrusion at a position opposed to each protrusion in the thickness direction is used.
  • the joining step Moving the plate-like member in the contacting / separating direction with respect to the one substrate; It is preferable that the base end surface of the protrusion is pressed against the other substrate side by the plate member.
  • the one pressing means Using one having a plate-like member disposed so as to face the back surface of the one substrate and facing each protrusion, In the joining step, Moving the plate-like member in the contacting / separating direction with respect to the one substrate; It is preferable that the tip of the protrusion is pressed toward the other substrate by the plate-like member.
  • the one substrate is disposed so as to face the back surface, accommodates the protrusion at a position facing each protrusion, and has a hole having a depth corresponding to the length of the protrusion in the thickness direction.
  • a plate-like member In the joining step, Moving the plate-like member in the contacting / separating direction with respect to the one substrate; While pressing the base end surface of the protrusion to the other substrate side by the surface of the plate-like member, It is preferable that the tip of the protrusion located inside the hole is pressed toward the other substrate by the bottom surface of the hole.
  • the microchip In the microchip, It is manufactured by the method for manufacturing a microchip of the present invention.
  • the microchip manufacturing apparatus for heating and bonding the abdominal surfaces of the two substrates that are laminated to form the flow path inside
  • the two pressing means are: While pressing at least one of the tip end and the base end face of the one substrate on the other substrate side by one pressing means, Pressing the back surface of the other substrate to the one substrate side by the other pressing means; These substrates are heat-bonded.
  • the one pressing means is A hole that is disposed so as to face the back surface of the one substrate and accommodates the protrusion in a position facing the protrusion is formed through the thickness direction, and is thicker than the length of each protrusion.
  • the one pressing means is A hole that is disposed so as to face the back surface of the one substrate and accommodates the protrusion in a position facing the protrusion is formed through the thickness direction, and is thicker than the length of each protrusion.
  • the one pressing means is A plate-like member which is disposed so as to face the back surface of the one substrate, and has a hole formed therein penetrating in the thickness direction at a position opposed to each projection; A moving means for moving the plate-like member in the contact / separation direction with respect to the one substrate; Have It is preferable that the base end surface of the protrusion is pressed against the other substrate side by the plate member.
  • the one pressing means is A plate-like member disposed to face the back surface of the one substrate and facing each protrusion; A moving means for moving the plate-like member in the contact / separation direction with respect to the one substrate; Have It is preferable that the tip of the protrusion is pressed toward the other substrate by the plate-like member.
  • the one pressing means is The one substrate is disposed so as to face the back surface, accommodates the protrusion at a position facing each protrusion, and has a hole having a depth corresponding to the length of the protrusion in the thickness direction.
  • a plate-like member; A moving means for moving the plate-like member in the contact / separation direction with respect to the one substrate; Have While pressing the base end surface of the protrusion to the other substrate side by the surface of the plate-like member, It is preferable that the tip of the protrusion located inside the hole is pressed toward the other substrate by the bottom surface of the hole.
  • one of the two substrates having at least one protrusion provided on the back surface is used as one substrate, and the protrusion on one substrate is pressed by one of the two pressing means. Since at least one of the front end surface and the base end surface is pressed to the other substrate side, and the back surface of the other substrate is pressed to the one substrate side by the other pressing means, and these substrates are heated and bonded. It is possible to prevent the bonding strength from being lowered or scattered in the bonding surface. Therefore, a microchip having a protrusion on the surface can be manufactured with uniform and strong bonding strength.
  • FIG. 4 is a cross-sectional view of the microchip according to the present invention, and is a cross-sectional view taken along the line IV-IV in FIG. It is a top view of the resin-made board
  • 3 is a conceptual diagram showing an outline of a gap 73 formed between a surface of a columnar member 71 facing the resin substrate 20 and a tip 411 of a protrusion 41.
  • FIG. It is a conceptual diagram which shows schematic structure of the modification of the manufacturing apparatus of the microchip which concerns on this invention.
  • FIG. 1 is a top view of a microchip 1 according to the present invention
  • FIG. 2 is a sectional view taken along line IV-IV in FIG.
  • the microchip 1 includes two rectangular plate-like resin substrates 10 and 20 which are laminated and bonded to each other on the inner stomach surfaces 10A and 20A.
  • linear flow path grooves 12 and 13 are formed on the abdominal surface 10A of the resin substrate 10, as shown in FIGS. 2 and 3, linear flow path grooves 12 and 13 are formed. Further, as shown in FIG. 3, through-holes 14 penetrating in the thickness direction of the resin substrate 10 are respectively formed at both ends of the flow path grooves 12 and 13.
  • the channel groove 12 and the channel groove 13 in the present embodiment are formed orthogonal to each other, they may be formed without being orthogonal to each other.
  • a cylindrical protrusion 41 is provided around each through hole 14 in the back surface 10B of the resin substrate 10. These protrusions 41 surround the through-holes 14 and protrude in the thickness direction of the resin substrate 10 and are fitted into tubes and nozzles of an analyzer (not shown) to introduce and discharge samples and the like. To do.
  • a protrusion 41 may have a cylindrical shape, or may have another shape such as a polygonal shape.
  • the dimension of the projection part 41 is arbitrarily set according to the dimension of a tube or a nozzle.
  • the resin substrate 20 is a member having a smooth surface, and is bonded to the abdominal surface 10 ⁇ / b> A (formation surface of the flow path grooves 12 and 13) in the resin substrate 10.
  • the resin substrate 20 functions as a cover (cover) for the flow path grooves 12 and 13 and the through hole 14, and the fine flow path 15 is formed between the flow path grooves 12 of the resin substrate 10 and the flow path.
  • a fine channel 16 is formed between the groove 13 and the through hole 14 to form an opening 17.
  • the shape of the microchannels 15 and 16 (channel grooves 12 and 13) takes into consideration the fact that the amount of analysis sample and reagent used can be reduced, the fabrication accuracy of molds, transferability, and mold release properties.
  • the width and depth are preferably in the range of 10 ⁇ m to 200 ⁇ m, but are not particularly limited, and may be determined according to the use of the microchip. And may be the same or different.
  • the cross-sectional shape of the microchannels 15 and 16 is a rectangular shape, but this shape is an example, and other shapes such as a circular shape may be used.
  • the opening 17 formed by the through hole 14 is connected to the fine flow paths 15 and 16. .
  • the opening 17 is a hole for introducing, storing, and discharging a gel, a sample, and a buffer solution, and is connected to a tube or nozzle provided in an analyzer (not shown). Thus, a gel, a sample, a buffer solution, or the like is introduced into or discharged from the fine channels 15 and 16.
  • the shape of the opening 17 (through hole 14) is not limited to a circular shape, and may be various other shapes such as a rectangular shape.
  • the inner diameter of the opening 17 (through hole 14) may be adjusted to the analysis method or the analysis apparatus, and is preferably about 2 mm, for example.
  • the shape of the resin substrates 10 and 20 may be any shape as long as it is easy to handle and analyze. For example, a shape such as a square, a rectangle, and a circle is preferable. Further, the size of the resin substrates 10 and 20 is preferably about 10 mm square to 200 mm square, and more preferably 10 mm square to 100 mm square. Further, the plate thickness of the resin substrate 10 on which the channel grooves 12 and 13 are formed is preferably about 0.2 mm to 5 mm, more preferably 0.5 mm to 2 mm in consideration of moldability. The plate thickness of the resin substrate 20 functioning as a lid (cover) is preferably about 0.2 mm to 5 mm, more preferably 0.5 mm to 2 mm in consideration of moldability.
  • a film may be used as the resin substrate 20 instead of a plate member.
  • the thickness of the film is preferably 30 ⁇ m to 300 ⁇ m, and more preferably 50 ⁇ m to 150 ⁇ m.
  • resin is used as the material for the resin substrates 10 and 20.
  • this resin those having good moldability (transferability, releasability), high transparency, and low autofluorescence with respect to ultraviolet rays and visible light are preferable.
  • thermoplastic resins are used.
  • thermoplastic resin examples include polycarbonate, polymethyl methacrylate, polystyrene, polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate, nylon 6, nylon 66, polyvinyl acetate, polyvinylidene chloride, polypropylene, polyisoprene, polyethylene, polydimethyl. It is preferable to use siloxane, cyclic polyolefin or the like. It is particularly preferable to use polymethyl methacrylate and cyclic polyolefin.
  • the resin substrate 10 and the resin substrate 20 may be made of the same material or different materials.
  • thermosetting resin for the resin substrate 20 in which the channel groove is not formed, a thermosetting resin or an ultraviolet curable resin may be used in addition to the thermoplastic resin.
  • thermosetting resin polydimethylsiloxane is preferably used.
  • the resin substrate 10 on which the flow path grooves 12 and 13 are formed is preferably formed by an injection molding method or a press molding method, and the resin substrate 20 on which the flow path grooves are not formed is formed by an extrusion molding method. It may be produced by a method other than an injection molding method such as a T-die molding method, an inflation molding method, or a calendar molding method, or by an injection molding method.
  • FIG. 4 is a conceptual diagram showing a schematic configuration of a microchip manufacturing apparatus (hereinafter referred to as a manufacturing apparatus) 5.
  • a manufacturing apparatus a microchip manufacturing apparatus
  • the microchip 1 is shown in a simplified manner.
  • the manufacturing apparatus 5 includes two pressing means 6 and 7 for heat-bonding with the resin substrates 10 and 20 interposed therebetween.
  • the resin substrate 20 is disposed between the pressing means 6 and 7 so that the resin substrate 20 is on the upper side and the resin substrate 10 is on the lower side. This will be explained.
  • the pressing means 6 that presses the resin substrate 20 toward the resin substrate 10 includes a plate-like hot plate 60 facing the back surface 20 ⁇ / b> B of the resin substrate 20, and the hot plate 60 against the resin substrate 20.
  • moving means 62 for moving in the contact / separation direction (vertical direction in the figure).
  • the heat plate 60 is configured to be able to heat the resin substrate 20 in a state of being in contact with the resin substrate 20, and has a size larger than the back surface 20 ⁇ / b> B of the resin substrate 20.
  • a hot plate 60 and moving means 62 conventionally known ones can be used.
  • the above pressing means 6 presses the back surface 20B of the resin substrate 20 against the resin substrate 10 side by the hot plate 60.
  • the pressing means 7 that presses the resin substrate 10 toward the resin substrate 20 faces the back surface 10B of the resin substrate 10 and has a hole 700 penetrating in the thickness direction at a position facing each protrusion 41.
  • the formed plate-shaped heat plate 70, the columnar member 71 accommodated in each hole 700 in a state of being relatively movable with respect to the hole 700, and the heat plate 70 and each columnar member 71 are attached to the resin substrate 10.
  • a moving means 72 that moves independently in the contact / separation direction (vertical direction in the drawing).
  • the heat plate 70 is configured to be able to heat the resin substrate 10 in contact with the resin substrate 10, and is larger than the back surface 10 ⁇ / b> B of the resin substrate 10, and the length of each protrusion 41. It is formed in a dimension having a thickness larger than the thickness dimension. Further, on the upper surface (surface on the resin substrate 10 side) of the hot plate 70 in the present embodiment, an annular protrusion 701 that fits with the side peripheral surface of the resin substrate 10 is formed. Although the movement of 10 in the lateral direction is restricted, the protrusion 701 may not be formed. Further, the hole 700 of the hot plate 70 is formed to have a size capable of accommodating the protrusion 41. In the present embodiment, the protrusion 41 is loosely fitted.
  • the columnar member 71 is formed to have a size that fits into the hole 700, but may be formed to have a size that fits loosely into the hole 700 as long as it can move relative to the hole 700.
  • the columnar member 71 may be configured to heat the resin substrate 10.
  • each columnar member 71 facing the resin substrate 20 contacts the tip 411 of the protrusion 41.
  • a gap 73 may occur as shown in FIG. 5 due to a manufacturing error of the resin substrate 20 or the like.
  • the gap 73 is generated, when the columnar member 71 is moved in the direction of the resin substrate 20 by using the moving means 72, an imbalance occurs between the forces applied to the protrusions 41, and the resin substrates 10 and 20 are connected to each other. May be difficult to bond with sufficient bonding strength.
  • the gap 73 when the gap 73 is generated, it is preferable to fill the gap 73 by inserting a spacer (not shown) corresponding to the thickness of the gap 73.
  • a spacer By filling the gap 73 and equalizing the force that each columnar member 71 applies to the tip 411 of each protrusion 41, the resin substrates 10 and 20 can be bonded with sufficient bonding strength.
  • the above pressing means 7 presses the base end face 410 of the protrusion 41, that is, the back surface 10 ⁇ / b> B of the resin substrate 10, toward the resin substrate 20 by the hot plate 70, and also the protrusion 41 located inside the hole 700.
  • the tip 411 is pressed against the resin substrate 20 side by the columnar member 71.
  • a release agent (not shown) for preventing the resin substrates 10 and 20 from sticking is applied to the inner side surfaces of the two hot plates 60 and 70 (the lower surface of the hot plate 60 and the upper surface of the hot plate 70).
  • a conventionally known release agent can be used as such a release agent.
  • the resin substrates 10 and 20 are stacked one above the other with the formation surface (abdominal surface 10A) of the flow path grooves 12 and 13 in the resin substrate 10 facing inward (upper side), and between the hot plates 60 and 70. It arranges in. At this time, the protrusion 41 of the resin substrate 10 is opposed to the hole 700 of the hot plate 70.
  • the hot plate 60 and the columnar members 70 and 70 are formed by bringing the hot plate 60 close to the hot plate 70 by the moving unit 62 and making the hot plate 70 and each columnar member 71 close to the hot plate 60 independently by the moving unit 72.
  • the resin substrates 10 and 20 are sandwiched between the members 71.
  • a spacer (not shown) is inserted to fill the gap 73.
  • the pressing means 6 presses the back surface 20 ⁇ / b> B of the resin substrate 20 toward the resin substrate 10 by the hot plate 60.
  • the pressing means 7 presses the base end surface 410 (the back surface 10B of the resin substrate 10) of the protrusion 41 to the resin substrate 20 side by the hot plate 70, and the protrusion 41 located inside each hole 700.
  • the tip 411 is pressed against the resin substrate 20 side by each columnar member 71 (see the arrow in FIG. 4).
  • the resin substrates 10 and 20 are heated and bonded while being pressed (bonding step), and then the hot plates 60 and 70 are separated from each other by the moving means 62 and 72, whereby the microchip 1 is manufactured.
  • the bonding of the resin substrate 10 and the resin substrate 20 is performed by heat welding such as thermocompression bonding or heat lamination.
  • heat welding such as thermocompression bonding or heat lamination.
  • the resin on the bonding surfaces (abdominal surfaces 10A and 20A) of the resin substrates 10 and 20 is melted, and the resin substrate 10 and the resin substrate 20 are melted.
  • the heating temperature for example, a temperature of 70 ° C. to 200 ° C. can be used.
  • the resin substrate 10 and the resin substrate 20 may be joined by laser welding or ultrasonic welding instead of thermocompression bonding or thermal lamination.
  • the bonding surfaces are melted by irradiating the resin substrates 10 and 20 with laser, and the resin substrate 10 and the resin substrate are further melted. 20 and pressurizing to join.
  • the substrates are bonded together by scanning the resin substrates with a laser intensity of 0.1 W to 20 W.
  • the bonding surfaces are melted by irradiating the resin substrates 10 and 20 with ultrasonic waves in a state where the resin substrates 10 and 20 are stacked, and further, the resin substrate 10 And the resin substrate 20 are pressed together.
  • the substrates are bonded together by applying pressure to the resin substrates while applying ultrasonic waves of 10 kHz to 50 kHz.
  • pressure is applied by the pressing means 6 and 7.
  • the resin substrate 10 having the protrusions 41 provided on the back surface 10B is used, and the back surface 20B of the resin substrate 20 is fixed to the resin substrate by the hot plate 60 of the pressing means 6. 10, and the base plate 410 and the tip 411 of the protrusion 41 of the resin substrate 10 are pressed against the resin substrate 20 side by the hot plate 70 and the columnar member 71 of the pressing means 7, and these resin products are used. Since the substrates 10 and 20 are heat-bonded, it is possible to prevent the bonding strength between the resin substrates 10 and 20 from being lowered or from being varied in the bonding surface. Therefore, the microchip 1 provided with the protrusions 41 on the surface can be manufactured with a uniform and strong bonding strength.
  • the base plate 410 and the tip 411 of the protrusion 41 of the resin substrate 10 are pressed against the resin substrate 20 side by the hot plate 70 and the columnar member 71, respectively, compared with a case where only one of them is pressed. It is possible to press on a wide surface. Accordingly, the microchip 1 can be manufactured with more uniform and strong bonding strength.
  • the tip 411 of each projection 41 is independently pressed by each columnar member 71, the tip 411 of each projection 41 can be reliably pressed even when the length of the projection 41 varies. Can do. Accordingly, the microchip 1 can be manufactured with more uniform and strong bonding strength.
  • the microchip manufacturing apparatus 5 ⁇ / b> A according to the modification (1) includes a pressing unit 7 ⁇ / b> A instead of the pressing unit 7.
  • the pressing means 7A has two hot plates 70A and 70B and a moving means 72A.
  • the hot plate 70A is a plate-like member that faces the back surface 10B of the resin substrate 10, and is configured to be able to heat the resin substrate 10 in a state of being in contact with the resin substrate 10.
  • the hot plate 70 ⁇ / b> A is larger than the back surface 10 ⁇ / b> B of the resin substrate 10 and has a thickness smaller than the length of each protrusion 41.
  • a hole 700A that accommodates the protrusion 41 is formed in the hot plate 70A so as to penetrate each protrusion 41 in the thickness direction.
  • the hole 700A is formed to have a size for loosely fitting the protrusion 41.
  • the hot plate 70B is a plate-like member that faces the surface opposite to the surface on the resin substrate 10 side (the lower surface in the drawing) of the hot plate 70A, and contacts the protrusion 41 on the resin substrate 10.
  • the resin substrate 10 is configured to be able to be heated while in contact.
  • the hot plate 70B is formed in the same dimension as the opposite surface.
  • the hot plate 70B may be a plate-shaped member that does not heat the resin substrate 10.
  • the moving means 72A is configured to move the hot plates 70A and 70B independently in the contact / separation direction with respect to the resin substrate 10.
  • the resin substrate 10, 20 is disposed between the hot plates 60, 70A with the protrusion 41 of the resin substrate 10 facing the hole 700A of the hot plate 70A, and then moved.
  • the hot plate 60 close to the hot plate 70A by means 62 and making the hot plates 70A and 70B close to the hot plate 60 independently by moving means 72A
  • the hot plate 60 and the hot plates 70A and 70B are made of resin.
  • the substrates 10 and 20 are sandwiched.
  • the base end surface 410 of the protrusion 41 is pressed against the resin substrate 20 by the hot plate 70A, and the tip 411 of the protrusion 41 protruding from the hole 700A is moved toward the resin substrate 20 by the hot plate 70B. Press (see arrow in the figure). And a joining process is performed in this state.
  • the resin substrate 10 having the protrusions 41 provided on the back surface 10B is used, and the back surface 20B of the resin substrate 20 is moved to the resin substrate 10 side by the hot plate 60 of the pressing means 6. And the base plate 410 and the tip 411 of the projection 41 of the resin substrate 10 are pressed against the resin substrate 20 side by the hot plates 70A and 70B of the pressing means 7A. Since the heat-bonding is performed, it is possible to prevent the bonding strength between the resin substrates 10 and 20 from being lowered or varying in the bonding surface. Therefore, the microchip 1 provided with the protrusions 41 on the surface can be manufactured with a uniform and strong bonding strength.
  • the base plate 410 and the tip 411 of the protrusion 41 of the resin substrate 10 are pressed against the resin substrate 20 side by the hot plates 70A and 70B, respectively, it is wider than when only one of them is pressed. Pressing on the surface can be performed. Accordingly, the microchip 1 can be manufactured with more uniform and strong bonding strength.
  • the microchip manufacturing apparatus 5 ⁇ / b> C according to the modification (2) includes a pressing unit 7 ⁇ / b> C instead of the pressing unit 7.
  • the pressing means 7C has a hot plate 70C and a moving means 72C.
  • the hot plate 70C is a plate-like member that faces the back surface 10B of the resin substrate 10, and is configured to be able to heat the resin substrate 10 in a state of being in contact with the resin substrate 10.
  • the hot plate 70 ⁇ / b> C is formed with a size larger than the back surface 10 ⁇ / b> B of the resin substrate 10.
  • a hole 700 ⁇ / b> C that accommodates the protrusion 41 is formed through the heat plate 70 ⁇ / b> C at a position facing each protrusion 41 in the thickness direction.
  • the hot plate 70C is formed to have a thickness larger than the length dimension of each protrusion 41, and the hole 700C is formed to have a dimension for loosely fitting the protrusion 41.
  • the moving means 72 ⁇ / b> C moves the hot plate 70 ⁇ / b> C in the contact / separation direction with respect to the resin substrate 10.
  • the protrusion 41 of the resin substrate 10 is opposed to the hole 700C of the hot plate 70C and the resin substrates 10 and 20 are disposed between the hot plates 60 and 70C, and then moved.
  • the hot plate 60 is brought close to the hot plate 70C by the means 62, and the hot plate 70C is brought close to the hot plate 60 by the moving means 72C, thereby sandwiching the resin substrates 10 and 20 between the hot plate 60 and the hot plate 70C.
  • the base end surface 410 of the protrusion 41 is pressed against the resin substrate 20 side by the hot plate 70C (see the arrow in the figure). And a joining process is performed in this state.
  • the resin substrate 10 having the protrusions 41 provided on the back surface 10B is used, and the back surface 20B of the resin substrate 20 is moved to the resin substrate 10 side by the hot plate 60 of the pressing means 6. And pressing the base end surface 410 of the protrusion 41 of the resin substrate 10 to the resin substrate 20 side by the hot plate 70C of the pressing means 7C, and these resin substrates 10 and 20 are heat-bonded. It is possible to prevent the bonding strength between the resin substrates 10 and 20 from being lowered or varying in the bonding surface. Therefore, the microchip 1 provided with the protrusions 41 on the surface can be manufactured with uniform and strong bonding strength.
  • this modified example (2) is compared with other modified examples when the inner diameter of the hole 700C is as small as 5 mm or less, or when the area of the base end face 410 is larger than the area of the tip 411 of the protrusion 41. Thus, it is effective in that strong bonding strength can be obtained.
  • Modification (3) Next, a modification (3) of the microchip manufacturing apparatus according to the present invention will be described.
  • symbol is attached
  • the microchip manufacturing apparatus 5 ⁇ / b> D in the present modification (3) includes a pressing unit 7 ⁇ / b> D instead of the pressing unit 7.
  • the pressing means 7D has a hot plate 70D and a moving means 72D.
  • the hot plate 70D is a plate-like member that faces the back surface 10B of the resin substrate 10, and is configured to be able to heat the resin substrate 10 in a state of being in contact with the resin substrate 10.
  • the hot plate 70 ⁇ / b> D is formed to have a size larger than the back surface 10 ⁇ / b> B of the resin substrate 10.
  • a bottomed hole 700D that accommodates the protrusion 41 is formed in the thickness direction at a position facing each protrusion 41 in the hot plate 70D.
  • the hot plate 70D is formed to have a thickness larger than the length dimension of each projection 41, and the hole 700D allows the projection 41 to be loosely fitted, and the projection 41 on the bottom surface.
  • an annular protrusion 701D that is loosely fitted to the side peripheral surface of the resin substrate 10 is formed, and restrains the movement of the resin substrate 10 in the lateral direction.
  • the protruding portion 701D may not be formed.
  • the moving means 72D is configured to move the hot plate 70D in the contact / separation direction with respect to the resin substrate 10.
  • the protrusion 41 of the resin substrate 10 is opposed to the hole 700D of the hot plate 70D so that the resin substrates 10 and 20 are disposed between the hot plates 60 and 70D, and then moved.
  • the hot plate 60 is brought close to the hot plate 70D by the means 62, and the hot plate 70D is brought close to the hot plate 60 by the moving means 72D, thereby sandwiching the resin substrates 10 and 20 between the hot plate 60 and the hot plate 70D.
  • the tip 411 of the protrusion 41 is pressed against the resin substrate 20 side with the bottom surface of the hole 700D in the hot plate 70D (see the arrow in the figure). And a joining process is performed in this state.
  • the resin substrate 10 having the protrusions 41 provided on the back surface 10B is used, and the back surface 20B of the resin substrate 20 is moved to the resin substrate 10 side by the hot plate 60 of the pressing means 6. And the tip 411 of the protrusion 41 of the resin substrate 10 is pressed against the resin substrate 20 by the hot plate 70D of the pressing means 7D, and the resin substrates 10 and 20 are heat-bonded. It is possible to prevent the bonding strength between the substrates 10 and 20 from being lowered or from being varied in the bonding surface. Therefore, the microchip 1 provided with the protrusions 41 on the surface can be manufactured with a uniform and strong bonding strength.
  • the heating plate 70D has the hole 700D, and the bottom surface of the hole 700D is described as pressing the tip 411 of the protrusion 41.
  • the tip 411 of the protrusion 41 is described. As long as it is pressed, it may be formed in a flat plate shape and press the tip 411 of the protrusion 41 on the surface.
  • the microchip 1E in the modification (4) has a resin substrate 10E instead of the resin substrate 10, and the resin substrate 10E has a protrusion. Instead of 41, a protrusion 41E is provided.
  • the protrusion 41E is different from the protrusion 41 in that the diameter is reduced from the proximal end side toward the distal end side.
  • the microchip manufacturing apparatus 5 E in the present modification (4) includes a pressing means 7 E instead of the pressing means 7.
  • the pressing means 7E has a hot plate 70E and a moving means 72E.
  • the hot plate 70E is a plate-like member facing the back surface 10B of the resin substrate 10E, and is configured to be able to heat the resin substrate 10E in a state of being in contact with the resin substrate 10E.
  • the hot plate 70E is formed in a size larger than the back surface 10B of the resin substrate 10E.
  • the protrusion 41E is accommodated, and a hole 700E having a depth corresponding to the length of the protrusion 41E is formed in the thickness direction.
  • the hot plate 70E is formed to have a thickness larger than the length dimension of each projection 41E, and the hole 700E fits the projection 41E and the projection 41E on the bottom surface. It is formed in a size that abuts on the tip 411.
  • the moving means 72E moves the hot plate 70E in the contact / separation direction with respect to the resin substrate 10E.
  • the protrusion 41E of the resin substrate 10E is opposed to the hole 700E of the hot plate 70E, and the resin substrates 10E and 20 are disposed between the hot plates 60 and 70E, and then moved.
  • the hot plate 60 is brought close to the hot plate 70E by the means 62, and the hot plate 70E is brought close to the hot plate 60 by the moving means 72E, whereby the resin boards 10E and 20 are sandwiched between the hot plate 60 and the hot plate 70E.
  • the base end surface 410 of the protrusion 41E is pressed against the resin substrate 20 side by the surface of the hot plate 70E, and the tip 411 and the side peripheral surface of the protrusion 41E located inside the hole 700E are connected to the hole. It is pressed to the resin substrate 20 side by the bottom surface or inner wall surface of 700E (see the arrow in the figure). And a joining process is performed in this state.
  • the resin substrate 10E having the protrusion 41E provided on the back surface 10B is used, and the back surface 20B of the resin substrate 20 is moved to the resin substrate 10E side by the hot plate 60 of the pressing means 6. And the base end surface 410 and the tip 411 of the protrusion 41E of the resin substrate 10E are pressed against the resin substrate 20 side by the surface of the hot plate 70E and the bottom surface of the hole 700E in the pressing means 7E. Since the substrates 10E and 20 are heat-bonded, it is possible to prevent the bonding strength between the resin substrates 10E and 20 from being lowered or varying within the bonding surface. Therefore, the microchip 1 provided with the protrusions 41E on the surface can be manufactured with uniform and strong bonding strength.
  • the microchip 1E can be manufactured with more uniform and strong bonding strength.
  • the microchip 1E can be manufactured with more uniform and strong bonding strength.
  • the through hole 14 and the protrusions 41 and 41E have been described as being formed on the resin substrate 10, but by forming the resin substrate 20 on the resin substrate 20, an opening connected to the fine flow path. May be formed.
  • the uneven member provided on the back surface 10B of the resin substrates 10 and 10E is not limited to the protrusion 41 described above, and for example, from a switch or an analyzer for controlling the flow of the sample flowing in the fine channel. It may be a lens for condensing the light.
  • the manufacturing apparatuses 5 and 5A are provided with two moving means, that is, the moving means 62 of the pressing means 6 and the moving means 72 and 72A of the pressing means 7 and 7A, the pressing means 7 and 7A. Only the moving means 72, 72A may be provided.
  • the manufacturing apparatuses 5C to 5E are provided with two moving means, that is, the moving means 62 of the pressing means 6 and the moving means 72C to 72E of the pressing means 7C to 7E, but only one of them is provided. It may be provided.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micromachines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 本発明は、表面に突起部の設けられたマイクロチップを均一かつ強固な接合強度で製造する製造方法、製造装置、及び該製造方法により製造されたマイクロチップを提供する。  積層されて内側に微細流路15,16を形成した2つの樹脂製基板10,20の腹面同士を加熱接合するマイクロチップの製造装置5は、互いに対向して間に樹脂製基板10,20を挟んで加熱接合する2つの押圧手段6,7を備える。樹脂製基板10は、突起部41が背面10Bに設けられている。押圧手段6,7は、押圧手段6によって樹脂製基板10における突起部41の先端411と基端面410とを樹脂製基板20側に押圧するとともに、押圧手段7によって樹脂製基板20の背面20Bを樹脂製基板10側に押圧して、これら樹脂製基板10,20を加熱接合する。

Description

マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置
 本発明は、マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置に関する。
 従来、微小空間内で核酸、タンパク質、血液などの液体試料の化学反応や分離、分析などを行う技術分野においては、内部に微細な流路や回路を形成したマイクロチップが実用化されている。
 このようなマイクロチップは、樹脂などで形成された2つの基板を有しており、少なくとも一方の基板に対して微細加工を施した後、これら2つの基板を熱板の間に挟んで貼り合わせる等によって製造されている。
 ところで、上記のマイクロチップとして、チューブ等に嵌合されて試料の導入や排出を行う突起部が表面に設けられたものがある(例えば、特許文献1参照)。
特開2006-234600号公報
 しかしながら、特許文献1には、突起部の設けられた基板を当該突起部の側から加圧して基板同士を接合する具体的な手法が開示されていないため、単純にこのようなマイクロチップを製造すると、基板同士の接合強度が低下したり、接合面内でばらついたりしてしまう。
 本発明の課題は、表面に突起部の設けられたマイクロチップを均一かつ強固な接合強度で製造することのできるマイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置を提供することである。
 本発明の第1の側面によれば、積層されて内側に流路を形成した2つの基板を、互いに対向する2つの押圧手段の間に挟み、これら基板の腹面同士を加熱接合するマイクロチップの製造方法において、
 前記2つの基板のうち、一方の基板として、少なくとも1つの突起部が背面に設けられたものを用い、
 前記2つの押圧手段のうち、一方の押圧手段によって前記一方の基板における前記突起部の先端と基端面との少なくとも一方を他方の基板側に押圧するとともに、他方の押圧手段によって前記他方の基板の背面を前記一方の基板側に押圧して、これら基板を加熱接合する接合工程を行うことを特徴とする。
 本発明のマイクロチップの製造方法においては、
 前記一方の押圧手段として、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの大きい板状部材と、
 各孔部に対して相対移動可能な状態で、当該孔部に収容された柱状部材と、
を有するものを用い、
 前記接合工程では、
 前記板状部材と、各柱状部材とを前記一方の基板に対する接離方向に独立して移動させ、
 前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧するとともに、
 前記孔部の内部に位置する前記突起部の先端を、前記柱状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造方法においては、
 前記一方の押圧手段として、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの小さい第1の板状部材と、
 前記第1の板状部材における前記一方の基板側の面とは反対側の面に対向して配設された第2の板状部材と、
を有するものを用い、
 前記接合工程では、
 前記第1の板状部材と、前記第2の板状部材とを前記一方の基板に対する接離方向に独立して移動させ、
 前記突起部の基端面を、前記第1の板状部材によって前記他方の基板側に押圧するとともに、
 前記孔部から突出した前記突起部の先端を、前記第2の板状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造方法においては、
 前記一方の押圧手段として、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成された板状部材を有するものを用い、
 前記接合工程では、
 前記板状部材を前記一方の基板に対する接離方向に移動させ、
 前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造方法においては、
 前記一方の押圧手段として、
 前記一方の基板の背面に対向するよう配設されるとともに各突起部と対向する1枚の板状部材を有するものを用い、
 前記接合工程では、
 前記板状部材を前記一方の基板に対する接離方向に移動させ、
 前記突起部の先端を、前記板状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造方法においては、
 前記一方の押圧手段として、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容するとともに前記突起部の長さ寸法に対応する深さの孔部が厚み方向に形成された板状部材を有するものを用い、
 前記接合工程では、
 前記板状部材を前記一方の基板に対する接離方向に移動させ、
 前記突起部の基端面を、前記板状部材の表面によって前記他方の基板側に押圧するとともに、
 前記孔部の内部に位置する前記突起部の先端を、当該孔部の底面によって前記他方の基板側に押圧することが好ましい。
 また、本発明の第2の側面によれば、マイクロチップにおいて、
 本発明のマイクロチップの製造方法によって製造されたことを特徴とする。
 また、本発明の第3の側面によれば、積層されて内側に流路を形成した2つの基板の腹面同士を加熱接合するマイクロチップの製造装置において、
 互いに対向して間に前記2つの基板を挟んで加熱接合する2つの押圧手段を備え、
 前記2つの基板のうち、一方の基板は、少なくとも1つの突起部が背面に設けられており、
 前記2つの押圧手段は、
 一方の押圧手段によって前記一方の基板における前記突起部の先端と基端面との少なくとも一方を他方の基板側に押圧するとともに、
 他方の押圧手段によって前記他方の基板の背面を前記一方の基板側に押圧して、
 これら基板を加熱接合することを特徴とする。
 本発明のマイクロチップの製造装置においては、
 前記一方の押圧手段は、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの大きい板状部材と、
 各孔部に対して相対移動可能な状態で、当該孔部に収容された柱状部材と、
 前記板状部材及び各柱状部材を前記一方の基板に対する接離方向に独立して移動させる移動手段と、
を有し、
 前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧するとともに、
 前記孔部の内部に位置する前記突起部の先端を、前記柱状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造装置においては、
 前記一方の押圧手段は、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの小さい第1の板状部材と、
 前記第1の板状部材における前記一方の基板側の面とは反対側の面に対向して配設された第2の板状部材と、
 前記第1の板状部材及び前記第2の板状部材を前記一方の基板に対する接離方向に独立して移動させる移動手段と、
を有し、
 前記突起部の基端面を、前記第1の板状部材によって前記他方の基板側に押圧するとともに、
 前記孔部から突出した前記突起部の先端を、前記第2の板状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造装置においては、
 前記一方の押圧手段は、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成された板状部材と、
 前記板状部材を前記一方の基板に対する接離方向に移動させる移動手段と、
を有し、
 前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造装置においては、
 前記一方の押圧手段は、
 前記一方の基板の背面に対向するよう配設されるとともに各突起部と対向する1枚の板状部材と、
 前記板状部材を前記一方の基板に対する接離方向に移動させる移動手段と、
を有し、
 前記突起部の先端を、前記板状部材によって前記他方の基板側に押圧することが好ましい。
 また、本発明のマイクロチップの製造装置においては、
 前記一方の押圧手段は、
 前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容するとともに前記突起部の長さ寸法に対応する深さの孔部が厚み方向に形成された板状部材と、
 前記板状部材を前記一方の基板に対する接離方向に移動させる移動手段と、
を有し、
 前記突起部の基端面を、前記板状部材の表面によって前記他方の基板側に押圧するとともに、
 前記孔部の内部に位置する前記突起部の先端を、当該孔部の底面によって前記他方の基板側に押圧することが好ましい。
 本発明によれば、2つの基板のうち、一方の基板として、少なくとも1つの突起部が背面に設けられたものを用い、2つの押圧手段のうち、一方の押圧手段によって一方の基板における突起部の先端と基端面との少なくとも一方を他方の基板側に押圧するとともに、他方の押圧手段によって他方の基板の背面を一方の基板側に押圧して、これら基板を加熱接合するので、基板同士の接合強度が低下したり、接合面内でばらついたりしてしまうのが防止される。従って、表面に突起部の設けられたマイクロチップを均一かつ強固な接合強度で製造することができる。
本発明に係るマイクロチップの上面図である。 本発明に係るマイクロチップの断面図であり、図1のIV―IV断面図である。 流路用溝の形成された樹脂製基板の上面図である。 本発明に係るマイクロチップの製造装置の概略構成を示す概念図である。 柱状部材71の樹脂製基板20に対向する面と、突起部41の先端411との間に生じた隙間73の概要を示す概念図である。 本発明に係るマイクロチップの製造装置の変形例の概略構成を示す概念図である。 本発明に係るマイクロチップの製造装置の変形例の概略構成を示す概念図である。 本発明に係るマイクロチップの製造装置の変形例の概略構成を示す概念図である。 本発明に係るマイクロチップの製造装置の変形例の概略構成を示す概念図である。
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
 図1は、本発明に係るマイクロチップ1の上面図であり、図2は図1のIV-IV断面図である。
 これらの図に示すように、マイクロチップ1は、積層され内側の腹面10A,20A同士で互いに貼合せられた2枚の矩形板状の樹脂製基板10,20を備えている。
 このうち、樹脂製基板10の腹面10Aには、図2,図3に示すように、直線状の流路用溝12,13が形成されている。また、図3に示すように、これら流路用溝12,13の両端部には、樹脂製基板10の厚さ方向に貫通する貫通孔14がそれぞれ形成されている。なお、本実施形態における流路用溝12と流路用溝13とは、互いに直交して形成されているが、直交せずに形成されていても良い。
 また、樹脂製基板10の背面10Bのうち、各貫通孔14の周囲には、円筒状の突起部41が設けられている。これらの突起部41は、貫通孔14を囲んで樹脂製基板10の厚さ方向に突出しており、分析装置(図示せず)のチューブやノズルに嵌合されて、試料などの導入や排出を行うようになっている。なお、このような突起部41は円筒状の形状を有していても良いし、多角形状など、他の形状を有していても良い。また、突起部41の寸法は、チューブやノズルの寸法に合わせて任意に設定される。
 一方、図2に示すように、樹脂製基板20は、表面の平滑な部材であり、樹脂製基板10における腹面10A(流路用溝12,13の形成面)に対して接合されている。この接合によって樹脂製基板20は流路用溝12、13や貫通孔14の蓋(カバー)として機能し、樹脂製基板10の流路用溝12との間に微細流路15を、流路用溝13との間に微細流路16を、貫通孔14とで開口部17を形成している。
 ここで、微細流路15,16(流路用溝12,13)の形状は、分析試料、試薬の使用量を少なくできること、成形金型の作製精度、転写性、離型性などを考慮して、幅、深さともに10μm~200μmの範囲内の形状であることが好ましいが、特に限定されるものではなく、マイクロチップの用途によって決めれば良く、また、微細流路15と微細流路16とで同じであっても良いし、異なっていても良い。本実施の形態においては、微細流路15、16の断面の形状は矩形状となっているが、この形状は1例であり、円形状など、他の形状となっていても良い。
 また、上述のように樹脂製基板10の貫通孔14は流路用溝12、13と繋がっているため、この貫通孔14により形成される開口部17は微細流路15、16に繋がっている。この開口部17は、ゲル、試料、緩衝液の導入、保存、排出を行うための孔であり、分析装置(図示せず)に設けられたチューブやノズルに接続されて、このチューブやノズルを介してゲルや試料、緩衝液などを微細流路15、16に導入したり、微細流路15、16から排出したりする。なお、開口部17(貫通孔14)の形状は、円形状に限らず、矩形状など、他の様々な形状であっても良い。また、開口部17(貫通孔14)の内径は、分析手法や分析装置に合わせれば良く、例えば2mm程度であることが好ましい。
 以上の樹脂製基板10,20の形状は、ハンドリング、分析しやすい形状であればどのような形状であっても良いが、例えば正方形、長方形、円形などの形状が好ましい。また、樹脂製基板10,20の大きさは、10mm角~200mm角程度が好ましく、10mm角~100mm角がより好ましい。また、流路用溝12、13が形成された樹脂製基板10の板厚は、成形性を考慮して、0.2mm~5mm程度が好ましく、0.5mm~2mmがより好ましい。蓋(カバー)として機能する樹脂製基板20の板厚は、成形性を考慮して、0.2mm~5mm程度が好ましく、0.5mm~2mmがより好ましい。但し、本実施の形態のように樹脂製基板20に流路用溝を形成しない場合には、樹脂製基板20として、板状の部材ではなく、フィルム(シート状の部材)を用いても良い。この場合、フィルムの厚さは、30μm~300μmであることが好ましく、50μm~150μmであることがより好ましい。
 また、樹脂製基板10、20の材料には樹脂が用いられる。この樹脂としては、成形性(転写性、離型性)が良く、透明性が高く、紫外線や可視光に対する自己蛍光性が低いものが好ましく、例えば熱可塑性樹脂が用いられる。
 熱可塑性樹脂としては、例えば、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン6、ナイロン66、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソプレン、ポリエチレン、ポリジメチルシロキサン、環状ポリオレフィンなどを用いることが好ましい。特に好ましいのは、ポリメタクリル酸メチル、環状ポリオレフィンを用いることである。なお、樹脂製基板10と樹脂製基板20とで、同じ材料を用いても良いし、異なる材料を用いても良い。
 また、流路用溝が形成されない樹脂製基板20には、熱可塑性樹脂の他、熱硬化性樹脂や紫外線硬化性樹脂などを用いても良い。熱硬化性樹脂としては、ポリジメチルシロキサンを用いることが好ましい。
 また、流路用溝12,13の形成される樹脂製基板10は射出成形法またはプレス成形法によって形成されることが好ましく、流路用溝が形成されていない樹脂製基板20は押出成形法、Tダイ成形法、インフレーション成形法、又はカレンダ成形法などの射出成形法以外の方法によって作製されていても良いし、射出成形法によって作製されていても良い。
 続いて、上記のマイクロチップ1の製造装置について説明する。
 図4は、マイクロチップの製造装置(以下、製造装置とする)5の概略構成を示す概念図である。なお、この図では、マイクロチップ1を簡略化して図示している。
 この図に示すように、製造装置5は、樹脂製基板10,20を挟んで加熱接合する2つの押圧手段6,7を備えている。なお、以下の説明においては、押圧手段6,7の間には、樹脂製基板20が上側、樹脂製基板10が下側となるように配設されて、これら樹脂製基板10,20が挟まれることとして説明する。
 このうち、樹脂製基板20を樹脂製基板10の側に押圧する押圧手段6は、樹脂製基板20の背面20Bに対向する板状の熱板60と、当該熱板60を樹脂製基板20に対する接離方向(図中の上下方向)に移動させる移動手段62とを有している。ここで、熱板60は、樹脂製基板20に当接した状態で当該樹脂製基板20を加熱可能に構成されており、樹脂製基板20の背面20Bよりも大きな寸法に形成されている。このような熱板60や移動手段62としては、従来より公知のものを用いることができる。
 以上の押圧手段6は、熱板60によって樹脂製基板20の背面20Bを樹脂製基板10の側に押圧するようになっている。
 一方、樹脂製基板10を樹脂製基板20の側に押圧する押圧手段7は、樹脂製基板10の背面10Bに対向するとともに各突起部41の対向位置に孔部700が厚み方向へ貫通して形成された板状の熱板70と、孔部700に対して相対移動可能な状態で各孔部700に収容された柱状部材71と、熱板70及び各柱状部材71を樹脂製基板10に対する接離方向(図中の上下方向)に独立して移動させる移動手段72とを有している。
 ここで、熱板70は、樹脂製基板10に当接した状態で当該樹脂製基板10を加熱可能に構成されており、樹脂製基板10における背面10Bよりも大きく、かつ各突起部41の長さ寸法より厚みの大きい寸法に形成されている。また、本実施の形態における熱板70の上面(樹脂製基板10側の面)には、樹脂製基板10の側周面と嵌合する環状の突出部701が形成されており、樹脂製基板10の横方向への移動を拘束するようになっているが、この突出部701は形成されていなくても良い。また、熱板70の孔部700は突起部41を収容可能な寸法に形成されており、本実施の形態においては、突起部41を遊嵌させるようになっているが、突起部41を嵌合させることとしても良い。また、柱状部材71は孔部700に嵌合される寸法に形成されているが、孔部700に相対移動可能な限りにおいて、孔部700に遊嵌される寸法に形成されていても良い。この柱状部材71は、樹脂製基板10を加熱可能に構成されていても良い。
 樹脂製基板10,20を上下に重ね、熱板60,70の間に配設した際に、各柱状部材71の樹脂製基板20に対向する面は、突起部41の先端411に当接する。しかし、樹脂製基板20の作製誤差等により、図5に示すように、隙間73が生じる場合がある。隙間73が生じると柱状部材71を樹脂製基板20の方向へ移動手段72を用いて移動させた際に、各突起部41にかかる力の間にアンバランスが生じ、樹脂製基板10,20同士を十分な接合強度で接合することが難しくなる可能性がある。そこで、隙間73が生じた場合には、隙間73の厚みに相当する図示しないスペーサを挿入し、隙間73を埋めることが好ましい。隙間73を埋め、各柱状部材71が各突起部41の先端411に加える力を均一化することで、樹脂製基板10,20同士を十分な接合強度で接合することが可能となる。
 以上の押圧手段7は、突起部41の基端面410、つまり樹脂製基板10の背面10Bを熱板70によって樹脂製基板20の側に押圧するとともに、孔部700の内部に位置する突起部41の先端411を柱状部材71によって樹脂製基板20の側に押圧するようになっている。
 続いて、マイクロチップ1の製造方法について説明する。
 まず、2枚の熱板60,70の内側面(熱板60の下面,熱板70の上面)に対し、樹脂製基板10,20の貼り付きを防止する剥離剤(図示せず)を塗布する(塗布工程)。なお、このような剥離剤としては、従来より公知のものを用いることができる。
 次に、樹脂製基板10における流路用溝12,13の形成面(腹面10A)を内側(上側)に向けた状態で樹脂製基板10,20を上下に重ね、熱板60,70の間に配設する。このとき、樹脂製基板10の突起部41を熱板70の孔部700に対向させる。
 次に、移動手段62によって熱板60を熱板70に近接させ、移動手段72によって熱板70及び各柱状部材71を熱板60に独立して近接させることにより、熱板60,70や柱状部材71で樹脂製基板10,20を挟む。隙間73が生じた場合には、図示しないスペーサを挿入して隙間73を埋める。このとき、押圧手段6が熱板60によって樹脂製基板20の背面20Bを樹脂製基板10の側に押圧する。また、押圧手段7が突起部41の基端面410(樹脂製基板10の背面10B)を熱板70によって樹脂製基板20の側に押圧するとともに、各孔部700の内部に位置する突起部41の先端411を各柱状部材71によって樹脂製基板20の側に押圧する(図4中の矢印を参照)。
 そして、この状態で樹脂製基板10,20を加圧しながら加熱接合した後(接合工程)、移動手段62,72によって熱板60,70を互いに離間させることにより、マイクロチップ1が製造される。
 ここで、樹脂製基板10と樹脂製基板20との接合は、熱圧着又は熱ラミネートなどの加熱溶着によって行われる。樹脂製基板10、20に対して熱圧着又は熱ラミネートを施すことにより、樹脂製基板10、20の接合面(腹面10A,20A)における樹脂が溶融して、樹脂製基板10と樹脂製基板20とが接合されてマイクロチップ1が形成される。なお、加熱温度としては、例えば、70℃~200℃の温度を用いることができる。また、熱圧着や熱ラミネートの代わりに、レーザ溶着又は超音波溶着によって樹脂製基板10と樹脂製基板20とを接合しても良い。レーザ溶着の場合には、樹脂製基板10,20を重ねた状態で、樹脂製基板10,20に対してレーザを照射することで接合面を溶融させ、さらに、樹脂製基板10と樹脂製基板20とを加圧することで接合する。例えば、0.1W~20Wのレーザ強度で樹脂製基板上を走査することで、基板同士を接合する。また、超音波溶着の場合には、樹脂製基板10,20を重ねた状態で、樹脂製基板10,20に対して超音波を照射することで接合面を溶融させ、さらに、樹脂製基板10と樹脂製基板20とを加圧することで接合する。例えば、10kHz~50kHzの超音波を印加しながら樹脂製基板を加圧することで、基板同士を接合する。樹脂製基板10,20の接合をレーザ溶着又は超音波溶着で行う場合には、押圧手段6,7によって加圧を行うこととなる。
 以上のマイクロチップの製造装置5によれば、樹脂製基板10として突起部41が背面10Bに設けられたものを用い、押圧手段6の熱板60によって樹脂製基板20の背面20Bを樹脂製基板10の側に押圧するとともに、押圧手段7の熱板70及び柱状部材71によって樹脂製基板10における突起部41の基端面410及び先端411を樹脂製基板20の側に押圧して、これら樹脂製基板10,20を加熱接合するので、樹脂製基板10,20同士の接合強度が低下したり、接合面内でばらついたりしてしまうのが防止される。従って、表面に突起部41の設けられたマイクロチップ1を均一かつ強固な接合強度で製造することができる。
 また、熱板70及び柱状部材71によって樹脂製基板10における突起部41の基端面410及び先端411をそれぞれ樹脂製基板20の側に押圧するので、何れか一方のみを押圧する場合と比較して、広い面で押圧を行うことができる。従って、マイクロチップ1をより均一かつ強固な接合強度で製造することができる。
 また、各突起部41の先端411を各柱状部材71によって独立に押圧するので、突起部41の長さにばらつきがある場合であっても、確実に各突起部41の先端411を押圧することができる。従って、マイクロチップ1をより均一かつ強固な接合強度で製造することができる。
 このことは、特に突起部41の高さ寸法のばらつきが30μm以上と大きい場合に有効である。
[変形例(1)]
 続いて、本発明に係るマイクロチップの製造装置の変形例(1)について説明する。なお、上記の実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。
 図6に示すように、本変形例(1)におけるマイクロチップの製造装置5Aは、押圧手段7の代わりに押圧手段7Aを備えている。
 この押圧手段7Aは、2つの熱板70A,70Bと、移動手段72Aとを有している。
 このうち、熱板70Aは、樹脂製基板10の背面10Bに対向する板状部材であり、樹脂製基板10に当接した状態で当該樹脂製基板10を加熱可能に構成されている。この熱板70Aは、樹脂製基板10における背面10Bよりも大きく、かつ各突起部41の長さ寸法より厚みの小さい寸法に形成されている。この熱板70Aにおける各突起部41の対向位置には、突起部41を収容する孔部700Aが厚み方向へ貫通して形成されている。なお、本変形例(1)においては、孔部700Aは突起部41を遊嵌させる寸法に形成されている。
 熱板70Bは、熱板70Aにおける樹脂製基板10側の面とは反対側の面(図中、下側の面)に対向する板状部材であり、樹脂製基板10における突起部41に当接した状態で樹脂製基板10を加熱可能に構成されている。この熱板70Bは、本変形例(1)においては、当該反対面と同じ寸法に形成されている。なお、熱板70Bは、樹脂製基板10を加熱しない板状の部材としても良い。
 移動手段72Aは、熱板70A,70Bを樹脂製基板10に対する接離方向に独立して移動させるようになっている。
 このような製造装置5Aにおいては、樹脂製基板10の突起部41を熱板70Aの孔部700Aに対向させて樹脂製基板10,20を熱板60,70Aの間に配設した後、移動手段62によって熱板60を熱板70Aに近接させ、移動手段72Aによって熱板70A,70Bを熱板60に独立して近接させることにより、熱板60と、熱板70A,70Bとで樹脂製基板10,20を挟む。このとき、突起部41の基端面410を熱板70Aによって樹脂製基板20の側に押圧するとともに、孔部700Aから突出した突起部41の先端411を熱板70Bによって樹脂製基板20の側に押圧する(図中の矢印を参照)。そして、この状態で接合工程が行われる。
 以上の製造装置5Aによれば、樹脂製基板10として突起部41が背面10Bに設けられたものを用い、押圧手段6の熱板60によって樹脂製基板20の背面20Bを樹脂製基板10の側に押圧するとともに、押圧手段7Aの熱板70A,70Bによって樹脂製基板10における突起部41の基端面410及び先端411を樹脂製基板20の側に押圧して、これら樹脂製基板10,20を加熱接合するので、樹脂製基板10,20同士の接合強度が低下したり、接合面内でばらついたりしてしまうのが防止される。従って、表面に突起部41の設けられたマイクロチップ1を均一かつ強固な接合強度で製造することができる。
 また、熱板70A,70Bによって樹脂製基板10における突起部41の基端面410及び先端411をそれぞれ樹脂製基板20の側に押圧するので、何れか一方のみを押圧する場合と比較して、広い面で押圧を行うことができる。従って、マイクロチップ1をより均一かつ強固な接合強度で製造することができる。
 このことは、前述した実施形態と異なり、突起部41の高さ寸法のばらつきが5~30μm程度の場合に有効である。
[変形例(2)]
 続いて、本発明に係るマイクロチップの製造装置の変形例(2)について説明する。なお、上記の実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。
 図7に示すように、本変形例(2)におけるマイクロチップの製造装置5Cは、押圧手段7の代わりに押圧手段7Cを備えている。
 この押圧手段7Cは、熱板70Cと、移動手段72Cとを有している。
 このうち、熱板70Cは、樹脂製基板10の背面10Bに対向する板状部材であり、樹脂製基板10に当接した状態で当該樹脂製基板10を加熱可能に構成されている。この熱板70Cは、樹脂製基板10における背面10Bよりも大きい寸法に形成されている。熱板70Cにおける各突起部41の対向位置には、突起部41を収容する孔部700Cが厚み方向へ貫通して形成されている。なお、本変形例(2)においては、熱板70Cは各突起部41の長さ寸法より厚みが大きく形成されており、孔部700Cは突起部41を遊嵌させる寸法に形成されている。
 移動手段72Cは、熱板70Cを樹脂製基板10に対する接離方向に移動させるようになっている。
 このような製造装置5Cにおいては、樹脂製基板10の突起部41を熱板70Cの孔部700Cに対向させて樹脂製基板10,20を熱板60,70Cの間に配設した後、移動手段62によって熱板60を熱板70Cに近接させ、移動手段72Cによって熱板70Cを熱板60に近接させることにより、熱板60と、熱板70Cとで樹脂製基板10,20を挟む。このとき、突起部41の基端面410を熱板70Cによって樹脂製基板20の側に押圧する(図中の矢印を参照)。そして、この状態で接合工程が行われる。
 以上の製造装置5Cによれば、樹脂製基板10として突起部41が背面10Bに設けられたものを用い、押圧手段6の熱板60によって樹脂製基板20の背面20Bを樹脂製基板10の側に押圧するとともに、押圧手段7Cの熱板70Cによって樹脂製基板10における突起部41の基端面410を樹脂製基板20の側に押圧して、これら樹脂製基板10,20を加熱接合するので、樹脂製基板10,20同士の接合強度が低下したり、接合面内でばらついたりしてしまうのが防止される。従って、表面に突起部41の設けられたマイクロチップ1を均一かつ強固な接合強度で製造することができる。
 このことは、特に熱板70Cの孔部700Cが貫通した状態又は突起部41の先端411との間に十分な隙間を生じる深さの場合に有効である。各突起部41に寸法誤差がある場合や、元々高さが異なる場合であっても、突起部41の基端面410に押圧力が作用するためである。
 その他、本変形例(2)は孔部700Cの内径が例えば5mm以下と小さい場合や、突起部41の先端411の面積に対して基端面410の面積が大きい場合にも他の変形例と比較して強固な接合強度が得られる点で有効である。
[変形例(3)]
 続いて、本発明に係るマイクロチップの製造装置の変形例(3)について説明する。なお、上記の実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。
 図8に示すように、本変形例(3)におけるマイクロチップの製造装置5Dは、押圧手段7の代わりに押圧手段7Dを備えている。
 この押圧手段7Dは、熱板70Dと、移動手段72Dとを有している。
 このうち、熱板70Dは、樹脂製基板10の背面10Bに対向する板状部材であり、樹脂製基板10に当接した状態で当該樹脂製基板10を加熱可能に構成されている。この熱板70Dは、樹脂製基板10における背面10Bよりも大きい寸法に形成されている。熱板70Dにおける各突起部41の対向位置には、突起部41を収容する有底の孔部700Dが厚み方向に形成されている。なお、本変形例(3)においては、熱板70Dは各突起部41の長さ寸法より厚みが大きく形成されており、孔部700Dは突起部41を遊嵌させるとともに、底面で突起部41の先端411に当接する寸法に形成されている。また、本実施の形態における熱板70Dの上面には、樹脂製基板10の側周面と遊嵌する環状の突出部701Dが形成されており、樹脂製基板10の横方向への移動を拘束するようになっているが、この突出部701Dは形成されていなくても良い。
 移動手段72Dは、熱板70Dを樹脂製基板10に対する接離方向に移動させるようになっている。
 このような製造装置5Dにおいては、樹脂製基板10の突起部41を熱板70Dの孔部700Dに対向させて樹脂製基板10,20を熱板60,70Dの間に配設した後、移動手段62によって熱板60を熱板70Dに近接させ、移動手段72Dによって熱板70Dを熱板60に近接させることにより、熱板60と、熱板70Dとで樹脂製基板10,20を挟む。このとき、突起部41の先端411を熱板70Dにおける孔部700Dの底面で樹脂製基板20の側に押圧する(図中の矢印を参照)。そして、この状態で接合工程が行われる。
 以上の製造装置5Dによれば、樹脂製基板10として突起部41が背面10Bに設けられたものを用い、押圧手段6の熱板60によって樹脂製基板20の背面20Bを樹脂製基板10の側に押圧するとともに、押圧手段7Dの熱板70Dによって樹脂製基板10における突起部41の先端411を樹脂製基板20の側に押圧して、これら樹脂製基板10,20を加熱接合するので、樹脂製基板10,20同士の接合強度が低下したり、接合面内でばらついたりしてしまうのが防止される。従って、表面に突起部41の設けられたマイクロチップ1を均一かつ強固な接合強度で製造することができる。
 なお、上記の変形例(3)では、熱板70Dが孔部700Dを有し、この孔部700Dの底面で突起部41の先端411を押圧することとして説明したが、突起部41の先端411を押圧する限りにおいて、平板状に形成され、表面で突起部41の先端411を押圧することとしても良い。
 なお本変形例(3)の構成は、突起部41の基端面410を押圧できないものの、孔部700Dの内径が比較的大きい場合(例えば5mm以上の場合)や、突起部41の基端面410の面積に対して、突起部41の先端411の面積が大きい場合に、他の変形例に比べて強固な接合強度を得るのに有効である。
[変形例(4)]
 続いて、本発明に係るマイクロチップの製造装置の変形例(4)について説明する。なお、上記の実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。
 図1,図3,図9に示すように、本変形例(4)におけるマイクロチップ1Eは樹脂製基板10の代わりに樹脂製基板10Eを有しており、当該樹脂製基板10Eには突起部41の代わりに突起部41Eが設けられている。
 この突起部41Eは、基端側から先端側に向かって径が細くなっている点で、突起部41と異なっている。
 また、図9に示すように、本変形例(4)におけるマイクロチップの製造装置5Eは、押圧手段7の代わりに押圧手段7Eを備えている。
 この押圧手段7Eは、熱板70Eと、移動手段72Eとを有している。
 このうち、熱板70Eは、樹脂製基板10Eの背面10Bに対向する板状部材であり、樹脂製基板10Eに当接した状態で当該樹脂製基板10Eを加熱可能に構成されている。この熱板70Eは、樹脂製基板10Eにおける背面10Bよりも大きい寸法に形成されている。熱板70Eにおける各突起部41Eの対向位置には、突起部41Eを収容するとともに、突起部41Eの長さ寸法に対応する深さの孔部700Eが厚み方向へ形成されている。なお、本変形例(4)においては、熱板70Eは各突起部41Eの長さ寸法より厚みが大きく形成されており、孔部700Eは突起部41Eを嵌合させるとともに、底面で突起部41Eの先端411に当接する寸法に形成されている。
 移動手段72Eは、熱板70Eを樹脂製基板10Eに対する接離方向に移動させるようになっている。
 このような製造装置5Eにおいては、樹脂製基板10Eの突起部41Eを熱板70Eの孔部700Eに対向させて樹脂製基板10E,20を熱板60,70Eの間に配設した後、移動手段62によって熱板60を熱板70Eに近接させ、移動手段72Eによって熱板70Eを熱板60に近接させることにより、熱板60と、熱板70Eとで樹脂製基板10E,20を挟む。このとき、突起部41Eの基端面410を熱板70Eの表面によって樹脂製基板20の側に押圧するとともに、孔部700Eの内部に位置する突起部41Eの先端411や側周面を当該孔部700Eの底面や内壁面によって樹脂製基板20の側に押圧する(図中の矢印を参照)。そして、この状態で接合工程が行われる。
 以上の製造装置5Eによれば、樹脂製基板10Eとして突起部41Eが背面10Bに設けられたものを用い、押圧手段6の熱板60によって樹脂製基板20の背面20Bを樹脂製基板10Eの側に押圧するとともに、押圧手段7Eにおける熱板70Eの表面や孔部700Eの底面によって樹脂製基板10Eにおける突起部41Eの基端面410及び先端411を樹脂製基板20の側に押圧して、これら樹脂製基板10E,20を加熱接合するので、樹脂製基板10E,20同士の接合強度が低下したり、接合面内でばらついたりしてしまうのが防止される。従って、表面に突起部41Eの設けられたマイクロチップ1を均一かつ強固な接合強度で製造することができる。
 また、熱板70Eの表面や孔部700Eの底面によって樹脂製基板10Eにおける突起部41Eの基端面410及び先端411をそれぞれ樹脂製基板20の側に押圧するので、何れか一方のみを押圧する場合と比較して、広い面で押圧を行うことができる。従って、マイクロチップ1Eをより均一かつ強固な接合強度で製造することができる。
 また、孔部700Eの内周面によって突起部41Eの側周面を樹脂製基板20の側に押圧するので、より広い面で押圧を行うことができる。従って、マイクロチップ1Eをより均一かつ強固な接合強度で製造することができる。
 なお、本発明は上記の実施形態及び変形例に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。
 例えば、上記実施形態及び変形例では、貫通孔14や突起部41,41Eを樹脂製基板10に形成することとして説明したが、樹脂製基板20に形成することで、微細流路と繋がる開口部を形成しても良い。
 また、樹脂製基板10,10Eの背面10Bに設けられる凹凸部材は、上述の突起部41に限定されず、例えば、微細流路内を流れる試料の流動を制御するためのスイッチや、分析装置からの光を集光するためのレンズなどであっても良い。
 また、製造装置5,5Aには、押圧手段6の移動手段62と、押圧手段7,7Aの移動手段72,72Aとの2つの移動手段が設けられることとして説明したが、押圧手段7,7Aの移動手段72,72Aのみが設けられることとしても良い。一方、製造装置5C~5Eには、押圧手段6の移動手段62と、押圧手段7C~7Eの移動手段72C~72Eとの2つの移動手段が設けられることとして説明したが、何れか一方のみが設けられることとしても良い。
 1,1E マイクロチップ
 5,5A~5E 製造装置(マイクロチップの製造装置)
 6 押圧手段(他方の押圧手段)
 7,7A~7E 押圧手段(一方の押圧手段)
 10,10E 樹脂製基板(一方の基板)
 10A 樹脂製基板の腹面(一方の基板の腹面)
 10B 樹脂製基板の背面(一方の基板の背面)
 15,16 微細流路(流路)
 20 樹脂製基板(他方の基板)
 20A 樹脂製基板の腹面(他方の基板の腹面)
 20B 樹脂製基板の背面(他方の基板の背面)
 41,41E 突起部
 70A 熱板(第1の板状部材)
 70B 熱板(第2の板状部材)
 71 柱状部材
 72,72A~72E 移動手段
 70,70C~70E 熱板(板状部材)
 410 突起部の基端面
 411 突起部の先端
 700,700A~700E 孔部

Claims (13)

  1.  積層されて内側に流路を形成した2つの基板を、互いに対向する2つの押圧手段の間に挟み、これら基板の腹面同士を加熱接合するマイクロチップの製造方法において、
     前記2つの基板のうち、一方の基板として、少なくとも1つの突起部が背面に設けられたものを用い、
     前記2つの押圧手段のうち、一方の押圧手段によって前記一方の基板における前記突起部の先端と基端面との少なくとも一方を他方の基板側に押圧するとともに、他方の押圧手段によって前記他方の基板の背面を前記一方の基板側に押圧して、これら基板を加熱接合する接合工程を行うことを特徴とするマイクロチップの製造方法。
  2.  請求項1記載のマイクロチップの製造方法において、
     前記一方の押圧手段として、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの大きい板状部材と、
     各孔部に対して相対移動可能な状態で、当該孔部に収容された柱状部材と、
    を有するものを用い、
     前記接合工程では、
     前記板状部材と、各柱状部材とを前記一方の基板に対する接離方向に独立して移動させ、
     前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧するとともに、
     前記孔部の内部に位置する前記突起部の先端を、前記柱状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造方法。
  3.  請求項1記載のマイクロチップの製造方法において、
     前記一方の押圧手段として、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの小さい第1の板状部材と、
     前記第1の板状部材における前記一方の基板側の面とは反対側の面に対向して配設された第2の板状部材と、
    を有するものを用い、
     前記接合工程では、
     前記第1の板状部材と、前記第2の板状部材とを前記一方の基板に対する接離方向に独立して移動させ、
     前記突起部の基端面を、前記第1の板状部材によって前記他方の基板側に押圧するとともに、
     前記孔部から突出した前記突起部の先端を、前記第2の板状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造方法。
  4.  請求項1記載のマイクロチップの製造方法において、
     前記一方の押圧手段として、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成された板状部材を有するものを用い、
     前記接合工程では、
     前記板状部材を前記一方の基板に対する接離方向に移動させ、
     前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造方法。
  5.  請求項1記載のマイクロチップの製造方法において、
     前記一方の押圧手段として、
     前記一方の基板の背面に対向するよう配設されるとともに各突起部と対向する1枚の板状部材を有するものを用い、
     前記接合工程では、
     前記板状部材を前記一方の基板に対する接離方向に移動させ、
     前記突起部の先端を、前記板状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造方法。
  6.  請求項1記載のマイクロチップの製造方法において、
     前記一方の押圧手段として、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容するとともに前記突起部の長さ寸法に対応する深さの孔部が厚み方向に形成された板状部材を有するものを用い、
     前記接合工程では、
     前記板状部材を前記一方の基板に対する接離方向に移動させ、
     前記突起部の基端面を、前記板状部材の表面によって前記他方の基板側に押圧するとともに、
     前記孔部の内部に位置する前記突起部の先端を、当該孔部の底面によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造方法。
  7.  請求項1~6の何れか一項に記載のマイクロチップの製造方法によって製造されたことを特徴とするマイクロチップ。
  8.  積層されて内側に流路を形成した2つの基板の腹面同士を加熱接合するマイクロチップの製造装置において、
     互いに対向して間に前記2つの基板を挟んで加熱接合する2つの押圧手段を備え、
     前記2つの基板のうち、一方の基板は、少なくとも1つの突起部が背面に設けられており、
     前記2つの押圧手段は、
     一方の押圧手段によって前記一方の基板における前記突起部の先端と基端面との少なくとも一方を他方の基板側に押圧するとともに、
     他方の押圧手段によって前記他方の基板の背面を前記一方の基板側に押圧して、
     これら基板を加熱接合することを特徴とするマイクロチップの製造装置。
  9.  請求項8記載のマイクロチップの製造装置において、
     前記一方の押圧手段は、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの大きい板状部材と、
     各孔部に対して相対移動可能な状態で、当該孔部に収容された柱状部材と、
     前記板状部材及び各柱状部材を前記一方の基板に対する接離方向に独立して移動させる移動手段と、
    を有し、
     前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧するとともに、
     前記孔部の内部に位置する前記突起部の先端を、前記柱状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造装置。
  10.  請求項8記載のマイクロチップの製造装置において、
     前記一方の押圧手段は、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成されるとともに、各突起部の長さ寸法より厚みの小さい第1の板状部材と、
     前記第1の板状部材における前記一方の基板側の面とは反対側の面に対向して配設された第2の板状部材と、
     前記第1の板状部材及び前記第2の板状部材を前記一方の基板に対する接離方向に独立して移動させる移動手段と、
    を有し、
     前記突起部の基端面を、前記第1の板状部材によって前記他方の基板側に押圧するとともに、
     前記孔部から突出した前記突起部の先端を、前記第2の板状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造装置。
  11.  請求項8記載のマイクロチップの製造装置において、
     前記一方の押圧手段は、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容する孔部が厚み方向に貫通して形成された板状部材と、
     前記板状部材を前記一方の基板に対する接離方向に移動させる移動手段と、
    を有し、
     前記突起部の基端面を、前記板状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造装置。
  12.  請求項8記載のマイクロチップの製造装置において、
     前記一方の押圧手段は、
     前記一方の基板の背面に対向するよう配設されるとともに各突起部と対向する1枚の板状部材と、
     前記板状部材を前記一方の基板に対する接離方向に移動させる移動手段と、
    を有し、
     前記突起部の先端を、前記板状部材によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造装置。
  13.  請求項8記載のマイクロチップの製造装置において、
     前記一方の押圧手段は、
     前記一方の基板の背面に対向するよう配設され、各突起部に対する対向位置に当該突起部を収容するとともに前記突起部の長さ寸法に対応する深さの孔部が厚み方向に形成された板状部材と、
     前記板状部材を前記一方の基板に対する接離方向に移動させる移動手段と、
    を有し、
     前記突起部の基端面を、前記板状部材の表面によって前記他方の基板側に押圧するとともに、
     前記孔部の内部に位置する前記突起部の先端を、当該孔部の底面によって前記他方の基板側に押圧することを特徴とするマイクロチップの製造装置。
PCT/JP2009/063259 2008-08-08 2009-07-24 マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置 WO2010016399A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523830A JPWO2010016399A1 (ja) 2008-08-08 2009-07-24 マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008205906 2008-08-08
JP2008-205906 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016399A1 true WO2010016399A1 (ja) 2010-02-11

Family

ID=41663620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063259 WO2010016399A1 (ja) 2008-08-08 2009-07-24 マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置

Country Status (2)

Country Link
JP (1) JPWO2010016399A1 (ja)
WO (1) WO2010016399A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206098A (ja) * 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd 樹脂製マイクロ流路チップの製造方法およびマイクロ流路チップ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144300A (ja) * 2000-07-27 2002-05-21 Toshiba Tec Corp パイプジョイント及びその作製方法並びにそれを用いた流体デバイス
JP2008056498A (ja) * 2005-01-17 2008-03-13 Nippon Sheet Glass Co Ltd マイクロ化学チップの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144300A (ja) * 2000-07-27 2002-05-21 Toshiba Tec Corp パイプジョイント及びその作製方法並びにそれを用いた流体デバイス
JP2008056498A (ja) * 2005-01-17 2008-03-13 Nippon Sheet Glass Co Ltd マイクロ化学チップの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206098A (ja) * 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd 樹脂製マイクロ流路チップの製造方法およびマイクロ流路チップ

Also Published As

Publication number Publication date
JPWO2010016399A1 (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
US6848462B2 (en) Adhesiveless microfluidic device fabrication
KR100572207B1 (ko) 플라스틱 마이크로 칩의 접합 방법
EP2851121B1 (en) Devices for and methods of forming microchannels or microfluid reservoirs
US20040112518A1 (en) Polymer bonding by means of plasma activation
CA2329623A1 (en) Methods of fabricating polymeric structures incorporating microscale fluidic elements
JP2006030160A (ja) 反応容器
JP5187442B2 (ja) マイクロチップ
JP2009166416A (ja) マイクロチップの製造方法、及びマイクロチップ
JP2008216121A (ja) マイクロチップの製造方法
JP5251983B2 (ja) マイクロチップの製造方法
JP2007240461A (ja) プラスチック製マイクロチップ、及びその接合方法、及びそれを利用したバイオチップ又はマイクロ分析チップ。
JP2011214838A (ja) 樹脂製マイクロ流路チップ
WO2010016399A1 (ja) マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置
JP2008157644A (ja) プラスチック製マイクロチップ、及びそれを利用したバイオチップ又はマイクロ分析チップ。
JP5720695B2 (ja) 成形型及びマイクロチップ製造装置
WO2009101845A1 (ja) マイクロチップ及びその製造方法
WO2010016371A1 (ja) マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置
JP4752364B2 (ja) プラスチックの接合方法、及びその方法を利用して製造されたバイオチップ又はマイクロ分析チップ
WO2010021263A1 (ja) マイクロチップ、及びマイクロチップの製造方法
WO2009101850A1 (ja) マイクロチップの製造方法、及びマイクロチップ
WO2009125757A1 (ja) マイクロチップ及びマイクロチップの製造方法
JP2008304352A (ja) 流路デバイス用基板の接合方法および流路デバイス
JP2010247056A (ja) マイクロチップ
JP2009192421A (ja) マイクロチップの製造方法、及びマイクロチップ
WO2012057101A1 (ja) マイクロチップ、マイクロチップの成形型、及びマイクロチップを製造する製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523830

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804884

Country of ref document: EP

Kind code of ref document: A1